1
|
Rowland CE, Newman H, Martin TT, Dods R, Bournakas N, Wagstaff JM, Lewis N, Stanway SJ, Balmforth M, Kessler C, van Rietschoten K, Bellini D, Roper DI, Lloyd AJ, Dowson CG, Skynner MJ, Beswick P, Dawson MJ. Discovery and chemical optimisation of a potent, Bi-cyclic antimicrobial inhibitor of Escherichia coli PBP3. Commun Biol 2025; 8:819. [PMID: 40437113 PMCID: PMC12120022 DOI: 10.1038/s42003-025-08246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Penicillin binding proteins (PBPs) are well validated antimicrobial targets, but the prevalence of β-lactamase driven resistance and, more rarely, target-based mutations, necessitates new classes of PBP-targeting drugs. Here we describe the discovery and optimisation of bicyclic peptide (Bicycle®) inhibitors of E. coli PBP3 (EcPBP3) using a proprietary phage display platform, and their conjugation to linear antimicrobial peptides to confer outer membrane permeation. These molecules exhibited high-affinity binding to E. coli PBP3 and a viable spectrum of killing activity against clinically relevant species of the Enterobacterales. X-ray crystallography was used to explore the mode of binding to PBP3, enabling increased target affinity and improvement of in vitro stability. These compounds bind to the transpeptidase active site cleft of PBP3 and represent, to our knowledge, a novel non-β-lactam chemical class of high affinity, non-covalent penicillin binding protein inhibitors. This work demonstrates an approach to rapidly find binders to antimicrobial targets, combined with an entry mechanism to provide access to the Gram negative cell.
Collapse
Affiliation(s)
- Catherine E Rowland
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK.
| | - Hector Newman
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tazmin T Martin
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - Rachel Dods
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - Nikolaos Bournakas
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - James M Wagstaff
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - Nick Lewis
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - Steven J Stanway
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - Matthew Balmforth
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - Celia Kessler
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | | | - Dom Bellini
- School of Life Sciences, University of Warwick, Coventry, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Adrian J Lloyd
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Michael J Skynner
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - Paul Beswick
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| | - Michael J Dawson
- Bicycle Tx Ltd, Blocks A&B, Portway Building, Granta Park, Great Abington, Cambridge, UK
| |
Collapse
|
2
|
Cheng K, Ge L, Song M, Li W, Zheng J, Liu J, Luo Y, Sun P, Xu S, Cheng Z, Yu J, Liu J. Preclinical Evaluation and Pilot Clinical Study of CD137 PET Radiotracer for Noninvasive Monitoring Early Responses of Immunotherapy. J Nucl Med 2024:jnumed.124.268068. [PMID: 39667816 DOI: 10.2967/jnumed.124.268068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Given the variability in the effectiveness of immune checkpoint blocking therapy among patients and tumor types, development of noninvasive methods for longitudinal assessment of immune cell function and early tumor response is crucial for precision immunotherapy. CD137 (4-1BB), a marker of activated T cells, plays a significant role in immunotherapy. However, its potential as an imaging biomarker for activated T cells in the tumor microenvironment has not been explored. This study introduces a bicyclic peptide-based probe that targets CD137 for noninvasive PET imaging of tumor-infiltrating activated T cells. Methods: A bicyclic peptide-based probe, [18F]AlF-NOTA-BCP137, was first designed and synthesized for quantitative and longitudinal whole-body visualization of CD137 dynamics. Initially, [18F]AlF-NOTA-BCP137 was assessed in mouse models with varying CD137 expression levels. Next, [18F]AlF-NOTA-BCP137 was used for longitudinal monitoring of systemic CD137 changes in a humanized tumor-bearing mouse model. Lastly, the probe was further evaluated in a small group of patients with hepatocellular carcinoma undergoing immunotherapy or combination immunotherapy. Results: [18F]AlF-NOTA-BCP137 PET accurately characterized CD137 expression in homologous transplanted mouse models and tumor patients. The findings from animal studies indicated that uptake of [18F]AlF-NOTA-BCP137 was predictive of the early therapeutic response to combination immunotherapies and was positively associated with the increased survival rates of mice with tumors. A preliminary clinical study involving small patient cohorts demonstrated that [18F]AlF-NOTA-BCP137 imaging effectively predicted early patient responses to immunotherapeutic interventions. Conclusion: [18F]AlF-NOTA-BCP137 PET imaging of CD137 is a promising and reliable method for evaluating the efficacy of multiple combination immunotherapies and merits further validation in larger-scale clinical trials. This approach has the potential for early noninvasive visualization of individual patient responses in combination cancer immunotherapy and will aid in tailoring personalized strategies for patients.
