1
|
Morison LD, Vogel AP, Christodoulou J, Gold WA, Verden D, Chung WK, Braden R, Bredebusch J, Kaur S, Scheffer IE, Morgan AT. Understanding speech and language in KIF1A-associated neurological disorder. Eur J Hum Genet 2025:10.1038/s41431-025-01867-0. [PMID: 40379967 DOI: 10.1038/s41431-025-01867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
KIF1A-associated neurological disorder (KAND) is a genetic condition characterised by motor, cognitive and ophthalmologic features. The speech and language phenotype have not been systematically analysed. Here, we assess speech and language using observer- and clinician-reported outcomes, and performance outcome measures. 44 individuals (25 female) with KAND (median age 7 years, range 1-60 years) participated. Median age at diagnosis was 4 years (range 0.5-58 years). KIF1A variants were missense (41/44 individuals, 93%), intragenic deletion (2/44, 5%) and splice site (1/44, 2%). Age at first words was delayed (>12 months) in 38/44 (86%) individuals. At assessment, 28/44 (64%) combined words into sentences and all of the 20 individuals assessed had dysarthria. Apraxic speech features and phonological impairments occurred in children aged under 8 years. 36/37 (97%) participants had language impairment, with expressive language skills stronger than receptive (p = 0.02) and written (p = 0.03) language on the Vineland Adaptive Behaviour Scales. 7/32 (22%) caregivers reported speech and language regression. Mild to severe intellectual disability occurred in 31/33 (94%) individuals. 22/44 (50%) participants had used augmentative and alternative communication, such as key word sign or speech generating devices. Individuals had average social motivation skills in contrast to moderately impaired social cognition, communication and awareness on the Social Responsiveness Scale (p < 0.05). 16/44 (36%) had epilepsy and 40/44 (91%) had visual impairment, namely nystagmus (16/44, 36%), optic nerve atrophy and strabismus (both 12/44, 27%). Individuals with KAND frequently have speech and language disorders necessitating early and targeted speech and language interventions.
Collapse
Affiliation(s)
- Lottie D Morison
- Speech and Language Team, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Adam P Vogel
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
- Redenlab Pty Ltd, Melbourne, VIC, Australia
| | - John Christodoulou
- Brain and Mitochondrial Group, Genomic Medicine, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW, Australia
| | - Wendy A Gold
- School of Medical Sciences, Faculty of Medicine Health, The University of Sydney, Sydney, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, NSW, Australia
- Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead and the Children's Medical Research Institute, Westmead, NSW, Australia
| | | | - Wendy K Chung
- Department of Paediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruth Braden
- Speech and Language Team, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Joanna Bredebusch
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Simranpreet Kaur
- Brain and Mitochondrial Group, Genomic Medicine, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Ingrid E Scheffer
- Department of Paediatrics, University of Melbourne, and Department of Neurology, Royal Children's Hospital, Parkville, VIC, Australia
- Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
- Murdoch Children's Research Institute and Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Angela T Morgan
- Speech and Language Team, Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Department of Paediatrics, University of Melbourne, and Department of Neurology, Royal Children's Hospital, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Rao L, Li W, Shen Y, Chung WK, Gennerich A. Distinct Clinical Phenotypes in KIF1A-Associated Neurological Disorders Result from Different Amino Acid Substitutions at the Same Residue in KIF1A. Biomolecules 2025; 15:656. [PMID: 40427549 PMCID: PMC12109325 DOI: 10.3390/biom15050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
KIF1A is a neuron-specific kinesin motor responsible for intracellular transport along axons. Pathogenic KIF1A mutations cause KIF1A-associated neurological disorders (KAND), a spectrum of severe neurodevelopmental and neurodegenerative conditions. While individual KIF1A mutations have been studied, how different substitutions at the same residue affect motor function and disease progression remains unclear. Here, we systematically examine the molecular and clinical consequences of mutations at three key motor domain residues-R216, R254, and R307-using single-molecule motility assays and genotype-phenotype associations. We find that different substitutions at the same residue produce distinct molecular phenotypes, and that homodimeric mutant motor properties correlate with developmental outcomes. In addition, we present the first analysis of heterodimeric KIF1A motors-mimicking the heterozygous context in patients-and demonstrate that while heterodimers retain substantial motility, their properties are less predictive of clinical severity than homodimers. These results highlight the finely tuned mechanochemical properties of KIF1A and suggest that dysfunctional homodimers may disproportionately drive the diverse clinical phenotypes observed in KAND. By establishing residue-specific genotype-phenotype relationships, this work provides fundamental insights into KAND pathogenesis and informs targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wenxing Li
