1
|
Abdo L, Batista-Silva LR, Bonamino MH. Cost-effective strategies for CAR-T cell therapy manufacturing. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200980. [PMID: 40291594 PMCID: PMC12022644 DOI: 10.1016/j.omton.2025.200980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
CAR-T cell therapy has revolutionized cancer treatment, with approvals for conditions like acute B-leukemia, large B cell lymphoma (LBCL), follicular lymphoma (FL), mantle cell lymphoma (MCL), and multiple myeloma. However, its high costs limit accessibility. Key factors driving these costs include the need for personalized, autologous treatments, transportation to specialized facilities, reliance on viral vectors requiring advanced laboratories, and lengthy cell expansion processes. To address these challenges, alternative strategies aim to simplify and reduce production complexity. Non-viral vectors, such as Sleeping Beauty, piggyBac, and CRISPR, delivered via nanoparticles or electroporation, present promising solutions. These methods could streamline manufacturing, eliminate the need for viral vectors, and reduce associated costs. Furthermore, shortening cell expansion periods and optimizing protocols could significantly accelerate production. An emerging approach involves using genetically edited T cells from healthy donors to create universal CAR-T products capable of treating multiple patients. Finally, decentralized point-of-care (POC) manufacturing of CAR-T cells minimize logistical expenses, eliminating the need for complex infrastructure, and enabling localized production closer to patients. This innovative strategy holds potential for broadening access and reducing costs, representing a step toward democratizing CAR-T therapy. Combined, these advances could make this groundbreaking treatment more feasible for healthcare systems worldwide.
Collapse
Affiliation(s)
- Luiza Abdo
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
| | - Leonardo Ribeiro Batista-Silva
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
| | - Martín Hernán Bonamino
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
2
|
Langa P, Sharma K, Sellers DL, Placencia V, Smith EA, Fick D, Wilson JR, Sa S, Ortega N, Yu L, Zhou Y, Núñez I, Wickrema A. Enrichment of CD4 + and CD8 + T lymphocytes with a column-free flow-based device for clinical cell manufacturing. Cytotherapy 2025; 27:534-543. [PMID: 39891633 DOI: 10.1016/j.jcyt.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 02/03/2025]
Abstract
In recent years, adoptive T cell-based immunotherapies have been developed to treat a wide range of hematologic malignancies, including relapsed or refractory non-Hodgkin lymphoma, B-cell leukemia, and multiple myeloma. Most of the commercially approved adoptive T cell therapies are composed of chimeric antigen receptor (CAR)-based T cells, which are a patient's own T cells engineered for recognition of a specific surface antigen, such as CD19 or CD20. Unselected peripheral blood mononuclear cells (PBMCs) have recently been used in several manufacturing protocols, but the vast majority of protocols still use CD4/CD8-selected T cells. The first step in manufacture of these CAR-T products involves simultaneous selection/purification of CD4+ and CD8+ (or CD4/CD8 positive) T cells. The typical approach for selection of CD4/CD8 subsets for clinical manufacturing involves immunomagnetic labeling followed by selection of positively labeled cells using static column-based approaches that are prone to cell clogging events and typically take approximately 2 to 3 hours in a closed system. Here, we used a new column-free, flow-based, fully closed system suitable for clinical cell manufacturing for isolation of CD4/CD8 cells with high purity in a rapid fashion that could accommodate varying capacities without compromising cell recovery. This new approach allows markedly faster cell selection, preserving the quality of the cells that are used for downstream CAR-T cell manufacture. We report the results of our successful validation runs using the new MARS Bar enrichment platform using human apheresis-derived leukocytes for CD4/CD8 isolation in a selection buffer or directly in T cell culture media for subsequent CAR-T cell production. Our data show a rapid and robust CD4/CD8 enrichment with an enrichment time shortened to 1 hour or less. Overall purity (based on CD3+ expression) of the cells was 95.51 ± 1.23% and 93.13 ± 0.30% for fresh and thawed T cells, respectively. Cell recoveries were 64.68 ± 14.05% and 57.06 ± 6.28% for fresh and thawed cells, respectively. We then further tested the MARS Bar enrichment platform after cell wash/volume reduction using the LOVO Automated Cell Processing System, leading to a higher consistency in CD3+ purity and increased cell recovery of 68.50 ± 3.54%. Enriched cells were characterized by high viability, ie. 90.5 ± 0.05% for fresh leukopaks when used together with the LOVO device. Altogether, the new approach using the MARS Bar platform allows one to customize and standardize the selection process by using a stand-alone instrument in a clinical manufacturing setting together with cGMP grade reagents and buffers.