Collapse
Affiliation(s)
- Kai Cheng
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Luna Ge
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miaomiao Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wanhu Li
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinsong Zheng
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingru Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuxi Luo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Pengfei Sun
- Department of Hepato-Biliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; and
| | - Shengnan Xu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Jinming Yu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China;
| | - Jie Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China;
| |
Collapse
|
3
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Tognolini M, Ferrari FR, Zappia A, Giorgio C. Ephrin receptor type-A2 (EphA2) targeting in cancer: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:1009-1018. [PMID: 39259047 DOI: 10.1080/13543776.2024.2402382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION EphA2 is a tyrosine kinase receptor and is considered a promising target in cancer. Different approaches are used to target EphA2 receptor, and a lot of preclinical data demonstrate the potential exploitation of this receptor in clinical oncology for diagnosis and cancer therapy, including immunotherapy. AREAS COVERED In this review, we have summarized the recent patents involving the EphA2 targeting in cancer. For this aim, we used the patent database Patentscope covering the time period of 2018-present. Preclinical and clinical data of the inventions were considered when published on peer reviewed journals. Moreover, the clinicalTrial.gov identifiers (NCT numbers) were included when available. For an easier and more immediate reading, we classify the patents in different categories, considering the nature (aptamers, small molecules, antibodies, peptides, antigens and chimeric antigen receptors) of the inventions exploiting EphA2 in clinical oncology. EXPERT OPINION Despite the availability of a plethora of chemically diverse agents, there are no approved anticancer drugs targeting EphA2 yet. However, these intellectual properties, some of which supported by strong preclinical evidence, keep the hope that, after more than 30 years from its discovery, we will finally see the first EphA2 targeting agent approved in clinical oncology.
Collapse
Affiliation(s)
| | | | - Alfonso Zappia
- Food and Drug Department, University of Parma, Parma, Italy
| | | |
Collapse
|
5
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
6
|
Liu L, Chen F, Li S, Yang T, Chen S, Zhou Y, Lin Z, Zeng G, Feng P, Shu HB, Zhou Q, Ding K, Chen L. Human/mouse CD137 agonist, JNU-0921, effectively shrinks tumors through enhancing the cytotoxicity of CD8 + T cells in cis and in trans. SCIENCE ADVANCES 2024; 10:eadp8647. [PMID: 39178257 PMCID: PMC11343023 DOI: 10.1126/sciadv.adp8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Agonistic antibodies against CD137 have been demonstrated to completely regress established tumors through activating T cell immunity. Unfortunately, current CD137 antibodies failed to benefit patients with cancer. Moreover, their antitumor mechanisms in vivo remain to be determined. Here, we report the development of a small molecular CD137 agonist, JNU-0921. JNU-0921 effectively activates both human and mouse CD137 through direct binding their extracellular domains to induce oligomerization and signaling and effectively shrinks tumors in vivo. Mechanistically, JNU-0921 enhances effector and memory function of cytotoxic CD8+ T cells (CTLs) and alleviates their exhaustion. JNU-0921 also skews polarization of helper T cells toward T helper 1 type and enhances their activity to boost CTL function. Meanwhile, JNU-0921 attenuates the inhibitory function of regulatory T cells on CTLs. Our current work shows that JNU-0921 shrinks tumors by enhancing the cytotoxicity of CTLs in cis and in trans and sheds light on strategy for developing CD137 small molecular agonists.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fenghua Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shan Li
- Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou 310018 Zhejiang, China
| | - Tong Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuzhen Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zejian Lin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou, Guangzhou 510632, China
| | - Hong-Bing Shu
