1
|
Feng E, Yang Y, Yang J, Hu R, Tian L, Yang X, Yang M, Qu Q, Ren Y, Li X. Tumor-infiltrating CD4 + CD25 + FOXP3 + Treg is associated with plasma EBV DNA and disease progression in nasopharyngeal carcinoma. Infect Agent Cancer 2025; 20:29. [PMID: 40346620 PMCID: PMC12063390 DOI: 10.1186/s13027-025-00660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play a significant role in immune evasion within the tumor microenvironment (TME). Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV) infection. Previous studies have shown that EBV can suppress immune activity. The relationship between plasma EBV DNA levels and Treg infiltration in NPC remains to be elucidated. Some studies have shown that FOXP3, a Treg marker, is a favorable prognostic factor in NPC. However, relying solely on FOXP3 for Treg identification may be unreliable due to its expression in other cell types. Therefore, this study investigated the impact of tumor-infiltrating Tregs identified by CD4, CD25, and FOXP3 triple markers in NPC and the relationship between these Tregs and EBV infection. METHODS In this study, 103 NPC patients were included. All tumor slides were stained using multi-immunofluorescence with CD4, CD25, and FOXP3. HALO software was used to analyze whole-slide images. The correlation between two factors was assessed using Spearman analysis. The prognostic value of factors was evaluated using Kaplan-Meier curves and Cox regression. RESULTS A significant positive correlation was observed between Treg infiltration in tumor tissues and plasma EBV DNA levels (r = 0.3428, p = 0.02). Higher Treg infiltration was significantly associated with poorer progression-free survival (PFS) (p = 0.03) and was an independent risk factor for NPC progression (p = 0.045). CD25 expression was positively correlated with plasma EBV DNA levels (r = 0.3229, p = 0.03). Furthermore, increased Treg infiltration was negatively correlated with peripheral CD8+ T cells (r=-0.3556, p = 0.006). The proportion of peripheral CD8+ T cells in patients with advanced-stage NPC was significantly lower compared to those with early stage (p = 0.02). CONCLUSION This study identified tumor-infiltrating CD4+CD25+FOXP3+ Tregs as an independent negative prognostic factor for NPC progression and found higher Treg infiltration positively associated with plasma EBV DNA levels.
Collapse
Affiliation(s)
- Enzi Feng
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China
| | - Yaoyu Yang
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China
| | - Jie Yang
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China
| | - Rongyi Hu
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China
| | - Ling Tian
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China
| | - Xinyu Yang
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China
| | - Meng Yang
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China
| | - Qianqian Qu
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China
| | - Yanxin Ren
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China.
| | - Xiaojiang Li
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Street, Xishan District, Kunming, 650118, China.
| |
Collapse
|
2
|
Yuan L, Zhong L, Krummenacher C, Zhao Q, Zhang X. Epstein-Barr virus-mediated immune evasion in tumor promotion. Trends Immunol 2025; 46:386-402. [PMID: 40240193 DOI: 10.1016/j.it.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Epstein-Barr virus (EBV) was the first DNA virus identified to be tightly associated with multiple human tumors. It promotes malignant progression of tumors - including related lymphomas, nasopharyngeal carcinoma, and gastric adenocarcinoma - in part by evading surveillance and attack by the host immune system. In this article we review the main molecular mechanisms by which EBV-encoded proteins and RNAs interact with key molecules of the host immune system to inhibit Toll-like receptor (TLR)-nuclear factor κB (NF-κB), retinoic acid-inducible gene I (RIG-I), and interferon (IFN) signaling pathways, affect antigen presentation, prevent the cytotoxic effects of CD8+ effector cells, regulate the tumor microenvironment (TME) and cell metastasis and invasion, and inhibit cell apoptosis. These interactions not only contribute to the persistence of the virus but also provide potential targets for developing new immunotherapy strategies.
Collapse
Affiliation(s)
- Lie Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Wang J, Wang R, Wang M, Ge J, Wang Y, Li Y, Chen C, He J, Zheng B, Xu M, Jiang X, Liu Y, Chen M, Long J. Cutting-Edge Therapy and Immune Escape Mechanisms in EBV-Associated Tumors. Med Res Rev 2025. [PMID: 40077924 DOI: 10.1002/med.22104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Epstein-Barr virus (EBV), the first identified human tumor virus, significantly influences the immune microenvironment of associated cancers. EBV-induced expression of viral antigens by tumor cells triggers immune recognition and elicits a pro-inflammatory response. While mild inflammation may help eliminate malignant cells, intense inflammation can accelerate tumor progression. Moreover, EBV can establish lifelong latency in human hosts, characterized by low immunogenicity of its proteins and noncoding RNAs. This enables tumor cells to evade immune detection and impair immune cell function, disrupting immune homeostasis. Consequently, EBV-associated malignancies pose a considerable public health challenge globally, often complicating the prognosis of cancer patients under conventional treatment. With deeper research into the oncogenic expressions and mechanisms of EBV, novel targeted therapies against EBV are gaining prominence. This review discusses recent advancements in understanding how EBV helps tumor cells evade immune surveillance and induce immune dysfunction. It also examines the clinical potential of targeting EBV-associated tumors, providing fresh perspectives on the mechanisms and therapeutic strategies for these cancers.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Rong Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University; The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| | - Yanhan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Changan Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Jiale He
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Boshu Zheng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Meifang Xu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
4
|
Yu S, You Y, Liu L, Cai X, Huang C. Modulation of biomaterial-induced foreign body response by regulating the differentiation and migration of Treg cells through the CXCL12-CXCR4/7 axis. Biomater Sci 2025; 13:1529-1542. [PMID: 39932368 DOI: 10.1039/d4bm01474j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Tissue exposure to implanted biomaterials triggers a foreign body response (FBR), which is a stepwise immunological process involving innate immune cells and tissue repair cells. Although the regulatory T (Treg) cells play a crucial role in inflammation and tissue repair, their function in the process of FBR has not been well investigated. In this study, as titanium (Ti) exhibits better biocompatibility and induces milder FBR than polymethyl methacrylate (PMMA), we analyzed the characteristics of Treg cells during FBR caused by the two types of biomaterials. In a rat femur implantation model, we found that the number of Treg cells around titanium implants was much more than that in the PMMA-implanted group. Meanwhile, the expression of CXCR4 in tissues around Ti implants was significantly higher, and the expression of CXCR7 was lower. When co-cultured with biomaterials and macrophages, the differentiation and migration of Treg cells in the Ti-implanted group were promoted, and this effect could be modulated by CXCR4/7 inhibitors. Moreover, targeting CXCR4/7 influenced the amount of Treg cells in vivo and then reversed the FBR induced by PMMA or Ti implants. In summary, our findings revealed the role of CXCR4/CXCR7 in regulating the migration and differentiation of Treg cells during FBR and suggested that the CXCL12-CXCR4/CXCR7 axis may serve as a potential therapeutic target for immunomodulating foreign body response.
Collapse
Affiliation(s)
- Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Yuan You
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Lan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Xinjie Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Wang H, Zhan Y, Luo J, Wang W, Fan S. Unveiling immune resistance mechanisms in nasopharyngeal carcinoma and emerging targets for antitumor immune response: tertiary lymphoid structures. J Transl Med 2025; 23:38. [PMID: 39789621 PMCID: PMC11721552 DOI: 10.1186/s12967-024-05880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy. TLSs have demonstrated positive prognostic value in NPC, making them a promising target for future therapies. This review summarizes the key characteristics of TLSs and latest research in the context of NPC. We are optimistic that targeting TLSs could improve immunotherapy outcomes for NPC patients, ultimately leading to more effective treatment strategies and better patient survival.