Collapse
Affiliation(s)
- Paulina Langa
- Advanced Cellular Therapeutics Facility (ACTF), University of Chicago Medical Center, Chicago, Illinois, USA.
| | - Kriti Sharma
- Advanced Cellular Therapeutics Facility (ACTF), University of Chicago Medical Center, Chicago, Illinois, USA
| | - David L Sellers
- Advanced Cellular Therapeutics Facility (ACTF), University of Chicago Medical Center, Chicago, Illinois, USA
| | - Veronica Placencia
- Advanced Cellular Therapeutics Facility (ACTF), University of Chicago Medical Center, Chicago, Illinois, USA
| | | | - Dan Fick
- CellReady LLC, Houston, Texas, USA
| | | | - Silin Sa
- Applied Cells Inc., Santa Clara, California, USA
| | | | - Liping Yu
- Applied Cells Inc., Santa Clara, California, USA
| | - Yuchen Zhou
- Applied Cells Inc., Santa Clara, California, USA
| | | | - Amittha Wickrema
- Advanced Cellular Therapeutics Facility (ACTF), University of Chicago Medical Center, Chicago, Illinois, USA; Department of Medicine, Section of Hematology/Oncology, Chicago, Illinois, USA.
| |
Collapse
|
3
|
Szarzynski A, Spadiut O, Reisbeck M, Jobst G, Paterson RL, Kamenskaya A, Gateau E, Lesch HP, Henry L, Kozma B. CGT 4.0: a distant dream or inevitable future? Smart process automation is critical to make efficient scalability of CGT manufacturing a reality. Front Bioeng Biotechnol 2025; 13:1563878. [PMID: 40177621 PMCID: PMC11962537 DOI: 10.3389/fbioe.2025.1563878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- Aleksander Szarzynski
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Oliver Spadiut
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | | | | | - Rachel L. Paterson
- Stemmatters Biotecnologia e Medicina Regenerativa SA, Guimarães, Portugal
| | | | | | | | | | - Bence Kozma
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
4
|
Capolla S, Rasool M, Toffoli G, Dal Bo M. CAR-T Cell Manufacturing for Hematological and Solid Tumors: From the Preclinical to Clinical Point of View. Cancer Med 2025; 14:e70726. [PMID: 40013750 PMCID: PMC11866474 DOI: 10.1002/cam4.70726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Cell therapy based on chimeric antigen receptor (CAR) T cells has represented a revolutionary new approach for treating tumors, especially hematological diseases. Complete remission rates (CRR) > 80%-97% and 50%-90% overall response rates (ORR) have been achieved with a treatment based on CAR-T cells in patients with malignant B-cell tumors that have relapsed or are refractory to previous treatments. Toxicity remains the major problem. Most patients treated with CAR-T cells develop high-grade cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). However, the unprecedentedly high CRR and ORR have led to the approval of six CAR-T cell therapeutics by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), prompting researchers to improve existing products and develop new ones. By now, around 1000 clinical trials based on CAR-T cells are registered at ClinicalTrials.gov: 82% are for hematological diseases, while the remaining 16% are for solid tumors. As a result of this increased research, an enormous amount of conflicting information has been accumulated in the literature, and each group follows its manufacturing protocols and performs specific in vitro testing. This review aimed to combine and compare clinical and preclinical information, highlighting the most used protocols to provide a comprehensive overview of the in vitro world of CAR-T cells, from manufacturing to their characterization. The focus is on all steps of the CAR-T cell manufacturing process, from the collection of patient or donor blood to the enrichment of T cells, their activation with anti-CD3/CD28 beads, interleukin-2 (IL-2) or IL-7 and IL-15 (induction of a more functional memory phenotype), and their transfection (viral or non-viral methods). Automation is crucial for ensuring a standardized final product.
