1
|
Hu MH, Fan D, Tu HF, Tsai YC, He L, Zhou Z, Cheng M, Xing D, Wang S, Wu A, Wu TC, Hung CF. Electroporation-mediated novel albumin-fused Flt3L DNA delivery promotes cDC1-associated anticancer immunity. Gene Ther 2025; 32:277-286. [PMID: 39472678 DOI: 10.1038/s41434-024-00497-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 05/28/2025]
Abstract
Dendritic cells (DCs) constitute a distinct type of immune cell found within tumors, serving a central role in mediating tumor antigen-specific immunity against cancer cells. Frequently, DC functions are dysregulated by the immunosuppressive signals present within the tumor microenvironment (TME). Consequently, DC manipulation holds great potential to enhance the cytotoxic T cell response against cancer diseases. One strategy involves administering Fms-like tyrosine kinase receptor 3 ligand (Flt3L), a vitally important cytokine for DC development. In this current study, the electroporation-mediated delivery of a novel albumin-fused Flt3L DNA (alb-Flt3L DNA) demonstrated the ability to induce an anti-tumor immune response. This albumin fusion construct possesses more persistent bioactivity in targeted organs. Furthermore, TC-1-bearing-C57BL/6 mice receiving alb-Flt3L DNA treatment presented better tumor control and superior survival. Cellular analysis revealed that alb-Flt3L DNA administration promoted robust DC and cDC1 expansion. In addition, increased levels of IFN-γ-secreting CD8+ lymphocytes were found in correlation to greater cDC1 population. Moreover, the toxicity of alb-Flt3L administration is limited. Collectively, our data showcases a novel DC-based immunotherapy using electroporation to administer alb-Flt3L DNA.
Collapse
Affiliation(s)
- Ming-Hung Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC
| | - Darrell Fan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ya-Chea Tsai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liangmei He
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhicheng Zhou
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Cheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deyin Xing
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Suyang Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T C Wu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Molecular Microbiology and Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Luri-Rey C, Teijeira Á, Wculek SK, de Andrea C, Herrero C, Lopez-Janeiro A, Rodríguez-Ruiz ME, Heras I, Aggelakopoulou M, Berraondo P, Sancho D, Melero I. Cross-priming in cancer immunology and immunotherapy. Nat Rev Cancer 2025; 25:249-273. [PMID: 39881005 DOI: 10.1038/s41568-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8+ T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8+ T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Claudia Herrero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Heras
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Departments of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
3
|
Catena X, Contreras-Alcalde M, Juan-Larrea N, Cerezo-Wallis D, Calvo TG, Mucientes C, Olmeda D, Suárez J, Oterino-Sogo S, Martínez L, Megías D, Sancho D, Tejedo C, Frago S, Dudziak D, Seretis A, Stoitzner P, Soengas MS. Systemic rewiring of dendritic cells by melanoma-secreted midkine impairs immune surveillance and response to immune checkpoint blockade. NATURE CANCER 2025; 6:682-701. [PMID: 40155713 DOI: 10.1038/s43018-025-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/11/2025] [Indexed: 04/01/2025]
Abstract
Cutaneous melanomas express a high number of potential neoepitopes, yet a substantial fraction of melanomas shift into immunologically cold phenotypes. Using cellular systems, mouse models and large datasets, we identify the tumor-secreted growth factor midkine (MDK) as a multilayered inhibitor of antigen-presenting cells. Mechanistically, MDK acts systemically in primary tumors, lymph nodes and the bone marrow, promoting a STAT3-mediated impairment of differentiation, activation and function of dendritic cells (DCs), particularly, conventional type 1 DCs (cDC1s). Furthermore, MDK rewires DCs toward a tolerogenic state, impairing CD8+ T cell activation. Downregulating MDK improves DC-targeted vaccination, CD40 agonist treatment and immune checkpoint blockade in mouse models. Moreover, we present an MDK-associated signature in DCs that defines poor prognosis and immune checkpoint blockade resistance in individuals with cancer. An inverse correlation between MDK- and cDC1-associated signatures was observed in a variety of tumor types, broadening the therapeutic implications of MDK in immune-refractory malignancies.
Collapse
Affiliation(s)
- Xavier Catena
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Contreras-Alcalde
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Naiara Juan-Larrea
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniela Cerezo-Wallis
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Yale University School of Medicine, New Haven, CT, USA
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cynthia Mucientes
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale, Madrid, Spain
| | - Javier Suárez
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sergio Oterino-Sogo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - David Sancho
- Immunobiology Lab, Centro Nacional de Investigación Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Susana Frago
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diana Dudziak
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
- Comprehensive Cancer Center Central Germany Jena/Leipzig, Jena, Germany
| | - Athanasios Seretis
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
4
|
Yang X, Yang S, Luo Y, Chan S, Xue M, Wang Y, Xue P, Zha C, Huang N, Xie F, Yang L, Yu R, Wang H, Lan Y, Zhang L, Jia S, Fang M. Single-cell transcriptional footprint for pseudogene SsCLEC9A is associated with antigen processing and presentation in Sus scrofa. Int J Biol Macromol 2025; 302:140629. [PMID: 39904428 DOI: 10.1016/j.ijbiomac.2025.140629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
The C-type lectin domain family 9 member A (CLEC9A) is widely recognized as the most critical receptor protein for cross presentation of dead cell associated antigens in animal dendritic cells (DCs). Surprisingly, we revealed for the first time that the sole CLEC9A (SsCLEC9A) in pigs becomes a pseudogene due to three causal mutations that occurred approximately 29.8-44.7 million years ago, challenging the significance of CLEC9A in immune cross-presentation across mammals. Interestingly, we found that SsCLEC9A can transcribe a mutated transcript encoding a truncated protein. Through fluorescence-activated cell sorting and single-cell RNA sequencing, we observed that SsCLEC9A mutant transcript is mainly expressed in DCs and correlated with the expression of its homolog CLEC7A. Further data showed that DCs with SsCLEC9A mutant transcripts exhibited reduced cellular interaction ability and downregulation of antigen presentation function, displaying the characteristics of mature DCs. In addition, introducing the conserved sequence of CLEC9A gene into FLT3L-induced bone marrow hematopoietic cells significantly increased the expression of genes involved in antigen processing and presentation. This study presents a natural mutation model of pseudogenes to understand its transcriptional adation, and provides a fundamental basis for rescuing SsCLEC9A to promote immunity in pigs in the future.
