1
|
Talebi F, Gregucci F, Ahmed J, Ben Chetrit N, D. Brown B, Chan TA, Chand D, Constanzo J, Demaria S, I. Gabrilovich D, Golden E, Godkin A, Guha C, P. Gupta G, Hasan A, G. Herrera F, Kaufman H, Li D, A. Melcher A, McDonald S, Merghoub T, Monjazeb AM, Paris S, Pitroda S, Sadanandam A, Schaue D, Santambrogio L, Szapary P, Sage J, W. Welsh J, Wilkins A, H. Young K, Wennerberg E, Zitvogel L, Galluzzi L, Deutsch E, C. Formenti S. Updates on radiotherapy-immunotherapy combinations: Proceedings of 8th Annual ImmunoRad Conference. Oncoimmunology 2025; 14:2507856. [PMID: 40401900 PMCID: PMC12101595 DOI: 10.1080/2162402x.2025.2507856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The annual ImmunoRad Conference has established itself as a recurrent occasion to explore the possibility of combining radiation therapy (RT) and immunotherapy (IT) for clinical cancer management. Bringing together a number of preclinical and clinical leaders in the fields of radiation oncology, immuno-oncology and IT, this annual event fosters indeed essential conversations and fruitful exchanges on how to address existing challenges to expand the therapeutic value of RT-IT combinations. The 8th edition of the ImmunoRad Conference, which has been held in October 2024 at the Weill Cornell Medical College of New York City, highlighted exciting preclinical and clinical advances at the interface between RT and IT, setting the stage for extra progress toward extended benefits for patients with an increasing variety of tumor types. Here, we critically summarize the lines of investigation that have been discussed at the occasion of the 8th Annual ImmunoRad Conference.
Collapse
Affiliation(s)
- Fereshteh Talebi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jalal Ahmed
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nir Ben Chetrit
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy A. Chan
- Department of Cancer Sciences, Global Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Case Western University School of Medicine, Cleveland, OH, USA
| | | | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Godkin
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Chandan Guha
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaorav P. Gupta
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Fernanda G. Herrera
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
- Services of Radiation Oncology and Immuno-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Donna Li
- University of Wisconsin, Madison, WI, USA
| | - Alan A. Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Sierra McDonald
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center and Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, San Diego, CA, USA
| | | | - Sean Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Julien Sage
- Departments of Genetics and Pediatrics, Stanford University, Stanford, California
| | - James W. Welsh
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Kristina H. Young
- Division of Radiation Oncology, The Oregon Clinic, Portland, OR, USA
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Eric Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Laurence Zitvogel
- Gustave Roussy, INSERM U1015, Division of Medicine, Paris-Saclay University, Center of Clinical Investigations BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, INSERM U1030, Division of Medicine, Paris-Saclay University, RHU LySAIRI “Lymphocyte-Sparing Artificial Intelligence-guided Radio-Immunotherapy”, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Hasan N, Yazdanpanah O, Harris JP, Nagasaka M. Consolidative radiotherapy in oligometastatic and oligoprogressive NSCLC: A systematic review. Crit Rev Oncol Hematol 2025; 210:104676. [PMID: 40064250 DOI: 10.1016/j.critrevonc.2025.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Consolidative radiation is increasingly regarded as an effective treatment for oligometastatic and oligoprogressive non-small cell lung cancer (NSCLC). This systematic review examines the clinical evidence on the significance of consolidative radiation in improving outcomes in NSCLC, including progression-free survival and overall survival. Innovations in radiotherapy, including stereotactic body radiotherapy and intensity-modulated radiotherapy, have enhanced the accuracy and effectiveness of local control in oligometastatic disease. This paper analyzes the integration of consolidative radiotherapy with systemic agents, including immunotherapy and targeted therapy, along with the application of biomarkers such circulating tumor DNA for patient selection. Our findings indicate that consolidative radiotherapy could benefit some patients with controlled oligometastatic NSCLC following systemic therapy, emphasizing the importance of proper patient selection. Additional research is necessary to optimize treatment combinations and develop biomarkers for better patient stratification in consolidative radiotherapy.
Collapse
Affiliation(s)
- Nazmul Hasan
- University of California, Irvine, Department of Medicine, Orange, CA, United States
| | - Omid Yazdanpanah
- Chao Family Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, United States
| | - Jeremy P Harris
- Department of Radiation Oncology, University of California, Irvine, Orange, CA, United States
| | - Misako Nagasaka
- Chao Family Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Orange, CA, United States; Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.
| |
Collapse
|
3
|
Yang J, Chen R. Radiosensitization Strategies for Hepatocellular Carcinoma: Mechanisms, Therapeutic Advances, and Clinical Perspectives. Crit Rev Oncol Hematol 2025:104773. [PMID: 40412577 DOI: 10.1016/j.critrevonc.2025.104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with treatment efficacy limited by late-stage diagnosis, frequent recurrence, and therapeutic resistance. Radiotherapy is a key local treatment for HCC; however, its efficacy is frequently limited by intrinsic tumor radioresistance. This review discusses strategies to improve the therapeutic response of HCC to radiotherapy. Targeting DNA repair mechanisms can block tumor cells from recovering after radiation-induced damage, whereas modulating cell cycle arrest and programmed cell death pathways (e.g., apoptosis, autophagy) diminishes their survival capacity. Furthermore, remodeling the tumor microenvironment-through hypoxia alleviation, metabolic reprogramming, oxidative stress regulation, and immune activation-may potentiate radiotherapy efficacy. Technological advances, such as stereotactic body radiotherapy and nanomaterial-based approaches, have also improved the precision and effectiveness of radiotherapy. Clinically, combining radiotherapy with systemic therapies (e.g., immune checkpoint inhibitors and antiangiogenic agents) has demonstrated preliminary promise in enhancing treatment outcomes. However, translating preclinical findings into clinical practice remains challenging due to tumor heterogeneity, normal tissue toxicity, and the lack of predictive biomarkers for treatment selection. Future research should focus on integrating molecular profiling with multimodal therapies to enable personalized radiosensitization and bridge the gap between mechanistic insights and clinical outcomes.
Collapse
Affiliation(s)
- Jiahui Yang
- Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Rong Chen
- Department of Radiation Oncology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Liu Z, Wang D, Li G, Yi M, Zhang Z, Zhong G, Xu L, Jiang R, Zheng Y, Huang L, Peng Y, Liang L, Li J, Liu Y, Lai J, Lv X, Xu Y, Liu Q, Wang Z, Liu Z, Yang Q, Nie L, Lei J, Huang X, Liu Z, Jiang W. Neoadjuvant with low-dose radiotherapy, tislelizumab, albumin-bound paclitaxel, and cisplatin for resectable locally advanced head and neck squamous cell carcinoma: phase II single-arm trial. Nat Commun 2025; 16:4608. [PMID: 40382318 PMCID: PMC12085655 DOI: 10.1038/s41467-025-59865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Although pathological complete response (pCR) and major pathological response (MPR) rates of neoadjuvant immunotherapy combined with chemotherapy in head and neck squamous cell carcinoma (HNSCC) trials remain suboptimal, emerging evidence highlights the synergistic potential of combining low-dose radiotherapy with immunotherapy to promote the efficacy of immunotherapy. This phase II, open-label, single-arm, multicenter trial (NCT05343325) enrolled 28 patients with untreated stage III-IVB HNSCC (NeoRTPC02). Patients received neoadjuvant low-dose radiotherapy, the programmed death-1 (PD-1) inhibitor tislelizumab, albumin-bound paclitaxel, and cisplatin for two cycles, followed by radical resection ~4 weeks after treatment completion. The primary endpoint, pCR rate, was achieved in 14 of 23 patients (60.9%; 23/28, 82.1% of the total cohort underwent surgery). Secondary endpoints included MPR rate (21.7%, 5/23), R0 resection rate (100%), and objective response rate (64.3%; 18/28). Treatment-related adverse events were manageable, with grade 3 or 4 treatment-related adverse events occurring in 10 (35.7%) patients. No surgical delays were observed. Single-cell RNA sequencing revealed remodeling of the HNSCC tumor microenvironment, which may correlate with improved clinical outcomes. This trial met the pre-specified primary endpoint, demonstrating a high pCR rate with promising efficacy and manageable toxicity in locally advanced HNSCC.
Collapse
Affiliation(s)
- Zhigang Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China.
- Shenzhen School of Clinical Medicine, Southern Medical University, Guangdong, China.
| | - Dong Wang
- Department of Oral and Maxillofacial Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Guanjun Li
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
- Shenzhen School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Muhua Yi
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Zhaoyuan Zhang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
- Shenzhen School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Guihua Zhong
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Liangfu Xu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
- Shenzhen School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Rong Jiang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Yannan Zheng
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Linxuan Huang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Yingpeng Peng
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lizhong Liang
- Department of Oral and Maxillofacial Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jianpeng Li
- Department of Radiology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Ye Liu
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jun Lai
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xianjuan Lv
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Yongqiang Xu
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Qiaodan Liu
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhiqiang Wang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Zhutian Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Qinan Yang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Li Nie
- Department of Oral and Maxillofacial Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Jiao Lei
- Department of Oral and Maxillofacial Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
- School of Stomatology Jinan University, Guangzhou, Guangdong, China
| | - Xiaotao Huang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Zhijie Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Dong J, Qi Y, Sha S, Fu C, Xu X, Li B. Whole-body CT scanning radiation improves the immune microenvironment of tumor tissues to enhance the antitumor effect of ICI. BMC Cancer 2025; 25:824. [PMID: 40316957 PMCID: PMC12049032 DOI: 10.1186/s12885-025-14119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/08/2025] [Indexed: 05/04/2025] Open
Abstract
OBJECTIVE The effect of frequent whole-body CT scans during immune checkpoint inhibitor (ICI) therapy on patients' anti-tumor immunity. METHODS We conducted a retrospective clinical study aimed to investigate the correlation between the frequency of CT scans during immune checkpoint inhibitor (ICI) therapy and the duration of remission (DOR) of ICI therapy in patients with stage IV non-small cell lung cancer (NSCLC). We constructed a hormonal mouse model and administered immune checkpoint inhibitor (ICI) therapy to mice, and radiated five whole-body CT scans to mice during ICI therapy to observe whether frequent whole-body CT scans had an effect on the antitumor effect of immunotherapy in mice. RESULTS The more frequent CT scans during patients' immune checkpoint inhibitor (ICI) treatment the longer the duration of remission (DOR) of ICI treatment. In a mouse model we observed that the addition of whole-body CT scanning radiation had a tendency to inhibit tumor growth in mice compared with the anti-PD-1 group alone.Frequent CT scanning radiation during the application of immune checkpoint inhibitor PD-1 increased the proportion of infiltrating CD8 + T cells in tumor tissues and significantly increased the proportion of IFNγ-secreting CD8 + T cells, and single-cell sequencing of the results also revealed that IFNγ and killing-related genes were significantly upregulated in tumor-infiltrating CD8T cells. CONCLUSION To our knowledge this is the first study on the effect of CT scan radiation on ICI.Our findings suggest that multiple CT scans during immune checkpoint inhibitor (ICI) treatment did not promote tumor progression, but instead a trend toward delayed tumor progression was observed.
Collapse
Affiliation(s)
- Jigang Dong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300000, China
- Qingdao People's Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Ying Qi
- Qingdao People's Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Sha Sha
- Qingdao People's Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Chengrui Fu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300000, China
- Department of Radiotherapy, Shandong Cancer Hospital, Jinan, 250000, China
| | - Xiao Xu
- Qingdao People's Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao, Qingdao, China.
| | - Baosheng Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300000, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Department of Radiation Oncology, Tianjin, China.
- Medical University; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong, Jinan, China.