Collapse
Affiliation(s)
- Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di AvianoIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS)AvianoItaly
| | - Maria Rasool
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di AvianoIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS)AvianoItaly
- Doctoral School in Pharmacological SciencesUniversity of PaduaPadovaItaly
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di AvianoIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS)AvianoItaly
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO) di AvianoIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS)AvianoItaly
| |
Collapse
|
5
|
Gehrke L, Gonçalves VDR, Andrae D, Rasko T, Ho P, Einsele H, Hudecek M, Friedel SR. Current Non-Viral-Based Strategies to Manufacture CAR-T Cells. Int J Mol Sci 2024; 25:13685. [PMID: 39769449 PMCID: PMC11728233 DOI: 10.3390/ijms252413685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The successful application of CAR-T cells in the treatment of hematologic malignancies has fundamentally changed cancer therapy. With increasing numbers of registered CAR-T cell clinical trials, efforts are being made to streamline and reduce the costs of CAR-T cell manufacturing while improving their safety. To date, all approved CAR-T cell products have relied on viral-based gene delivery and genomic integration methods. While viral vectors offer high transfection efficiencies, concerns regarding potential malignant transformation coupled with costly and time-consuming vector manufacturing are constant drivers in the search for cheaper, easier-to-use, safer, and more efficient alternatives. In this review, we examine different non-viral gene transfer methods as alternatives for CAR-T cell production, their advantages and disadvantages, and examples of their applications. Transposon-based gene transfer methods lead to stable but non-targeted gene integration, are easy to handle, and achieve high gene transfer rates. Programmable endonucleases allow targeted integration, reducing the potential risk of integration-mediated malignant transformation of CAR-T cells. Non-integrating CAR-encoding vectors avoid this risk completely and achieve only transient CAR expression. With these promising alternative techniques for gene transfer, all avenues are open to fully exploiting the potential of next-generation CAR-T cell therapy and applying it in a wide range of applications.
Collapse
Affiliation(s)
- Leon Gehrke
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Vasco Dos Reis Gonçalves
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Dominik Andrae
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Tamas Rasko
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Patrick Ho
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, 97070 Würzburg, Germany
| | - Sabrina R. Friedel
- Medizinische Klinik und Poliklinik II und Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Webber BR, Johnson MJ, Skeate JG, Slipek NJ, Lahr WS, DeFeo AP, Mills LJ, Qiu X, Rathmann B, Diers MD, Wick B, Henley T, Choudhry M, Starr TK, McIvor RS, Moriarity BS. Cas9-induced targeted integration of large DNA payloads in primary human T cells via homology-mediated end-joining DNA repair. Nat Biomed Eng 2024; 8:1553-1570. [PMID: 38092857 PMCID: PMC11169092 DOI: 10.1038/s41551-023-01157-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/02/2023] [Indexed: 01/12/2024]
Abstract
The reliance on viral vectors for the production of genetically engineered immune cells for adoptive cellular therapies remains a translational bottleneck. Here we report a method leveraging the DNA repair pathway homology-mediated end joining, as well as optimized reagent composition and delivery, for the Cas9-induced targeted integration of large DNA payloads into primary human T cells with low toxicity and at efficiencies nearing those of viral vectors (targeted knock-in of 1-6.7 kb payloads at rates of up to 70% at multiple targeted genomic loci and with cell viabilities of over 80%). We used the method to produce T cells with an engineered T-cell receptor or a chimaeric antigen receptor and show that the cells maintained low levels of exhaustion markers and excellent capacities for proliferation and cytokine production and that they elicited potent antitumour cytotoxicity in vitro and in mice. The method is readily adaptable to current good manufacturing practices and scale-up processes, and hence may be used as an alternative to viral vectors for the production of genetically engineered T cells for cancer immunotherapies.