Collapse
Affiliation(s)
- Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaojun Yang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuheng Chan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yubei Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Pengxiang Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengwan Zha
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Huang
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lixian Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Runjie Yu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yezhi Lan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liguo Zhang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| |
Collapse
|
5
|
Hussain Z, Zhang Y, Qiu L, Gou S, Liu K. Exploring Clec9a in dendritic cell-based tumor immunotherapy for molecular insights and therapeutic potentials. NPJ Vaccines 2025; 10:27. [PMID: 39920156 PMCID: PMC11806010 DOI: 10.1038/s41541-025-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
The pivotal role of type 1 conventional dendritic cells (cDC1s) in the field of dendritic cell (DC)-based tumor immunotherapies has been gaining increasing recognition due to their superior antigen cross-presentation abilities and essential role in modulating immune responses. This review specifically highlights the C-type lectin receptor family 9 member A (Clec9a or DNGR-1), which is exclusively expressed on cDC1s and plays a pivotal role in augmenting antigen cross-presentation and cytotoxic T lymphocyte (CTL) responses while simultaneously mitigating off-target effects. These effects include the enhancement of the cDC1s cross-presentation, reducing autoimmune responses and systemic inflammation, as well as preventing the non-specific activation of other immune cells. Consequently, these actions may contribute to reduced toxicity and enhanced treatment efficacy in immunotherapy. The exceptional ability of Clec9a to cross-present dead cell-associated antigens and enhance both humoral and CTL responses makes it an optimal receptor for DC-based strategies aimed at strengthening antitumor immunity. This review provides a comprehensive overview of the molecular characterization, expression, and signaling mechanisms of Clec9a. Furthermore, it discusses the role of Clec9a in the induction and functional activation of Clec9a+ cDC1s, with a particular focus on addressing the challenges related to off-target effects and immune tolerance in the development of tumor vaccines. Additionally, this review explores the potential of Clec9a-targeted approaches to enhance the immunogenicity of tumor vaccines and addresses the utilization of Clec9a as a delivery target for specific agonists (such as STING agonists and αGC) to enhance their therapeutic effects. This novel approach leverages Clec9a's capacity to improve the precision and efficacy of these immunomodulatory molecules in tumor treatment. In summary, this review presents compelling evidence positioning Clec9a as a promising target for DC-based tumor immunotherapy, capable of enhancing the efficacy of vaccines and immune responses while minimizing adverse effects.
Collapse
Affiliation(s)
- Zubair Hussain
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yueteng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Qiu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Gou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
- China‒US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Lotze MT, Olejniczak SH, Skokos D. CD28 co-stimulation: novel insights and applications in cancer immunotherapy. Nat Rev Immunol 2024; 24:878-895. [PMID: 39054343 PMCID: PMC11598642 DOI: 10.1038/s41577-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Substantial progress in understanding T cell signalling, particularly with respect to T cell co-receptors such as the co-stimulatory receptor CD28, has been made in recent years. This knowledge has been instrumental in the development of innovative immunotherapies for patients with cancer, including immune checkpoint blockade antibodies, adoptive cell therapies, tumour-targeted immunostimulatory antibodies, and immunostimulatory small-molecule drugs that regulate T cell activation. Following the failed clinical trial of a CD28 superagonist antibody in 2006, targeted CD28 agonism has re-emerged as a technologically viable and clinically promising strategy for cancer immunotherapy. In this Review, we explore recent insights into the molecular functions and regulation of CD28. We describe how CD28 is central to the success of current cancer immunotherapies and examine how new questions arising from studies of CD28 as a clinical target have enhanced our understanding of its biological role and may guide the development of future therapeutic strategies in oncology.
Collapse
Affiliation(s)
- Michael T Lotze
- Department of Surgery, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Scott H Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | | |
Collapse
|
7
|
Cai Z, Qiao Y, Wuri Q, Zhang K, Qu X, Zhang S, Wu H, Wu J, Wang C, Yu X, Kong W, Zhang H. Flt3 ligand augments immune responses to soluble PD1-based DNA vaccine via expansion of type 1 conventional DCs. Int Immunopharmacol 2024; 141:112956. [PMID: 39168022 DOI: 10.1016/j.intimp.2024.112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
DNA vaccines are prospective for their efficient manufacturing process, but their immunogenicity is limited as they cannot efficiently induce CD8+ T cell responses. A promising approach is to induce cross-presentation by targeting antigens to DCs. Flt3L can expand the number of type 1 conventional DCs and thereby improve cross-presentation. In this study, we first constructed a DNA vaccine expressing soluble PD1 and found that the therapeutic effect of targeting DCs with only the sPD1 vaccine was limited. When combined the vaccine with Flt3L, the anti-tumor effect was significantly enhanced. Considering the complexity of tumors and that a single method may not be able to activate a large number of effective CD8+ T cells, we combined different drugs and the vaccine with Flt3L based on the characteristics of different tumors. In 4T1 model, we reduced Tregs through cyclophosphamide. In Panc02 model, we increased activated DCs by using aCD40. Both strategies triggered strong CD8+ T cell responses and significantly improved the therapeutic effect. Our study provides important support for the clinical exploration of DC-targeted DNA vaccines in combination with Flt3L.