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Mitsutake A, Kawai M, Orimo K, Matsukawa T, Ishiura H, Mitsui J, Nakajima H, Murai H, Tsuji S, Goto J, Iwata NK. A Japanese Family with a Novel Pathogenic Variant in KIF1A Presenting with Spastic Paraparesis, Cerebellar Ataxia, and Intellectual Disability. CEREBELLUM (LONDON, ENGLAND) 2024; 24:20. [PMID: 39730866 DOI: 10.1007/s12311-024-01782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Variants in KIF1A are associated with hereditary spastic paraplegia (SPG30), which can manifest in both pure and complex forms. We describe a Japanese family with a novel KIF1A variant presenting with a complex form of SPG30. Patient 1, a 69-year-old woman, experienced progressive gait disturbance due to spastic paraparesis and cerebellar atrophy, and intellectual disability. Patient 2, the daughter of Patient 1, exhibited similar symptoms with more severe dysarthria. Patients 1 and 2 shared a heterozygous c.173 C > G (p.Ser58Trp) variant in the motor domain of KIF1A (NM_001244008.2), which is classified as likely pathogenic. This family highlights the role of autosomal dominant inheritance in a complex form of SPG30, expanding the understanding of its genetic basis and clinical presentation.
Collapse
Affiliation(s)
- Akihiko Mitsutake
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan.
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Mizuho Kawai
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
| | - Kenta Orimo
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Dentistry, and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Jun Mitsui
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Nakajima
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
- Department of Neurology, Ushiku Aiwa General Hospital, Ibaraki, Japan
| | - Hiroyuki Murai
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
- Department of Neurology, International University of Health and Welfare Narita Hospital, Tokyo, Japan
| | - Shoji Tsuji
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Jun Goto
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
- Department of Neurology, International University of Health and Welfare Ichikawa Hospital, Chiba, Japan
| | - Nobue K Iwata
- Department of Neurology, International University of Health and Welfare Mita Hospital, Mita 1-4-3, Minato-ku, Tokyo, 108-8329, Japan
| |
Collapse
|
4
|
Abdelhakim AH, Brodie SE, Chung WK. Ophthalmic Findings in the KIF1A-Associated Neurologic Disorder (KAND). Am J Ophthalmol 2024; 268:247-257. [PMID: 39009236 PMCID: PMC11976422 DOI: 10.1016/j.ajo.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE To define the ophthalmic manifestations in KIF1A-associated neurologic disorder (KAND), a rare, progressive neurodegenerative disorder caused by pathogenic variants in the KIFA1 gene. DESIGN Cross-sectional study. METHODS Clinical ophthalmic examination and multimodal imaging were performed for 24 participants enrolled in the KIF1AOutcome measures, Assessments, Longitudinal And endpoints (KOALA) Study. Visual evoked potentials (VEPs) were performed on select participants. RESULTS The average central visual acuity in pediatric participants was 20/43 (logMAR 0.329, range 0.0-1.0) and 20/119 (logMAR 0.773, range 0.471-1.351) in adults. Ninety-five percent of participants examined had some degree of optic nerve atrophy detected by clinical examination and/or optical coherence tomography (OCT). Almost 40% had strabismus. Color vision, visual fields, and stereopsis were impaired in most participants who were able to participate in testing. VEP showed varying degrees of signal slowing and diffuseness. CONCLUSIONS Optic nerve atrophy is the primary ocular finding in individuals with KAND and is present at higher prevalence than previously reported. The degree of the atrophy is likely dependent on the severity of the pathogenic variant and possibly the age of the patient. Adults had worse vision on average than children, suggesting possible decline in vision with age. Strabismus in this cohort was common. VEPs showed findings consistent with optic neuropathy and visual dysfunction even in the absence of obvious structural changes on OCT. Families should be counseled regarding visual impairment in KAND patients, so as to obtain appropriate support and assistance to maximize safety, functionality, and learning.