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qian Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Narjes F, Edfeldt F, Petersen J, Öster L, Hamblet C, Bird J, Bold P, Rae R, Bäck E, Stomilovic S, Zlatoidsky P, Svensson T, Hidestål L, Kunalingam L, Shamovsky I, De Maria L, Gordon E, Lewis RJ, Watcham S, van Rietschoten K, Mudd GE, Harrison H, Chen L, Skynner MJ. Discovery and Characterization of a Bicyclic Peptide (Bicycle) Binder to Thymic Stromal Lymphopoietin. J Med Chem 2024; 67:2220-2235. [PMID: 38284169 DOI: 10.1021/acs.jmedchem.3c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pro-inflammatory cytokine involved in the development of asthma and other atopic diseases. We used Bicycle Therapeutics' proprietary phage display platform to identify bicyclic peptides (Bicycles) with high affinity for TSLP, a target that is difficult to drug with conventional small molecules due to the extended protein-protein interactions it forms with both receptors. The hit series was shown to bind to TSLP in a hotspot, that is also used by IL-7Rα. Guided by the first X-ray crystal structure of a small peptide binding to TSLP and the identification of key metabolites, we were able to improve the proteolytic stability of this series in lung S9 fractions without sacrificing binding affinity. This resulted in the potent Bicycle 46 with nanomolar affinity to TSLP (KD = 13 nM), low plasma clearance of 6.4 mL/min/kg, and an effective half-life of 46 min after intravenous dosing to rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sophie Watcham
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | | | - Gemma E Mudd
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Helen Harrison
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Liuhong Chen
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| | - Michael J Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K
| |
Collapse
|
8
|
Liu X, Cheng Y, Mu Y, Zhang Z, Tian D, Liu Y, Hu X, Wen T. Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview. Front Immunol 2024; 15:1328145. [PMID: 38298192 PMCID: PMC10828056 DOI: 10.3389/fimmu.2024.1328145] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Despite the clear benefits demonstrated by immunotherapy, there is still an inevitable off-target effect resulting in serious adverse immune reactions. In recent years, the research and development of Drug Delivery System (DDS) has received increased prominence. In decades of development, DDS has demonstrated the ability to deliver drugs in a precisely targeted manner to mitigate side effects and has the advantages of flexible control of drug release, improved pharmacokinetics, and drug distribution. Therefore, we consider that combining cancer immunotherapy with DDS can enhance the anti-tumor ability. In this paper, we provide an overview of the latest drug delivery strategies in cancer immunotherapy and briefly introduce the characteristics of DDS based on nano-carriers (liposomes, polymer nano-micelles, mesoporous silica, extracellular vesicles, etc.) and coupling technology (ADCs, PDCs and targeted protein degradation). Our aim is to show readers a variety of drug delivery platforms under different immune mechanisms, and analyze their advantages and limitations, to provide more superior and accurate targeting strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Xu Liu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Cheng
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao Mu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | | | - Dan Tian
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunpeng Liu
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejun Hu
- Department of Respiratory and Infectious Disease of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ti Wen
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Clinical Cancer Treatment and Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Wang H, Sun D, Chen J, Li H, Chen L. Nectin-4 has emerged as a compelling target for breast cancer. Eur J Pharmacol 2023; 960:176129. [PMID: 38059449 DOI: 10.1016/j.ejphar.2023.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The incidence of breast cancer in women has increased year by year, becoming one of the most common malignant tumors in females worldwide. Most patients can be treated with surgery and endocrine drugs, but there are still some patients who lack effective treatment, such as triple-negative breast cancer (TNBC). Nectin-4, a protein encoded by poliovirus receptor-associated protein 4, is a Ca2+-independent immunoglobulin-like protein. It is mainly involved in the adhesion between cells. In recent years, studies have found that Nectin-4 is overexpressed in breast cancer and several other malignancies. Otherwise, several monoclonal antibodies and inhibitors targeting Nectin-4 have shown prosperous outcomes, so Nectin-4 has great potential to be a therapeutic target for breast cancer. The present review systematically describes the significance of Nectin-4 in each aspect of breast cancer, as well as the molecular mechanisms of these aspects mediated by Nectin-4. We further highlight ongoing or proposed therapeutic strategies for breast cancer specific to Nectin-4.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