- Academy of Medical Sciences, No. 440 Jiyan Road, Jinan, 250017, China.
| |
Collapse
|
6
|
Snider JW, Mayr NA, Molitoris J, Chhabra AM, Mossahebi S, Griffin R, Mohiuddin M, Zhang H, Amendola B, Tubin S, Kang M, Limoli C, Marter K, Perez N, Rustin GO, Mahadevan A, Coleman CN, Ahmed M, Simone CB. The Radiosurgery Society Working Groups on GRID, LATTICE, Microbeam, and FLASH Radiotherapies: Advancements Symposium and Subsequent Progress Made. Pract Radiat Oncol 2025; 15:300-307. [PMID: 39447865 DOI: 10.1016/j.prro.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE Since the inaugural workshop "Understanding High-Dose, Ultra-High Dose Rate and Spatially Fractionated Radiotherapy." hosted by the National Cancer Institute and sponsored by the Radiosurgery Society (RSS), growing collaborations and investigations have ensued among experts, practitioners, and researchers. The RSS GRID, LATTICE, Microbeam and FLASH (GLMF) Working Groups were formed as a framework for these efforts and have focused on advancing the understanding of the biology, technical/physical parameters, trial design, and clinical practice of these new radiation therapy modalities. METHODS AND MATERIALS In view of the steadily increasing clinical interest in Spatially Fractionated Radiotherapy (SFRT) and FLASH, a full-day symposium entitled "Advancements in GRID, LATTICE, and FLASH Radiotherapy Symposium" was established in 2022 that immediately preceded the RSS scientific meeting. This well-attended symposium focused on clinical, technical, and physics approaches for SFRT, and closely examining relevant radiobiological underpinnings. Practical clinical trial development was a highlighted discussion. An additional section reviewed proton therapy and other particle-based techniques for the delivery of GRID and LATTICE therapy. A treatment planning and delivery tutorial for GRID, LATTICE, and proton GRID/LATTICE was directed toward the real-world considerations for the development of new clinical GRID or LATTICE programs. An overall similar approach was applied to the discussion of FLASH. This report summarizes the content of the first GLMF Symposium and related work of the RSS GLMF Working Groups in the field of heterogeneous and ultrahigh dose rate irradiation, over approximately 2 years. RESULTS The GLMF Working Groups have continued to expand in membership and attendance, and several resultant trial concepts, research efforts, academic discussions, and peer-reviewed publications have followed as the number of institutions and practitioners using SFRT and FLASH continues to grow. CONCLUSIONS The GLMF Working Groups and the RSS continue to demonstrate excellent progress in proliferating use of and improving understanding of SFRT and ultrahigh dose rate radiation therapy techniques.
Collapse
Affiliation(s)
| | - Nina A Mayr
- Michigan State University, East Lansing, Michigan
| | - Jason Molitoris
- University of Maryland School of Medicine, Department of Radiation Oncology, Baltimore, Maryland
| | | | - Sina Mossahebi
- University of Maryland School of Medicine, Department of Radiation Oncology, Baltimore, Maryland
| | - Robert Griffin
- University of Arkansas for Medical Sciences, Department of Radiation Oncology, Little Rock, Arkansas
| | | | - Hualin Zhang
- University of Southern California, Department of Radiation Oncology, Los Angeles, California
| | | | | | | | - Charles Limoli
- University of California, Irvine, Department of Radiation Oncology, Irvine, California
| | - Kimberly Marter
- University of Maryland Medical Center, Department of Radiation Oncology, Baltimore, Maryland
| | | | | | - Anand Mahadevan
- New York University, Langone Health, Department of Radiation Oncology, New York, New York
| | | | | | | |
Collapse
|
7
|
Constanzo J, Parach A, David T, Karam J, Bruchertseifer F, Morgenstern A, Jarlier M, Bardiès M, Deshayes E, Gudin-de-Vallerin A, Boissière-Michot F, Lopez-Crapez E, Pouget JP. MHC-I-Driven Antitumor Immunity Counterbalances Low Absorbed Doses of Radiopharmaceutical Therapy. J Nucl Med 2025; 66:785-792. [PMID: 40015918 PMCID: PMC12051770 DOI: 10.2967/jnumed.124.268857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Preclinical and clinical studies increasingly show that the immune response plays a major role in radiotherapy. Here, we investigated the role of major histocompatibility complex class I (MHC-I) molecules recognized by cytotoxic CD8+ T cells in the response to radiopharmaceutical therapy (RPT). Methods: Two murine melanoma cell lines that express low and high MHC-I levels (B16F10 and B16K1, respectively) were grafted in syngeneic or athymic and nude mice, and the response to a single injection of [225Ac]Ac-DOTA-TA99 monoclonal antibodies (9.25 or 18.5 kBq) was assessed and related to dosimetry. For clinical relevance, MHC-I expression was determined in samples from patients with well-differentiated, iodine-avid metastatic thyroid cancer and well-differentiated grade 2 mid-gut neuroendocrine tumors. Results: RPT efficacy was enhanced by T-cell presence and MHC-I expression. In mice harboring B16F10 and B16K1 melanoma tumors, RPT showed a stronger antitumor effect in C57BL/6J (immunocompetent) animals than in athymic and nude (immunodeficient) animals, suggesting a crucial role of T-cell-mediated immune responses. Moreover, the response to irradiation was the same in B16K1 MHC-Ihigh tumors with a low absorbed dose of α-RPT and in B16F10 MHC-Ilow tumors with a 4 times higher absorbed dose. These results indicate that CD8+ T cells can counterbalance low tumor irradiation. Conversely, delivering high absorbed doses leads to side effects and seems to prevent immune system activation, thereby not taking advantage of these mechanisms. Our results also indicate that MHC-I can be used as a predictive biomarker of RPT response in lesions receiving low absorbed doses and that RPT treatment regimens should be reconsidered in the function of the MHC-I expression level. Conclusion: This study shows that MHC-I expression can predict RPT immunostimulatory effects. This is relevant in metastatic disease where lesions in the same patient can receive very low or very high absorbed doses.
Collapse
Affiliation(s)
- Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France;
| | - Aliasghar Parach
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Timothee David
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Joshua Karam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | | | - Marta Jarlier
- Biometrics Unit, Institut Régional du Cancer Montpellier, Montpellier, France; and
| | - Manuel Bardiès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Emmanuel Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | | | - Evelyne Lopez-Crapez
- Translational Research Unit, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France;
| |
Collapse
|
8
|
Serre R, Gabro A, Andraud M, Simon JM, Spano JP, Maingon P, Chargari C. Brachytherapy: Perspectives for combined treatments with immunotherapy. Clin Transl Radiat Oncol 2025; 52:100924. [PMID: 40226301 PMCID: PMC11992541 DOI: 10.1016/j.ctro.2025.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Combining brachytherapy with immunotherapies, particularly immune checkpoint inhibitors (ICIs), is a promising approach for potentiating both local control of the tumor and fully exploiting the synergies between pharmaceutic immunomodulation and radiotherapy. Compared to other radiotherapy techniques, BT has a potential to better spare lymphatic drainage areas and gut microbiota, thus reducing the immunosuppressive effects of radiation therapy. In addition, it delivers a broad range of doses due to inherent dose inhomogeneity within the implanted volume. This variability increases the probability that immune infiltrates would be activated, particularly since the optimal dose for immune activation is not yet firmly established. Even if preclinical models show that radiotherapy can stimulate immune responses, it can also induce toxic effects on immune effectors and combination trials show conflicting outcomes. There is a need for refining radiation modalities to enhance immune potentiation. The dosimetric specificities of BT may offer various advantages and should be explored further. Scarce clinical data on combining brachytherapy with ICIs in advanced cancer suggest potential benefits, with case reports of complete local responses and abscopal effects. However, validation requires a large number of patients in randomized clinical trials for which ideal design is discussed. In parallel with ongoing clinical developments, there is a need to refine preclinical models in order to better analyze the specific biological effects involved in BT, in light of immunomodulatory systemic treatments.
Collapse
Affiliation(s)
- Raphaël Serre
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Alexandra Gabro
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Mickael Andraud
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Jean-Marc Simon
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Jean-Philippe Spano
- Medical Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Philippe Maingon
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| | - Cyrus Chargari
- Radiation Oncology Department, La Pitié Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris.Sorbonne University, France
| |
Collapse
|
9
|
Zheng Y, Zhou P, Wang H, Liao S, Lin G, Kang K, Luo R, Peng Z, Liu S, Yi L, Tong R, Xue J, Yao Z, Lu Y. Stimulator of Interferon Genes Agonist Synergistically Amplifies Programmed Cell Death Protein-1 Blockade and Radiation-Induced Systemic Antitumor Responses via Tumor Microenvironment Enrichment. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00373-6. [PMID: 40252933 DOI: 10.1016/j.ijrobp.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/10/2025] [Accepted: 04/05/2025] [Indexed: 04/21/2025]
Abstract
PURPOSE The effectiveness of immune checkpoint inhibitors in solid tumors is limited and heavily dependent on the tumor microenvironment (TME). Radiation therapy (RT) reshapes the TME, promoting T cell infiltration. We explored the combined antitumor effects of the stimulator of interferon genes (STING) agonist with low-dose RT and immunotherapy. METHODS AND MATERIALS Tumor cell lines (PRM-SCLC, MC38, and LL2) were treated with the STING agonist diABZI (0.001-10 µM) to assess cytotoxicity. The mRNA expression levels of chemokines and cytokines in tumor cells were quantitatively analyzed in conjunction with RT to assess immune activation. Flow cytometry assessed bone marrow-derived dendritic cell and macrophage maturation. Subcutaneous tumor-bearing mouse models (PRM-SCLC, MC38, LL2) were used to monitor tumor volume, body weight, and survival. Tumor samples were collected for flow cytometry, immunofluorescence, immunohistochemistry, and transcriptome sequencing. Bilateral tumor models assessed the abscopal effect, with tumor and tumor-draining lymph node samples collected. RESULTS The STING agonist diABZI did not directly inhibit tumor cell proliferation at tested concentrations. However, when combined with RT, diABZI significantly upregulated chemokines and IFN-β mRNA levels in tumor cells, while mitigating the RT-induced rise in TGF-β levels. In vitro, bone marrow-derived dendritic cells and macrophages treated with STING agonist + RT showed increased maturation. In tumor-bearing mice, the STING agonist enhanced the efficacy of RT, chemotherapy, and immunotherapy. Adding STING agonist to low-dose RT + αPD-1 activated tumor-infiltrating CD45+, CD8+, CD4+ T cells, natural killer cells, and dendritic cells, and promoted M1 macrophage polarization. Transcriptome analysis showed enhanced antigen presentation and T cell activation. In bilateral tumor models, triple therapy reduced both primary and distant tumor volumes, with increased T cell infiltration and a higher presence of TCF1+ PD-1+ TSL cells in tumor-draining lymph nodes. CONCLUSIONS STING agonist boosts immune activation and cell recruitment in the TME, enhancing immunotherapy response. It also amplifies the abscopal effect of RT, promoting systemic antitumor immunity with clinical translational potential.
Collapse
Affiliation(s)
- Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Zhou
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China; Department of Thoracic Oncology, Meishan Cancer Hospital, Meishan, China
| | - Hui Wang
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangsi Liao
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guo Lin
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ren Luo
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zichong Peng
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shanghai Liu
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linglu Yi
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ruizhan Tong
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China; Tianfu Jincheng Laboratory, Chengdu, China.
| |
Collapse
|
10
|
Dong J, Fu C, Li M, Wang Z, Li B. Radiation from frequent whole-body CT scans induces systemic immunosuppression and immune activation of tumor tissue. Transl Oncol 2025; 54:102326. [PMID: 40014978 PMCID: PMC11909445 DOI: 10.1016/j.tranon.2025.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/30/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE This study aims to elucidate the impact of repeated whole-body computed tomography (CT) scans on systemic immunity, the tumor immune microenvironment, and tumor control. This inquiry was prompted by clinical observations indicating a decrease in the levels of IFN-β and IFN-γ in patients' blood following whole-body CT scans. METHODS A Lewis lung carcinoma (LLC) mouse model was established and divided into two groups: a control group and a group subjected to multiple whole-body CT scanning radiation (WBCTSs). The study monitored tumor growth trends across both groups and employed a comprehensive set of analytical techniques-including enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis, immunohistochemistry, RNA sequencing, and single-cell sequencing-to assess differences in cytokine profiles (IFN-β and IFN-γ), proportions of key immune cells, and gene expression variations between the groups. RESULTS Repeated CT scan radiation does not promote tumor progression. In tumor tissues subjected to multiple CT scans, an increase in the proportion of CD8+ T cells, elevated interferon levels, and up-regulation of genes associated with killing in CD8+ T cells and genes associated with Ifnb in macrophages were observed. In contrast, radiation from multiple whole-body CT scans resulted in a decrease in the proportion of CD8+ T cells in the blood and spleen, a decrease in serum interferon levels, and down-regulation of killing-related genes in CD8+ T cells. CONCLUSION Our results suggest that repeated whole-body CT scanning radiation induces systemic immunosuppression and immune activation in tumor tissues. Multiple repeated CT scans do not promote tumor progression.