Collapse
Affiliation(s)
- Huilin Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Zhu L, Duan W, Peng L, Shan X, Liu Y, Huang Z, Da Y, Han Y. A novel proteomic prognostic signature characterizes the immune landscape and predicts nasopharyngeal carcinoma prognosis. Heliyon 2024; 10:e37897. [PMID: 39386833 PMCID: PMC11462186 DOI: 10.1016/j.heliyon.2024.e37897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a highly diverse and aggressive cancer type, leading to varying prognoses and responses to immunotherapy. This study aims to develop a protein-based signature that provides new insights into assessing the prognosis and immunotherapeutic response in NPC patients. Methods and Results We obtained transcriptomic and proteomic data for NPC from TCGA and CPTAC databases, respectively. Differentially expressed proteins with prognostic significance were identified using limma combined with uniCox analysis. A prognostic protein signature was created utilizing the LASSO algorithm. Receiver operating characteristic (ROC) curve analysis along with Kaplan-Meier survival analysis was conducted to assess the predictive accuracy of this signature. To evaluate immune infiltration levels among patients categorized by high or low risk scores (RPscores), we employed ssGSEA and ESTIMATE methods, while TIDE was used to forecast responses to immunotherapy. Our research pinpointed four critical prognostic proteins: CdSTA, AGR3, DUSP14, and LRRC17, allowing us to compute risk scores (RPscores). Kaplan-Meier curves demonstrated that individuals in the low-risk category exhibited better survival rates. Furthermore, RPscore effectively predicted overall survival across both training and testing cohorts. The ssGSEA results indicated that RPscore is linked with an immune-suppressive microenvironment correlating with diminished immune responses. Notably, DUSP14 showed significant upregulation in NPC cases; its role in promoting cell invasion and metastasis was confirmed through in vitro studies. Conclusion We have established a robust protein-related signature capable of accurately forecasting prognosis as well as immunotherapy outcomes for NPC patients. Moreover, DUSP14 emerged as a potential therapeutic target due to its strong association with patient prognosis in nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Lixin Zhu
- Department of Otolaryngology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Wenliang Duan
- Department of Otolaryngology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Lijing Peng
- Department of Otolaryngology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xinxin Shan
- Department of Otolaryngology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Yuan Liu
- Department of Otolaryngology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Zhenke Huang
- Department of Otolaryngology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Yunxiang Da
- Department of Otolaryngology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Yanyan Han
- Department of Otolaryngology, Shanghai Punan Hospital, Shanghai, 200120, China
| |
Collapse
|
7
|
Chen Z, Ling J, Zhang S, Feng Y, Xie Y, Liu X, Hou T. Predicting the overall survival and progression-free survival of nasopharyngeal carcinoma patients based on hemoglobin, albumin, and globulin ratio and classical clinicopathological parameters. Head Neck 2024; 46:2600-2615. [PMID: 38646952 DOI: 10.1002/hed.27777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Serum biomarkers have a significant impact on the prediction of treatment outcomes in patients diagnosed with nasopharyngeal carcinoma (NPC). The primary aim of this study was to develop and validate a nomogram that incorporates hemoglobin, albumin, and globulin ratio (HAGR) and clinical data to accurately forecast treatment outcomes in patients with NPC. METHODS A total of 796 patients diagnosed with NPC were included in the study. RESULTS The results of the multivariate Cox analysis revealed that TNM stage and HAGR were found to be significant independent prognostic factors for OS and PFS. Furthermore, the utilization of the nomogram demonstrated a significant improvement in the evaluation of OS, PFS compared with the eighth TNM staging system. Additionally, the implementation of Kaplan-Meier curves and decision curve analysis curves further confirmed the discriminability and clinical effectiveness of the nomogram. CONCLUSIONS The HAGR, an innovative prognostic factor grounded in the realm of immunonutrition, has emerged as a promising prognostic marker for both OS and PFS in individuals afflicted with NPC.
Collapse
Affiliation(s)
- Zui Chen
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ling
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sujuan Zhang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuhua Feng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao Hou
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Wan X, Liu Y, Peng Y, Wang J, Yan SM, Zhang L, Wu W, Zhao L, Chen X, Ren K, Long H, Luo Y, Yan Q, Zhang L, Lei D, Liu P, Li S, Liu L, Guo L, Du J, Zhang M, Dai S, Yang Y, Liu H, Chen N, Bei J, Feng L, Liu Y, Zeng MS, Chen C, Zhong Q. Primary and Orthotopic Murine Models of Nasopharyngeal Carcinoma Reveal Molecular Mechanisms Underlying its Malignant Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403161. [PMID: 39049720 PMCID: PMC11423139 DOI: 10.1002/advs.202403161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Nasopharyngeal carcinoma (NPC), a squamous cell carcinoma originating in the nasopharynx, is a leading malignancy in south China and other south and east Asia areas. It is frequently associated with Epstein-Barr virus (EBV) infection, while there are also some NPC patients without EBV infection. Here, it is shown that the EBV+ (EBV positive) and EBV- (EBV negative) NPCs contain both shared and distinct genetic abnormalities, among the latter are increased mutations in TP53. To investigate the functional roles of NPC-associated genetic alterations, primary, orthotopic, and genetically defined NPC models were developed in mice, a key tool missed in the field. These models, initiated with gene-edited organoids of normal nasopharyngeal epithelium, faithfully recapitulated the pathological features of human disease. With these models, it is found that Trp53 and Cdkn2a deficiency are crucial for NPC initiation and progression. And latent membrane protein1 (LMP1), an EBV-coding oncoprotein, significantly promoted the distal metastasis. Further, loss of TGFBR2, which is frequently disrupted both in EBV- and EBV+ NPCs, dramatically accelerated the progression and lung metastasis of NPC probably by altering tumor microenvironment. Taken together, this work establishes a platform to dissect the genetic mechanisms underlying NPC pathogenesis and might be of value for future translational studies.
Collapse
Affiliation(s)
- Xudong Wan
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuantao Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yiman Peng
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shu-Mei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Lu Zhang
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wanchun Wu
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Zhao
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuelan Chen
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kexin Ren
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haicheng Long
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yiling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Qin Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Lele Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Dengzhi Lei
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Pengpeng Liu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shujun Li
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihui Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Linjie Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiajia Du
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengsha Zhang
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Siqi Dai
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Yang
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyu Liu
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nianyong Chen
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinxin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Yu Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Chong Chen
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| |
Collapse
|
9
|
Ye J, Hua Z, Xiao J, Shao Y, Li S, Yin H, Wu M, Rong Y, Hong B, Guo Y, Ma Y, Wang J. p-Smad3 differentially regulates the cytological behavior of osteoclasts before and after osteoblasts maturation. Mol Biol Rep 2024; 51:525. [PMID: 38632128 DOI: 10.1007/s11033-024-09400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND A series of previous investigations have revealed that p-Smad3 plays a facilitative role in the differentiation and maturation of osteoblasts, while also regulating the expression of certain intercellular communication factors. However, the effects of p-Smad3 in osteoblasts before and after maturation on the proliferation, migration, differentiation, apoptosis and other cellular behaviors of osteoclasts have not been reported. METHODS MC3T3-E1 cells were cultured in osteogenic induction medium for varying durations, After that, the corresponding conditioned medium was collected and the osteoclast lineage cells were treated. To elucidate the regulatory role of p-Smad3 within osteoblasts, we applied the activator TGF-β1 and inhibitor SIS3 to immature and mature osteoblasts and collected corresponding conditioned media for osteoclast intervention. RESULTS We observed an elevation of p-Smad3 and Smad3 during the early stage of osteoblast differentiation, followed by a decline in the later stage. we discovered that as osteoblasts mature, their conditioned media inhibit osteoclasts differentiation and the osteoclast-coupled osteogenic effect. However, it promotes apoptosis in osteoclasts and the angiogenesis coupled with osteoclasts. p-Smad3 in immature osteoblasts, through paracrine effects, promotes the migration, differentiation, and osteoclast-coupled osteogenic effects of osteoclast lineage cells. For mature osteoblasts, p-Smad3 facilitates osteoclast apoptosis and the angiogenesis coupled with osteoclasts. CONCLUSIONS As pre-osteoblasts undergo maturation, p-Smad3 mediated a paracrine effect that transitions osteoclast cellular behaviors from inducing differentiation and stimulating bone formation to promoting apoptosis and coupling angiogenesis.
