1
|
Li D, Rudloff U. Emerging therapeutics targeting tumor-associated macrophages for the treatment of solid organ cancers. Expert Opin Emerg Drugs 2025:1-39. [PMID: 40353504 DOI: 10.1080/14728214.2025.2504376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
INTRODUCTION Over the last decade, immune checkpoint inhibitors (ICIs) like PD-1/PD-L1 or CTLA-4, which reinvigorate T cells for tumor control have become standard-of-care treatment options. In response to the increasingly recognized mechanisms of resistance to T cell activation in immunologically cold tumors, immuno-oncology drug development has started to shift beyond T cell approaches. These include tumor-associated macrophages (TAMs), a major pro-tumor immune cell population in the tumor microenvironment known to silence immune responses. AREAS COVERED Here we outline anti-TAM therapies in current development, either as monotherapy or in combination with other treatment modalities. We describe emerging drugs targeting TAMs under investigation in phase II and III testing with a focus on their distinguishing mechanism of action which include (1) reprogramming of TAMs toward anti-tumor function and immune surveillance, (2) blockade of recruitment, and (3) reduction and ablation of TAMs. EXPERT OPINION Several new immuno-oncology agents are under investigation to harness anti-tumor functions of TAMs. While robust anti-tumor efficacy of anti-TAM therapies across advanced solid organ cancers remains elusive to-date, TAM reprogramming therapies have yielded benefits in select cancers. The inherent heterogeneity of the diverse TAM population will require enhanced investments into biomarker-driven approaches to fully leverage its therapeutic potential.
Collapse
Affiliation(s)
- Dandan Li
- Developmental Therapeutics Branch (TDB), Biology Group, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Gaur V, Tyagi W, Das S, Ganguly S, Bhattacharyya J. CD40 agonist engineered immunosomes modulated tumor microenvironment and showed pro-immunogenic response, reduced toxicity, and tumor free survival in mice bearing glioblastoma. Biomaterials 2024; 311:122688. [PMID: 38943821 DOI: 10.1016/j.biomaterials.2024.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
CD40 agonist antibodies (αCD40) have shown promising anti-tumor response in both preclinical and early clinical studies. However, its systemic administration is associated with immune- and hepato-toxicities which hampers its clinical usage. In addition, αCD40 showed low tumor retention and induced PD-L1 expression which makes tumor microenvironment (TME) immunosuppressive. To overcome these issues, in this study, we have developed a multifunctional Immunosome where αCD40 is conjugated on the surface and RRX-001, a small molecule immunomodulator was encapsulated inside it. Immunosomes showed higher tumor accumulation till 96 h of administration and displayed sustained release of αCD40 in vivo. Immunosomes significantly delayed tumor growth and showed tumor free survival in mice bearing GL-261 glioblastoma by increasing the population of CD45+CD8+ T cells, CD45+CD20+ B cells, CD45+CD11c+ DCs and F4/80+CD86+ cells in TME. Immunosome significantly reduced the population of T-regulatory cells, M2 macrophage, and MDSCs and lowered the PD-L1 expression. Moreover, Immunosomes significantly enhanced the levels of Th1 cytokines (IFN-γ, IL-6, IL-2) over Th2 cytokines (IL-4 and IL-10) which supported anti-tumor response. Most interestingly, Immunosomes averted the in vivo toxicities associated with free αCD40 by lowering the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), IL-6, IL-1α and reduced the degree of liver damage. In addition, Immunosomes treated long-term surviving mice showed tumor specific immune memory response which prevented tumor growth upon rechallenge. Our results suggested that this novel formulation can be further explored in clinics to improve in vivo anti-tumor efficacy of αCD40 with long-lasting tumor specific immunity while reducing the associated toxicities.