Collapse
Affiliation(s)
- Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Anthony P DeFeo
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Lauren J Mills
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaohong Qiu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Blaine Rathmann
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Miechaleen D Diers
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bryce Wick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Department of Ob-Gyn and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - R Scott McIvor
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Srivastava S, Singh S, Singh A. Augmenting the landscape of chimeric antigen receptor T-cell therapy. Expert Rev Anticancer Ther 2024; 24:755-773. [PMID: 38912754 DOI: 10.1080/14737140.2024.2372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The inception of recombinant DNA technology and live cell genomic alteration have paved the path for the excellence of cell and gene therapies and often provided the first curative treatment for many indications. The approval of the first Chimeric Antigen Receptor (CAR) T-cell therapy was one of the breakthrough innovations that became the headline in 2017. Currently, the therapy is primarily restricted to a few nations, and the market is growing at a CAGR (current annual growth rate) of 11.6% (2022-2032), as opposed to the established bio-therapeutic market at a CAGR of 15.9% (2023-2030). The limited technology democratization is attributed to its autologous nature, lack of awareness, therapy inclusion criteria, high infrastructure cost, trained personnel, complex manufacturing processes, regulatory challenges, recurrence of the disease, and long-term follow-ups. AREAS COVERED This review discusses the vision and strategies focusing on the CAR T-cell therapy democratization with mitigation plans. Further, it also covers the strategies to leverage the mRNA-based CAR T platform for building an ecosystem to ensure availability, accessibility, and affordability to the community. EXPERT OPINION mRNA-guided CAR T cell therapy is a rapidly growing area wherein a collaborative approach among the stakeholders is needed for its success.
Collapse
Affiliation(s)
| | - Sanjay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| | - Ajay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| |
Collapse
|
8
|
Yonezawa Ogusuku IE, Herbel V, Lennartz S, Brandes C, Argiro E, Fabian C, Hauck C, Hoogstraten C, Veld S, Hageman L, Teppert K, Koutsoumpli G, Griffioen M, Mockel-Tenbrinck N, Schaser T, de Groot R, Johnston IC, Lock D. Automated manufacture of ΔNPM1 TCR-engineered T cells for AML therapy. Mol Ther Methods Clin Dev 2024; 32:101224. [PMID: 38516690 PMCID: PMC10950868 DOI: 10.1016/j.omtm.2024.101224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy that requires further therapeutic improvement, especially for the elderly and for subgroups with poor prognosis. A recently discovered T cell receptor (TCR) targeting mutant nucleophosmin 1 (ΔNPM1) presents an attractive option for the development of a cancer antigen-targeted cellular therapy. Manufacturing of TCR-modified T cells, however, is still limited by a complex, time-consuming, and laborious procedure. Therefore, this study specifically addressed the requirements for a scaled manufacture of ΔNPM1-specific T cells in an automated, closed, and good manufacturing practice-compliant process. Starting from cryopreserved leukapheresis, 2E8 CD8-positive T cells were enriched, activated, lentivirally transduced, expanded, and finally formulated. By adjusting and optimizing culture conditions, we additionally reduced the manufacturing time from 12 to 8 days while still achieving a clinically relevant yield of up to 5.5E9 ΔNPM1 TCR-engineered T cells. The cellular product mainly consisted of highly viable CD8-positive T cells with an early memory phenotype. ΔNPM1 TCR CD8 T cells manufactured with the optimized process showed specific killing of AML in vitro and in vivo. The process has been implemented in an upcoming phase 1/2 clinical trial for the treatment of NPM1-mutated AML.
Collapse
Affiliation(s)
| | - Vera Herbel
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Simon Lennartz
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | - Eva Argiro
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Caroline Fabian
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Carola Hauck
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Conny Hoogstraten
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Sabrina Veld
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Karin Teppert
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Georgia Koutsoumpli
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Rosa de Groot
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Dominik Lock
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| |
Collapse
|
9
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
10
|
Hu D, Yang R, Wang G, Li H, Fan X, Liang G. Emerging Strategies to Overcome Current CAR-T Therapy Dilemmas - Exosomes Derived from CAR-T Cells. Int J Nanomedicine 2024; 19:2773-2791. [PMID: 38525009 PMCID: PMC10959326 DOI: 10.2147/ijn.s445101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Adoptive T cells immunotherapy, specifically chimeric antigen receptor T cells (CAR-T), has shown promising therapeutic efficacy in the treatment of hematologic malignancies. As extensive research on CAR-T therapies has been conducted, various challenges have emerged that significantly hampered their clinical application, including tumor recurrence, CAR-T cell exhaustion, and cytokine release syndrome (CRS). To overcome the hurdles of CAR-T therapy in clinical treatment, cell-free emerging therapies based on exosomes derived from CAR-T cells have been developed as an effective and promising alternative approach. In this review, we present CAR-T cell-based therapies for the treatment of tumors, including the features and benefits of CAR-T therapies, the limitations that exist in this field, and the measures taken to overcome them. Furthermore, we discuss the notable benefits of utilizing exosomes released from CAR-T cells in tumor treatment and anticipate potential issues in clinical trials. Lastly, drawing from previous research on exosomes from CAR-T cells and the characteristics of exosomes, we propose strategies to overcome these restrictions. Additionally, the review discusses the plight in large-scale preparation of exosome and provides potential solutions for future clinical applications.