Collapse
Affiliation(s)
- Jigang Dong
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300000, China; Qingdao People's Hospital Group (Jiaozhou), Jiaozhou Central Hospital of Qingdao. China.
| | - Chengrui Fu
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300000, China; Department of Radiotherapy. Shandong Cancer Hospital, Jinan, 250000. China
| | - Minghao Li
- Department of Radiotherapy. Shandong Cancer Hospital, Jinan, 250000. China
| | - Zhongtang Wang
- Department of Radiotherapy. Shandong Cancer Hospital, Jinan, 250000. China
| | - Baosheng Li
- Department of Radiotherapy, Shandong Cancer Hospital, Jinan, China.
| |
Collapse
|
11
|
Chen L, Lin J, Wen Y, Guo ZQ, Lan B, Xiong J, Chen CB, Chen Y. DNA-PKcs Dysfunction Enhances the Antitumor Activity of Radioimmunotherapy by Activating the cGAS-STING Pathway in HNSCC. J Inflamm Res 2025; 18:4177-4193. [PMID: 40129873 PMCID: PMC11930847 DOI: 10.2147/jir.s497295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Combining radiotherapy (RT) with immunotherapy for head and neck squamous cell carcinoma (HNSCC) has limited effectiveness due to the DNA damage repair (DDR) pathway activated by ionizing radiation. DNA-PK, encoded by the PRKDC gene, plays a key role in this repair. The potential improvement of radioimmunotherapy by inhibiting the DDR pathway is still unclear. Methods The effectiveness of different treatments on tumor growth and survival was tested using the C3H/HeN mouse tumor model. Flow cytometry analyzed treatment-induced immunophenotypic changes. In vitro, Western blot and PCR confirmed the impact of combining immunotherapy with RT on the cGAS-STING pathway after DNA-PKcs dysfunction. Results The combination of a DNA-PK inhibitor (NU7441), radiation therapy, and a PD-1 checkpoint inhibitor showed improved antitumor effects and extended survival in mice. Adding NU7441 into the RT and immunotherapy regimen increased CD8+ T cell infiltration. PRKDC alterations or DNA-PKcs dysfunction increased IR-induced DNA breaks, activating the cGAS-STING pathway and boosting the anti-tumor immune response. Conclusion These findings suggest that targeting the DDR pathway may represent a promising therapeutic strategy and biomarker to improve the efficacy of radioimmunotherapy in HNSCC.
Collapse
Affiliation(s)
- Lizhu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Yaoming Wen
- Department of Drug Research and Development, Fujian Institute of microbiology, Fuzhou, Fujian Province, People’s Republic of China
| | - Zeng-Qing Guo
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Bin Lan
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Jiani Xiong
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Chuan-Ben Chen
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, People’s Republic of China
| |
Collapse
|
12
|
CHEN SHUANG, DENG XUEMEI, HE XINGTING, XIANG KEWEI, CHEN GUIHONG, YANG HONGRU. Preventive effects of low-dose radiation and hypofractionated radiation plus anti-programmed cell death protein 1 on lung metastasis in breast cancer. Oncol Res 2025; 33:687-694. [PMID: 40109871 PMCID: PMC11915049 DOI: 10.32604/or.2024.052133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/03/2024] [Indexed: 03/22/2025] Open
Abstract
Background Previous experiments have demonstrated that hypofractionated radiation therapy (HFRT), low-dose radiation therapy (LDRT), and combined anti-programmed cell death protein 1 (αPD-1) can enhance the abscopal effect. Combined with the phenomenon of low prognosis in patients with breast cancer lung metastasis, our study establishes a mouse model and changes the irradiation regimen of LDRT to explore its preventive effect on breast cancer lung metastasis. Methods The breast cancer subcutaneous graft tumor model was developed. Two-lung prophylactic LDRT was performed prior to the onset of lung metastases, in combination with HFRT (8 Gy, 3f), and αPD-1 (200 μg, 4f) therapy. We watched and documented the tumor volume, survival duration, and number of lung metastases. Furthermore, after labeling the corresponding cells using markers, we detected immune-related cell infiltration by immunohistochemistry and flow cytometry, such as T cells. We also determined the expression of cytokines (IFN-γ and TNF-α) by enzyme-linked immunosorbent assay. Result The triple therapy (HFRT+LDRT+αPD-1) resulted in tumor shrinkage and prolonged survival in mice, with median survival extending from 35 to 52 days. The most notable decrease in the quantity of advanced lung metastatic nodules in breast cancer was observed with the triple therapy (HFRT+LDRT+αPD-1) (p < 0.05). Furthermore, according to immunohistochemistry and flow cytometry, the triple treatment (HFRT+LDRT+αPD-1) showed the greatest expression of CD8+ T cells. Additionally, the ratio of CD8+/CD4+ T cells was considerably greater than that of the groups (p < 0.0001). Triple therapy (HFRT+LDRT+αPD-1) increased the recruitment of DCs cells, promoted IFN-γ and TNF-α expression, and curbed the aggregation of MDSCs cells (p < 0.05). Conclusion Prophylactic LDRT to the lungs, based on HFRT and αPD-1, can enhance anti-tumor efficacy and prevent advanced lung metastases from breast cancer. The process involves boosting the recruitment of DCs and CD8+ T cells, preventing MDSC cell aggregation, and lessening the tumor microenvironment's immunosuppressive effects.
Collapse
Affiliation(s)
- SHUANG CHEN
- Science and Technology Department, Southwest Medical University, Luzhou, 644600, China
- Department of Oncology, the Affiliated Hospital, Southwest Medical University, Luzhou, 644600, China
| | - XUEMEI DENG
- Department of Oncology, the Affiliated Hospital, Southwest Medical University, Luzhou, 644600, China
| | - XINGTING HE
- Department of Oncology, the Affiliated Hospital, Southwest Medical University, Luzhou, 644600, China
| | - KEWEI XIANG
- Department of Oncology, the Affiliated Hospital, Southwest Medical University, Luzhou, 644600, China
| | - GUIHONG CHEN
- Department of Oncology, the Affiliated Hospital, Southwest Medical University, Luzhou, 644600, China
| | - HONGRU YANG
- Department of Oncology, the Affiliated Hospital, Southwest Medical University, Luzhou, 644600, China
| |
Collapse
|
13
|
Yang Y, Liu T, Mi S, Liu X, Jabbour SK, Liang N, Deng G, Hu P, Zhang J. Radiotherapy as salvage therapy and an adjunct to immunotherapy: exploring local and abscopal mechanisms to overcome immunotherapy resistance: a narrative review. Transl Lung Cancer Res 2025; 14:591-606. [PMID: 40114936 PMCID: PMC11921301 DOI: 10.21037/tlcr-2025-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Background and Objective Immune checkpoint inhibitors (ICIs) have ushered in a new era of therapies and play a significant role in the clinical treatment of a variety of tumors. However, immune resistance has increasingly created a bottleneck in treatment, making the question of how to overcome drug resistance an urgent issue to address. In this article, the mechanism of drug resistance is briefly described with a focus on how radiotherapy (RT) acts on the immune system to reverse immunotherapy failure. Combinations of existing treatment modalities need to be optimized to overcome resistance problems. Research has shown that some RT modalities reverse immune resistance or enhance efficacy when used in combination, which shows some value for immune resistance and is worthy of in-depth research. Methods In this review, we searched the literature published from 2000 to 2023 surrounding immunotherapy, RT and cancer. Key Content and Findings Based on the immune effects and immunosuppressive effects induced by RT, this review examined the preclinical rationales of RT and its clinical results. The findings indicate that RT might provide a novel regimen for patients with locally advanced tumors, especially oligometastatic tumors. Conclusions Salvage therapy with RT after immunotherapy resistance is the focus of current research. Other strategies, such as multidrug combination therapies, have made preliminary progress in preclinical experiments. Further research on the roles of different RT doses, fractionation regimens, and other treatment sequences in salvage therapy need to be conducted in the future. The optimal site and timing of low-dose radiotherapy are also undetermined, and prospective studies are need to determine the best regimen for optimizing patient treatment.
Collapse
Affiliation(s)
- Yunxin Yang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Tong Liu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Song Mi
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Department of Oncology, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Pingping Hu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
14
|
Fong KHA, Ho I, So TH. Case report: Low-dose radiation reverses pembrolizumab resistance in melanoma. Front Oncol 2025; 15:1483117. [PMID: 40012549 PMCID: PMC11860094 DOI: 10.3389/fonc.2025.1483117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025] Open
Abstract
Immunotherapy has been the mainstay of the initial systemic treatment for metastatic melanoma regardless of the tumor's genetic mutation status (Atkins et al., 2022). It is known to offer long-term overall and treatment-free survival benefits, also with generally tolerable side effect profiles. However, upon disease progression on first- and second-line immunotherapy, further systemic treatment options are limited especially for cases without actionable molecular alterations. With emerging evidence suggesting that radiotherapy can enhance the efficacy of immunotherapy via various mechanisms, together with its potential abscopal effect, the possibility of overcoming immunotherapy resistance with radiotherapy is theoretically sound. We report a case of metastatic melanoma which demonstrated a reversal of immunotherapy resistance after the addition of low-dose radiotherapy to progressive tumor. Complete metabolic remission is achieved with durable response observed.
Collapse
Affiliation(s)
- Ka Hey Agnes Fong
- Department of Oncology, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Isaac Ho
- Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Tsz Him So
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Chen SF, Ng PL, Lai CW, Wang FJ, Wang YC, Chen MH, Tung FI, Liu TY. Bacterial membrane-modified cerium oxide nanoboosters enhance systemic antitumor effects of radiotherapy in metastatic triple-negative breast cancer. J Nanobiotechnology 2025; 23:105. [PMID: 39940015 PMCID: PMC11823237 DOI: 10.1186/s12951-025-03187-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Radiotherapy plays an important role in the treatment of triple-negative breast cancer, yet its ability to trigger systemic responses against distant tumors remains limited. RESULTS To address this challenge, we developed a biomimetic nanobooster by incorporating cerium oxide (CeO2) nanoparticles with bacterial outer membrane vesicles (OMVs), termed CeO2@OMV. This innovative strategy overcomes the limitations of conventional radiotherapy by enhancing antigen release and improving immune cell infiltration, thereby amplifying its effectiveness in combating both primary and metastatic tumors. The biocompatibility, antitumor effects, bystander and immunomodulatory impacts of the nanoboosters were assessed by comprehensive in vitro assays and in vivo breast cancer models. Our results demonstrated that CeO2@OMVs can selectively inhibit cancer cells while protecting normal tissue upon irradiation. Additionally, the nanoboosters induced immunogenic cell death, enhanced macrophage polarization, and suppressed the growth of bystander tumors. In vivo studies demonstrated that CeO2@OMVs, when combined with radiotherapy, significantly improved local tumor control and triggered systemic immune responses, leading to substantial inhibition of both primary and distant tumors, effectively preventing new metastases. CONCLUSIONS In conclusion, our CeO2@OMV nanoboosters offer a promising therapeutic strategy against metastatic breast cancer, providing a novel tool to achieve radiation-induced abscopal effects.
Collapse
Affiliation(s)
- Shuo-Fu Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Pui-Lam Ng
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chen-Wei Lai
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Fu-Jia Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan City, 320, Taiwan
| | - Fu-I Tung
- Department of Orthopaedics, Yang-Ming Branch, Taipei City Hospital, Taipei, 111, Taiwan.
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, 111, Taiwan.