Collapse
Affiliation(s)
- Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India
| | - Witty Tyagi
- Molecular Oncology Laboratory, National Institute of Immunology, Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory, National Institute of Immunology, Delhi, India
| | - Surajit Ganguly
- Department of Molecular Medicine, Jamia Hamdard University, Delhi, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India.
| |
Collapse
|
3
|
Hesen N, Anany M, Freidel A, Baker M, Siegmund D, Zaitseva O, Wajant H, Lang I. Genetically engineered IgG1 and nanobody oligomers acquire strong intrinsic CD40 agonism. Bioengineered 2024; 15:2302246. [PMID: 38214443 PMCID: PMC10793706 DOI: 10.1080/21655979.2024.2302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024] Open
Abstract
Most anti-CD40 antibodies show robust agonism only upon binding to FcγR+ cells, such as B cells, macrophages, or DCs, but a few anti-CD40 antibodies display also strong intrinsic agonism dependent on the recognized epitope and/or isotype. It is worth mentioning, however, that also the anti-CD40 antibodies with intrinsic agonism can show a further increase in agonistic activity when bound by FcγR-expressing cells. Thus, conventional antibodies appear not to be sufficient to trigger the maximum possible CD40 activation independent from FcγR-binding. We proved here the hypothesis that oligomeric and oligovalent anti-CD40 antibody variants generated by genetic engineering display high intrinsic, thus FcγR-independent, agonistic activity. We generated tetra-, hexa- and dodecavalent variants of six anti-CD40 antibodies and a CD40-specific nanobody. All these oligovalent variants, even when derived of bivalent antagonistic anti-CD40 antibodies, showed strongly enhanced CD40 agonism compared to their conventional counterparts. In most cases, the CD40 agonism reached the maximum response induced by FcγR-bound anti-CD40 antibodies or membrane CD40L, the natural engager of CD40. In sum, our data show that increasing the valency of anti-CD40 antibody constructs by genetic engineering regularly results in molecules with high intrinsic agonism and level out the specific limitations of the parental antibodies.
Collapse
Affiliation(s)
- Nienke Hesen
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Giza, Egypt
| | - Andre Freidel
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Mediya Baker
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, WürzburgGermany
| |
Collapse
|
4
|
Park HB, Kim KH, Kim JH, Kim SI, Oh YM, Kang M, Lee S, Hwang S, Lee H, Lee T, Park S, Lee JE, Jeong GR, Lee DH, Youn H, Choi EY, Son WC, Chung SJ, Chung J, Choi K. Improved safety of chimeric antigen receptor T cells indirectly targeting antigens via switchable adapters. Nat Commun 2024; 15:9917. [PMID: 39557825 PMCID: PMC11574259 DOI: 10.1038/s41467-024-53996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells show remarkable efficacy for some hematological malignancies. However, CAR targets that are expressed at high level and selective to tumors are scarce. Several strategies have been proposed to tackle the on-target off-tumor toxicity of CAR-T cells that arise from suboptimal selectivity, but these are complicated, with many involving dual gene expression for specificity. In this study, we show that switchable CAR-T cells with a tumor targeting adaptor can mitigate on-target off-tumor toxicity against a low selectivity tumor antigen that cannot be targeted by conventional CAR-T cells, such as CD40. Our system is composed of anti-cotinine murine CAR-T cells and cotinine-labeled anti-CD40 single chain variable fragments (scFv), with which we show selective tumor killing while sparing CD40-expressing normal cells including macrophages in a mouse model of lymphoma. Simple replacement of the tumor-targeting adaptor with a suicidal drug-conjugated tag may further enhance safety by enabling permanent in vivo depletion of the switchable CAR-T cells when necessary. In summary, our switchable CAR system can control CAR-T cell toxicity while maintaining therapeutic efficacy, thereby expanding the range of CAR targets.
Collapse
MESH Headings
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Humans
- Immunotherapy, Adoptive/methods
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- T-Lymphocytes/immunology
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/genetics
- Lymphoma/immunology
- Lymphoma/therapy
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hyung Bae Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju Hwan Kim
- AbTis Co. Ltd., Suwon, Gyeonggi-do, Republic of Korea
| | - Sang Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu Mi Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Miseung Kang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoho Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Siwon Hwang
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeonmin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - TaeJin Lee
- AbTis Co. Ltd., Suwon, Gyeonggi-do, Republic of Korea
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Seungbin Park
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Ji Eun Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ga Ram Jeong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ticaros Inc., Seoul, Republic of Korea
| | - Dong Hyun Lee
- Department of Medical Science, AMIST, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyewon Youn
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Woo Chan Son
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Kyungho Choi
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev 2024; 75:40-56. [PMID: 38102001 PMCID: PMC10922420 DOI: 10.1016/j.cytogfr.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40-CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8+ effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.