11
|
Cao Y, Li Y, Liu R, Zhou J, Wang K. Preclinical and Basic Research Strategies for Overcoming Resistance to Targeted Therapies in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15092568. [PMID: 37174034 PMCID: PMC10177527 DOI: 10.3390/cancers15092568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The amplification of epidermal growth factor receptor 2 (HER2) is associated with a poor prognosis and HER2 gene is overexpressed in approximately 15-30% of breast cancers. In HER2-positive breast cancer patients, HER2-targeted therapies improved clinical outcomes and survival rates. However, drug resistance to anti-HER2 drugs is almost unavoidable, leaving some patients with an unmet need for better prognoses. Therefore, exploring strategies to delay or revert drug resistance is urgent. In recent years, new targets and regimens have emerged continuously. This review discusses the fundamental mechanisms of drug resistance in the targeted therapies of HER2-positive breast cancer and summarizes recent research progress in this field, including preclinical and basic research studies.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Yunjin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Ruijie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
Claus C, Ferrara-Koller C, Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs 2023; 15:2167189. [PMID: 36727218 PMCID: PMC9897756 DOI: 10.1080/19420862.2023.2167189] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
The clinical development of 4-1BB agonists for cancer immunotherapy has raised substantial interest during the past decade. The first generation of 4-1BB agonistic antibodies entering the clinic, urelumab (BMS-663513) and utomilumab (PF-05082566), failed due to (liver) toxicity or lack of efficacy, respectively. The two antibodies display differences in the affinity and the 4-1BB receptor epitope recognition, as well as the isotype, which determines the Fc-gamma-receptor (FcγR) crosslinking activity. Based on this experience a very diverse landscape of second-generation 4-1BB agonists addressing the liabilities of first-generation agonists has recently been developed, with many entering clinical Phase 1 and 2 studies. This review provides an overview focusing on differences and their scientific rationale, as well as challenges foreseen during the clinical development of these molecules.
Collapse
Affiliation(s)
- Christina Claus
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Claudia Ferrara-Koller
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| |
Collapse
|
13
|
Mudd GE, Scott H, Chen L, van Rietschoten K, Ivanova-Berndt G, Dzionek K, Brown A, Watcham S, White L, Park PU, Jeffrey P, Rigby M, Beswick P. Discovery of BT8009: A Nectin-4 Targeting Bicycle Toxin Conjugate for the Treatment of Cancer. J Med Chem 2022; 65:14337-14347. [PMID: 36204777 PMCID: PMC9661471 DOI: 10.1021/acs.jmedchem.2c00065] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Bicycle toxin conjugates
(BTCs) are a promising new class
of molecules
for targeted delivery of toxin payloads into tumors. Herein we describe
the discovery of BT8009, a Nectin-4 targeting BTC currently under
clinical evaluation. Nectin-4 is overexpressed in multiple tumor types
and is a clinically validated target for selective delivery of cytotoxic
payloads. A Nectin-4 targeting bicyclic peptide was identified by
phage display, which showed highly selective binding for Nectin-4
but suffered from low plasma stability and poor physicochemical properties.
Multiparameter chemical optimization involving introduction of non-natural
amino acids resulted in a lead Bicycle that demonstrated high affinity
for Nectin-4, good stability in biological matrices, and a much-improved
physicochemical profile. The optimized Bicycle was conjugated to the
cytotoxin Monomethyl auristatin E via a cleavable linker to give the
targeted drug conjugate BT8009, which demonstrates potent anticancer
activity in in vivo rodent models.