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
16
|
Zhao D, Deshpande R, Wu K, Tyagi A, Sharma S, Wu SY, Xing F, O'Neill S, Ruiz J, Lyu F, Watabe K. Identification of TUBB3 as an immunotherapy target in lung cancer by genome wide in vivo CRISPR screening. Neoplasia 2025; 60:101100. [PMID: 39671912 PMCID: PMC11699798 DOI: 10.1016/j.neo.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Recent development of immune checkpoint inhibitors has revolutionized cancer immunotherapy. Although these drugs show dramatic effects on a subset of cancer patients, many other tumors are non-responsive and the pathological mechanism of the resistance is largely unknown. To identify genes underlying anti-PD-1 immunotherapy resistance using a systematic approach, we performed an in vivo genome wide CRISPR screening in lung cancer cells. We integrated our results with multi-omics clinical data and performed both in vitro and in vivo assays to evaluate the role of the top candidate in regulating cytotoxic T cell killing. We identified TUBB3 as a potential target to overcome the resistance and enhance the efficacy of anti-PD-1 immunotherapy. TUBB3 expression is upregulated in lung cancer patients, and its higher expression correlates with poorer patients' survival. We found that TUBB3 expression was significantly elevated in the non-responders compared to responders in our patient cohort that received immunotherapies. Importantly, the results of our preclinical experiments showed that inhibition of TUBB3 with a small molecule inhibitor synergized with anti-PD-1 treatment and enhanced tumor cell killing by cytotoxic T cells. Consistently, anti-PD-1 resistant cells showed significantly higher expression of TUBB3; however, TUBB3 inhibition rendered the resistant cells more susceptible to T cell killing. Mechanistic studies revealed that blocking TUBB3 suppressed the expression of PD-L1 through the EMT-related SNAI1 gene. Our results provide a rationale for a novel combination therapy consisting of the TUBB3 inhibition and anti-PD-1 immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA; Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA
| | - Ravindra Deshpande
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Kerui Wu
- University of North Carolina, Greensboro, NC, 27412, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | | | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Fei Xing
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | | | - Jimmy Ruiz
- Department of Medicine (Hematology & Oncology), Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Feng Lyu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
17
|
Rafiq Z, Kang M, Barsoumian HB, Manzar GS, Hu Y, Leuschner C, Huang A, Masrorpour F, Lu W, Puebla-Osorio N, Welsh JW. Enhancing immunotherapy efficacy with synergistic low-dose radiation in metastatic melanoma: current insights and prospects. J Exp Clin Cancer Res 2025; 44:31. [PMID: 39881333 PMCID: PMC11781074 DOI: 10.1186/s13046-025-03281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Recent advances in oncology research have highlighted the promising synergy between low-dose radiation therapy (LDRT) and immunotherapies, with growing evidence highlighting the unique benefits of the combination. LDRT has emerged as a potent tool for stimulating the immune system, triggering systemic antitumor effects by remodeling the tumor microenvironment. Notably, LDRT demonstrates remarkable efficacy even in challenging metastatic sites such as the liver (uveal) and brain (cutaneous), particularly in advanced melanoma stages. The increasing interest in utilizing LDRT for secondary metastatic sites of uveal, mucosal, or cutaneous melanomas underscores its potential efficacy in combination with various immunotherapies. This comprehensive review traverses the journey from laboratory research to clinical applications, elucidating LDRT's immunomodulatory role on the tumor immune microenvironment (TIME) and systemic immune responses. We meticulously examine the preclinical evidence and ongoing clinical trials, throwing light on the promising prospects of LDRT as a complementary therapy in melanoma treatment. Furthermore, we explore the challenges associated with LDRT's integration into combination therapies, addressing crucial factors such as optimal dosage, fractionation, treatment frequency, and synergy with other pharmacological agents. Considering its low toxicity profile, LDRT presents a compelling case for application across multiple lesions, augmenting the antitumor immune response in poly-metastatic disease scenarios. The convergence of LDRT with other disciplines holds immense potential for developing novel radiotherapy-combined modalities, paving the way for more effective and personalized treatment strategies in melanoma and beyond. Moreover, the dose-related toxicities of immunotherapies may be reduced by synergistic amplification of antitumor efficacy with LDRT.
Collapse
Affiliation(s)
- Zahid Rafiq
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Mingyo Kang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gohar S Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Ji K, Jia H, Liu Z, Yu G, Wen R, Zhang T, Peng Z, Man W, Tian Y, Wang C, Ling Q, Zhang W, Zhou L, Liu M, Zhu B. New insight in immunotherapy and combine therapy in colorectal cancer. Front Cell Dev Biol 2025; 12:1453630. [PMID: 39839672 PMCID: PMC11747282 DOI: 10.3389/fcell.2024.1453630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) in colorectal cancer (CRC) treatment marks a major breakthrough. These therapies have proven safer and more effective than traditional radiotherapy and targeted treatments. Immunotherapies like pembrolizumab, nivolumab, and ipilimumab have pioneered new treatment avenues, potentially improving patient outcomes and quality of life. Additionally, advances in immunotherapy have prompted detailed research into CRC therapies, especially those integrating ICIs with conventional treatments, providing new hope for patients and shaping future research and practice. This review delves into the mechanisms of various ICIs and evaluates their therapeutic potential when combined with radiotherapy, chemotherapy, and targeted therapies in clinical settings. It also sheds light on the current application and research involving ICIs in CRC treatment.
Collapse
Affiliation(s)
- Kai Ji
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hang Jia
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zixuan Liu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rongbo Wen
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianshuai Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhiying Peng
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenjiang Man
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yucheng Tian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Can Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qianlong Ling
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Bing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
20
|
D'Alonzo RA, Keam S, Gill S, Rowshanfarzad P, Nowak AK, Ebert MA, Cook AM. Fractionated low-dose radiotherapy primes the tumor microenvironment for immunotherapy in a murine mesothelioma model. Cancer Immunol Immunother 2025; 74:44. [PMID: 39751851 PMCID: PMC11699009 DOI: 10.1007/s00262-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/09/2024] [Indexed: 01/04/2025]
Abstract
Combination immune checkpoint inhibitors (nivolumab and ipilimumab) are currently a first-line treatment for mesothelioma; however, not all patients respond. The efficacy of treatment is influenced by the tumor microenvironment. Murine mesothelioma tumors were irritated with various radiotherapy doses. Radiotherapy induced vasculature changes were monitored by power Doppler and photoacoustic ultrasound and analyzed via mixed-effects models. Tissue staining was used to investigate the immune cell infiltrate of tumors. The optimal radiotherapy schedule was combined with immune checkpoint inhibitors, and the survival of mice was analyzed. Using low-dose, low-fraction radiotherapy allowed favorable modification of the murine mesothelioma tumor microenvironment. Irradiating tumors with 2 Gy × 5 fractions significantly improved blood flow and reduced hypoxia, consequently increasing the presence of CD8+ and regulatory T cells in the tumor. Understanding the transient nature of these changes is crucial for optimizing the timing of therapeutic delivery. The combination of radiotherapy with dual immunotherapy (anti-PD-1 plus anti-CTLA-4) proved highly curative when administered concurrently. A diminishing rate of cures was noted with an increasing delay between radiotherapy and subsequent immunotherapy. Concurrent low-dose, low-fraction radiotherapy emerges as a translatable approach for improving the efficacy of immune checkpoint inhibitors in patients.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia.
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
- Institute for Respiratory Health, Perth, Australia.
| | - Synat Keam
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia
- Institute for Respiratory Health, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia
- Institute for Respiratory Health, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Alistair M Cook
- National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
- Institute for Respiratory Health, Perth, Australia.
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
21
|
Catanzaro E, Beltrán-Visiedo M, Galluzzi L, Krysko DV. Immunogenicity of cell death and cancer immunotherapy with immune checkpoint inhibitors. Cell Mol Immunol 2025; 22:24-39. [PMID: 39653769 PMCID: PMC11685666 DOI: 10.1038/s41423-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
While immunotherapy with immune checkpoint inhibitors (ICIs) has revolutionized the clinical management of various malignancies, a large fraction of patients are refractory to ICIs employed as standalone therapeutics, necessitating the development of combinatorial treatment strategies. Immunogenic cell death (ICD) inducers have attracted considerable interest as combinatorial partners for ICIs, at least in part owing to their ability to initiate a tumor-targeting adaptive immune response. However, compared with either approach alone, combinatorial regimens involving ICD inducers and ICIs have not always shown superior clinical activity. Here, we discuss accumulating evidence on the therapeutic interactions between ICD inducers and immunotherapy with ICIs in oncological settings, identify key factors that may explain discrepancies between preclinical and clinical findings, and propose strategies that address existing challenges to increase the efficacy of these combinations in patients with cancer.
Collapse
Affiliation(s)
- Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Manuel Beltrán-Visiedo
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
22
|
Constanzo J, Pouget JP. Extracellular vesicles role in radio(nuclide)therapy. JOURNAL OF RADIATION RESEARCH 2024; 65:i6-i14. [PMID: 39679885 DOI: 10.1093/jrr/rrae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Indexed: 12/17/2024]
Abstract
Conventional radiation therapy can restore the ability of cells to undergo immunogenic cell death. Recent preclinical studies suggest that targeted radionuclide therapy, which delivers radiation to tumors at a continuous low dose rate, also stimulates the immune system and offers a promising approach for overcoming resistance to immune checkpoint inhibitors. In this context, we examined the growing body of preclinical and clinical findings showing that the immune system can be activated by the release of extracellular vesicles from irradiated cells, contributing to the antitumor immunity.
Collapse
Affiliation(s)
- J Constanzo
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Équipe Labellisée Ligue Contre le Cancer, 208 rue des apothicaires, 34298 Montpellier, France
| | - J-P Pouget
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Équipe Labellisée Ligue Contre le Cancer, 208 rue des apothicaires, 34298 Montpellier, France
| |
Collapse
|
23
|
Ghisoni E, Morotti M, Sarivalasis A, Grimm AJ, Kandalaft L, Laniti DD, Coukos G. Immunotherapy for ovarian cancer: towards a tailored immunophenotype-based approach. Nat Rev Clin Oncol 2024; 21:801-817. [PMID: 39232212 DOI: 10.1038/s41571-024-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Despite documented evidence that ovarian cancer cells express immune-checkpoint molecules, such as PD-1 and PD-L1, and of a positive correlation between the presence of tumour-infiltrating lymphocytes and favourable overall survival outcomes in patients with this tumour type, the results of trials testing immune-checkpoint inhibitors (ICIs) in these patients thus far have been disappointing. The lack of response to ICIs can be attributed to tumour heterogeneity as well as inherent or acquired resistance associated with the tumour microenvironment (TME). Understanding tumour immunobiology, discovering biomarkers for patient selection and establishing optimal treatment combinations remains the hope but also a key challenge for the future application of immunotherapy in ovarian cancer. In this Review, we summarize results from trials testing ICIs in patients with ovarian cancer. We propose the implementation of a systematic CD8+ T cell-based immunophenotypic classification of this malignancy, followed by discussions of the preclinical data providing the basis to treat such immunophenotypes with combination immunotherapies. We posit that the integration of an accurate TME immunophenotype characterization with genetic data can enable the design of tailored therapeutic approaches and improve patient recruitment in clinical trials. Lastly, we propose a roadmap incorporating tissue-based profiling to guide future trials testing adoptive cell therapy approaches and assess novel immunotherapy combinations while promoting collaborative research.