Collapse
Affiliation(s)
- Zongyu Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Yaru Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Qimuge Wuri
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Ke Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Xueli Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Shiqi Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Liu W, Kuang T, Liu L, Deng W. The role of innate immune cells in the colorectal cancer tumor microenvironment and advances in anti-tumor therapy research. Front Immunol 2024; 15:1407449. [PMID: 39100676 PMCID: PMC11294098 DOI: 10.3389/fimmu.2024.1407449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Innate immune cells in the colorectal cancer microenvironment mainly include macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow-derived suppressor cells. They play a pivotal role in tumor initiation and progression through the secretion of diverse cytokines, chemokines, and other factors that govern these processes. Colorectal cancer is a common malignancy of the gastrointestinal tract, and understanding the role of innate immune cells in the microenvironment of CRC may help to improve therapeutic approaches to CRC and increase the good prognosis. In this review, we comprehensively explore the pivotal role of innate immune cells in the initiation and progression of colorectal cancer (CRC), alongside an extensive evaluation of the current landscape of innate immune cell-based immunotherapies, thereby offering valuable insights for future research strategies and clinical trials.
Collapse
Affiliation(s)
| | | | | | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Qian J, Ding L, Wu Q, Yu X, Li Q, Gu Y, Wang S, Mao J, Liu X, Li B, Pan C, Wang W, Wang Y, Liu J, Qiao Y, Xie H, Chen T, Ge J, Zhou L, Yin S, Zheng S. Nanosecond pulsed electric field stimulates CD103 + DC accumulation in tumor microenvironment via NK-CD103 + DC crosstalk. Cancer Lett 2024; 593:216514. [PMID: 38036040 DOI: 10.1016/j.canlet.2023.216514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
CD103+ DC is crucial for antitumor immune response. As a promising local therapy on cancers, nanosecond pulsed electric field (nsPEF) has been widely reported to stimulate anti-tumor immune response, but the underlying relationship between intratumoral CD103+ DC and nsPEF treatment remains enigmatic. Here, we focused on the behavior of CD103+ DC in response to nsPEF treatment and explored the underlying mechanism. We found that the nsPEF treatment led to the activation and accumulation of CD103+ DC in tumor. Depletion of CD103+ DC via Batf3-/- mice demonstrated CD103+ DC was necessary for intratumoral CD8+ T cell infiltration and activation in response to nsPEF treatment. Notably, NK cells recruited CD103+ DC into nsPEF-treated tumor through CCL5. Inflammatory array revealed CD103+ DC-derived IL-12 mediated the CCL5 secretion in NK cells. In addition, the boosted activation and infiltration of intratumoral CD103+ DC were abolished by cGAS-STING pathway inhibition, following IL-12 and CCL5 decreasing. Furthermore, nsPEF treatment promoting CD103+ DC-mediated antitumor response enhanced the effects of CD47 blockade strategy. Together, this study uncovers an unprecedented role for CD103+ DC in nsPEF treatment-elicited antitumor immune response and elucidates the underlying mechanisms.
Collapse
Affiliation(s)
- Junjie Qian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Limin Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Qinchuan Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Xizhi Yu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Qiyong Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China
| | - Yangjun Gu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China
| | - Shuai Wang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China
| | - Jing Mao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Xi Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Bohan Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Caixu Pan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Wenchao Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Yubo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Jianpeng Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Tianchi Chen
- Department of of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiangzhen Ge
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China.
| | - Shengyong Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China.
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| |
Collapse
|
10
|
Wilson KR, Macri C, Villadangos JA, Mintern JD. Constitutive Flt3 signaling impacts conventional dendritic cell function. Immunol Cell Biol 2024; 102:500-512. [PMID: 38693626 DOI: 10.1111/imcb.12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
The development of dendritic cells (DCs) depends on signaling via the FMS-like tyrosine kinase 3 (Flt3) receptor. How Flt3 signaling impacts terminally differentiated DC function is unknown. This is important given the increasing interest in exploiting Flt3 for vaccination and tumor immunotherapy. Here, we examined DCs in mice harboring constitutively activated Flt3 (Flt3-ITD). Flt3ITD/ITD mice possessed expanded splenic DC subsets including plasmacytoid DC, conventional DC (cDC)1, cDC2, double positive (DP) cDC1 (CD11c+ CD8+ CD11b- CD103+ CD86+), noncanonical (NC) cDC1 (CD11c+ CD8+ CD11b- CD103- CD86-) and single positive (SP) cDC1 (CD11c+ CD8+ CD11b- CD103- CD86+). Outcomes of constitutive Flt3 signaling differed depending on the cDC subset examined. In comparison with wild type (WT) DCs, all Flt3ITD/ITD cDCs displayed an altered surface phenotype with changes in costimulatory molecules, major histocompatibility complex class I (MHC I) and II (MHC II). Cytokine secretion patterns, antigen uptake, antigen proteolysis and antigen presenting function differed between WT and Flt3ITD/ITD subsets, particularly cDC2. In summary, Flt3 signaling impacts the function of terminally differentiated cDCs with important consequences for antigen presentation.