Collapse
Affiliation(s)
- Gemma E Mudd
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Heather Scott
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Liuhong Chen
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | | | - Katarzyna Dzionek
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Amy Brown
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Sophie Watcham
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Lewi White
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Peter U Park
- Bicycle Therapeutics, Inc., 4 Hartwell Place, Lexington 02421-3122, Massachusetts, United States
| | - Phil Jeffrey
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Mike Rigby
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Paul Beswick
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
14
|
Dakhel S, Galbiati A, Migliorini F, Comacchio C, Oehler S, Prati L, Scheuermann J, Cazzamalli S, Neri D, Bassi G, Favalli N. Isolation of a Natural Killer Group 2D Small-Molecule Ligand from DNA-Encoded Chemical Libraries. ChemMedChem 2022; 17:e202200350. [PMID: 35929380 DOI: 10.1002/cmdc.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Natural Killer Group 2D (NKG2D) is a homo-dimeric transmembrane protein which is typically expressed on the surface of natural killer (NK) cells, natural killer T (NKT) cells, gamma delta T (γδT) cells, activated CD8 positive T-cells and activated macrophages. Bispecific molecules, capable of bridging NKG2D with a target protein expressed on the surface of tumor cells, may be used to redirect the cytotoxic activity of NK-cells towards antigen-positive malignanT-cells. In this work, we report the discovery of a novel NKG2D small molecule binder [K D = (410±60) nM], isolated from a DNA-Encoded Chemical Library (DEL). The discovery of small organic NKG2D ligands may facilitate the generation of fully synthetic bispecific adaptors, which may serve as an alternative to bispecific antibody products and which may benefit from better tumor targeting properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Prati
- Philogen SpA, R&D (Philochem), SWITZERLAND
| | - Jörg Scheuermann
- ETH Zürich: Eidgenossische Technische Hochschule Zurich, chemistry and applied biosciences, SWITZERLAND
| | | | | | | | - Nicholas Favalli
- Philogen SpA, R&D (Philochem), Libernstrasse 3, 8112, Otelfingen, SWITZERLAND
| |
Collapse
|
15
|
Mudd GE, Stanway SJ, Witty DR, Thomas A, Baldo S, Bond AD, Beswick P, Highton A. Gold-Mediated Multiple Cysteine Arylation for the Construction of Highly Constrained Bicycle Peptides. Bioconjug Chem 2022; 33:1441-1445. [PMID: 35894801 DOI: 10.1021/acs.bioconjchem.2c00288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bicycles are constrained bicyclic peptides formed through reaction of three cysteine residues within a linear sequence with a trivalent, symmetrical small molecule scaffold. Bicycles with high binding affinities to therapeutically important targets can be discovered using screening technologies such as phage display. Increasing the chemical diversity of Bicycles should improve the probability of finding hits to new targets and can be achieved by expanding the toolbox of Bicycle forming chemistries. Gold(III) S-arylation has recently been described as a method for the efficient bioconjugation of cysteine residues under conditions compatible with phage display. Herein, we explore the scope and generality of this methodology for Bicycle construction through the synthesis and evaluation of four novel tris-Gold complexes. These new scaffolds were systematically reacted with a variety of peptide sequences, varying in amino acid loop lengths. All four scaffolds proved to be capable and selective reactive partners for each peptide sequence and afforded the desired Bicycle products in 13-48% isolated yield. This work exemplifies Gold-mediated arylation as a general approach for construction of novel, highly constrained Bicycles.
Collapse
Affiliation(s)
- Gemma E Mudd
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Steven J Stanway
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - David R Witty
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Alex Thomas
- Eurofins Integrated Discovery Ltd, Fyfield Business & Research Park, Fyfield Road, Ongar CM5 0GS, United Kingdom
| | - Silvia Baldo
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Andrew D Bond
- University of Cambridge, Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Paul Beswick
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - Adrian Highton
- Eurofins Integrated Discovery Ltd, Fyfield Business & Research Park, Fyfield Road, Ongar CM5 0GS, United Kingdom
| |
Collapse
|
16
|
Upadhyaya P, Kristensson J, Lahdenranta J, Repash E, Ma J, Kublin J, Mudd GE, Luus L, Jeffrey P, Hurov K, McDonnell K, Keen N. Discovery and Optimization of a Synthetic Class of Nectin-4-Targeted CD137 Agonists for Immuno-oncology. J Med Chem 2022; 65:9858-9872. [PMID: 35819182 PMCID: PMC9340768 DOI: 10.1021/acs.jmedchem.2c00505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
CD137 (4-1BB) is a co-stimulatory receptor on immune
cells and
Nectin-4 is a cell adhesion molecule that is overexpressed in multiple
tumor types. Using a series of poly(ethylene glycol) (PEG)-based linkers,
synthetic bicyclic peptides targeting CD137 were conjugated to Bicycles targeting Nectin-4. The resulting bispecific molecules
were potent CD137 agonists that require the presence of both Nectin-4-expressing
tumor cells and CD137-expressing immune cells for activity. A multipronged
approach was taken to optimize these Bicycle tumor-targeted
immune cell agonists by exploring the impact of chemical configuration,
binding affinity, and pharmacokinetics on CD137 agonism and antitumor
activity. This effort resulted in the discovery of BT7480, which elicited
robust CD137 agonism and maximum antitumor activity in syngeneic mouse
models. A tumor-targeted approach to CD137 agonism using low-molecular-weight,
short-acting molecules with high tumor penetration is a yet unexplored
path in the clinic, where emerging data suggest that persistent target
engagement, characteristic of biologics, may lead to suboptimal immune
response.