Collapse
Affiliation(s)
- Aliaa H. Abdelhakim
- Department of Ophthalmology, Columbia University Medical Center, New York NY 10032
| | - Scott E. Brodie
- Department of Ophthalmology, Columbia University Medical Center, New York NY 10032
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston MA 02115
| |
Collapse
|
5
|
Wilson YA, Garrity N, Smithers-Sheedy H, Goldsmith S, Karim T, Henry G, Paget S, Kyriagis M, Badawi N, Baynam G, Gecz J, McIntyre S. Clinically Relevant Genes Identified in Cerebral Palsy Cohorts Following Evaluation of the Clinical Description and Phenotype: A Systematic Review. J Child Neurol 2024; 39:500-509. [PMID: 39246294 DOI: 10.1177/08830738241277231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A growing number of genes have been identified in individuals with cerebral palsy (CP); however, many of these studies have poor compliance with the cerebral palsy clinical description. This systematic review aimed to assess the quality of the cerebral palsy clinical description/phenotype in cerebral palsy genetic studies published between 2010 and 2024 and report clinically relevant genes based on the quality of the cerebral palsy phenotype. An expert panel developed 6 criteria to review the reported cerebral palsy phenotype/description for each included study. Clinically relevant genes were extracted from each study and stratified into 2 tiers based on the quality. Eighteen studies were included. There was high confidence in the reported cerebral palsy description/phenotype from 8 studies. Of the initial 373 clinically relevant genes, 85 were tier II genes. Individual cerebral palsy motor disorder and phenotype data were absent for 349 of these individuals, limiting further analysis. The tier I gene list was composed of 6 genes: ATL1, COL4A1, GNAO1, KIF1A, SPAST, and TUBA1A. Bilateral spasticity was the most common motor disorder reported in individuals with variants in all 6 genes, and most individuals had accompanying conditions. Prioritizing the accurate reporting of motor and nonmotor phenotypes is crucial for future cerebral palsy genetic studies to further understand the underlying neurobiology.
Collapse
Affiliation(s)
- Yana A Wilson
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, Discipline of Child & Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Natasha Garrity
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hayley Smithers-Sheedy
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Shona Goldsmith
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tasneem Karim
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Georgina Henry
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Paget
- Child Population and Translational Health Research, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Maria Kyriagis
- Rehab2Kids, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Western Australia, Australia
- Rare Care Centre, Perth Children's Hospital, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Sarah McIntyre
- Cerebral Palsy Alliance Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Kawashima A, Kodama K, Okubo Y, Endo W, Inui T, Ikeda M, Katata Y, Togashi N, Ohba C, Imagawa E, Iwama K, Mizuguchi T, Kitami M, Aihara Y, Takayama J, Tamiya G, Kikuchi A, Kure S, Saitsu H, Matsumoto N, Haginoya K. Long-term clinical observation of patients with heterozygous KIF1A variants. Am J Med Genet A 2024; 194:e63656. [PMID: 38760879 DOI: 10.1002/ajmg.a.63656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024]
Abstract
KIF1A-related disorders (KRDs) encompass recessive and dominant variants with wide clinical variability. Recent genetic investigations have expanded the clinical phenotypes of heterozygous KIF1A variants. However, there have been a few long-term observational studies of patients with heterozygous KIF1A variants. A retrospective chart review of consecutive patients diagnosed with spastic paraplegia at Miyagi Children's Hospital from 2016 to 2020 identified six patients with heterozygous KIF1A variants. To understand the long-term changes in clinical symptoms, we examined these patients in terms of their characteristics, clinical symptoms, results of electrophysiological and neuroimaging studies, and genetic testing. The median follow-up period was 30 years (4-44 years). This long-term observational study showed that early developmental delay and equinus gait, or unsteady gait, are the first signs of disease onset, appearing with the commencement of independent walking. In addition, later age-related progression was observed in spastic paraplegia, and the appearance of axonal neuropathy and reduced visual acuity were characteristic features of the late disease phenotype. Brain imaging showed age-related progression of cerebellar atrophy and the appearance of hyperintensity of optic radiation on T2WI and FLAIR imaging. Long-term follow-up revealed a pattern of steady progression and a variety of clinical symptoms, including spastic paraplegia, peripheral neuropathy, reduced visual acuity, and some degree of cerebellar ataxia. Clinical variability between patients was observed to some extent, and therefore, further studies are required to determine the phenotype-genotype correlation.