Collapse
Affiliation(s)
- Dong Hu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Ruyue Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Guidan Wang
- School of Medical Technology and Engineering, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Hao Li
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Xulong Fan
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, People’s Republic of China
| |
Collapse
|
11
|
Scheller L, Tebuka E, Rambau PF, Einsele H, Hudecek M, Prommersberger SR, Danhof S. BCMA CAR-T cells in multiple myeloma-ready for take-off? Leuk Lymphoma 2024; 65:143-157. [PMID: 37997705 DOI: 10.1080/10428194.2023.2276676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Although the approval of new drugs has improved the clinical outcome of multiple myeloma (MM), it was widely regarded as incurable over the past decades. However, recent advancements in groundbreaking immunotherapies, such as chimeric antigen receptor T cells (CAR-T), have yielded remarkable results in heavily pretreated relapse/refractory patients, instilling hope for a potential cure. CAR-T are genetically modified cells armed with a novel receptor to specifically recognize and kill tumor cells. Among the potential targets for MM, the B-cell maturation antigen (BCMA) stands out since it is highly and almost exclusively expressed on plasma cells. Here, we review the currently approved BCMA-directed CAR-T products and ongoing clinical trials in MM. Furthermore, we explore innovative approaches to enhance BCMA-directed CAR-T and overcome potential reasons for treatment failure. Additionally, we explore the side effects associated with these novel therapies and shed light on accessibility of CAR-T therapy around the world.
Collapse
Affiliation(s)
- Lukas Scheller
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Interdisziplinäres Zentrum für Klinische Forschung (IZKF), Universitätsklinikum Würzburg, Würzburg, Germany
| | - Erius Tebuka
- Department of Pathology, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
- Else-Kröner-Center Würzburg-Mwanza, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Peter Fabian Rambau
- Department of Pathology, Catholic University of Health and Allied Sciences (CUHAS), Mwanza, Tanzania
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Sabrina Rebecca Prommersberger
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Medizinische Klinik und Poliklinik II und Lehrstuhl für zelluläre Immuntherapie, Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Strzelec A, Helbig G. Are we ready for personalized CAR-T therapy? Eur J Haematol 2024; 112:174-183. [PMID: 37431655 DOI: 10.1111/ejh.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
The future of chimeric antigen receptor T (CAR-T) therapy remains unclear. New studies are constantly being published confirming the efficacy and favorable safety profile of its innovative enhancements. Currently approved CAR-T drugs are manufactured exclusively for a specific patient from the recipient's own cells. This does not close the door to further modifications with subsequent personalization and better adaptation to the individual needs. Bringing such a drug to market would involve raising the already high costs, so it is necessary to lower the existing ones. On the other hand, so-called universal CAR-T are also getting closer to the patient's bed, but its implementation may struggle with multiple challenges, including development of graft-versus-host disease (GvHD) and alloimmunity. However, that off-the-shelf therapy could prove useful as a quick solution for patients in very poor condition or excluded from current therapy due to manufacturing limitations. The introduction of currently tested solutions may undoubtedly change the current paradigm of treatment.
Collapse
Affiliation(s)
- Anna Strzelec
- Department of Hematology and Bone Marrow Transplantation, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Helbig
- Department of Hematology and Bone Marrow Transplantation, Faculty of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
13
|
Gokemeijer J, Balasubramanian N, Ogasawara K, Grudzinska-Goebel J, Upreti VV, Mody H, Kasar S, Vepachedu VR, Xu W, Gupta S, Tarcsa E, Dodge R, Herr K, Yang TY, Tourdot S, Jawa V. An IQ Consortium Perspective on Best Practices for Bioanalytical and Immunogenicity Assessment Aspects of CAR-T and TCR-T Cellular Therapies Development. Clin Pharmacol Ther 2024; 115:188-200. [PMID: 37983584 DOI: 10.1002/cpt.3111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023]
Abstract
CAR-T therapies have shown remarkable efficacy against hematological malignancies in the clinic over the last decade and new studies indicate that progress is being made to use these novel therapies to target solid tumors as well as treat autoimmune disease. Innovation in the field, including TCR-T, allogeneic or "off the shelf" CAR-T, and autoantigen/armored CAR-Ts are likely to increase the efficacy and applications of these therapies. The unique aspects of these cell-based therapeutics; patient-derived cells, intracellular expression, in vivo expansion, and phenotypic changes provide unique bioanalytical challenges to develop pharmacokinetic and immunogenicity assessments. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) Translational and ADME Sciences Leadership Group (TALG) has brought together a group of industry experts to discuss and consider these challenges. In this white paper, we present the IQ consortium perspective on the best practices and considerations for bioanalytical and immunogenicity aspects toward the optimal development of CAR-T and TCR-T cell therapies.