Collapse
Affiliation(s)
- Punit Upadhyaya
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Julia Kristensson
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Johanna Lahdenranta
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Elizabeth Repash
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Jun Ma
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Jessica Kublin
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Gemma E Mudd
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Lia Luus
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Phil Jeffrey
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Kristen Hurov
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Kevin McDonnell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| | - Nicholas Keen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts 02421, United States
| |
Collapse
|
17
|
Ding J, Jiang N, Zheng Y, Wang J, Fang L, Li H, Yang J, Hu A, Xiao P, Zhang Q, Chai D, Zheng J, Wang G. Adenovirus vaccine therapy with CD137L promotes CD8 + DCs-mediated multifunctional CD8 + T cell immunity and elicits potent anti-tumor activity. Pharmacol Res 2022; 175:106034. [PMID: 34915126 DOI: 10.1016/j.phrs.2021.106034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
Renal carcinoma progresses aggressively in patients with metastatic disease while curative strategies are limited. Here, we constructed a recombinant non-replicating adenovirus (Ad) vaccine encoding an immune activator, CD137L, and a tumor antigen, CAIX, for treating renal carcinoma. In a subcutaneous tumor model, tumor growth was significantly suppressed in the Ad-CD137L/CAIX vaccine group compared with the single vaccine group. The induction and maturity of CD11C+ and CD8+CD11C+ dendritic cell (DC) subsets were promoted in Ad-CD137L/CAIX co-immunized mice. Furthermore, the Ad-CD137L/CAIX vaccine elicited stronger tumor-specific multifunctional CD8+ T cell immune responses as demonstrated by increased proliferation and cytolytic function of CD8+ T cells. Notably, depletion of CD8+ T cells greatly compromised the effective protection provided by Ad-CD137L/CAIX vaccine, suggesting an irreplaceable role of CD8+ T cells for the immunopotency of the vaccine. In both lung metastatic and orthotopic models, Ad-CD137L/CAIX vaccine treatment significantly decreased tumor metastasis and progression and increased the induction of tumor-specific multifunctional CD8+ T cells, in contrast to treatment with the Ad-CAIX vaccine alone. The Ad-CD137L/CAIX vaccine also augmented the tumor-specific multifunctional CD8+ T cell immune response in both orthotopic and metastatic models. These results indicated that Ad-CD137L/CAIX vaccine elicited a potent anti-tumor activity by inducing CD8+DC-mediated multifunctional CD8+ T cell immune responses. The potential strategy of CD137L-based vaccine might be served as a novel treatment for renal carcinoma or other malignant tumors.