Collapse
Affiliation(s)
- Jiapeng Ye
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Zhen Hua
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Jirimutu Xiao
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010159, China
| | - Yang Shao
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Shaoshuo Li
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Heng Yin
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Mao Wu
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Yi Rong
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Bowen Hong
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jianwei Wang
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China.
| |
Collapse
|
10
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
11
|
Su J, Mao X, Wang L, Chen Z, Wang W, Zhao C, Li G, Guo W, Hu Y. Lactate/GPR81 recruits regulatory T cells by modulating CX3CL1 to promote immune resistance in a highly glycolytic gastric cancer. Oncoimmunology 2024; 13:2320951. [PMID: 38419759 PMCID: PMC10900271 DOI: 10.1080/2162402x.2024.2320951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Lactate plays an important role in shaping immune tolerance in tumor microenvironment (TME) and correlates with poor prognosis in various solid tumors. Overcoming the immune resistance in an acidic TME may improve the anti-tumor immunity. Here, this study elucidated that via G-protein-coupled receptor 81 (GPR81), lactate could modulate immune tolerance in TME by recruiting regulatory T cells (Tregs) in vitro and in vivo. A high concentration of lactate was detected in cell supernatant and tissues of gastric cancer (GC), which was modulated by lactic dehydrogenase A (LDHA). GPR81 was the natural receptor of lactate and was overexpressed in different GC cell lines and samples, which correlated with poor outcomes in GC patients. Lactate/GPR81 signaling could promote the infiltration of Tregs into TME by inducing the expression of chemokine CX3CL1. GPR81 deficiency could decrease the infiltration of Tregs into TME, thereby inhibiting GC progression by weakening the inhibition of CD8+T cell function in a humanized mouse model. In conclusion, targeting the lactate/GPR81 signaling may potentially serve as a critical process to overcome immune resistance in highly glycolytic GC.
Collapse
Affiliation(s)
- Jin Su
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of General Surgery, Zhuzhou Hospital affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xinyuan Mao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lingzhi Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhian Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weisheng Wang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Cuiyin Zhao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Yang X, Ren H, Li Z, Peng X, Fu J. Combinations of radiotherapy with immunotherapy in nasopharyngeal carcinoma. Int Immunopharmacol 2023; 125:111094. [PMID: 37871379 DOI: 10.1016/j.intimp.2023.111094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND The treatment of nasopharyngeal carcinoma (NPC) is currently based on concurrent chemoradiotherapy. The prognosis of early NPC is better, while the prognosis of advanced NPC is poor. Immunotherapy is becoming increasingly commonly employed in clinical practice as a new strategy for treating malignant tumors. It has shown promising results in the treatment of certain malignant tumors, making it a current clinical research hotspot. METHODS This review summarizes the current immunotherapy on NPC, highlighting the application of immunotherapy and radiotherapy in the treatment of NPC. RESULTS X-rays can either increase or suppress anti-tumor immune responses through various pathways and mechanisms. Immune checkpoint inhibitors can usually enhance X-ray-induced anti-tumor immune responses. Detecting the immune checkpoint markers and tumor mutation markers, and the functional status of effector cells in patients can aid in the development of individualized treatment that improves the treatment efficacy with reducing drug resistance and adverse reactions. The development of a multivalent vaccine for NPC will help improve the efficacy of the vaccine. Combining techniques that increase the tumor antigens release, such as radiotherapy and oncolytic virus vaccines, may enhance the ability of the immune response. CONCLUSIONS To shed further light on the application of immunotherapy in NPC, large pooled studies must accumulate sufficient cases with detailed exposure data.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanru Ren
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Zhen Li
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Peng
- Department of Breast Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Zhao G, Bu G, Liu G, Kong X, Sun C, Li Z, Dai D, Sun H, Kang Y, Feng G, Zhong Q, Zeng M. mRNA-based Vaccines Targeting the T-cell Epitope-rich Domain of Epstein Barr Virus Latent Proteins Elicit Robust Anti-Tumor Immunity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302116. [PMID: 37890462 PMCID: PMC10724410 DOI: 10.1002/advs.202302116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/04/2023] [Indexed: 10/29/2023]
Abstract
Epstein-Barr virus (EBV) is associated with various malignancies and infects >90% of the global population. EBV latent proteins are expressed in numerous EBV-associated cancers and contribute to carcinogenesis, making them critical therapeutic targets for these cancers. Thus, this study aims to develop mRNA-based therapeutic vaccines that express the T-cell-epitope-rich domain of truncated latent proteins of EBV, including truncatedlatent membrane protein 2A (Trunc-LMP2A), truncated EBV nuclear antigen 1 (Trunc-EBNA1), and Trunc-EBNA3A. The vaccines effectively activate both cellular and humoral immunity in mice and show promising results in suppressing tumor progression and improving survival time in tumor-bearing mice. Furthermore, it is observed that the truncated forms of the antigens, Trunc-LMP2A, Trunc-EBNA1, and Trunc-EBNA3A, are more effective than full-length antigens in activating antigen-specific immune responses. In summary, the findings demonstrate the effectiveness of mRNA-based therapeutic vaccines targeting the T-cell-epitope-rich domain of EBV latent proteins and providing new treatment options for EBV-associated cancers.
Collapse
Affiliation(s)
- Ge‐Xin Zhao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Long Bu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Gang‐Feng Liu
- Department of Head and Neck Surgery Section IIThe Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital519 Kunzhou RoadKunming650118China
| | - Xiang‐Wei Kong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Cong Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zi‐Qian Li
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dan‐Ling Dai
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Hai‐Xia Sun
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yin‐Feng Kang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Qian Zhong
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer. MedicineGuangdong Key Laboratory of Nasopharyngeal Carcinoma, Diagnosis, and TherapySun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
14
|
Low YH, Loh CJL, Peh DYY, Chu AJM, Han S, Toh HC. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front Oncol 2023; 13:1202117. [PMID: 37901329 PMCID: PMC10600384 DOI: 10.3389/fonc.2023.1202117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Epstein-Barr virus (EBV), one of the most common human viruses, has been associated with both lymphoid and epithelial cancers. Undifferentiated nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and lymphoepithelioma-like carcinoma (LELC) are amongst the few common epithelial cancers that EBV has been associated with. The pathogenesis of EBV-associated NPC has been well described, however, the same cannot be said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs and their recent advances. By drawing on similarities between NPC and PPLELC, we then also postulated the pathogenesis of PPLELC. A deeper understanding about the pathogenesis of EBV enables us to postulate the pathogenesis of other EBV associated cancers such as PPLELC.