Collapse
Affiliation(s)
- Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol Myers Squibb, Cambridge, Massachusetts, USA
| | - Nanda Balasubramanian
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | - Ken Ogasawara
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| | | | - Vijay V Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen, Inc., South San Francisco, California, USA
| | - Hardik Mody
- Clinical Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Siddha Kasar
- Oncology Precision & Translational Medicine, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Venkata R Vepachedu
- Bioanalytical Discovery & Development Sciences, Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Weifeng Xu
- Preclinical Development, Bioanalytical, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Swati Gupta
- Development Biological Sciences, Immunology, AbbVie, Irvine, California, USA
| | - Edit Tarcsa
- Abbvie Bioresearch Center, Worcester, Massachusetts, USA
| | - Robert Dodge
- Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, New Jersey, USA
| | - Kate Herr
- Bioanalytical Discovery & Development Sciences, Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Tong-Yuan Yang
- Bioanalytical Discovery & Development Sciences, Johnson & Johnson Innovative Medicine, Spring House, Pennsylvania, USA
| | - Sophie Tourdot
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, USA
| | - Vibha Jawa
- Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey, USA
| |
Collapse
|
14
|
Francis N, Braun M, Neagle S, Peiffer S, Bohn A, Rosenthal A, Olbrich T, Lollies S, Ilsmann K, Hauck C, Gerstmayer B, Weber S, Kirkpatrick A. Development of an automated manufacturing process for large-scale production of autologous T cell therapies. Mol Ther Methods Clin Dev 2023; 31:101114. [PMID: 37790245 PMCID: PMC10544074 DOI: 10.1016/j.omtm.2023.101114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Engineered T cell therapies have shown significant clinical success. However, current manufacturing capabilities present a challenge in bringing these therapies to patients. Furthermore, the cost of development and manufacturing is still extremely high due to complexity of the manufacturing process. Increased automation can improve quality and reproducibility while reducing costs through minimizing hands-on operator time, allowing parallel manufacture of multiple products, and reducing the complexity of technology transfer. In this article, we describe the results of a strategic alliance between GSK and Miltenyi Biotec to develop a closed, automated manufacturing process using the CliniMACS Prodigy for autologous T cell therapy products that can deliver a high number of cells suitable for treating solid tumor indications and compatible with cryopreserved apheresis and drug product. We demonstrate the ability of the T cell Transduction - Large Scale process to deliver a significantly higher cell number than the existing process, achieving 1.5 × 1010 cells after 12 days of expansion, without affecting other product attributes. We demonstrate successful technology transfer of this robust process into three manufacturing facilities.
Collapse
Affiliation(s)
- Natalie Francis
- Cell & Gene Therapy, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Marion Braun
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Sarah Neagle
- Cell & Gene Therapy, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Sabine Peiffer
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Alexander Bohn
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Alexander Rosenthal
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Tanita Olbrich
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Sophia Lollies
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Keijo Ilsmann
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Carola Hauck
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Bernhard Gerstmayer
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Silvio Weber
- Cellular Therapy, Industrial Workflow Development, Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Str. 68, 51429 Bergisch Gladbach, Germany
| | - Aileen Kirkpatrick
- Cell & Gene Therapy, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
15
|
Elsallab M, Maus MV. Expanding access to CAR T cell therapies through local manufacturing. Nat Biotechnol 2023; 41:1698-1708. [PMID: 37884746 DOI: 10.1038/s41587-023-01981-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/05/2023] [Indexed: 10/28/2023]
Abstract
Chimeric antigen receptor (CAR) T cells are changing the therapeutic landscape for hematological malignancies. To date, all six CAR T cell products approved by the US Food and Drug Administration (FDA) are autologous and centrally manufactured. As the numbers of approved products and indications continue to grow, new strategies to increase cell-manufacturing capacity are urgently needed to ensure patient access. Distributed manufacturing at the point of care or at other local manufacturing sites would go a long way toward meeting the rising demand. To ensure successful implementation, it is imperative to harness novel technologies to achieve uniform product quality across geographically dispersed facilities. This includes the use of automated cell-production systems, in-line sensors and process simulation for enhanced quality control and efficient supply chain management. A comprehensive effort to understand the critical quality attributes of CAR T cells would enable better definition of widely attainable release criteria. To supplement oversight by national regulatory agencies, we recommend expansion of the role of accreditation bodies. Moreover, regulatory standards may need to be amended to accommodate the unique characteristics of distributed manufacturing models.