Collapse
Affiliation(s)
- Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Nan Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jiawei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ankang Hu
- Center of Animal laboratory, Xuzhou Medical University, Xuzhou, Jiangsu 221002 PR China
| | - Pengli Xiao
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
18
|
Hurov K, Lahdenranta J, Upadhyaya P, Haines E, Cohen H, Repash E, Kanakia D, Ma J, Kristensson J, You F, Campbell C, Witty D, Kelly M, Blakemore S, Jeffrey P, McDonnell K, Brandish P, Keen N. BT7480, a novel fully synthetic Bicycle tumor-targeted immune cell agonist™ ( Bicycle TICA™) induces tumor localized CD137 agonism. J Immunother Cancer 2021; 9:jitc-2021-002883. [PMID: 34725211 PMCID: PMC8562524 DOI: 10.1136/jitc-2021-002883] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Background CD137 (4-1BB) is an immune costimulatory receptor with high therapeutic potential in cancer. We are creating tumor target-dependent CD137 agonists using a novel chemical approach based on fully synthetic constrained bicyclic peptide (Bicycle®) technology. Nectin-4 is overexpressed in multiple human cancers that may benefit from CD137 agonism. To this end, we have developed BT7480, a novel, first-in-class, Nectin-4/CD137 Bicycle tumor-targeted immune cell agonist™ (Bicycle TICA™). Methods Nectin-4 and CD137 co-expression analyses in primary human cancer samples was performed. Chemical conjugation of two CD137 Bicycles to a Nectin-4 Bicycle led to BT7480, which was then evaluated using a suite of in vitro and in vivo assays to characterize its pharmacology and mechanism of action. Results Transcriptional profiling revealed that Nectin-4 and CD137 were co-expressed in a variety of human cancers with high unmet need and spatial proteomic imaging found CD137-expressing immune cells were deeply penetrant within the tumor near Nectin-4-expressing cancer cells. BT7480 binds potently, specifically, and simultaneously to Nectin-4 and CD137. In co-cultures of human peripheral blood mononuclear cells and tumor cells, this co-ligation causes robust Nectin-4-dependent CD137 agonism that is more potent than an anti-CD137 antibody agonist. Treatment of immunocompetent mice bearing Nectin-4-expressing tumors with BT7480 elicited a profound reprogramming of the tumor immune microenvironment including an early and rapid myeloid cell activation that precedes T cell infiltration and upregulation of cytotoxicity-related genes. BT7480 induces complete tumor regressions and resistance to tumor re-challenge. Importantly, antitumor activity is not dependent on continuous high drug levels in the plasma since a once weekly dosing cycle provides maximum antitumor activity despite minimal drug remaining in the plasma after day 2. BT7480 appears well tolerated in both rats and non-human primates at doses far greater than those expected to be clinically relevant, including absence of the hepatic toxicity observed with non-targeted CD137 agonists. Conclusion BT7480 is a highly potent Nectin-4-dependent CD137 agonist that produces complete regressions and antitumor immunity with only intermittent drug exposure in syngeneic mouse tumor models and is well tolerated in preclinical safety species. This work supports the clinical investigation of BT7480 for the treatment of cancer in humans.
Collapse
Affiliation(s)
- Kristen Hurov
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | | | - Punit Upadhyaya
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Eric Haines
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Heather Cohen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Elizabeth Repash
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Drasti Kanakia
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Jun Ma
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Julia Kristensson
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Fanglei You
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Carly Campbell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - David Witty
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Mike Kelly
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Stephen Blakemore
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Phil Jeffrey
- Bicycle Therapeutics, B900 Building, Babraham Research Campus, Cambridge, UK
| | - Kevin McDonnell
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Philip Brandish
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| | - Nicholas Keen
- Bicycle Therapeutics, 4 Hartwell Place, Lexington, Massachusetts, USA
| |
Collapse
|
19
|
Wang W, Khojasteh SC, Su D. Biosynthetic Strategies for Macrocyclic Peptides. Molecules 2021; 26:3338. [PMID: 34206124 PMCID: PMC8199541 DOI: 10.3390/molecules26113338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022] Open
Abstract
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Dian Su
- Drug Metabolism and Disposition, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA; (W.W.); (S.C.K.)
| |
Collapse
|
20
|
Onda Y, Bassi G, Elsayed A, Ulrich F, Oehler S, Plais L, Scheuermann J, Neri D. A DNA-Encoded Chemical Library Based on Peptide Macrocycles. Chemistry 2021; 27:7160-7167. [PMID: 33586277 DOI: 10.1002/chem.202005423] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/07/2022]
Abstract
The synthesis and characterization of a novel DNA-encoded library of macrocyclic peptide derivatives are described; the macrocycles are based on three sets of proteinogenic and non-proteinogenic amino acid building blocks and featuring the use of copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction for ring closure. The library (termed YO-DEL) which contains 1 254 838 compounds, was encoded with DNA in single-stranded format and was screened against target proteins of interest using affinity capture procedures and photocrosslinking. YO-DEL selections yielded specific binders against serum albumins, carbonic anhydrases and NKp46, a marker of activated Natural Killer cells.
Collapse
Affiliation(s)
- Yuichi Onda
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Abdullah Elsayed
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Franziska Ulrich
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Louise Plais
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| |
Collapse
|