Collapse
Affiliation(s)
- Yi Hua Low
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniel Yang Yao Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Axel Jun Ming Chu
- Singapore Health Services Internal Medicine Residency Programme, Singapore, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Cheng D, Zhang Z, Mi Z, Tao W, Liu D, Fu J, Fan H. Deciphering the heterogeneity and immunosuppressive function of regulatory T cells in osteosarcoma using single-cell RNA transcriptome. Comput Biol Med 2023; 165:107417. [PMID: 37669584 DOI: 10.1016/j.compbiomed.2023.107417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Osteosarcoma (OS) is a highly invasive malignant neoplasm with poor prognosis. The tumor microenvironment (TME) plays an essential role in the occurrence and development of OS. Regulatory T cells (Tregs) are known to facilitate immunosuppression, tumor progression, invasion, and metastasis. However, the effect of Tregs in the TME of OS remains unclear. In this study, single-cell RNA sequencing (scRNA-seq) data was used to identify Tregs and various other cell clusters in the TME of OS. Gene set variation analysis (GSVA) was used to investigate the signaling pathways in Tregs from OS and adjacent tissues. The CellChat and iTALK packages were used to analyze cellular communication. In addition, a prognostic model was established based on the Tregs-specific genes using bulk RNA-seq from the TARGET database, and it was verified using a Gene Expression Omnibus dataset. The pRRophetic package was used to predict drug sensitivity. Immunohistochemistry was used to verify the expression of candidate genes in OS. Based on the above methods, we showed that the OS samples were highly infiltrated with Tregs. GSVA revealed that oxidative phosphorylation, angiogenesis and mammalian target of rapamycin complex 1 (mTORC1) were highly activated in Tregs from OS compared with those from adjacent tissues. Using cellular communication analysis, we found that Tregs interacted with osteoblastic, endothelial, and myeloid cells via C-X-C motif chemokine ligand (CXCL) signaling; particularly, they strongly affected the expression of C-X-C motif chemokine receptor 4 (CXCR4) and interacted with other cell clusters through CXCL12/transforming growth factor β1 (TGFB1) to collectively enable tumor growth and progression. Subsequently, two Tregs-specific genes-CD320 and MAF-were screened through univariate, least absolute shrinkage and selection operator regression (LASSO) and multivariate analysis to construct a prognostic model, which showed excellent prognostic accuracy in two independent cohorts. In addition, drug sensitivity analysis demonstrated that OS patients at high Tregs risk were sensitive to sunitinib, sorafenib, and axitinib. We also used immunohistochemistry to validate that CD320 and MAF were significantly upregulated in OS tissues compared with adjacent tissues. Overall, this study reveals the heterogeneity of Tregs in the OS TME, providing new insights into the invasion and treatment of this cancer.
Collapse
Affiliation(s)
- Debin Cheng
- Department of Orthopaedic Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhao Zhang
- Department of Orthopaedic Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenzhou Mi
- Department of Orthopaedic Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weidong Tao
- Department of Orthopaedic Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dong Liu
- Department of Orthopaedic Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Fu
- Department of Orthopaedic Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hongbin Fan
- Department of Orthopaedic Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Mahajan S, Bongaerts M, Hardillo J, Tsang A, Lo KW, Kortleve D, Ma B, Debets R. Transcriptomics of Epstein-Barr virus aids to the classification of T-cell evasion in nasopharyngeal carcinoma. Curr Opin Immunol 2023; 83:102335. [PMID: 37235920 DOI: 10.1016/j.coi.2023.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/16/2023] [Indexed: 05/28/2023]
Abstract
Epstein-Barr virus (EBV) contributes to oncogenesis and immune evasion in nasopharyngeal carcinoma (NPC). At present, an aggregated, higher-level view on the impact of EBV genes toward the immune microenvironment of NPC is lacking. To this end, we have interrogated tumor-derived RNA sequences of 106 treatment-naive NPC patients for 98 EBV transcripts, and captured the presence of 10 different immune cell populations as well as 23 different modes of T-cell evasion. We discovered 3 clusters of EBV genes that each associate with distinct immunophenotypes of NPC. Cluster 1 associated with gene sets related to immune cell recruitment, such as those encoding for chemoattractants and their receptors. Cluster 2 associated with antigen processing and presentation, such as interferon-related genes, whereas cluster 3 associated with presence of M1-like macrophages, absence of CD4+ T cells, and oncogenic pathways, such as the nuclear factor kappa light-chain enhancer of activated B-cell pathway. We discuss these 3 EBV clusters regarding their potential for stratification for T-cell immunity in NPC together with the next steps needed to validate such therapeutic value.
Collapse
Affiliation(s)
- Shweta Mahajan
- Departments of Medical Oncology, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Michiel Bongaerts
- Departments of Clinical Genetics, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jose Hardillo
- Departments of Otorhinolaryngology, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna Tsang
- Departments of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kwok W Lo
- Departments of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Dian Kortleve
- Departments of Medical Oncology, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Brigette Ma
- Departments of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Reno Debets
- Departments of Medical Oncology, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Zuo Y, Xiao H, Lv D, Huang M, Wang L, Liu J, Zhang K, Shen J, Wang Z, Wu Q, Xu Y. Infection pattern and immunological characteristics of Epstein-Barr virus latent infection in cervical squamous cell carcinoma. J Med Virol 2023; 95:e28717. [PMID: 37184049 DOI: 10.1002/jmv.28717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
Previous studies reported the association between Epstein-Barr virus (EBV) and cervical squamous cell carcinoma (CSCC), but its infection pattern and clinical significance unclear. This study aimed to comprehensively investigate the infection pattern, clinicopathology, outcomes, and immunology of this entity in central China. We evaluated a total of 104 untreated CSCC tumor tissue specimens using in situ hybridization for EBV-encoded small RNAs (EBERs), and by employing flowcytometry fluorescence hybridization for human papillomavirus (HPV) genotyping. The expression of EBV latency proteins and immune biomarkers was evaluated and quantified by immunohistochemistry. EBERs transcripts were detected in 21 (20.2%) cases overall (in malignant epithelial cells of 13 cases and in lymphocytes of 8 cases). EBV belonged to latency type I infection in CSCC. The high-risk (HR)-HPV was detected in all of EBV-positive CSCC, and the difference of detection rate of HR-HPV was significant when compared with EBV-negative CSCC (p = 0.001). The specific clinicopathology with increased frequency of advanced clinical stages, tumor-positive lymph nodes, neural invasion, and increased infiltration depth (all p value < 0.05) were observed in cases with EBV. However, EBV infection was found to have no impact on prognosis of patients with CSCC. Increased densities of forkhead box P3 (FoxP3)+-tumor infiltrating lymphocytes (TILs) (p = 0.005) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)+-TILs (p = 0.017) and higher expression of programmed cell death-1 (PD-1) (p = 0.002) and programmed cell death-1 ligand 1 (PD-L1) (p = 0.040) were associated with EBV latent infection in CSCC, and these immunological changes were more likely to be associated with the infection in lymphocytes rather than tumor cells. Moreover, in patients with HPV-positive CSCC, similar significant differences were still found. In conclusions, EBV-positive CSCC may have specific infection pattern and clinicopathology and can exhibit an immunosuppressive microenvironment dominated by Treg cells aggregation and immune checkpoint activation.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Han Xiao
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Miaomiao Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Lianzi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqing Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ke Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Jilong Shen
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Zhongxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiang Wu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
18
|
Mahajan S, Balcioglu HE, Oostvogels A, Dik WA, Chan KCA, Lo KW, Hui EP, Tsang A, Tong J, Lam WKJ, Wong K, Chan ATC, Ma BBY, Debets R. Frequency of Peripheral CD8+ T Cells Expressing Chemo-Attractant Receptors CCR1, 4 and 5 Increases in NPC Patients with EBV Clearance upon Radiotherapy. Cancers (Basel) 2023; 15:cancers15061887. [PMID: 36980772 PMCID: PMC10047204 DOI: 10.3390/cancers15061887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Radiotherapy (RT) is the standard-of-care for Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), where the post-RT clearance of plasma EBV DNA is prognostic. Currently, it is not known whether the post-RT clearance of plasma EBV DNA is related to the presence of circulating T-cell subsets. Blood samples from NPC patients were used to assess the frequency of T-cell subsets relating to differentiation, co-signaling and chemotaxis. Patients with undetectable versus detectable plasma EBV DNA levels post-RT were categorized as clearers vs. non-clearers. Clearers had a lower frequency of PD1+CD8+ T cells as well as CXCR3+CD8+ T cells during RT compared to non-clearers. Clearers exclusively showed a temporal increase in chemo-attractant receptors CCR1, 4 and/or 5, expressing CD8+ T cells upon RT. The increase in CCR-expressing CD8+ T cells was accompanied by a drop in naïve CD8+ T cells and an increase in OX40+CD8+ T cells. Upon stratifying these patients based on clinical outcome, the dynamics of CCR-expressing CD8+ T cells were in concordance with the non-recurrence of NPC. In a second cohort, non-recurrence associated with higher quantities of circulating CCL14 and CCL15. Collectively, our findings relate plasma EBV DNA clearance post-RT to T-cell chemotaxis, which requires validation in larger cohorts.