Collapse
Affiliation(s)
- Magdi Elsallab
- Harvard-MIT Center for Regulatory Science, Harvard Medical School, Boston, MA, USA
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
von Auw N, Serfling R, Kitte R, Hilger N, Zhang C, Gebhardt C, Duenkel A, Franz P, Koehl U, Fricke S, Tretbar US. Comparison of two lab-scale protocols for enhanced mRNA-based CAR-T cell generation and functionality. Sci Rep 2023; 13:18160. [PMID: 37875523 PMCID: PMC10598065 DOI: 10.1038/s41598-023-45197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Process development for transferring lab-scale research workflows to automated manufacturing procedures is critical for chimeric antigen receptor (CAR)-T cell therapies. Therefore, the key factor for cell viability, expansion, modification, and functionality is the optimal combination of medium and T cell activator as well as their regulatory compliance for later manufacturing under Good Manufacturing Practice (GMP). In this study, we compared two protocols for CAR-mRNA-modified T cell generation using our current lab-scale process, analyzed all mentioned parameters, and evaluated the protocols' potential for upscaling and process development of mRNA-based CAR-T cell therapies.
Collapse
Affiliation(s)
- Nadine von Auw
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
| | - Robert Serfling
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
| | - Reni Kitte
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
| | - Nadja Hilger
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
| | | | - Clara Gebhardt
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
| | - Anna Duenkel
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
| | - Paul Franz
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
- Medical Faculty, Institute for Clinical Immunology, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany
| | - Stephan Fricke
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Leipzig, Germany
| | - U Sandy Tretbar
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103, Leipzig, Germany.
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Leipzig, Germany.
| |
Collapse
|
17
|
Śledź M, Wojciechowska A, Zagożdżon R, Kaleta B. In Situ Programming of CAR-T Cells: A Pressing Need in Modern Immunotherapy. Arch Immunol Ther Exp (Warsz) 2023; 71:18. [PMID: 37419996 PMCID: PMC10329070 DOI: 10.1007/s00005-023-00683-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Chimeric antigen receptor-T (CAR-T) cell-based therapy has become a successful option for treatment of numerous hematological malignancies, but also raises hope in a range of non-malignant diseases. However, in a traditional approach, generation of CAR-T cells is associated with the separation of patient's lymphocytes, their in vitro modification, and expansion and infusion back into patient's bloodstream. This classical protocol is complex, time-consuming, and expensive. Those problems could be solved by successful protocols to produce CAR-T cells, but also CAR-natural killer cells or CAR macrophages, in situ, using viral platforms or non-viral delivery systems. Moreover, it was demonstrated that in situ CAR-T induction may be associated with reduced risk of the most common toxicities associated with CAR-T therapy, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and "on-target, off-tumor" toxicity. This review aims to summarize the current state-of-the-art and future perspectives for the in situ-produced CAR-T cells. Indeed, preclinical work in this area, including animal studies, raises hope for prospective translational development and validation in practical medicine of strategies for in situ generation of CAR-bearing immune effector cells.