Collapse
Affiliation(s)
- Yang Zhou
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA
| | - Chi Yan
- Tennessee Valley Healthcare System, Department of Veteran Affairs, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA.
| |
Collapse
|
6
|
Pfefferlé M, Dubach IL, Buzzi RM, Dürst E, Schulthess-Lutz N, Baselgia L, Hansen K, Imhof L, Koernig S, Le Roy D, Roger T, Humar R, Schaer DJ, Vallelian F. Antibody-induced erythrophagocyte reprogramming of Kupffer cells prevents anti-CD40 cancer immunotherapy-associated liver toxicity. J Immunother Cancer 2023; 11:e005718. [PMID: 36593065 PMCID: PMC9809320 DOI: 10.1136/jitc-2022-005718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Agonistic anti-CD40 monoclonal antibodies (mAbs) have emerged as promising immunotherapeutic compounds with impressive antitumor effects in mouse models. However, preclinical and clinical studies faced dose-limiting toxicities mediated by necroinflammatory liver disease. An effective prophylactic treatment for liver immune-related adverse events that does not suppress specific antitumor immunity remains to be found. METHODS We used different mouse models and time-resolved single-cell RNA-sequencing to characterize the pathogenesis of anti-CD40 mAb induced liver toxicity. Subsequently, we developed an antibody-based treatment protocol to selectively target red blood cells (RBCs) for erythrophagocytosis in the liver, inducing an anti-inflammatory liver macrophage reprogramming. RESULTS We discovered that CD40 signaling in Clec4f+ Kupffer cells is the non-redundant trigger of anti-CD40 mAb-induced liver toxicity. Taking advantage of the highly specific functionality of liver macrophages to clear antibody-tagged RBCs from the blood, we hypothesized that controlled erythrophagocytosis and the linked anti-inflammatory signaling by the endogenous metabolite heme could be exploited to reprogram liver macrophages selectively. Repeated low-dose administration of a recombinant murine Ter119 antibody directed RBCs for selective phagocytosis in the liver and skewed the phenotype of liver macrophages into a Hmoxhigh/Marcohigh/MHCIIlow anti-inflammatory phenotype. This unique mode of action prevented necroinflammatory liver disease following high-dose administration of anti-CD40 mAbs. In contrast, extrahepatic inflammation, antigen-specific immunity, and antitumor activity remained unaffected in Ter119 treated animals. CONCLUSIONS Our study offers a targeted approach to uncouple CD40-augmented antitumor immunity in peripheral tissues from harmful inflammatoxicity in the liver.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sandra Koernig
- CSL Ltd., Research, Bio21 Institute, Parkville, Victoria, Australia
| | | | | | - Rok Humar
- University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
7
|
Lang I, Zaitseva O, Wajant H. FcγRs and Their Relevance for the Activity of Anti-CD40 Antibodies. Int J Mol Sci 2022; 23:12869. [PMID: 36361658 PMCID: PMC9655775 DOI: 10.3390/ijms232112869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2024] Open
Abstract
Inhibitory targeting of the CD40L-CD40 system is a promising therapeutic option in the field of organ transplantation and is also attractive in the treatment of autoimmune diseases. After early complex results with neutralizing CD40L antibodies, it turned out that lack of Fcγ receptor (FcγR)-binding is the crucial factor for the development of safe inhibitory antibodies targeting CD40L or CD40. Indeed, in recent years, blocking CD40 antibodies not interacting with FcγRs, has proven to be well tolerated in clinical studies and has shown initial clinical efficacy. Stimulation of CD40 is also of considerable therapeutic interest, especially in cancer immunotherapy. CD40 can be robustly activated by genetically engineered variants of soluble CD40L but also by anti-CD40 antibodies. However, the development of CD40L-based agonists is biotechnologically and pharmacokinetically challenging, and anti-CD40 antibodies typically display only strong agonism in complex with FcγRs or upon secondary crosslinking. The latter, however, typically results in poorly developable mixtures of molecule species of varying stoichiometry and FcγR-binding by anti-CD40 antibodies can elicit unwanted side effects such as antibody-dependent cellular cytotoxicity (ADCC) or antibody-dependent cellular phagocytosis (ADCP) of CD40 expressing immune cells. Here, we summarize and compare strategies to overcome the unwanted target cell-destroying activity of anti-CD40-FcγR complexes, especially the use of FcγR type-specific mutants and the FcγR-independent cell surface anchoring of bispecific anti-CD40 fusion proteins. Especially, we discuss the therapeutic potential of these strategies in view of the emerging evidence for the dose-limiting activities of systemic CD40 engagement.