Collapse
Affiliation(s)
- Shweta Mahajan
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Astrid Oostvogels
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory of Medical Immunology, Department of Immunology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - K C Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anna Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joanna Tong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Kei Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
19
|
Luo W. Nasopharyngeal carcinoma ecology theory: cancer as multidimensional spatiotemporal "unity of ecology and evolution" pathological ecosystem. Theranostics 2023; 13:1607-1631. [PMID: 37056571 PMCID: PMC10086202 DOI: 10.7150/thno.82690] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a particular entity of head neck cancer that is generally regarded as a genetic disease with diverse intertumor and intratumor heterogeneity. This perspective review mainly outlines the up-to-date knowledge of cancer ecology and NPC progression, and presents a number of conceptual stepping-stones. At the beginning, I explicitly advocate that the nature of NPC (cancer) is not a genetic disease but an ecological disease: a multidimensional spatiotemporal "unity of ecology and evolution" pathological ecosystem. The hallmarks of cancer is proposed to act as ecological factors of population fitness. Subsequently, NPC cells are described as invasive species and its metastasis as a multidirectional ecological dispersal. The foundational ecological principles include intraspecific relationship (e.g. communication) and interspecific relationship (e.g. competition, predation, parasitism and mutualism) are interpreted to understand NPC progression. "Mulberry-fish-ponds" model can well illustrate the dynamic reciprocity of cancer ecosystem. Tumor-host interface is the ecological transition zone of cancer, and tumor buddings should be recognized as ecological islands separated from the mainland. It should be noted that tumor-host interface has a significantly molecular and functional edge effect because of its curvature and irregularity. Selection driving factors and ecological therapy including hyperthermia for NPC patients, and future perspectives in such field as "ecological pathology", "multidimensional tumoriecology" are also discussed. I advance that "nothing in cancer evolution or ecology makes sense except in the light of the other". The cancer ecology tree is constructed to comprehensively point out the future research direction. Taken together, the establishment of NPC ecology theory and cancer ecology tree might provide a novel conceptual framework and paradigm for our understanding of cancer complex causal process and potential preventive and therapeutic applications for patients.
Collapse
Affiliation(s)
- Weiren Luo
- Cancer Research Institute, Department of Pathology, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| |
Collapse
|
20
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023; 14:1116143. [PMID: 36846758 PMCID: PMC9947861 DOI: 10.3389/fmicb.2023.1116143] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics Sdn Bhd, Pusat Perdagangan Bandar, Persiaran Jalil 1, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
21
|
Miglinci L, Reicher P, Nell B, Koch M, Jindra C, Brandt S. Detection of Equine Papillomaviruses and Gamma-Herpesviruses in Equine Squamous Cell Carcinoma. Pathogens 2023; 12:179. [PMID: 36839451 PMCID: PMC9958655 DOI: 10.3390/pathogens12020179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Squamous cell carcinoma (SCC) seriously compromises the health and welfare of affected horses. Although robust evidence points to equine papillomavirus type 2 (EcPV2) causing genital lesions, the etiopathogenesis of equine SCC is still poorly understood. We screened a series of SCCs from the head-and-neck (HN), (peri-)ocular and genital region, and site-matched controls for the presence of EcPV2-5 and herpesvirus DNA using type-specific EcPV PCR, and consensus nested herpesvirus PCR followed by sequencing. EcPV2 DNA was detected in 45.5% of HN lesions, 8.3% of (peri-)ocular SCCs, and 100% of genital tumors, whilst control samples from tumor-free horses except one tested EcPV-negative. Two HNSCCs harbored EcPV5, and an ocular lesion EcPV4 DNA. Herpesvirus DNA was detected in 63.6%, 66.6%, 47.2%, and 14.2% of horses with HN, ocular, penile, and vulvar SCCs, respectively, and mainly identified as equine herpesvirus 2 (EHV2), 5 (EHV5) or asinine herpesvirus 5 (AsHV5) DNA. In the tumor-free control group, 9.6% of oral secretions, 46.6% of ocular swabs, 47% of penile samples, and 14.2% of vaginal swabs scored positive for these herpesvirus types. This work further highlights the role of EcPV2 as an oncovirus and is the first to provide information on the prevalence of (gamma-)herpesviruses in equine SCCs.
Collapse
Affiliation(s)
- Lea Miglinci
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Paul Reicher
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Barbara Nell
- Clinical Unit of Ophthalmology, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Michelle Koch
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
- Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Veterinary University, 1210 Vienna, Austria
| |
Collapse
|
22
|
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human lymphotropic herpesvirus with a well-established causal role in several cancers. Recent studies have provided compelling epidemiological and mechanistic evidence for a causal role of EBV in multiple sclerosis (MS). MS is the most prevalent chronic inflammatory and neurodegenerative disease of the central nervous system and is thought to be triggered in genetically predisposed individuals by an infectious agent, with EBV as the lead candidate. How a ubiquitous virus that typically leads to benign latent infections can promote cancer and autoimmune disease in at-risk populations is not fully understood. Here we review the evidence that EBV is a causal agent for MS and how various risk factors may affect EBV infection and immune control. We focus on EBV contributing to MS through reprogramming of latently infected B lymphocytes and the chronic presentation of viral antigens as a potential source of autoreactivity through molecular mimicry. We consider how knowledge of EBV-associated cancers may be instructive for understanding the role of EBV in MS and discuss the potential for therapies that target EBV to treat MS.