Collapse
Affiliation(s)
- Kayla R Wilson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, VIC, Australia
| |
Collapse
|
11
|
Dabbaghipour R, Ahmadi E, Entezam M, Farzam OR, Sohrabi S, Jamali S, Sichani AS, Paydar H, Baradaran B. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 2024; 76:75-91. [PMID: 38358555 DOI: 10.1007/s00251-024-01335-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024]
Abstract
The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Jamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Saber Sichani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Hadi Paydar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Heras-Murillo I, Adán-Barrientos I, Galán M, Wculek SK, Sancho D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol 2024; 21:257-277. [PMID: 38326563 DOI: 10.1038/s41571-024-00859-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting innate immune cells that regulate adaptive immunity, including against cancer. Therefore, understanding the precise activities of DCs in tumours and patients with cancer is important. The classification of DC subsets has historically been based on ontogeny; however, single-cell analyses are now additionally revealing a diversity of functional states of DCs in cancer. DCs can promote the activation of potent antitumour T cells and immune responses via numerous mechanisms, although they can also be hijacked by tumour-mediated factors to contribute to immune tolerance and cancer progression. Consequently, DC activities are often key determinants of the efficacy of immunotherapies, including immune-checkpoint inhibitors. Potentiating the antitumour functions of DCs or using them as tools to orchestrate short-term and long-term anticancer immunity has immense but as-yet underexploited therapeutic potential. In this Review, we outline the nature and emerging complexity of DC states as well as their functions in regulating adaptive immunity across different cancer types. We also describe how DCs are required for the success of current immunotherapies and explore the inherent potential of targeting DCs for cancer therapy. We focus on novel insights on DCs derived from patients with different cancers, single-cell studies of DCs and their relevance to therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Adán-Barrientos
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Galán
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
13
|
Zhang L, Xu L. Role of Flt3l and Rps15 in ketamine anesthesia. Medicine (Baltimore) 2024; 103:e37123. [PMID: 38428846 PMCID: PMC10906617 DOI: 10.1097/md.0000000000037123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/09/2024] [Indexed: 03/03/2024] Open
Abstract
Ketamine is the only intravenous narcotic that has sedative, analgesic, and anesthetic effects. However, the role of Flt3l and ribosomal protein S15 (Rps15) in ketamine anesthesia remains unclear. GSE26364 and GSE93041 were downloaded from gene expression omnibus. Multiple datasets were merged and batched. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. Construction and analysis of protein-protein interaction network. Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome were performed. A heat map of gene expression was drawn. TargetScan was used to screen miRNAs regulating DEGs. 882 DEGs were identified. According to the GO analysis, these DEGs were mainly enriched in cell differentiation, extracellular region, and cytoplasm. The Kyoto Encyclopedia of Gene and Genome analysis revealed enrichment in pathways such as the PPAR signaling pathway, TNF signaling pathway, Hippo signaling pathway, and IL-17 signaling pathway. In the Metascape enrichment analysis, GO enrichment categories included leukocyte differentiation, negative regulation of CREB transcription factor activity, and positive regulation of cell cycle. The protein-protein interaction network showed 10 core genes (Rpl7, Rpl18, Rps15, Rpl7l1, Flt3l, Rps16, Eprs, Rps19, Rps28, Rplp2).Gene expression heatmap showed that core genes (Rplp2, Flt3l, Rps15) were highly expressed in samples treated with ketamine anesthesia. Flt3l and Rps15 are highly expressed during ketamine anesthesia, and may be molecular targets.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Anwai, Chaoyang District, Beijing, China
| | - Lingyan Xu
- Department of Disease Control and Prevention, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Anwai, Chaoyang District, Beijing, China
| |
Collapse
|
14
|
Baginska J, Nau A, Gomez Diaz I, Giobbie-Hurder A, Weirather J, Vergara J, Abrecht C, Hallisey M, Dennis J, Severgnini M, Huezo J, Marciello I, Rahma O, Manos M, Brohl AS, Bedard PL, Renouf DJ, Sharon E, Streicher H, Ott PA, Buchbinder EI, Hodi FS. Ziv-aflibercept plus pembrolizumab in patients with advanced melanoma resistant to anti-PD-1 treatment. Cancer Immunol Immunother 2024; 73:17. [PMID: 38236249 PMCID: PMC10796592 DOI: 10.1007/s00262-023-03593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Vascular endothelial growth factor is associated with reduced immune response and impaired anti-tumor activity. Combining antiangiogenic agents with immune checkpoint inhibition can overcome this immune suppression and enhance treatment efficacy. METHODS This study investigated the combination of ziv-aflibercept anti-angiogenic therapy with pembrolizumab in patients with advanced melanoma resistant to anti-PD-1 treatment. Baseline and on-treatment plasma and PBMC samples were analyzed by multiplex protein assay and mass cytometry, respectively. RESULTS In this Phase 1B study (NCT02298959), ten patients with advanced PD-1-resistant melanoma were treated with a combination of ziv-aflibercept (at 2-4 mg/kg) plus pembrolizumab (at 2 mg/kg), administered intravenously every 2 weeks. Two patients (20%) achieved a partial response, and two patients (20%) experienced stable disease (SD) as the best response. The two responders had mucosal melanoma, while both patients with SD had ocular melanoma. The combination therapy demonstrated clinical activity and acceptable safety, despite the occurrence of adverse events. Changes in plasma analytes such as platelet-derived growth factor and PD-L1 were explored, indicating potential alterations in myeloid cell function. Higher levels of circulating CXCL10 in non-responding patients may reflect pro-tumor activity. Specific subsets of γδ T cells were associated with poor clinical outcomes, suggesting impaired γδ T-cell function in non-responding patients. CONCLUSIONS Although limited by sample size and follow-up, these findings highlight the potential of the combination of ziv-aflibercept antiangiogenic therapy with pembrolizumab in patients with advanced melanoma resistant to anti-PD-1 treatment and the need for further research to improve outcomes in anti-PD-1-resistant melanoma. TRIAL REGISTRATION NUMBER NCT02298959.