Collapse
Affiliation(s)
| | | | - Harald Wajant
- Department of Internal Medicine II, Division of Molecular Internal Medicine, University Hospital Würzburg, Auvera Haus, Grombühlstrasse 12, 97080 Würzburg, Germany
| |
Collapse
|
8
|
Correa S, Meany EL, Gale EC, Klich JH, Saouaf OM, Mayer AT, Xiao Z, Liong CS, Brown RA, Maikawa CL, Grosskopf AK, Mann JL, Idoyaga J, Appel EA. Injectable Nanoparticle-Based Hydrogels Enable the Safe and Effective Deployment of Immunostimulatory CD40 Agonist Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103677. [PMID: 35975424 PMCID: PMC9534946 DOI: 10.1002/advs.202103677] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/27/2022] [Indexed: 05/31/2023]
Abstract
When properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long-lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body. Here, this study explored the ability of a slow-releasing injectable hydrogel depot to reduce dose-limiting toxicities of immunostimulatory CD40 agonist (CD40a) while maintaining its potent anticancer efficacy. A previously described polymer-nanoparticle (PNP) hydrogel system is leveraged that exhibits shear-thinning and yield-stress properties that are hypothesized to improve locoregional delivery of CD40a immunotherapy. Using positron emission tomography, it is demonstrated that prolonged hydrogel-based delivery redistributes CD40a exposure to the tumor and the tumor draining lymph node (TdLN), thereby reducing weight loss, hepatotoxicity, and cytokine storm associated with standard treatment. Moreover, CD40a-loaded hydrogels mediate improved local cytokine induction in the TdLN and improve treatment efficacy in the B16F10 melanoma model. PNP hydrogels, therefore, represent a facile, drug-agnostic method to ameliorate immune-related adverse effects and explore locoregional delivery of immunostimulatory drugs.
Collapse
Affiliation(s)
- Santiago Correa
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Emily L. Meany
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Emily C. Gale
- Department of BiochemistryStanford University School of MedicineStanfordCA94305USA
| | - John H. Klich
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Olivia M. Saouaf
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Aaron T. Mayer
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Zunyu Xiao
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Celine S. Liong
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ryanne A. Brown
- Department of PathologyStanford University School of MedicineStanfordCA94305USA
| | | | | | - Joseph L. Mann
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Juliana Idoyaga
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCA94305USA
- Stanford ChEM‐H InstituteStanford University School of MedicineStanfordCA94305USA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- Stanford ChEM‐H InstituteStanford University School of MedicineStanfordCA94305USA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCA94305USA
- Department of Pediatrics – EndocrinologyStanford University School of MedicineStanfordCA94305USA
| |
Collapse
|
9
|
Salomon R, Dahan R. Next Generation CD40 Agonistic Antibodies for Cancer Immunotherapy. Front Immunol 2022; 13:940674. [PMID: 35911742 PMCID: PMC9326085 DOI: 10.3389/fimmu.2022.940674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/21/2022] [Indexed: 12/05/2022] Open
Abstract
The clinical use of anti-CD40 agonist monoclonal antibodies (mAbs) is aimed at recruiting the immune system to fight the tumor cells. This approach has been demonstrated to be effective in various preclinical models. However, human CD40 Abs displayed only modest antitumor activity in cancer patients, characterized by low efficacy and dose-limiting toxicity. While recent studies highlight the importance of engineering the Fc region of human CD40 mAbs to optimize their agonistic potency, toxicity remains the main limiting factor, restricting clinical application to suboptimal doses. Here, we discuss the current challenges in realizing the full potential of CD40 mAbs in clinical practice, and describe novel approaches designed to circumvent the systemic toxicity associated with CD40 agonism.