Collapse
Affiliation(s)
- Eleonora Ghisoni
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Matteo Morotti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alizée J Grimm
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - Lana Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
24
|
Bergeron P, Dos Santos M, Sitterle L, Tarlet G, Lavigne J, Liu W, Gerbé de Thoré M, Clémenson C, Meziani L, Schott C, Mazzaschi G, Berthelot K, Benadjaoud MA, Milliat F, Deutsch E, Mondini M. Non-homogenous intratumor ionizing radiation doses synergize with PD1 and CXCR2 blockade. Nat Commun 2024; 15:8845. [PMID: 39397001 PMCID: PMC11471822 DOI: 10.1038/s41467-024-53015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
The efficacy and side effects of radiotherapy (RT) depend on parameters like dose and the volume of irradiated tissue. RT induces modulations of the tumor immune microenvironment (TIME) that are dependent on the dose. Low dose RT (LDRT, i.e., single doses of 0.5-2 Gy) has been shown to promote immune infiltration into the tumor. Here we hypothesize that partial tumor irradiation combining the immunostimulatory/non-lethal properties of LDRT with cell killing/shrinkage properties of high dose RT (HDRT) within the same tumor mass could enhance anti-tumor responses when combined with immunomodulators. In models of colorectal and breast cancer in immunocompetent female mice, partial irradiation (PI) with millimetric precision to deliver LDRT (2 Gy) and HDRT (16 Gy) within the same tumor induces substantial tumor control when combined with anti-PD1. Using flow cytometry, cytokine profiling and single-cell RNA sequencing, we identify a crosstalk between the TIME of the differentially irradiated tumor volumes. PI reshapes tumor-infiltrating CD8+ T cells into more cytotoxic and interferon-activated phenotypes but also increases the infiltration of pro-tumor neutrophils driven by CXCR2. The combination of the CXCR2 antagonist SB225002 with PD1 blockade and PI improves tumor control and mouse survival. Our results suggest a strategy to reduce RT toxicity and improve the therapeutic index of RT and immune checkpoint combinations.
Collapse
Affiliation(s)
- Paul Bergeron
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, Fontenay-aux-Roses, France
| | - Lisa Sitterle
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Jeremy Lavigne
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Winchygn Liu
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | | | - Céline Clémenson
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Lydia Meziani
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Cathyanne Schott
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Giulia Mazzaschi
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Kevin Berthelot
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses, France
| | - Eric Deutsch
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Michele Mondini
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
25
|
Wang H, Yao Z, Kang K, Zhou L, Xiu W, Sun J, Xie C, Yu M, Li Y, Zhang Y, Zheng Y, Lin G, Pan X, Wu Y, Luo R, Wang L, Tang M, Liao S, Zhu J, Zhou X, Zhang X, Xu Y, Liu Y, Peng F, Wang J, Xiang L, Yin L, Deng L, Huang M, Gong Y, Zou B, Wang H, Wu L, Yuan Z, Bi N, Fan M, Xu Y, Tong R, Yi L, Gan L, Xue J, Mo X, Chen C, Na F, Lu Y. Preclinical study and phase II trial of adapting low-dose radiotherapy to immunotherapy in small cell lung cancer. MED 2024; 5:1237-1254.e9. [PMID: 38964333 DOI: 10.1016/j.medj.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) provide modest but unsatisfactory benefits for extensive-stage small cell lung cancer (ES-SCLC). Developing strategies for treating ES-SCLC is critical. METHODS We preliminarily explored the outcomes of salvage low-dose radiotherapy (LDRT) plus ICI on refractory SCLC patients. Next, we evaluated the combinational efficacy in murine SCLC. The tumor immune microenvironment (TIME) was analyzed for mechanistic study. Subsequently, we conducted a multicenter, prospective phase II trial that administered concurrent thoracic LDRT plus chemoimmunotherapy to treatment-naive ES-SCLC patients (MATCH trial, NCT04622228). The primary endpoint was confirmed objective response rate (ORR), and the key secondary endpoints included progression-free survival (PFS) and safety. FINDINGS Fifteen refractory SCLC patients treated with LDRT plus ICI were retrospectively reviewed. The ORR was 73.3% (95% confidence interval [CI], 44.9-92.2). We identified a specific dose of LDRT (15 Gy/5 fractions) that exhibited growth retardation and improved survival in murine SCLC when combined with ICIs. This combination recruited a special T cell population, TCF1+ PD-1+ CD8+ stem-like T cells, from tumor-draining lymph nodes into the TIME. The MATCH trial showed a confirmed ORR of 87.5% (95% CI, 75.9-94.8). The median PFS was 6.9 months (95% CI, 5.4-9.3). CONCLUSIONS These findings verified that LDRT plus chemoimmunotherapy was safe, feasible, and effective for ES-SCLC, warranting further investigation. FUNDING This research was funded by West China Hospital (no. ZYJC21003), the National Natural Science Foundation of China (no. 82073336), and the MATCH trial was fully funded by Roche (China) Holding Ltd. (RCHL) and Shanghai Roche Pharmaceuticals Ltd. (SRPL).
Collapse
Affiliation(s)
- Hui Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weigang Xiu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanying Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Center of Lung Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guo Lin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyu Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ren Luo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Laduona Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangsi Liao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Zhu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yongmei Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Peng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lisha Xiang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Limei Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Deng
- University of Washington School of Medicine/Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Youling Gong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wang
- Department of Radiation Oncology, Hunan Cancer Hospital, Changsha, China
| | - Lin Wu
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Nan Bi
- Department of Radiation Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruizhan Tong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linglu Yi
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Puebla-Osorio N, Fowlkes NW, Barsoumian HB, Xega K, Srivastava G, Kettlun-Leyton C, Nizzero S, Voss T, Riad TS, Wong C, Huang A, Hu Y, Mitchell J, Kim M, Rafiq Z, He K, Sezen D, Hsu E, Masrorpour F, Maleki A, Leuschner C, Cortez MA, Oertle P, Loparic M, Plodinec M, Markman JL, Welsh JW. Enhanced tumor control and survival in preclinical models with adoptive cell therapy preceded by low-dose radiotherapy. Front Oncol 2024; 14:1407143. [PMID: 39445067 PMCID: PMC11496962 DOI: 10.3389/fonc.2024.1407143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Effective infiltration of chimeric antigen receptor T (CAR-T) cells into solid tumors is critical for achieving a robust antitumor response and improving therapeutic outcomes. While CAR-T cell therapies have succeeded in hematologic malignancies, their efficacy in solid tumors remains limited due to poor tumor penetration and an immunosuppressive tumor microenvironment. This study aimed to evaluate the potential of low-dose radiotherapy (LDRT) administered before T-cell therapy to enhance the antitumor effect by promoting CAR-T cell infiltration. We hypothesized that combining LDRT with T-cell therapy would improve tumor control and survival compared to either treatment alone. Methods We investigated this hypothesis using two NSG mouse models bearing GSU or CAPAN-2 solid tumors. The mice were treated with engineered CAR-T cells targeting guanyl cyclase-C (GCC) or mesothelin as monotherapy or in combination with LDRT. Additionally, we extended this approach to a C57BL/6 mouse model implanted with MC38-gp100+ cells, followed by adoptive transfer of pmel+ T cells before and after LDRT. Tumor growth and survival outcomes were monitored in all models. Furthermore, we employed atomic force microscopy (AFM) in a small cohort to assess the effects of radiotherapy on tumor stiffness and plasticity, exploring the role of tumor nanomechanics as a potential biomarker for treatment efficacy. Results Our results demonstrated enhanced tumor control and prolonged survival in mice treated with LDRT followed by T-cell therapy across all models. The combination of LDRT with CAR-T or pmel+ T-cell therapy led to superior tumor suppression and survival compared to monotherapy, highlighting the synergistic impact of the combined approach. Additionally, AFM analysis revealed significant changes in tumor stiffness and plasticity in response to LDRT, suggesting that the nanomechanical properties of the tumor may be predictive of therapeutic response. Discussion The findings of this study highlight the transformative potential of incorporating LDRT as a precursor to adoptive T-cell therapy in solid tumors. By promoting CAR-T and pmel+ T-cell infiltration into the tumor microenvironment, LDRT enhanced tumor control and improved survival outcomes, offering a promising strategy to overcome the challenges associated with CAR-T therapy in solid tumors. Additionally, the changes in tumor nanomechanics observed through AFM suggest that tumor stiffness and plasticity could be biomarkers for predicting treatment outcomes. These results support further investigation into the clinical application of this combined approach to improve the efficacy of cell-based therapies in patients with solid tumors.
Collapse
Affiliation(s)
- Nahum Puebla-Osorio
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kristina Xega
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | | | - Claudia Kettlun-Leyton
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Tiffany Voss
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina Wong
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | - Ailing Huang
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yun Hu
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joylise Mitchell
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mingee Kim
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Zahid Rafiq
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kewen He
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Duygu Sezen
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Hsu
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aurian Maleki
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carola Leuschner
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Janet L. Markman
- Takeda Development Centers Americas, Inc, Lexington, MA, United States
| | - James W. Welsh
- Department of Radiation Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
27
|
Hu Y, Paris S, Sahoo N, Wang Q, Wang Q, Barsoumian HB, Huang A, Da Silva J, Bienassis C, Leyton CSK, Voss TA, Masrorpour F, Riad T, Leuschner C, Puebla-Osorio N, Gandhi S, Nguyen QN, Wang J, Cortez MA, Welsh JW. Superior antitumor immune response achieved with proton over photon immunoradiotherapy is amplified by the nanoradioenhancer NBTXR3. J Nanobiotechnology 2024; 22:597. [PMID: 39354474 PMCID: PMC11445951 DOI: 10.1186/s12951-024-02855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Recent findings suggest that immunoradiotherapy (IRT), combining photon radiotherapy (XRT) or proton radiotherapy (PRT) with immune checkpoint blockade, can enhance systemic tumor control. However, the comparative efficacy of XRT and PRT in IRT remains understudied. To address this, we compared outcomes between XRT + αPD1 and PRT + αPD1 in murine αPD1-resistant lung cancer (344SQR). We also assessed the impact of the nanoparticle radioenhancer NBTXR3 on both XRT + αPD1 and PRT + αPD1 for tumor control and examined the tumor immune microenvironment using single-cell RNA sequencing (scRNAseq). Additionally, mice cured by NBTXR3 + PRT + αPD1 were rechallenged with three lung cancer cell lines to evaluate memory antitumor immunity. PRT + αPD1 showed superior local tumor control and abscopal effects compared to XRT + αPD1. NBTXR3 + PRT + αPD1 significantly outperformed NBTXR3 + XRT + αPD1 in tumor control, promoting greater infiltration of antitumor lymphocytes into irradiated tumors. Unirradiated tumors treated with NBTXR3 + PRT + αPD1 had more NKT cells, CD4 T cells, and B cells, with fewer Tregs, than those treated with NBTXR3 + XRT + αPD1. NBTXR3 + PRT + αPD1 also stimulated higher expression of IFN-γ, GzmB, and Nkg7 in lymphocytes, reduced the TGF-β pathway, and increased tumor necrosis factor alpha expression compared to NBTXR3 + XRT + αPD1. Moreover, NBTXR3 + PRT + αPD1 resulted in greater M1 macrophage polarization in both irradiated and unirradiated tumors. Mice achieving remission through NBTXR3 + PRT + αPD1 exhibited a robust memory immune response, effectively inhibiting growth of subsequent tumors from three distinct lung cancer cell lines. Proton IRT combined with NBTXR3 offers enhanced tumor control and survival rates over photon-based treatments in managing αPD1-resistant lung cancer, indicating its potential as a potent systemic therapy.
Collapse
Affiliation(s)
- Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Sébastien Paris
- Department of Translational Science, Nanobiotix, Paris, France
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qianxia Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Ailing Huang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Jordan Da Silva
- Department of Translational Science, Nanobiotix, Paris, France
| | - Célia Bienassis
- Department of Translational Science, Nanobiotix, Paris, France
| | - Claudia S Kettlun Leyton
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Tiffany A Voss
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Thomas Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Carola Leuschner
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Saumil Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Quynh-Nhu Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Park SJ, Kweon S, Moyo MK, Kim HR, Choi JU, Lee NK, Maharjan R, Cho YS, Park JW, Byun Y. Immune modulation of the liver metastatic colorectal cancer microenvironment via the oral CAPOX-mediated cGAS-STING pathway. Biomaterials 2024; 310:122625. [PMID: 38820768 DOI: 10.1016/j.biomaterials.2024.122625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
We evaluated modulation of the immunosuppressive tumor microenvironment in both local and liver metastatic colorectal cancer (LMCC), focusing on tumor-associated macrophages, which are the predominant immunosuppressive cells in LMCC. We developed an orally administered metronomic chemotherapy regimen, oral CAPOX. This regimen combines capecitabine and a nano-micelle encapsulated, lysine-linked deoxycholate and oxaliplatin complex (OPt/LDC-NM). The treatment effectively modulated immune cells within the tumor microenvironment by activating the cGAS-STING pathway and inducing immunogenic cell death. This therapy modulated immune cells more effectively than did capecitabine monotherapy, the current standard maintenance chemotherapy for colorectal cancer. The macrophage-modifying effect of oral CAPOX was mediated via the cGAS-STING pathway. This is a newly identified mode of immune cell activation induced by metronomic chemotherapy. Moreover, oral CAPOX synergized with anti-PD-1 antibody (αPD-1) to enhance the T-cell-mediated antitumor immune response. In the CT26. CL25 subcutaneous model, combination therapy achieved a 91 % complete response rate with a confirmed memory effect against the tumor. This combination also altered the immunosuppressive tumor microenvironment in LMCC, which αPD-1 monotherapy could not achieve. Oral CAPOX and αPD-1 combination therapy outperformed the maximum tolerated dose for treating LMCC, suggesting metronomic therapy as a promising strategy.