Collapse
Affiliation(s)
- Joanna Baginska
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allison Nau
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ilana Gomez Diaz
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Jason Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juliana Vergara
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charlotte Abrecht
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Margaret Hallisey
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jenna Dennis
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mariano Severgnini
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Julia Huezo
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabella Marciello
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Osama Rahma
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Manos
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew S Brohl
- Sarcoma Department and Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Daniel J Renouf
- Cancer and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elad Sharon
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Patrick A Ott
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elizabeth I Buchbinder
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Luri-Rey C, Gomis G, Glez-Vaz J, Manzanal A, Martinez Riaño A, Rodriguez Ruiz ME, Teijeira A, Melero I. Cytotoxicity as a form of immunogenic cell death leading to efficient tumor antigen cross-priming. Immunol Rev 2024; 321:143-151. [PMID: 37822051 DOI: 10.1111/imr.13281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Antigen cross-priming of CD8+ T cells is a critical process necessary for the effective expansion and activation of CD8+ T cells endowed with the ability to recognize and destroy tumor cells. The cross-presentation of tumor antigens to cross-prime CD8+ T cells is mainly mediated, if not only, by a subset of professional antigen-presenting cells termed type-1 conventional dendritic cells (cDC1). The demise of malignant cells can be immunogenic if it occurs in the context of premortem stress. These ways of dying are termed immunogenic cell death (ICD) and are associated with biochemical features favoring cDC1 for the efficient cross-priming of tumor antigens. Immunosurveillance and the success of immunotherapies heavily rely on the ability of cytotoxic immune cells, primarily CD8+ T cells and NK cells, to detect and eliminate tumor cells through mechanisms collectively known as cytotoxicity. Recent studies have revealed the significance of NK- and CTL-mediated cytotoxicity as a prominent form of immunogenic cell death, resulting in mechanisms that promote and sustain antigen-specific immune responses. This review focuses on the mechanisms underlying the cross-presentation of antigens released during tumor cell killing by cytotoxic immune cells, with an emphasis on the role of cDC1 cells. Indeed, cDC1s are instrumental in the effectiveness of most immunotherapies, underscoring the significance of tumor antigen cross-priming in contexts of immunogenic cell death. The notion of the potent immunogenicity of cell death resulting from NK or cytotoxic T lymphocyte (CTL)-mediated cytotoxicity has far-reaching implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Almudena Manzanal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Ana Martinez Riaño
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Zhang XF, Zhang XL, Wang YJ, Fang Y, Li ML, Liu XY, Luo HY, Tian Y. The regulatory network of the chemokine CCL5 in colorectal cancer. Ann Med 2023; 55:2205168. [PMID: 37141250 PMCID: PMC10161960 DOI: 10.1080/07853890.2023.2205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The chemokine CCL5 plays a potential role in the occurrence and development of colorectal cancer (CRC). Previous studies have shown that CCL5 directly acts on tumor cells to change tumor metastatic rates. In addition, CCL5 recruits immune cells and immunosuppressive cells into the tumor microenvironment (TME) and reshapes the TME to adapt to tumor growth or increase antitumor immune efficacy, depending on the type of secretory cells releasing CCL5, the cellular function of CCL5 recruitment, and the underlying mechanisms. However, at present, research on the role played by CCL5 in the occurrence and development of CRC is still limited, and whether CCL5 promotes the occurrence and development of CRC and its role remain controversial. This paper discusses the cells recruited by CCL5 in patients with CRC and the specific mechanism of this recruitment, as well as recent clinical studies of CCL5 in patients with CRC.Key MessagesCCL5 plays dual roles in colorectal cancer progression.CCL5 remodels the tumor microenvironment to adapt to colorectal cancer tumor growth by recruiting immunosuppressive cells or by direct action.CCL5 inhibits colorectal cancer tumor growth by recruiting immune cells or by direct action.