Collapse
|
10
|
Gudd CLC, Possamai LA. The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers (Basel) 2022; 14:1913. [PMID: 35454819 PMCID: PMC9027811 DOI: 10.3390/cancers14081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drug-related hepatotoxicity is an emerging clinical challenge with the widening use of immunotherapeutic agents in the field of oncology. This is an important complication to consider as more immune oncological targets are being identified to show promising results in clinical trials. The application of these therapeutics may be complicated by the development of immune-related adverse events (irAEs), a serious limitation often requiring high-dose immunosuppression and discontinuation of cancer therapy. Hepatoxicity presents one of the most frequently encountered irAEs and a better understanding of the underlying mechanism is crucial for the development of alternative therapeutic interventions. As a novel drug side effect, the immunopathogenesis of the condition is not completely understood. In the liver, myeloid cells play a central role in the maintenance of homeostasis and promotion of inflammation. Recent research has identified myeloid cells to be associated with hepatic adverse events of various immune modulatory monoclonal antibodies. In this review article, we provide an overview of the role of myeloid cells in the immune pathogenesis during hepatoxicity related to cancer immunotherapies and highlight potential treatment options.
Collapse
Affiliation(s)
- Cathrin L. C. Gudd
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Lucia A. Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Blake SJ, James J, Ryan FJ, Caparros-Martin J, Eden GL, Tee YC, Salamon JR, Benson SC, Tumes DJ, Sribnaia A, Stevens NE, Finnie JW, Kobayashi H, White DL, Wesselingh SL, O’Gara F, Lynn MA, Lynn DJ. The immunotoxicity, but not anti-tumor efficacy, of anti-CD40 and anti-CD137 immunotherapies is dependent on the gut microbiota. Cell Rep Med 2021; 2:100464. [PMID: 35028606 PMCID: PMC8714857 DOI: 10.1016/j.xcrm.2021.100464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Immune agonist antibodies (IAAs) are promising immunotherapies that target co-stimulatory receptors to induce potent anti-tumor immune responses, particularly when combined with checkpoint inhibitors. Unfortunately, their clinical translation is hampered by serious dose-limiting, immune-mediated toxicities, including high-grade and sometimes fatal liver damage, cytokine release syndrome (CRS), and colitis. We show that the immunotoxicity, induced by the IAAs anti-CD40 and anti-CD137, is dependent on the gut microbiota. Germ-free or antibiotic-treated mice have significantly reduced colitis, CRS, and liver damage following IAA treatment compared with conventional mice or germ-free mice recolonized via fecal microbiota transplant. MyD88 signaling is required for IAA-induced CRS and for anti-CD137-induced, but not anti-CD40-induced, liver damage. Importantly, antibiotic treatment does not impair IAA anti-tumor efficacy, alone or in combination with anti-PD1. Our results suggest that microbiota-targeted therapies could overcome the toxicity induced by IAAs without impairing their anti-tumor activity.