Collapse
Affiliation(s)
- Samantha S. Soldan
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Paul M. Lieberman
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| |
Collapse
|
23
|
Zhou F, Shayan G, Sun S, Huang X, Chen X, Wang K, Qu Y, Wu R, Zhang Y, Liu Q, Zhang J, Luo J, Shi X, Liu Y, Liang B, Li YX, Wang J, Yi J. Spatial architecture of regulatory T-cells correlates with disease progression in patients with nasopharyngeal cancer. Front Immunol 2022; 13:1015283. [PMID: 36439177 PMCID: PMC9684321 DOI: 10.3389/fimmu.2022.1015283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose This study aims to investigate the prognostic value of composition and spatial architecture of tumor-infiltrating lymphocytes (TILs) as well as PDL1 expression on TILs subpopulations in nasopharyngeal carcinoma (NPC). Methods A total of 121 patients with NPC were included and divided into two groups: favorable (n = 68) and unfavorable (n = 53). The archived tumor tissues of the included patients were retrieved, and a tissue microarray was constructed. The density and spatial distribution of TILs infiltration were analyzed using the multiplex fluorescent immunohistochemistry staining for CD3, CD4, CD8, Foxp3, cytokeratin (CK), PDL1, and 4′,6-diamidino-2-phenylindole (DAPI). The infiltration density of TILs subpopulations and PDL1 expression were compared between the two groups. The Gcross function was calculated to quantify the relative proximity of any two types of cells. The Cox proportional hazards regression model was used to identify factors associated with overall survival (OS) and disease-free survival (DFS). Results The densities of regulatory T-cells (Tregs), effector T-cells (Teffs), PDL1+ Tregs, and PDL1+ Teffs were significantly higher in patients with unfavorable outcomes. PDL1 expression on tumor cells (TCs) or overall TILs was not associated with survival. Multivariate analysis revealed that higher PDL1+ Tregs infiltration density was independently associated with inferior OS and DFS, whereas Tregs infiltration density was only a prognostic marker for DFS. Spatial analysis revealed that unfavorable group had significantly stronger Tregs and PDL1+ Tregs engagement in the proximity of TCs and cytotoxic T lymphocyte (CTLs). Gcross analysis further revealed that Tregs and PDL1+ Tregs were more likely to colocalize with CTLs. Moreover, increased GTC : Treg (Tregs engagement surrounding TCs) and GCTL : PDL1+ Treg were identified as independent factors correlated with poor outcomes. Conclusion TILs have a diverse infiltrating pattern and spatial distribution in NPC. Increased infiltration of Tregs, particularly PDL1+ Tregs, as well as their proximity to TCs and CTLs, correlates with unfavorable outcomes, implying the significance of intercellular immune regulation in mediating disease progression.
Collapse
Affiliation(s)
- Fengge Zhou
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gulidanna Shayan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiran Sun
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaodong Huang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuesong Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Qu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runye Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingfeng Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianghu Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Luo
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinqi Shi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingbo Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jingbo Wang, ; Junlin Yi,
| | - Junlin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China
- *Correspondence: Jingbo Wang, ; Junlin Yi,
| |
Collapse
|
24
|
Shao X, Hua S, Feng T, Ocansey DKW, Yin L. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. Int J Mol Sci 2022; 23:ijms231911789. [PMID: 36233088 PMCID: PMC9570495 DOI: 10.3390/ijms231911789] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells express a high quantity of exosomes packaged with unique cargos under hypoxia, an important characteristic feature in solid tumors. These hypoxic tumor-derived exosomes are, crucially, involved in the interaction of cancer cells with their microenvironment, facilitating not only immune evasion, but increased cell growth and survival, enhanced angiogenesis, epithelial–mesenchymal transition (EMT), therapeutic resistance, autophagy, pre-metastasis, and metastasis. This paper explores the tumor microenvironment (TME) remodeling effects of hypoxic tumor-derived exosome towards facilitating the tumor progression process, particularly, the modulatory role of these factors on tumor cell immune evasion through suppression of immune cells, expression of surface recognition molecules, and secretion of antitumor soluble factor. Tumor-expressed exosomes educate immune effector cells, including macrophages, monocytes, T cells, natural killer (NK) cells, dendritic cells (DCs), γδ T lymphocytes, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mast cells, and B cells, within the hypoxic TME through the release of factors that regulate their recruitment, phenotype, and function. Thus, both hypoxia and tumor-derived exosomes modulate immune cells, growth factors, cytokines, receptor molecules, and other soluble factors, which, together, collaborate to form the immune-suppressive milieu of the tumor environment. Exploring the contribution of exosomal cargos, such as RNAs and proteins, as indispensable players in the cross-talk within the hypoxic tumor microenvironmental provides a potential target for antitumor immunity or subverting immune evasion and enhancing tumor therapies.
Collapse
|
25
|
Gondhowiardjo SA, Adham M, Rachmadi L, Atmakusuma TD, Tobing DL, Auzan M, Hariyanto AD, Sulaeman D, Permata TBM, Handoko. Immune cells markers within local tumor microenvironment are associated with EBV oncoprotein in nasopharyngeal cancer. BMC Cancer 2022; 22:887. [PMID: 35963999 PMCID: PMC9375267 DOI: 10.1186/s12885-022-09948-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction EBV infection in nasopharyngeal cancer ensued in latent infection mode. In this latent infection various EBV oncoproteins such as EBNA1 and LMP1 was expressed. EBV oncoproteins could theoretically recruit immune cells, which might help to control cancer. Therefore, this study was aimed to elucidate the association with EBV oncoproteins (EBNA1 and LMP1), immune markers (CD4, CD8, and FOXP3) from nasopharyngeal cancer microenvironment with tumor progression. Method Nasopharyngeal biopsy was obtained from patients suspected to have nasopharyngeal cancer. Those samples with microscopically confirmed nasopharyngeal cancer were tested for EBNA1, LMP1, CD4, CD8, and FOXP3 concentration with ELISA, then verified with IHC. Each patient tumor volume was assessed for primary nasopharyngeal tumor volume (GTVp) and neck nodal metastases tumor volume (GTVn). Correlation test with Spearman correlation and scatterplot were carried out. Result Total 23 samples with nasopharyngeal cancer were analyzed. There was moderate correlation (ρ = 0.45; p value = 0.032) between LMP1 and GTVp. There was strong correlation (ρ = 0.81; p value < 0.001) between CD8 and GTVp. There was also moderate correlation (ρ = 0.6; p value = 0.002) between FOXP3 and GTVp. The CD8 concentration has moderate correlation with both EBNA1 (ρ = 0.46; p value = 0.026) and LMP1 (ρ = 0.47; p value = 0.023). While FOXP3 has moderate correlation with only LMP1 (ρ = 0.58; p value = 0.004). No correlation was found between all the markers tested here with GTVn. Discussion We found larger primary nasopharyngeal tumor was associated with higher CD8 marker. This was thought due to the presence of abundance CD8 T cells in the nasopharynx, but those abundance CD8 T cells were suspected to be dysfunctional. The nasopharyngeal cancer was also known to upregulate chemokines that could recruit T regulatory FOXP3 cells. Furthermore, T regulatory FOXP3 cells differentiation was induced through several pathways which was triggered by EBNA1. The correlation found in this study could guide further study to understand nasopharyngeal carcinogenesis and the relationship with our immune system.
Collapse
Affiliation(s)
- Soehartati A Gondhowiardjo
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Marlinda Adham
- Department of ENT, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Lisnawati Rachmadi
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Tubagus Djumhana Atmakusuma
- Department of Medical Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Demak Lumban Tobing
- Department of Clinical Pathology, Dharmais National Cancer Hospital, Jakarta - Indonesia, Jl. Letjen S. Parman No. 84-86, Jakarta, Indonesia, 11420
| | - Mahesa Auzan
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Agustinus Darmadi Hariyanto
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Dede Sulaeman
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430
| | - Handoko
- Department of Radiation Oncology, Faculty of Medicine, Universitas Indonesia / Cipto Mangunkusumo National General Hospital, Jakarta - Indonesia, Jl. Salemba Raya No. 6, Jakarta, Indonesia, 10430.
| |
Collapse
|
26
|
Jiang J, Ying H. Revealing the crosstalk between nasopharyngeal carcinoma and immune cells in the tumor microenvironment. J Exp Clin Cancer Res 2022; 41:244. [PMID: 35964134 PMCID: PMC9375932 DOI: 10.1186/s13046-022-02457-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) arises from the epithelial cells located in the nasopharynx and has a distinct geographic distribution. Chronic Epstein-Barr virus (EBV) infection, as its most common causative agents, can be detected in 100% of NPC types. In-depth studies of the cellular and molecular events leading to immunosuppression in NPC have revealed new therapeutic targets and diverse combinations that promise to benefit patients with highly refractory, advanced and metastatic NPC. This paper reviews the mechanisms by which NPC cells to circumvent immune surveillance and approaches being attempted to restore immunity. We integrate existing insights into anti-NPC immunity and molecular signaling pathways as well as targeting therapies in anticipation of broader applicability and effectiveness in advanced metastatic NPC.