Collapse
Affiliation(s)
- Xin-Feng Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiao-Li Zhang
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ya-Jing Wang
- Department of General Surgery, Third Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Fang
- Organ Transplant Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meng-Li Li
- Honghui Hospital affiliated to Yunnan University, Kunming, China
| | - Xing-Yu Liu
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua-You Luo
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Tian
- Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Li Y, Duan HY, Yang KD, Ye JF. Advancements and challenges in oncolytic virus therapy for gastrointestinal tumors. Biomed Pharmacother 2023; 168:115627. [PMID: 37812894 DOI: 10.1016/j.biopha.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Tumors of the gastrointestinal tract impose a substantial healthcare burden due to their prevalence and challenging prognosis. METHODS We conducted a review of peer-reviewed scientific literature using reputable databases (PubMed, Scopus, Web of Science) with a focus on oncolytic virus therapy within the context of gastrointestinal tumors. Our search covered the period up to the study's completion in June 2023. INCLUSION AND EXCLUSION CRITERIA This study includes articles from peer-reviewed scientific journals, written in English, that specifically address oncolytic virus therapy for gastrointestinal tumors, encompassing genetic engineering advances, combined therapeutic strategies, and safety and efficacy concerns. Excluded are articles not meeting these criteria or focusing on non-primary gastrointestinal metastatic tumors. RESULTS Our review revealed the remarkable specificity of oncolytic viruses in targeting tumor cells and their potential to enhance anti-tumor immune responses. However, challenges related to safety and efficacy persist, underscoring the need for ongoing research and improvement. CONCLUSION This study highlights the promising role of oncolytic virus therapy in enhancing gastrointestinal tumor treatments. Continued investigation and innovative combination therapies hold the key to reducing the burden of these tumors on patients and healthcare systems.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China; School of Nursing, Jilin University, Changchun, China
| | - Hao-Yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - Jun-Feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
18
|
Liu P, Zhao L, Kroemer G, Kepp O. Conventional type 1 dendritic cells (cDC1) in cancer immunity. Biol Direct 2023; 18:71. [PMID: 37907944 PMCID: PMC10619282 DOI: 10.1186/s13062-023-00430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer immunotherapy, alone or in combination with conventional therapies, has revolutionized the landscape of antineoplastic treatments, with dendritic cells (DC) emerging as key orchestrators of anti-tumor immune responses. Among the distinct DC subsets, conventional type 1 dendritic cells (cDC1) have gained prominence due to their unique ability to cross-present antigens and activate cytotoxic T lymphocytes. This review summarizes the distinctive characteristics of cDC1, their pivotal role in anticancer immunity, and the potential applications of cDC1-based strategies in immunotherapy.
Collapse
Affiliation(s)
- Peng Liu
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Liwei Zhao
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015, Paris, France.
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Inserm U1138, Institut Universitaire de France, Sorbonne Université, 75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800, Villejuif, France.
| |
Collapse
|
19
|
Ohara RA, Murphy KM. Recent progress in type 1 classical dendritic cell cross-presentation - cytosolic, vacuolar, or both? Curr Opin Immunol 2023; 83:102350. [PMID: 37276818 PMCID: PMC12013855 DOI: 10.1016/j.coi.2023.102350] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Type 1 classical dendritic cells (cDC1s) have emerged as the major antigen-presenting cell performing cross-presentation (XP) in vivo, but the antigen-processing pathway in this cell remains obscure. Two competing models for in vivo XP of cell-associated antigens by cDC1 include a vacuolar pathway and cytosolic pathway. A vacuolar pathway relies on directing antigens captured in vesicles toward a class I major histocompatibility complex loading compartment independently of cytosolic entry. Alternate proposals invoke phagosomal rupture, either constitutive or triggered by spleen tyrosine kinase (SYK) signaling in response to C-type lectin domain family 9 member A (CLEC9A) engagement, that releases antigens into the cytosol for proteasomal degradation. The Beige and Chediak-Higashi (BEACH) protein WD repeat- and FYVE domain-containing protein 4 (WDFY4) is strictly required for XP of cell-associated antigens in vivo. However, the cellular mechanism for WDFY4 activity remains unknown and its requirement in XP in vivo is currently indifferent regarding the vacuolar versus cytosolic pathways. Here, we review the current status of these models and discuss the need for future investigation.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Zhang S, Audiger C, Chopin M, Nutt SL. Transcriptional regulation of dendritic cell development and function. Front Immunol 2023; 14:1182553. [PMID: 37520521 PMCID: PMC10382230 DOI: 10.3389/fimmu.2023.1182553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Shengbo Zhang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Audiger
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
21
|
Macri C, Jenika D, Ouslinis C, Mintern JD. Targeting dendritic cells to advance cross-presentation and vaccination outcomes. Semin Immunol 2023; 68:101762. [PMID: 37167898 DOI: 10.1016/j.smim.2023.101762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Dendritic cells (DCs) are a complex network of specialised antigen-presenting cells that are critical initiators of adaptive immunity. Targeting antigen directly to DCs in situ is a vaccination strategy that selectively delivers antigen to receptors expressed by DC subtypes. This approach exploits specific DC subset functions of antigen uptake and presentation. Here, we review DC-targeted vaccination strategies that are designed to elicit effective cross-presentation for CD8+ T cell immunity. In particular, we focus on approaches that exploit receptors highly expressed by mouse and human cDCs equipped with superior cross-presentation capacity. These receptors include DEC205, Clec9A and XCR1. Targeting DC receptors Clec12A, Clec4A4 and mannose receptor is also reviewed. Outcomes of DC-targeted vaccination in mouse models through to human clinical trials is discussed. This is a promising new vaccination approach capable of directly targeting the cross-presentation pathway for prevention and treatment of tumours and infectious diseases.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Cassandra Ouslinis
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| |
Collapse
|
22
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:1111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Tsubame 959-1228, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
23
|
Ben Hamouda S, Essafi-Benkhadir K. Interplay between Signaling Pathways and Tumor Microenvironment Components: A Paradoxical Role in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065600. [PMID: 36982677 PMCID: PMC10057671 DOI: 10.3390/ijms24065600] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The study of the tumor microenvironment (TME) has become an important part of colorectal cancer (CRC) research. Indeed, it is now accepted that the invasive character of a primary CRC is determined not only by the genotype of the tumor cells, but also by their interactions with the extracellular environment, which thereby orchestrates the development of the tumor. In fact, the TME cells are a double-edged sword as they play both pro- and anti-tumor roles. The interaction of the tumor-infiltrating cells (TIC) with the cancer cells induces the polarization of the TIC, exhibiting an antagonist phenotype. This polarization is controlled by a plethora of interconnected pro- and anti-oncogenic signaling pathways. The complexity of this interaction and the dual function of these different actors contribute to the failure of CRC control. Thus, a better understanding of such mechanisms is of great interest and provides new opportunities for the development of personalized and efficient therapies for CRC. In this review, we summarize the signaling pathways linked to CRC and their implication in the development or inhibition of the tumor initiation and progression. In the second part, we enlist the major components of the TME and discuss the complexity of their cells functions.