Collapse
Affiliation(s)
- Aritomo Kawashima
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Miki Ikeda
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Yu Katata
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Chihiro Ohba
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masahiro Kitami
- Department of Radiology, Miyagi Children's Hospital, Sendai, Japan
| | - Yu Aihara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Jun Takayama
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen Tamiya
- Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Department of Rare Disease Genomics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| |
Collapse
|
7
|
Sudnawa KK, Li W, Calamia S, Kanner CH, Bain JM, Abdelhakim AH, Geltzeiler A, Mebane CM, Provenzano FA, Sands TT, Fee RJ, Montes J, Shen Y, Chung WK. Heterogeneity of comprehensive clinical phenotype and longitudinal adaptive function and correlation with computational predictions of severity of missense genotypes in KIF1A-associated neurological disorder. Genet Med 2024; 26:101169. [PMID: 38785164 PMCID: PMC11298291 DOI: 10.1016/j.gim.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE Pathogenic variants in kinesin family member 1A (KIF1A) are associated with KIF1A-associated neurological disorder. We report the clinical phenotypes and correlate genotypes of individuals with KIF1A-associated neurological disorder. METHODS Medical history and adaptive function were assessed longitudinally. In-person evaluations included neurological, motor, ophthalmologic, and cognitive assessments. RESULTS We collected online data on 177 individuals. Fifty-seven individuals were also assessed in-person. Most individuals had de novo heterozygous missense likely pathogenic/pathogenic KIF1A variants. The most common characteristics were hypotonia, spasticity, ataxia, seizures, optic nerve atrophy, cerebellar atrophy, and cognitive impairment. Mean Vineland adaptive behavior composite score (VABS-ABC) was low (M = 62.9, SD = 19.1). The mean change in VABS-ABC over time was -3.1 (SD = 7.3). The decline in VABS-ABC was associated with the age at first assessment and abnormal electroencephalogram/seizure. There was a positive correlation between evolutionary scale model (ESM) score for the variants and final VABS-ABC (P = .003). Abnormal electroencephalogram/seizure, neuroimaging result, and ESM explain 34% of the variance in final VABS-ABC (P < .001). CONCLUSION In-person assessment confirmed caregiver report and identified additional visual deficits. Adaptive function declined over time consistent with both the neurodevelopmental and neurodegenerative nature of the condition. Using ESM score assists in predicting phenotype across a wide range of unique variants.
Collapse
Affiliation(s)
- Khemika K Sudnawa
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA; Department of Pediatrics, Phramongkutklao Hospital and Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Wenxing Li
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | - Sean Calamia
- Department of Pediatrics, Columbia University, New York, NY
| | - Cara H Kanner
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY
| | - Jennifer M Bain
- Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Aliaa H Abdelhakim
- Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
| | - Alexa Geltzeiler
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Frank A Provenzano
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Medical Center, New York, NY
| | - Tristan T Sands
- Departments of Neurology and Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Robert J Fee
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY
| | - Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
8
|
Zheng W, He J, Chen L, Yu W, Zhang N, Liu X, Fan D. Genetic link between KIF1A mutations and amyotrophic lateral sclerosis: evidence from whole-exome sequencing. Front Aging Neurosci 2024; 16:1421841. [PMID: 39076207 PMCID: PMC11284166 DOI: 10.3389/fnagi.2024.1421841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Objectives Genetics have been shown to have a substantial impact on amyotrophic lateral sclerosis (ALS). The ALS process involves defects in axonal transport and cytoskeletal dynamics. It has been identified that KIF1A, responsible for encoding a kinesin-3 motor protein that carries synaptic vesicles, is considered a genetic predisposing factor for ALS. Methods The analysis of whole-exome sequencing data from 1,068 patients was conducted to examine the genetic link between ALS and KIF1A. For patients with KIF1A gene mutations and a family history, we extended the analysis to their families and reanalyzed them using Sanger sequencing for cosegregation analysis. Results In our cohort, the KIF1A mutation