Collapse
|
27
|
Albanese M, Tagawa T, Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front Microbiol 2022; 13:955603. [PMID: 35935191 PMCID: PMC9355577 DOI: 10.3389/fmicb.2022.955603] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a double-stranded DNA virus of the Herpesviridae family. This virus preferentially infects human primary B cells and persists in the human B cell compartment for a lifetime. Latent EBV infection can lead to the development of different types of lymphomas as well as carcinomas such as nasopharyngeal and gastric carcinoma in immunocompetent and immunocompromised patients. The early phase of viral infection is crucial for EBV to establish latency, but different viral components are sensed by cellular sensors called pattern recognition receptors (PRRs) as the first line of host defense. The efficacy of innate immunity, in particular the interferon-mediated response, is critical to control viral infection initially and to trigger a broad spectrum of specific adaptive immune responses against EBV later. Despite these restrictions, the virus has developed various strategies to evade the immune reaction of its host and to establish its lifelong latency. In its different phases of infection, EBV expresses up to 44 different viral miRNAs. Some act as viral immunoevasins because they have been shown to counteract innate as well as adaptive immune responses. Similarly, certain virally encoded proteins also control antiviral immunity. In this review, we discuss how the virus governs innate immune responses of its host and exploits them to its advantage.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
- Istituto Nazionale di Genetica Molecolare, “Romeo ed Enrica Invernizzi,” Milan, Italy
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Takanobu Tagawa
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, EBV Vaccine Development Unit, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
28
|
Maintenance of Epstein-Barr virus latency through interaction of LMP2A with CXCR4. Arch Virol 2022; 167:1947-1959. [PMID: 35752684 DOI: 10.1007/s00705-022-05511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/08/2022] [Indexed: 11/02/2022]
Abstract
Epstein-Barr virus (EBV) belongs to the subfamily Gammaherpesvirinae and was the first human tumor virus to be discovered. The global rate of EBV infection in adults exceeds 90%. EBV can participate in the regulation of multiple genes and signal pathways through its latency genes. Many studies have shown that CXCR4 is involved in the development of gastric cancer, but there have been few studies on the specific mechanisms involved in EBV-associated gastric cancer (EBVaGC). In this study, we explored the mechanism by which EBV-encoded products maintain latent EBV infection through interaction with CXCR4 and investigated the role of CXCR4 in EBV-positive cells. The results show that there is a positive feedback between the EBV-encoded products and CXCR4, and LMP2A can activate CXCR4 through the NF-κB pathway. In addition, CXCR4 can be fed back to LMP2A and EBNA1 through the ERK signaling pathway. At the same time, CXCR4 can promote the proliferation and migration of EBV-positive cells, reduce the expression of the immediate early protein BZLF1, the late protein EBV gp350, and the viral capsid antigen, and play an important role in maintaining the incubation period of EBV infection. These findings are applicable to the further targeted therapy of EBVaGC.
Collapse
|
29
|
Patel PD, Alghareeb R, Hussain A, Maheshwari MV, Khalid N. The Association of Epstein-Barr Virus With Cancer. Cureus 2022; 14:e26314. [PMID: 35911302 PMCID: PMC9314235 DOI: 10.7759/cureus.26314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 12/02/2022] Open
Abstract
Epstein-Barr virus (EBV) is classified as a herpesvirus and is known for being one of the few viruses that can lead to the development of cancer. This study has gathered several studies to provide evidence as to this association as well as some of the mechanisms specific to EBV that allow this to happen. The development of EBV into cancer as well as the proteins involved in this oncogenesis play a crucial role in understanding this problem as well as creating a solution for mitigating this disease process in the future. This study summarized three of the most common malignancies caused by EBV in order to consolidate information about each of them. Additional emphasis was placed on finding which EBV serum markers were seen to be most indicative of prognosis and likelihood of developing malignancy. Higher serum EBV viral DNA loads were seen to be a useful indicator in assessing the risk of various cancers and should be studied further in relation to cancers that were not mentioned in this review.
Collapse
|
30
|
Xu JY, Wei XL, Wang YQ, Wang FH. Current status and advances of immunotherapy in nasopharyngeal carcinoma. Ther Adv Med Oncol 2022; 14:17588359221096214. [PMID: 35547095 PMCID: PMC9083041 DOI: 10.1177/17588359221096214] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The general immune landscape of nasopharyngeal carcinoma (NPC) renders immunotherapy suitable for patients with NPC. Immune checkpoint inhibitors (ICIs) based on programmed death-1/programmed death ligand-1 (PD-1/PD-L1) blockade have made a breakthrough with the approval of PD-1 inhibitor for refractory recurrence and/or metastatic (R/M NPC) and the approval of PD-1 inhibitor in combination with gemcitabine and cisplatin as first line for R/M NPC in 2021 in China. The incorporation of ICIs into the treatment paradigms of NPC has become a clinical hot spot and many prospective clinical studies are ongoing. In this review, we provide a comprehensive overview of the rationale for immunotherapy in NPC and current status, advances and challenges of immunotherapy in NPC based on published clinical data, and ongoing trials. We focus on the clinical application and advances of PD-1 inhibitor monotherapy and its combination with chemotherapy and summarize the clinical explorations of other immunotherapy approaches, for example, combination of PD-1/PD-L1 inhibitors with antiangiogenic inhibitor with molecular targeted agents, cancer vaccines, adaptive immunotherapy, and new ICI agents beyond PD-1/PD-L1 inhibitors in R/M NPC. We also describe the clinical studies’ status and challenges of ICIs-based immunomodulatory strategies in local advanced NPC and pay attention to the biomarker application for personalized immunotherapy of NPC in the hope to provide insights for clinical practice and future clinical studies.
Collapse
Affiliation(s)
- Jian-Ying Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiao-Li Wei
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yi-Qin Wang
- Department of Clinical Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dong Feng Road East, Guangzhou 510060, Guangdong, P.R. China
| |
Collapse
|
31
|
Ma XM, Luo YF, Zeng FF, Su C, Liu X, Li XP, Lu J. TGF-β1-Mediated PD-L1 Glycosylation Contributes to Immune Escape via c-Jun/STT3A Pathway in Nasopharyngeal Carcinoma. Front Oncol 2022; 12:815437. [PMID: 35311117 PMCID: PMC8930841 DOI: 10.3389/fonc.2022.815437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Immunotherapy targeting programmed death ligand-1/programmed cell death protein-1 (PD-L1/PD-1) has achieved great success in multiple cancers, but only a small subset of patients showed clinical responses. Recent evidences have shown that post-translational modification of PD-L1 protein could regulate its protein stability and interaction with cognate receptor PD-1, thereby affecting anticancer immunotherapy in several solid tumors. However, the molecular mechanisms underlying how PD-1/PD-L1 expression is regulated still remain unclear in nasopharyngeal carcinoma (NPC). Here, we found N-glycosylation of PD-L1 in NPC cells and tissues. Mechanistically, we showed that STT3A transferred N-linked glycans to PD-L1, and TGF-β1 could positively regulate STT3A expression through activating c-Jun to bind to STT3A promoter. Functional assays showed that inhibition of TGF-β1 resulted in a decrease of glycosylated PD-L1 and enhanced cytotoxic T-cell function against NPC cells. Analysis of clinical specimens revealed that the expression of STT3A was positively correlated with TGF-β1 and c-Jun, and high STT3A expression was positively correlated with a more advanced clinical stage. Altogether, TGF-β1 activated c-Jun/STT3A signaling pathway to promote N-glycosylation of PD-L1, thus further facilitating immune evasion and reducing the efficacy of cancer immunotherapy. As such, all these data suggested that targeting TGF-β1 pathway might be a promising approach to enhance immune checkpoint blockade, and simultaneous blockade of PD-L1 and TGF-β1 pathways might elicit potent and superior antitumor activity relative to monotherapies.