Collapse
Affiliation(s)
- Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; School of Medicine, Oncology, Stanford University, CA, 94305, United States
| | - Jeong Uk Choi
- College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Republic of Korea
| | - Na Kyeong Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ruby Maharjan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, United States
| | - Young Seok Cho
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
29
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
30
|
Passelli K, Repáraz D, Kinj R, Herrera FG. Strategies for overcoming tumour resistance to immunotherapy: harnessing the power of radiation therapy. Br J Radiol 2024; 97:1378-1390. [PMID: 38833685 PMCID: PMC11256940 DOI: 10.1093/bjr/tqae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; yet their efficacy remains variable across patients. This review delves into the intricate interplay of tumour characteristics contributing to resistance against ICI therapy and suggests that combining with radiotherapy holds promise. Radiation, known for its ability to trigger immunogenic cell death and foster an in situ vaccination effect, may counteract these resistance mechanisms, enhancing ICI response and patient outcomes. However, particularly when delivered at high-dose, it may trigger immunosuppressive mechanism and consequent side-effects. Notably, low-dose radiotherapy (LDRT), with its capacity for tumour reprogramming and reduced side effects, offers the potential for widespread application. Preclinical and clinical studies have shown encouraging results in this regard.
Collapse
Affiliation(s)
- Katiuska Passelli
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - David Repáraz
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, AGORA Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| | - Remy Kinj
- Centre Hospitalier Universitaire Vaudoise, Service of Radiation Oncology, Department of Oncology, University of Lausanne, 1012-Lausanne, Switzerland
| | - Fernanda G Herrera
- Centre Hospitalier Universitaire Vaudois, Service of Radiation Oncology and Service of Immuno-oncology, Department of Oncology, University of Lausanne, Ludwig Institute for Cancer Research, Agora Center for Cancer Research, Swiss Cancer Center Leman, 1012-Lausanne, Switzerland
| |
Collapse
|
31
|
Visa MA, Abazeed ME, Avella Patino D. Integrative Approaches in Non-Small Cell Lung Cancer Management: The Role of Radiotherapy. J Clin Med 2024; 13:4296. [PMID: 39124563 PMCID: PMC11312949 DOI: 10.3390/jcm13154296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Treatment guidelines for non-small cell lung cancer (NSCLC) vary by several factors including pathological stage, patient candidacy, and goal of treatment. With many therapeutics and even more combinations available in the NSCLC clinician's toolkit, a multitude of questions remain unanswered vis-a-vis treatment optimization. While some studies have begun exploring the interplay among the many pillars of NSCLC treatment-surgical resection, radiotherapy, chemotherapy, and immunotherapy-the vast number of combinations and permutations of different therapy modalities in addition to the modulation of each constituent therapy leaves much to be desired in a field that is otherwise rapidly evolving. Given NSCLC's high incidence and lethality, the experimentation of synergistic benefits that combinatorial treatment may confer presents a ripe target for advancement and increased understanding without the cost and burden of novel drug development. This review introduces, synthesizes, and compares prominent NSCLC therapies, placing emphasis on the interplay among types of therapies and the synergistic benefits some combinatorial therapies have demonstrated over the past several years.
Collapse
Affiliation(s)
- Maxime A. Visa
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Mohamed E. Abazeed
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Diego Avella Patino
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| |
Collapse
|
32
|
Dagar G, Gupta A, Shankar A, Chauhan R, Macha MA, Bhat AA, Das D, Goyal R, Bhoriwal S, Pandita RK, Prasad CP, Sarkar PS, Pandita TK, Singh M. The future of cancer treatment: combining radiotherapy with immunotherapy. Front Mol Biosci 2024; 11:1409300. [PMID: 39044839 PMCID: PMC11263218 DOI: 10.3389/fmolb.2024.1409300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Radiotherapy (RT) and immunotherapy (IT) are the powerful tools for cancer treatment which act through the stimulation of immune response, and evidence suggest that combinatorial actions of these therapies may augment each other's beneficial effect through complex synergistic mechanisms. These molecular strategies are designed to target rapidly dividing cancer cells by either directly or indirectly inducing DNA damage. However, when cells detect DNA damage, they activate a range of signalling pathways known as the DNA damage response (DDR) to repair. Strategies are being developed to interfere with the DDR pathways in cancer cells to ensure their damage-induced degeneration. The stability of a cell's genetic material is largely dependent on the efficacy of DNA repair and therefore, an in-depth understanding of DNA damages and repair mechanism(s) in cancer cells is important to develop a promising therapeutic strategies for ensuring the efficacy of damage-induced tumor cell death. In recent years, a wide range of small molecule drugs have been developed which are currently being employed to combat the DNA repair deficiencies associated with tumor cells. Sequential or concurrent use of these two modalities significantly enhances the anti-tumor response, however with a concurrent probability of increased incidence of symptomatic adverse effects. With advent of newer IT agents, and administration of higher doses of radiation per fraction, such effects are more difficult to predict owing to the paucity of randomized trial data. It is well established that anti cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4), anti- Programmed cell death protein 1(PD-1), anti-Programmed cell death one ligand 1 (PD-L1) can be safely administered with RT and many studies have demonstrated survival benefit with such combination for patients with metastatic malignancy. However, the biology of radioimmunotherapy (RT/IT) is still an open area where research need to be focused to determine optimum dosage specially the interaction of the RT/IT pathways to determine optimum dosing schedule. In the current article we have summarised the possible intracellular immunological events that might be triggered when RT and IT modalities are combined with the DDR antagonists and highlighted present clinical practices, outcome, and toxicity profile of this novel treatment strategy.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashna Gupta
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravi Chauhan
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu And Kashmir, India
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Dayasagar Das
- Department of Medicine, NYU Langone Health, New York City, NY, United States
| | - Rajeev Goyal
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Raj K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Chandra Prakash Prasad
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Partha S. Sarkar
- Department of Neurobiology and Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A and M College of Medicine, Houston, TX, United States
| | - Mayank Singh
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
33
|
McMillan MT, Khan AJ, Powell SN, Humm J, Deasy JO, Haimovitz-Friedman A. Spatially Fractionated Radiotherapy in the Era of Immunotherapy. Semin Radiat Oncol 2024; 34:276-283. [PMID: 38880536 PMCID: PMC12013776 DOI: 10.1016/j.semradonc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Spatially fractionated radiotherapy (SFRT) includes historical grid therapy approaches but more recently encompasses the controlled introduction of one or more cold dose regions using intensity modulation delivery techniques. The driving hypothesis behind SFRT is that it may allow for an increased immune response that is otherwise suppressed by radiation effects. With both two- and three-dimensional SFRT approaches, SFRT dose distributions typically include multiple dose cold spots or valleys. Despite its unconventional methods, reported clinical experience shows that SFRT can sometimes induce marked tumor regressions, even in patients with large hypoxic tumors. Preclinical models using extreme dose distributions (i.e., half-sparing) have been shown to nevertheless result in full tumor eradications, a more robust immune response, and systemic anti-tumor immunity. SFRT takes advantage of the complementary immunomodulatory features of low- and high-dose radiotherapy to integrate the delivery of both into a single target. Clinical trials using three-dimensional SFRT (i.e., lattice-like dose distributions) have reported both promising tumor and toxicity results, and ongoing clinical trials are investigating synergy between SFRT and immunotherapies.
Collapse
Affiliation(s)
| | | | | | - John Humm
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph O Deasy
- Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | |
Collapse
|
34
|
Ramapriyan R, Vykunta VS, Vandecandelaere G, Richardson LGK, Sun J, Curry WT, Choi BD. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol Ther 2024; 259:108667. [PMID: 38763321 DOI: 10.1016/j.pharmthera.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Vivasvan S Vykunta
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gust Vandecandelaere
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leland G K Richardson
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Mitrea DA, Froicu EM, Prenen H, Gambacorta MA, Span PN, Poortmans P. Combining immunotherapy and radiation therapy in gastrointestinal cancers: A review. Crit Rev Oncol Hematol 2024; 199:104381. [PMID: 38735504 DOI: 10.1016/j.critrevonc.2024.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION AND PURPOSE With a significant global impact, treatment of gastrointestinal (GI) cancers still presents with challenges, despite current multimodality approaches in advanced stages. Clinical trials are expanding for checkpoint inhibition (ICI) combined with radiation therapy (RT). This review intends to offer a comprehensive image of the current data regarding the effectiveness of this association, and to reflect on possible directions to further optimize the results. RESULTS Several early phase studies demonstrated encouraging potential. However, translating preclinical outcomes to clinical settings proves challenging, especially in immunologically "cold" environments. GI cancers exhibit heterogeneity, requiring tailored approaches based on disease stage and patient characteristics. Current results, though promising, lack the power of evidence to influence the general practice. CONCLUSIONS Finding biomarkers for identifying or converting resistant cancers is essential for maximizing responses, moreover in this context strategic RT parameters need to be carefully considered. Our review emphasizes the significance of having a thorough grasp of how immunology, tumour biology, and treatment settings interact in order to propose novel research avenues and efficient GI cancer therapy.
Collapse
Affiliation(s)
- Diana A Mitrea
- Department of Radiation Oncology, Centre Antoine-Lacassagne, 33 Av. de Valombrose, Nice 06100, France.
| | - Eliza M Froicu
- Department of Medical Oncology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Hans Prenen
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Maria A Gambacorta
- Department of Radiation Oncology Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Wilrijk-Antwerp, Belgium; University of Antwerp, Faculty of Medicine and Health Sciences, Wilrijk-Antwerp, Belgium
| |
Collapse
|
36
|
Ahmed MM, Wu X, Mohiuddin M, Perez NC, Zhang H, Amendola BE, Malachowska B, Mohiuddin M, Guha C. Optimizing GRID and Lattice Spatially Fractionated Radiation Therapy: Innovative Strategies for Radioresistant and Bulky Tumor Management. Semin Radiat Oncol 2024; 34:310-322. [PMID: 38880540 DOI: 10.1016/j.semradonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Treating radioresistant and bulky tumors is challenging due to their inherent resistance to standard therapies and their large size. GRID and lattice spatially fractionated radiation therapy (simply referred to GRID RT and LRT) offer promising techniques to tackle these issues. Both approaches deliver radiation in a grid-like or lattice pattern, creating high-dose peaks surrounded by low-dose valleys. This pattern enables the destruction of significant portions of the tumor while sparing healthy tissue. GRID RT uses a 2-dimensional pattern of high-dose peaks (15-20 Gy), while LRT delivers a three-dimensional array of high-dose vertices (10-20 Gy) spaced 2-5 cm apart. These techniques are beneficial for treating a variety of cancers, including soft tissue sarcomas, osteosarcomas, renal cell carcinoma, melanoma, gastrointestinal stromal tumors (GISTs), pancreatic cancer, glioblastoma, and hepatocellular carcinoma. The specific grid and lattice patterns must be carefully tailored for each cancer type to maximize the peak-to-valley dose ratio while protecting critical organs and minimizing collateral damage. For gynecologic cancers, the treatment plan should align with the international consensus guidelines, incorporating concurrent chemotherapy for optimal outcomes. Despite the challenges of precise dosimetry and patient selection, GRID RT and LRT can be cost-effective using existing radiation equipment, including particle therapy systems, to deliver targeted high-dose radiation peaks. This phased approach of partial high-dose induction radiation therapy with standard fractionated radiation therapy maximizes immune modulation and tumor control while reducing toxicity. Comprehensive treatment plans using these advanced techniques offer a valuable framework for radiation oncologists, ensuring safe and effective delivery of therapy for radioresistant and bulky tumors. Further clinical trials data and standardized guidelines will refine these strategies, helping expand access to innovative cancer treatments.