Collapse
Affiliation(s)
- Stephen J. Blake
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jane James
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Feargal J. Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jose Caparros-Martin
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Georgina L. Eden
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Yee C. Tee
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - John R. Salamon
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Saoirse C. Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Damon J. Tumes
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Natalie E. Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - John W. Finnie
- Adelaide Medical School, University of Adelaide and SA Pathology, Adelaide, SA 5000, Australia
| | - Hiroki Kobayashi
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Deborah L. White
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Steve L. Wesselingh
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| | - Fergal O’Gara
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
- BIOMERIT Research Centre, University College Cork, Cork, Ireland
| | - Miriam A. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - David J. Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5000, Australia
| |
Collapse
|
12
|
Hussain K, Cragg MS, Beers SA. Remodeling the Tumor Myeloid Landscape to Enhance Antitumor Antibody Immunotherapies. Cancers (Basel) 2021; 13:4904. [PMID: 34638388 PMCID: PMC8507767 DOI: 10.3390/cancers13194904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 12/30/2022] Open
Abstract
Among the diverse tumor resident immune cell types, tumor-associated macrophages (TAMs) are often the most abundant, possess an anti-inflammatory phenotype, orchestrate tumor immune evasion and are frequently associated with poor prognosis. However, TAMs can also be harnessed to destroy antibody-opsonized tumor cells through the process of antibody-dependent cellular phagocytosis (ADCP). Clinically important tumor-targeting monoclonal antibodies (mAb) such as Rituximab, Herceptin and Cetuximab, function, at least in part, by inducing macrophages to eliminate tumor cells via ADCP. For IgG mAb, this is mediated by antibody-binding activating Fc gamma receptors (FcγR), with resultant phagocytic activity impacted by the level of co-engagement with the single inhibitory FcγRIIb. Approaches to enhance ADCP in the tumor microenvironment include the repolarization of TAMs to proinflammatory phenotypes or the direct augmentation of ADCP by targeting so-called 'phagocytosis checkpoints'. Here we review the most promising new strategies targeting the cell surface molecules present on TAMs, which include the inhibition of 'don't eat me signals' or targeting immunostimulatory pathways with agonistic mAb and small molecules to augment tumor-targeting mAb immunotherapies and overcome therapeutic resistance.
Collapse
Affiliation(s)
| | | | - Stephen A. Beers
- Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK; (K.H.); (M.S.C.)
| |
Collapse
|
13
|
Siwicki M, Gort-Freitas NA, Messemaker M, Bill R, Gungabeesoon J, Engblom C, Zilionis R, Garris C, Gerhard GM, Kohl A, Lin Y, Zou AE, Cianciaruso C, Bolli E, Pfirschke C, Lin YJ, Piot C, Mindur JE, Talele N, Kohler RH, Iwamoto Y, Mino-Kenudson M, Pai SI, deVito C, Koessler T, Merkler D, Coukos A, Wicky A, Fraga M, Sempoux C, Jain RK, Dietrich PY, Michielin O, Weissleder R, Klein AM, Pittet MJ. Resident Kupffer cells and neutrophils drive liver toxicity in cancer immunotherapy. Sci Immunol 2021; 6:6/61/eabi7083. [PMID: 34215680 DOI: 10.1126/sciimmunol.abi7083] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022]
Abstract
Immunotherapy is revolutionizing cancer treatment but is often restricted by toxicities. What distinguishes adverse events from concomitant antitumor reactions is poorly understood. Here, using anti-CD40 treatment in mice as a model of TH1-promoting immunotherapy, we showed that liver macrophages promoted local immune-related adverse events. Mechanistically, tissue-resident Kupffer cells mediated liver toxicity by sensing lymphocyte-derived IFN-γ and subsequently producing IL-12. Conversely, dendritic cells were dispensable for toxicity but drove tumor control. IL-12 and IFN-γ were not toxic themselves but prompted a neutrophil response that determined the severity of tissue damage. We observed activation of similar inflammatory pathways after anti-PD-1 and anti-CTLA-4 immunotherapies in mice and humans. These findings implicated macrophages and neutrophils as mediators and effectors of aberrant inflammation in TH1-promoting immunotherapy, suggesting distinct mechanisms of toxicity and antitumor immunity.
Collapse
Affiliation(s)
- Marie Siwicki
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | | | - Marius Messemaker
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Ruben Bill
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Jeremy Gungabeesoon
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Rapolas Zilionis
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Genevieve M Gerhard
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Anna Kohl
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yunkang Lin
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Angela E Zou
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Chiara Cianciaruso
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Evangelia Bolli
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yi-Jang Lin
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Cecile Piot
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - John E Mindur
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Nilesh Talele
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Sara I Pai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio deVito
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Thibaud Koessler
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Leman (SCCL), Lausanne and Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Alexander Coukos
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Alexandre Wicky
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Montserrat Fraga
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christine Sempoux
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pierre-Yves Dietrich
- Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Leman (SCCL), Lausanne and Geneva, Switzerland
| | - Olivier Michielin
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA. .,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.,Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Leman (SCCL), Lausanne and Geneva, Switzerland
| |
Collapse
|