Collapse
Affiliation(s)
- Xue-Min Ma
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Fan Luo
- Department of Otolaryngology-Head and Neck Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang-Fang Zeng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang Su
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang-Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xiang-Ping Li, ; Juan Lu,
| | - Juan Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xiang-Ping Li, ; Juan Lu,
| |
Collapse
|
32
|
Su ZY, Siak PY, Leong CO, Cheah SC. Nasopharyngeal Carcinoma and Its Microenvironment: Past, Current, and Future Perspectives. Front Oncol 2022; 12:840467. [PMID: 35311066 PMCID: PMC8924466 DOI: 10.3389/fonc.2022.840467] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that raises public health concerns in endemic countries. Despite breakthroughs in therapeutic strategies, late diagnosis and drug resistance often lead to unsatisfactory clinical outcomes in NPC patients. The tumor microenvironment (TME) is a complex niche consisting of tumor-associated cells, such as fibroblasts, endothelial cells, leukocytes, that influences tumor initiation, progression, invasion, and metastasis. Cells in the TME communicate through various mechanisms, of note, exosomes, ligand-receptor interactions, cytokines and chemokines are active players in the construction of TME, characterized by an abundance of immune infiltrates with suppressed immune activities. The NPC microenvironment serves as a target-rich niche for the discovery of potential promising predictive or diagnostic biomarkers and the development of therapeutic strategies. Thus, huge efforts have been made to exploit the role of the NPC microenvironment. The whole picture of the NPC microenvironment remains to be portrayed to understand the mechanisms underlying tumor biology and implement research into clinical practice. The current review discusses the recent insights into the role of TME in the development and progression of NPC which results in different clinical outcomes of patients. Clinical interventions with the use of TME components as potential biomarkers or therapeutic targets, their challenges, and future perspectives will be introduced. This review anticipates to provide insights to the researchers for future preclinical, translational and clinical research on the NPC microenvironment.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Centre of Cancer and Stem Cells Research, International Medical University, Kuala Lumpur, Malaysia
- Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Han S, Tay JK, Loh CJL, Chu AJM, Yeong JPS, Lim CM, Toh HC. Epstein–Barr Virus Epithelial Cancers—A Comprehensive Understanding to Drive Novel Therapies. Front Immunol 2021; 12:734293. [PMID: 34956172 PMCID: PMC8702733 DOI: 10.3389/fimmu.2021.734293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous oncovirus associated with specific epithelial and lymphoid cancers. Among the epithelial cancers, nasopharyngeal carcinoma (NPC), lymphoepithelioma-like carcinoma (LELC), and EBV-associated gastric cancers (EBVaGC) are the most common. The role of EBV in the pathogenesis of NPC and in the modulation of its tumour immune microenvironment (TIME) has been increasingly well described. Much less is known about the pathogenesis and tumour–microenvironment interactions in other EBV-associated epithelial cancers. Despite the expression of EBV-related viral oncoproteins and a generally immune-inflamed cancer subtype, EBV-associated epithelial cancers have limited systemic therapeutic options beyond conventional chemotherapy. Immune checkpoint inhibitors are effective only in a minority of these patients and even less efficacious with molecular targeting drugs. Here, we examine the key similarities and differences of NPC, LELC, and EBVaGC and comprehensively describe the clinical, pathological, and molecular characteristics of these cancers. A deeper comparative understanding of these EBV-driven cancers can potentially uncover targets in the tumour, TIME, and stroma, which may guide future drug development and cast light on resistance to immunotherapy.
Collapse
Affiliation(s)
- Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joshua K. Tay
- Department of Otolaryngology—Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | | | | | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Chwee Ming Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- *Correspondence: Han Chong Toh,
| |
Collapse
|
34
|
Cai J, Zhang B, Li Y, Zhu W, Akihisa T, Li W, Kikuchi T, Liu W, Feng F, Zhang J. Prophylactic and Therapeutic EBV Vaccines: Major Scientific Obstacles, Historical Progress, and Future Direction. Vaccines (Basel) 2021; 9:vaccines9111290. [PMID: 34835222 PMCID: PMC8623587 DOI: 10.3390/vaccines9111290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is associated with various malignant tumors and immune diseases, imparting a huge disease burden on the human population. Available EBV vaccines are imminent. Prophylactic vaccines can effectively prevent the spread of infection, whereas therapeutic vaccines mainly stimulate cell-mediated immunity and kill infected cells, thus curbing the development of malignant tumors. Nevertheless, there are still no approved EBV vaccines after decades of effort. The complexity of the EBV life cycle, the lack of appropriate animal models, and the limited reports on adjuvant selection and immune responses are gravely impeding progress in EBV vaccines. The soluble gp350 vaccine could reduce the incidence of infectious mononucleosis (IM), which seemed to offer hope, but could not prevent EBV infection. Continuous research and vaccine trials provide deep insights into the structural biology of viruses, the designs for immunogenicity, and the evolving vaccine platforms. Moreover, the new vaccine candidates are expected to achieve further success via combined immunization to elicit both a dual protection of B cells and epithelial cells, and sustainable immunization against infected cells at several phases of infection.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Bodou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Wanfang Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Correspondence:
| |
Collapse
|
35
|
Gong L, Kwong DLW, Dai W, Wu P, Wang Y, Lee AWM, Guan XY. The Stromal and Immune Landscape of Nasopharyngeal Carcinoma and Its Implications for Precision Medicine Targeting the Tumor Microenvironment. Front Oncol 2021; 11:744889. [PMID: 34568077 PMCID: PMC8462296 DOI: 10.3389/fonc.2021.744889] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
The evolution of the tumor microenvironment (TME) is a cancer-dependent and dynamic process. The TME is often a complex ecosystem with immunosuppressive and tumor-promoting functions. Conventional chemotherapy and radiotherapy, primarily focus on inducing tumor apoptosis and hijacking tumor growth, whereas the tumor-protective microenvironment cannot be altered or destructed. Thus, tumor cells can quickly escape from extraneous attack and develop therapeutic resistance, eventually leading to treatment failure. As an Epstein Barr virus (EBV)-associated malignancy, nasopharyngeal carcinoma (NPC) is frequently infiltrated with varied stromal cells, making its microenvironment a highly heterogeneous and suppressive harbor protecting tumor cells from drug penetration, immune attack, and facilitating tumor development. In the last decade, targeted therapy and immunotherapy have emerged as promising options to treat advanced, metastatic, recurrent, and resistant NPC, but lack of understanding of the TME had hindered the therapeutic development and optimization. Single-cell sequencing of NPC-infiltrating cells has recently deciphered stromal composition and functional dynamics in the TME and non-malignant counterpart. In this review, we aim to depict the stromal landscape of NPC in detail based on recent advances, and propose various microenvironment-based approaches for precision therapy.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Pingan Wu
- Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|