Collapse
Affiliation(s)
- Mansoor M Ahmed
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY.
| | - Xiaodong Wu
- Executive Medical Physics Associates, Miami, FL
| | - Majid Mohiuddin
- Radiation Oncology Consultants and Northwestern Proton Center, Warrenville, IL
| | | | - Hualin Zhang
- Department of Radiation Oncology, University of Southern California, Los Angeles, CA
| | | | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY
| | | | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY
| |
Collapse
|
37
|
Chen H, Zhang JH, Hao Q, Wu XL, Guo JX, Huang CX, Zhang J, Xing GS, An ZL, Ling Y, Zhao JG, Bao YN. Analysis of tumor microenvironment alterations in partially responsive rectal cancer patients treated with neoadjuvant chemoradiotherapy. Int J Colorectal Dis 2024; 39:99. [PMID: 38926205 PMCID: PMC11208236 DOI: 10.1007/s00384-024-04672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE Achieving a pathologic complete response (pCR) after neoadjuvant chemoradiotherapy (NCRT) remains a challenge for most patients with rectal cancer. Exploring the potential of combining NCRT with immunotherapy or targeted therapy for those achieving a partial response (PR) offers a promising avenue to enhance treatment efficacy. This study investigated the impact of NCRT on the tumor microenvironment in locally advanced rectal cancer (LARC) patients who exhibited a PR. METHODS This was a retrospective, observational study. Five patients demonstrating a PR after neoadjuvant treatment for LARC were enrolled in the study. Biopsy samples before treatment and resected specimens after treatment were stained with a panel of 26 antibodies targeting various immune and tumor-related markers, each labeled with distinct metal tags. The labeled samples were then analyzed using the Hyperion imaging system. RESULTS Heterogeneity within the tumor microenvironment was observed both before and after NCRT. Notably, tumor-associated macrophages, CD4 + T cells, CD8 + T cells, CD56 + natural killer cells, tumor-associated neutrophils, cytokeratin, and E-cadherin exhibited slight increase in abundance within the tumor microenvironment following treatment (change ratios = 0.78, 0.2, 0.27, 0.32, 0.17, 0.46, 0.32, respectively). Conversely, the number of CD14 + monocytes, CD19 + B cells, CD45 + CD4 + T cells, collagen I, α-smooth muscle actin, vimentin, and β-catenin proteins displayed significant decreases post-treatment (change ratios = 1.73, 1.92, 1.52, 1.25, 1.52, 1.12, 2.66, respectively). Meanwhile, Foxp3 + regulatory cells demonstrated no significant change (change ratio = 0.001). CONCLUSIONS NCRT has diverse effects on various components of the tumor microenvironment in LARC patients who achieve a PR after treatment. Leveraging combination therapies may optimize treatment outcomes in this patient population.
Collapse
Affiliation(s)
- Hong Chen
- Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Ji-Hong Zhang
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Qin Hao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Lin Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Jia-Xing Guo
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Cong-Xiu Huang
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Jun Zhang
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Guo-Sheng Xing
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Zhi-Lin An
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Yu Ling
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Jian-Guo Zhao
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Ying-Na Bao
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
38
|
Hodson D, Mistry H, Yates J, Guzzetti S, Davies M, Aarons L, Ogungbenro K. Hierarchical cluster analysis and nonlinear mixed-effects modelling for candidate biomarker detection in preclinical models of cancer. Eur J Pharm Sci 2024; 197:106774. [PMID: 38641123 DOI: 10.1016/j.ejps.2024.106774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Preclinical models of cancer can be of translational benefit when assessing how different biomarkers are regulated in response to particular treatments. Detection of molecular biomarkers in preclinical models of cancer is difficult due inter-animal variability in responses, combined with limited accessibility of longitudinal data. METHODS Nonlinear mixed-effects modelling (NLME) was used to analyse tumour growth data based on expected tumour growth rates observed 7 days after initial doses (DD7) of Radiotherapy (RT) and Combination of RT with DNA Damage Response Inhibitors (DDRi). Cox regression was performed to confirm an association between DD7 and survival. Hierarchical Cluster Analysis (HCA) was then used to identify candidate biomarkers impacting responses to RT and RT/DDRi and these were validated using NLME. RESULTS Cox regression confirmed significant associations between DD7 and survival. HCA of RT treated samples, combined with NLME confirmed significant associations between DD7 and Cluster specific CD8+ Ki67 MFI, as well as DD7 and cluster specific Natural Killer cell density in RT treated mice. CONCLUSION Application of NLME, as well as HCA of candidate biomarkers may provide additional avenues to assess the effect of RT in MC38 syngeneic tumour models. Additional studies would need to be conducted to confirm association between DD7 and biomarkers in RT/DDRi treated mice.
Collapse
Affiliation(s)
- David Hodson
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Manchester M13 9PT, UK
| | - Hitesh Mistry
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Manchester M13 9PT, UK
| | - James Yates
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sofia Guzzetti
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Michael Davies
- DMPK, Research and Early Development, Neuroscience R&D, AstraZeneca, Cambridge, UK
| | - Leon Aarons
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Manchester M13 9PT, UK
| | - Kayode Ogungbenro
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
39
|
Nasser N, Perez BA, Penagaricano JA, Caudell JJ, Oliver DE, Latifi K, Moros EG, Redler G. Technical feasibility of novel immunostimulatory low-dose radiation for polymetastatic disease with CBCT-based online adaptive and conventional approaches. J Appl Clin Med Phys 2024; 25:e14303. [PMID: 38377378 PMCID: PMC11163490 DOI: 10.1002/acm2.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
PURPOSE A workflow/planning strategy delivering low-dose radiation therapy (LDRT) (1 Gy) to all polymetastatic diseases using conventional planning/delivery (Raystation/Halcyon = "conventional") and the AI-based Ethos online adaptive RT (oART) platform is developed/evaluated. METHODS Using retrospective data for ten polymetastatic non-small cell lung cancer patients (5-52 lesions each) with PET/CTs, gross tumor volumes (GTVs) were delineated using PET standardized-uptake-value (SUV) thresholding. A 1 cm uniform expansion of GTVs to account for setup/contour uncertainty and organ motion-generated planning target volumes (PTVs). Dose optimization/calculation used the diagnostic CT from PET/CT. Dosimetric objectives were: Dmin,0.03cc ≥ 95% (acceptable variation (Δ) ≥ 90%), V100% ≥ 95% (Δ ≥ 90%), and D0.03cc ≤ 120% (Δ ≤ 125%). Additionally, online adaptation was simulated. When available, subsequent diagnostic CT was used to represent on-treatment CBCT. Otherwise, the CT from PET/CT used for initial planning was deformed to simulate clinically representative changes. RESULTS All initial plans generated, both for Raystation and Ethos, achieved clinical goals within acceptable variation. For all patients, Dmin,0.03cc ≥ 95%, V100% ≥ 95%, and D0.03cc ≤ 120% goals were achieved for 84.8%/99.5%, 97.7%/98.7%, 97.4%/92.3%, in conventional/Ethos plans, respectively. The ratio of 50% isodose volume to PTV volume (R50%), maximum dose at 2 cm from PTV (D2cm), and the ratio of the 100% isodose volume to PTV volume (conformity index) in Raystation/Ethos plans were 7.9/5.9; 102.3%/88.44%; and 0.99/1.01, respectively. In Ethos, online adapted plans maintained PTV coverage whereas scheduled plans often resulted in geographic misses due to changes in tumor size, patient position, and body habitus. The average total duration of the oART workflow was 26:15 (min:sec) ranging from 6:43 to 57:30. The duration of each oART workflow step as a function of a number of targets showed a low correlation coefficient for influencer generation and editing (R2 = 0.04 and 0.02, respectively) and high correlation coefficient for target generation, target editing and plan generation (R2 = 0.68, 0.63 and 0.69, respectively). CONCLUSIONS This study demonstrates feasibility of conventional planning/treatment with Raystation/Halcyon and highlights efficiency gains when utilizing semi-automated planning/online-adaptive treatment with Ethos for immunostimulatory LDRT conformally delivered to all sites of polymetastatic disease.
Collapse
Affiliation(s)
- Nour Nasser
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
- Department of PhysicsUniversity of South FloridaTampaFloridaUSA
| | - Bradford A. Perez
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | | | - Jimmy J. Caudell
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Daniel E. Oliver
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Kujtim Latifi
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Eduardo G. Moros
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Gage Redler
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| |
Collapse
|
40
|
Vizcaino Castro A, Daemen T, Oyarce C. Strategies to reprogram anti-inflammatory macrophages towards pro-inflammatory macrophages to support cancer immunotherapies. Immunol Lett 2024; 267:106864. [PMID: 38705481 DOI: 10.1016/j.imlet.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Tumor-associated myeloid cells, including macrophages and myeloid-derived suppressor cells, can be highly prevalent in solid tumors and play a significant role in the development of the tumor. Therefore, myeloid cells are being considered potential targets for cancer immunotherapies. In this review, we focused on strategies aimed at targeting tumor-associated macrophages (TAMs). Most strategies were studied preclinically but we also included a limited number of clinical studies based on these strategies. We describe possible underlying mechanisms and discuss future challenges and prospects.
Collapse
Affiliation(s)
- Ana Vizcaino Castro
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Toos Daemen
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Cesar Oyarce
- Laboratory of Tumor Virology and Cancer Immunotherapy, Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Wang L, Wu Y, Kang K, Zhang X, Luo R, Tu Z, Zheng Y, Lin G, Wang H, Tang M, Yu M, Zou B, Tong R, Yi L, Na F, Xue J, Yao Z, Lu Y. CDK4/6 inhibitor abemaciclib combined with low-dose radiotherapy enhances the anti-tumor immune response to PD-1 blockade by inflaming the tumor microenvironment in Rb-deficient small cell lung cancer. Transl Lung Cancer Res 2024; 13:1032-1046. [PMID: 38854937 PMCID: PMC11157372 DOI: 10.21037/tlcr-24-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/14/2024] [Indexed: 06/11/2024]
Abstract
Background Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors have shown significant activity against several solid tumors by reducing the phosphorylation of the canonical CDK4/6 substrate retinoblastoma (Rb) protein, while the anti-tumor effect of CDK4/6 inhibitors on Rb-deficient tumors is not clear. Most small cell lung cancers (SCLCs) are Rb-deficient and show very modest response to immune checkpoint blockade (ICB) despite recent advances in the use of immunotherapy. Here, we aimed to investigate the direct effect of CDK4/6 inhibition on SCLC cells and determine its efficacy in combination therapy for SCLC. Methods The immediate impact of CDK4/6 inhibitor abemaciclib on cell cycle, cell viability and apoptosis in four SCLC cell lines was initially checked. To explore the effect of abemaciclib on double-strand DNA (ds-DNA) damage induction and the combination impact of abemaciclib coupled with radiotherapy (RT), western blot, immunofluorescence (IF) and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. An Rb-deficient immunocompetent murine SCLC model was established to evaluate efficacy of abemaciclib in combination therapy. Histological staining, flow cytometry analysis and RNA sequencing were performed to analyze alteration of infiltrating immune cells in tumor microenvironment (TME). Results Here, we demonstrated that abemaciclib induced increased ds-DNA damage in Rb-deficient SCLC cells. Combination of abemaciclib and RT induced more cytosolic ds-DNA, and activated the STING pathway synergistically. We further showed that combining low doses of abemaciclib with low-dose RT (LDRT) plus anti-programmed cell death protein-1 (anti-PD-1) antibody substantially potentiated CD8+ T cell infiltration and significantly inhibited tumor growth and prolonged survival in an Rb-deficient immunocompetent murine SCLC model. Conclusions Our results define previously uncertain DNA damage-inducing properties of CDK4/6 inhibitor abemaciclib in Rb-deficient SCLCs, and demonstrate that low doses of abemaciclib combined with LDRT inflame the TME and enhance the efficacy of anti-PD-1 immunotherapy in SCLC model, which represents a potential novel therapeutic strategy for SCLC.