Collapse
|
24
|
Ohara RA, Murphy KM. The evolving biology of cross-presentation. Semin Immunol 2023; 66:101711. [PMID: 36645993 PMCID: PMC10931539 DOI: 10.1016/j.smim.2023.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cross-priming was first recognized in the context of in vivo cytotoxic T lymphocyte (CTL) responses generated against minor histocompatibility antigens induced by immunization with lymphoid cells. Even though the basis for T cell antigen recognition was still largely unclear at that time, these early studies recognized the implication that such minor histocompatibility antigens were derived from the immunizing cells and were obtained exogenously by the host's antigen presenting cells (APCs) that directly prime the CTL response. As antigen recognition by the T cell receptor became understood to involve peptides derived from antigens processed by the APCs and presented by major histocompatibility molecules, the "cross-priming" phenomenon was subsequently recast as "cross-presentation" and the scope considered for examining this process gradually broadened to include many different forms of antigens, including soluble proteins, and different types of APCs that may not be involved in in vivo CTL priming. Many studies of cross-presentation have relied on in vitro cell models that were recently found to differ from in vivo APCs in particular mechanistic details. A recent trend has focused on the APCs and pathways of cross-presentation used in vivo, especially the type 1 dendritic cells. Current efforts are also being directed towards validating the in vivo role of various putative pathways and gene candidates in cross-presentation garnered from various in vitro studies and to determine the relative contributions they make to CTL responses across various forms of antigens and immunologic settings. Thus, cross-presentation appears to be carried by different pathways in various types of cells for different forms under different physiologic settings, which remain to be evaluated in an in vivo physiologic setting.
Collapse
Affiliation(s)
- Ray A Ohara
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Henry CM, Castellanos CA, Reis E Sousa C. DNGR-1-mediated cross-presentation of dead cell-associated antigens. Semin Immunol 2023; 66:101726. [PMID: 36758378 DOI: 10.1016/j.smim.2023.101726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Conventional dendritic cells type 1 (cDC1) are critical for inducing protective CD8+ T cell responses to tumour and viral antigens. In many instances, cDC1 access those antigens in the form of material internalised from dying tumour or virally-infected cells. How cDC1 extract dead cell-associated antigens and cross-present them in the form of peptides bound to MHC class I molecules to CD8+ T cells remains unclear. Here we review the biology of dendritic cell natural killer group receptor-1 (DNGR-1; also known as CLEC9A), a C-type lectin receptor highly expressed on cDC1 that plays a key role in this process. We highlight recent advances that support a function for DNGR-1 signalling in promoting inducible rupture of phagocytic or endocytic compartments containing dead cell debris, thereby making dead cell-associated antigens accessible to the endogenous MHC class I processing and presentation machinery of cDC1. We further review how DNGR-1 detects dead cells, as well as the functions of the receptor in anti-viral and anti-tumour immunity. Finally, we highlight how the study of DNGR-1 has opened new perspectives into cross-presentation, some of which may have applications in immunotherapy of cancer and vaccination against viral diseases.
Collapse
Affiliation(s)
- Conor M Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Carlos A Castellanos
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
26
|
Li Y, Lei Y, Sun J, Zhang W, Li X, Chen S, Kong D, Chen C, Bi K, Luo X, Wang H, Li B, Luo H, Xu Y. A promising research direction for colorectal cancer immunotherapy: The regulatory mechanism of CCL5 in colorectal cancer. Front Oncol 2022; 12:1020400. [PMID: 36387070 PMCID: PMC9664061 DOI: 10.3389/fonc.2022.1020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide, with high morbidity and mortality rates worldwide. Therefore, there is an urgent need to develop more effective treatments for CRC patients. In recent years, there has been some success in the immunotherapy of tumors, and immunotherapy has been used in many solid tumors including CRC. To date, the clinical efficacy of immunotherapy for CRC is limited, so more effective immunotherapy methods need to be explored. In patients with CRC, the CC chemokine CCL5 plays a role in the development of CRC and the recruitment and activation of immune cells, suggesting that it has potential for immunotherapy. This review mainly introduces the latest advances in the study of CCL5 acting as a marker of CRC and related mechanisms of immunotherapy, as well as the latest understanding of how CCL5 is involved in the invasion and development of CRC.