Collapse
Affiliation(s)
- Marta Śledź
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
18
|
Li R, Cao L. The role of tumor-infiltrating lymphocytes in triple-negative breast cancer and the research progress of adoptive cell therapy. Front Immunol 2023; 14:1194020. [PMID: 37275874 PMCID: PMC10233026 DOI: 10.3389/fimmu.2023.1194020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The treatment outcome of breast cancer is closely related to estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Triple-negative breast cancer (TNBC) lacking ER, PR, and HER2 expression has limited treatment options and a poor prognosis. Tumor-infiltrating lymphocytes (TILs) play a role in promoting or resisting tumors by affecting the tumor microenvironment and are known as key regulators in breast cancer progression. However, treatments for TNBC (e.g., surgery, chemotherapy and radiotherapy) have non-satisfaction's curative effect so far. This article reviews the role of different types of TILs in TNBC and the research progress of adoptive cell therapy, aiming to provide new therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Ruonan Li
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Lili Cao
- Oncology Department, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine and Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
19
|
Zhang X, Zhang H, Lan H, Wu J, Xiao Y. CAR-T cell therapy in multiple myeloma: Current limitations and potential strategies. Front Immunol 2023; 14:1101495. [PMID: 36891310 PMCID: PMC9986336 DOI: 10.3389/fimmu.2023.1101495] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Over the last decade, the survival outcome of patients with multiple myeloma (MM) has been substantially improved with the emergence of novel therapeutic agents, such as proteasome inhibitors, immunomodulatory drugs, anti-CD38 monoclonal antibodies, selective inhibitors of nuclear export (SINEs), and T cell redirecting bispecific antibodies. However, MM remains an incurable neoplastic plasma cell disorder, and almost all MM patients inevitably relapse due to drug resistance. Encouragingly, B cell maturation antigen (BCMA)-targeted chimeric antigen receptor T (CAR-T) cell therapy has achieved impressive success in the treatment of relapsed/refractory (R/R) MM and brought new hopes for R/R MM patients in recent years. Due to antigen escape, the poor persistence of CAR-T cells, and the complicated tumor microenvironment, a significant population of MM patients still experience relapse after anti-BCMA CAR-T cell therapy. Additionally, the high manufacturing costs and time-consuming manufacturing processes caused by the personalized manufacturing procedures also limit the broad clinical application of CAR-T cell therapy. Therefore, in this review, we discuss current limitations of CAR-T cell therapy in MM, such as the resistance to CAR-T cell therapy and the limited accessibility of CAR-T cell therapy, and summarize some optimization strategies to overcome these challenges, including optimizing CAR structure, such as utilizing dual-targeted/multi-targeted CAR-T cells and armored CAR-T cells, optimizing manufacturing processes, combing CAR-T cell therapy with existing or emerging therapeutic approaches, and performing subsequent anti-myeloma therapy after CAR-T cell therapy as salvage therapy or maintenance/consolidation therapy.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Zhang
- School of Medicine, Jishou University, Jishou, China
| | - Huixuan Lan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinming Wu
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
20
|
Hiltensperger M, Krackhardt AM. Current and future concepts for the generation and application of genetically engineered CAR-T and TCR-T cells. Front Immunol 2023; 14:1121030. [PMID: 36949949 PMCID: PMC10025359 DOI: 10.3389/fimmu.2023.1121030] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Adoptive cell therapy (ACT) has seen a steep rise of new therapeutic approaches in its immune-oncology pipeline over the last years. This is in great part due to the recent approvals of chimeric antigen receptor (CAR)-T cell therapies and their remarkable efficacy in certain soluble tumors. A big focus of ACT lies on T cells and how to genetically modify them to target and kill tumor cells. Genetically modified T cells that are currently utilized are either equipped with an engineered CAR or a T cell receptor (TCR) for this purpose. Both strategies have their advantages and limitations. While CAR-T cell therapies are already used in the clinic, these therapies face challenges when it comes to the treatment of solid tumors. New designs of next-generation CAR-T cells might be able to overcome these hurdles. Moreover, CARs are restricted to surface antigens. Genetically engineered TCR-T cells targeting intracellular antigens might provide necessary qualities for the treatment of solid tumors. In this review, we will summarize the major advancements of the CAR-T and TCR-T cell technology. Moreover, we will cover ongoing clinical trials, discuss current challenges, and provide an assessment of future directions within the field.
Collapse
Affiliation(s)
- Michael Hiltensperger
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Michael Hiltensperger, ; Angela M. Krackhardt,
| | - Angela M. Krackhardt
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- *Correspondence: Michael Hiltensperger, ; Angela M. Krackhardt,
| |
Collapse
|