Collapse
Affiliation(s)
- Laduona Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ren Luo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zegui Tu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guo Lin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruizhan Tong
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linglu Yi
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feifei Na
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuoran Yao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Zhou S, Zhu M, Wei X, Mu P, Shen L, Wang Y, Wan J, Zhang H, Xia F, Zhang Z. Low-dose radiotherapy synergizes with iRGD-antiCD3-modified T cells by facilitating T cell infiltration. Radiother Oncol 2024; 194:110213. [PMID: 38458258 DOI: 10.1016/j.radonc.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND AND PURPOSE Poor penetration of transferred T cells represents a critical factor impeding the development of adoptive cell therapy in solid tumors. We demonstrated that iRGD-antiCD3 modification promoted both T cell infiltration and activation in our previous work. Interest in low-dose radiotherapy has recently been renewed due to its immuno-stimulatory effects including T cell recruitment. This study aims to explore the synergistic effects between low-dose radiotherapy and iRGD-antiCD3-modified T cells. MATERIALS AND METHODS Flow cytometry was performed to assess the expression of iRGD receptors and chemokines. T cell infiltration was evaluated by immunohistofluorescence and in vivo real-time fluorescence imaging and antitumor effects were investigated by in vivo bioluminescence imaging in the gastric cancer peritoneal metastasis mouse model. RESULTS We found that 2 Gy irradiation upregulated the expression of all three iRGD receptors and T-cell chemokines. The addition of 2 Gy low-dose irradiation boosted the accumulation and penetration of iRGD-antiCD3-modified T cells in peritoneal tumor nodules. Combining 2 Gy low-dose irradiation with iRGD-antiCD3-modified T cells significantly inhibited tumor growth and prolonged survival in the peritoneal metastasis mouse model with a favorable safety profile. CONCLUSION Altogether, we demonstrated that low-dose radiotherapy could improve the antitumor potency of iRGD-antiCD3-modified T cells by promoting T cell infiltration, providing a rationale for exploring low-dose radiotherapy in combination of other adoptive T cell therapies in solid tumors.
Collapse
Affiliation(s)
- Shujuan Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Mei Zhu
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou 221005, China
| | - Xiao Wei
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Peiyuan Mu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yan Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Juefeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China.
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China.
| |
Collapse
|
43
|
Zhou L, Liu Y, Wu Y, Yang X, Spring Kong FM, Lu Y, Xue J. Low-dose radiation therapy mobilizes antitumor immunity: New findings and future perspectives. Int J Cancer 2024; 154:1143-1157. [PMID: 38059788 DOI: 10.1002/ijc.34801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Radiotherapy has unique immunostimulatory and immunosuppressive effects. Although high-dose radiotherapy has been found to have systemic antitumor effects, clinically significant abscopal effects were uncommon on the basis of irradiating single lesion. Low-dose radiation therapy (LDRT) emerges as a novel approach to enhance the antitumor immune response due to its role as a leverage to reshape the tumor immune microenvironment (TIME). In this article, from bench to bedside, we reviewed the possible immunomodulatory role of LDRT on TIME and systemic tumor immune environment, and outlined preclinical evidence and clinical application. We also discussed the current challenges when LDRT is used as a combination therapy, including the optimal dose, fraction, frequency, and combination of drugs. The advantage of low toxicity makes LDRT potential to be applied in multiple lesions to amplify antitumor immune response in polymetastatic disease, and its intersection with other disciplines might also make it a direction for radiotherapy-combined modalities.
Collapse
Affiliation(s)
- Laiyan Zhou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Disaster Medical Center, Sichuan University, Chengdu, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanjun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Wisdom AJ, Barker CA, Chang JY, Demaria S, Formenti S, Grassberger C, Gregucci F, Hoppe BS, Kirsch DG, Marciscano AE, Mayadev J, Mouw KW, Palta M, Wu CC, Jabbour SK, Schoenfeld JD. The Next Chapter in Immunotherapy and Radiation Combination Therapy: Cancer-Specific Perspectives. Int J Radiat Oncol Biol Phys 2024; 118:1404-1421. [PMID: 38184173 DOI: 10.1016/j.ijrobp.2023.12.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Immunotherapeutic agents have revolutionized cancer treatment over the past decade. However, most patients fail to respond to immunotherapy alone. A growing body of preclinical studies highlights the potential for synergy between radiation therapy and immunotherapy, but the outcomes of clinical studies have been mixed. This review summarizes the current state of immunotherapy and radiation combination therapy across cancers, highlighting existing challenges and promising areas for future investigation.
Collapse
Affiliation(s)
- Amy J Wisdom
- Harvard Radiation Oncology Program, Boston, Massachusetts
| | - Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Clemens Grassberger
- Department of Radiation Oncology, University of Washington, Fred Hutch Cancer Center, Seattle, Washington
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - David G Kirsch
- Department of Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ariel E Marciscano
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jyoti Mayadev
- Department of Radiation Oncology, UC San Diego School of Medicine, San Diego, California
| | - Kent W Mouw
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Manisha Palta
- Department of Radiation Oncology, Duke Cancer Center, Durham, North Carolina
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
45
|
Zhang QS, Hayes JP, Gondi V, Pollack SM. Immunotherapy and Radiotherapy Combinations for Sarcoma. Semin Radiat Oncol 2024; 34:229-242. [PMID: 38508787 DOI: 10.1016/j.semradonc.2023.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Sarcomas are a heterogeneous group of bone and soft tissue tumors. Survival outcomes for advanced (unresectable or metastatic) disease remain poor, so therapeutic improvements are needed. Radiotherapy plays an integral role in the neoadjuvant and adjuvant treatment of localized disease as well as in the treatment of metastatic disease. Combining radiotherapy with immunotherapy to potentiate immunotherapy has been used in a variety of cancers other than sarcoma, and there is opportunity to further investigate combining immunotherapy with radiotherapy to try to improve outcomes in sarcoma. In this review, we describe the diversity of the tumor immune microenvironments for sarcomas and describe the immunomodulatory effects of radiotherapy. We discuss studies on the timing of radiotherapy relative to immunotherapy and studies on the radiotherapy dose and fractionation regimen to be used in combination with immunotherapy. We describe the impact of radiotherapy on the tumor immune microenvironment. We review completed and ongoing clinical trials combining radiotherapy with immunotherapy for sarcoma and propose future directions for studies combining immunotherapy with radiotherapy in the treatment of sarcoma.
Collapse
Affiliation(s)
- Qian S Zhang
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - John P Hayes
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Vinai Gondi
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Seth M Pollack
- Division of Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL..
| |
Collapse
|
46
|
Liu Y, Jiang X, Wu Y, Yu H. Global research landscape and trends of cancer radiotherapy plus immunotherapy: A bibliometric analysis. Heliyon 2024; 10:e27103. [PMID: 38449655 PMCID: PMC10915415 DOI: 10.1016/j.heliyon.2024.e27103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/04/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
The aim of this study was to present current research trends on the synergistic use of radiotherapy and immunotherapy (IRT) for cancer treatment. On March 1, 2023, we conducted a literature search for IRT papers using the Web of Science database. We extracted information and constructed two databases - the Core Database (CD) with 864 papers and Generalized Database (GD) with 6344 papers. A bibliometric analysis was performed to provide insights into the research landscape, to identify emerging trends and highly cited papers and journals in the field of IRT. The CD contained 864 papers that were collectively cited 31,818 times. Prominent journals in this area included the New England Journal of Medicine, Lancet Oncology, and the Journal of Clinical Oncology. Corresponding authors from the USA contributed the most publications. In recent years, lung cancer, melanoma, stereotactic radiotherapy, immune checkpoint inhibitors, and the tumor microenvironment emerged as hot research areas. This bibliometric analysis presented quantitative insights into research concerning IRT and proposed potential avenues for further exploration. Moreover, researchers can use our findings to select appropriate journals for publication or identify prospective collaborators. In summary, this bibliometric analysis provides a comprehensive overview of the historical progression and recent advancements in IRT research that may serve as inspiration for future investigations.
Collapse
Affiliation(s)
- Yanhao Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xu Jiang
- Department of Nuclear Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Yujuan Wu
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Haiming Yu
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
47
|
Ramapriyan R, Clark VE, Martinez-Lage M, Hsueh B, Nahed BV, Curry WT, Choi BD, Carter BS. Fluorescence and immune-cell infiltration of nonneoplastic, postbrachytherapy brain tissue in 5-ALA-guided resection of recurrent anaplastic meningioma: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 7:CASE23550. [PMID: 38408351 PMCID: PMC10901117 DOI: 10.3171/case23550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) fluorescence-guided surgery is a well-established technique for resecting high-grade gliomas. However, its application in meningiomas, especially those previously treated with radiation therapy, remains under investigation. OBSERVATIONS A 48-year-old female with recurrent anaplastic meningioma, World Health Organization grade 3, underwent a right-sided craniotomy using off-label 5-ALA as a surgical adjunct. The patient had previously undergone brachytherapy seed implantation (20 × cesium 131) for tumor management. During the surgery, a large fluorescent tumor mass adjacent to the brachytherapy-treated area was resected, and the prior brachytherapy seeds were removed. Interestingly, the surrounding brain tissue in the irradiated area showed robust 5-ALA fluorescence. Pathological examination confirmed that the fluorescent brain tissue was nonneoplastic and associated with lymphocyte and macrophage infiltration. LESSONS This case report presents unique 5-ALA fluorescence in nonneoplastic tissue following brachytherapy, which was found during the resection of recurrent anaplastic meningioma. This phenomenon may reflect an intricate interplay among radiation therapy, immune cells, the tumor microenvironment, and 5-ALA metabolism. Given that false-positive findings in fluorescence-guided surgery can lead to unnecessary tissue resection and increased surgical morbidity, further research is warranted to elucidate the mechanisms underlying this phenomenon and its implications for meningioma surgery.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- 1Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts; and
| | | | - Maria Martinez-Lage
- 2Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | - William T Curry
- 1Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts; and
| | | | | |
Collapse
|
48
|
Wang X, Wang Y, Zhang Y, Shi H, Liu K, Wang F, Wang Y, Chen H, Shi Y, Wang R. Immune modulatory roles of radioimmunotherapy: biological principles and clinical prospects. Front Immunol 2024; 15:1357101. [PMID: 38449871 PMCID: PMC10915027 DOI: 10.3389/fimmu.2024.1357101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonggang Zhang
- Department of Head and Neck Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Hongyun Shi
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Kuan Liu
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yue Wang
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Huijing Chen
- Department of Radiation Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Ruiyao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| |
Collapse
|
49
|
Zhang S, Lai Y, Pan J, Saeed M, Li S, Zhou H, Jiang X, Gao J, Zhu Y, Yu H, Zhang W, Xu Z. PROTAC Prodrug-Integrated Nanosensitizer for Potentiating Radiation Therapy of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314132. [PMID: 38353332 DOI: 10.1002/adma.202314132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO2 ) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT. Upon intravenous administration, the RPB7H nanoparticles selectively accumulate at the tumor tissue and internalize into tumor cells by recognizing neuropilin-1 overexpressed in the tumor mass. HfO2 nanoparticles enhance RT effectiveness by amplifying X-ray deposition, intensifying DNA damage, and boosting oxidative stress. Meanwhile, BPA771 can be activated by RT-induced H2 O2 secretion to degrade BRD4 and inactivate RAD51AP1, thus impeding RT-induced DNA damage repair. This versatile nanosensitizer, combined with X-ray irradiation, effectively regresses HNSCC tumor growth in a mouse model. The findings introduce a PROTAC prodrug-based radiosensitization strategy by targeting the BRD4-RAD51AP1 axis, may offer a promising avenue to augment RT and more effective HNSCC therapy.
Collapse
Affiliation(s)
- Shunan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Lai
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 2000092, China
| | - Madiha Saeed
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xingyu Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Gao
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
50
|
Li Z, Yang X, Li Z. Tumor Mechanics Meets Nanomedicine Mechanical Properties. CHEMISTRY OF MATERIALS 2024; 36:1041-1053. [DOI: 10.1021/acs.chemmater.3c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Affiliation(s)
- Zheng Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| |
Collapse
|