Collapse
Affiliation(s)
- Yuansen Li
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yi Lei
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaxue Sun
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Wanfu Zhang
- Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Xiaogang Li
- Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Sijing Chen
- Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Deshenyue Kong
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Cheng Chen
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ke Bi
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Xiao Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Hui Wang
- Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Bo Li
- Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
- *Correspondence: Yu Xu, ; Huayou Luo, ; Bo Li,
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- *Correspondence: Yu Xu, ; Huayou Luo, ; Bo Li,
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- *Correspondence: Yu Xu, ; Huayou Luo, ; Bo Li,
| |
Collapse
|
27
|
Currivan E, Finlay D, Moreira D. Dendritic cells metabolism: a strategic path to improve antitumoral DC vaccination. Clin Exp Immunol 2022; 208:193-201. [PMID: 35537194 PMCID: PMC9188343 DOI: 10.1093/cei/uxac048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
The critical role developed by dendritic cell (DC) in the orchestration of immune response explains its exploitation in different therapeutic approaches as potential vaccine tools. Various clinical trials dissect its role in different types of solid cancers. However, there is a lack of comprehension regarding the potential impact of DC metabolic pathways on the effectiveness of DC vaccine. In this review, we intend to dissect how metabolism could be a critical component of DC vaccine formulation, exploring opportunities to improve: (i) processing and cross-presentation of tumour antigens; (ii) DC migration, and (iii) DC immunogenic profile. Overall, we aim to open the discussion to explore new avenues/paths where DC metabolism might be considered a core component of antitumour DC vaccine with this review.
Collapse
Affiliation(s)
- Emma Currivan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - David Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Diana Moreira
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
28
|
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, orchestrating innate and adaptive immunity during infections, autoimmune diseases, and malignancies. Since the discovery of DCs almost 50 years ago, our understanding of their biology in humans has increased substantially. Here, we review both antitumor and tolerogenic DC responses in cancer and discuss lineage-specific contributions by their functionally specialized subsets, including the conventional DC (cDC) subsets cDC1 and cDC2, the newly described DC3, and the plasmacytoid DCs (pDCs), focusing on the human setting. In addition, we review the lineage-unrestricted "mature DCs enriched in immunoregulatory molecules" (mregDC) state recently described across different human tumors.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore.,Inserm U1015, Gustave Roussy, Villejuif 94800, France.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
29
|
Dalod M, Scheu S. Dendritic cell functions in vivo: a user's guide to current and next generation mutant mouse models. Eur J Immunol 2022; 52:1712-1749. [PMID: 35099816 DOI: 10.1002/eji.202149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) do not just excel in antigen presentation. They orchestrate information transfer from innate to adaptive immunity, by sensing and integrating a variety of danger signals, and translating them to naïve T cells, to mount specifically tailored immune responses. This is accomplished by distinct DC types specialized in different functions and because each DC is functionally plastic, assuming different activation states depending on the input signals received. Mouse models hold the key to untangle this complexity and determine which DC types and activation states contribute to which functions. Here, we aim to provide comprehensive information for selecting the most appropriate mutant mouse strains to address specific research questions on DCs, considering three in vivo experimental approaches: (i) interrogating the roles of DC types through their depletion; (ii) determining the underlying mechanisms by specific genetic manipulations; (iii) deciphering the spatiotemporal dynamics of DC responses. We summarize the advantages, caveats, suggested use and perspectives for a variety of mutant mouse strains, discussing in more detail the most widely used or accurate models. Finally, we discuss innovative strategies to improve targeting specificity, for the next generation mutant mouse models, and briefly address how humanized mouse models can accelerate translation into the clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc Dalod
- CNRS, Inserm, Aix Marseille Univ, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Marseille, France
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
30
|
Ramos RN, Couto SCF, Oliveira TGM, Klinger P, Braga TT, Rego EM, Barbuto JAM, Rocha V. Myeloid Immune Cells CARrying a New Weapon Against Cancer. Front Cell Dev Biol 2022; 9:784421. [PMID: 34977027 PMCID: PMC8716000 DOI: 10.3389/fcell.2021.784421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineering for T cells and natural killer cells (NK) are now under clinical evaluation for the treatment of hematologic cancers. Although encouraging clinical results have been reported for hematologic diseases, pre-clinical studies in solid tumors have failed to prove the same effectiveness. Thus, there is a growing interest of the scientific community to find other immune cell candidate to express CAR for the treatment of solid tumors and other diseases. Mononuclear phagocytes may be the most adapted group of cells with potential to overcome the dense barrier imposed by solid tumors. In addition, intrinsic features of these cells, such as migration, phagocytic capability, release of soluble factors and adaptive immunity activation, could be further explored along with gene therapy approaches. Here, we discuss the elements that constitute the tumor microenvironment, the features and advantages of these cell subtypes and the latest studies using CAR-myeloid immune cells in solid tumor models.
Collapse
Affiliation(s)
- Rodrigo Nalio Ramos
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
| | - Samuel Campanelli Freitas Couto
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
| | - Theo Gremen M Oliveira
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
| | - Paulo Klinger
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.,Graduate Program in Biosciences and Biotechnology, Instituto Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
| | - José Alexandre M Barbuto
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Departamento de Imunologia, Instituto de CienciasBiomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil.,Churchill Hospital, Department of Hematology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Zhang S, Chopin M, Nutt SL. Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol 2021; 42:1113-1127. [PMID: 34728143 DOI: 10.1016/j.it.2021.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are key immune sentinels that orchestrate protective immune responses against pathogens or cancers. DCs have evolved into multiple phenotypically, anatomically, and functionally distinct cell types. One of these DC types, Type 1 conventional DCs (cDC1s), are uniquely equipped to promote cytotoxic CD8+ T cell differentiation and, therefore, represent a promising target for harnessing antitumor immunity. Indeed, recent studies have highlighted the importance of cDC1s in tumor immunotherapy using immune checkpoint inhibitors. Here, we review the progress in defining the key developmental and functional attributes of cDC1s and the approaches to optimizing the potency of cDC1s for anticancer immunity.
Collapse
Affiliation(s)
- Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|