frequency was 1.31% (14/1,068). Thirteen nonsynonymous variants were detected in 14 ALS patients. Consistent with the connection between KIF1A and ALS, the missense mutation p.A1083T (c.3247G>A) was shown to cosegregate with disease. The mutations related to ALS in our study were primarily located in the cargo-binding region at the C-terminal, as opposed to the mutations of motor domain at the N-terminal of KIF1A which were linked to hereditary peripheral neuropathy and spastic paraplegia. We observed high clinical heterogeneity in ALS patients with missense mutations in the KIF1A gene. KIF5A is a more frequent determinant of ALS in the European population, while KIF1A accounts for a similar proportion of ALS in both the European and Chinese populations. Conclusion Our investigation revealed that mutations in the C-terminus of KIF1A could increase the risk of ALS, support the pathogenic role of KIF1A in ALS and expand the phenotypic and genetic spectrum of KIF1A-related ALS.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Lu Chen
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Nan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
9
|
Benoit MPMH, Rao L, Asenjo AB, Gennerich A, Sosa H. Cryo-EM unveils kinesin KIF1A's processivity mechanism and the impact of its pathogenic variant P305L. Nat Commun 2024; 15:5530. [PMID: 38956021 PMCID: PMC11219953 DOI: 10.1038/s41467-024-48720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Mutations in the microtubule-associated motor protein KIF1A lead to severe neurological conditions known as KIF1A-associated neurological disorders (KAND). Despite insights into its molecular mechanism, high-resolution structures of KIF1A-microtubule complexes remain undefined. Here, we present 2.7-3.5 Å resolution structures of dimeric microtubule-bound KIF1A, including the pathogenic P305L mutant, across various nucleotide states. Our structures reveal that KIF1A binds microtubules in one- and two-heads-bound configurations, with both heads exhibiting distinct conformations with tight inter-head connection. Notably, KIF1A's class-specific loop 12 (K-loop) forms electrostatic interactions with the C-terminal tails of both α- and β-tubulin. The P305L mutation does not disrupt these interactions but alters loop-12's conformation, impairing strong microtubule-binding. Structure-function analysis reveals the K-loop and head-head coordination as major determinants of KIF1A's superprocessive motility. Our findings advance the understanding of KIF1A's molecular mechanism and provide a basis for developing structure-guided therapeutics against KAND.
Collapse
Affiliation(s)
- Matthieu P M H Benoit
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ana B Asenjo
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Hernando Sosa
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
10
|
Olsen CG, Busk ØL, Holla ØL, Tveten K, Holmøy T, Tysnes OB, Høyer H. Genetic overlap between ALS and other neurodegenerative or neuromuscular disorders. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:177-187. [PMID: 37849306 DOI: 10.1080/21678421.2023.2270705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
OBJECTIVE In Norway, 89% of patients with Amyotrophic lateral sclerosis (ALS) lacks a genetic diagnose. ALS genes and genes that cause other neuromuscular or neurodegenerative disorders extensively overlap. This population-based study examined whether patients with ALS have a family history of neurological disorders and explored the occurrence of rare genetic variants associated with other neurodegenerative or neuromuscular disorders. METHODS During a two-year period, blood samples and clinical data from patients with ALS were collected from all 17 neurological departments in Norway. Our genetic analysis involved exome sequencing and bioinformatics filtering of 510 genes associated with neurodegenerative and neuromuscular disorders. The variants were interpreted using genotype-phenotype correlations and bioinformatics tools. RESULTS A total of 279 patients from a Norwegian population-based ALS cohort participated in this study. Thirty-one percent of the patients had first- or second-degree relatives with other neurodegenerative disorders, most commonly dementia and Parkinson's disease. The genetic analysis identified 20 possible pathogenic variants, in ATL3, AFG3L2, ATP7A, BICD2, HARS1, KIF1A, LRRK2, MSTO1, NEK1, NEFH, and SORL1, in 25 patients. NEK1 risk variants were present in 2.5% of this ALS cohort. Only four of the 25 patients reported relatives with other neurodegenerative or neuromuscular disorders. CONCLUSION Gene variants known to cause other neurodegenerative or neuromuscular disorders, most frequently in NEK1, were identified in 9% of the patients with ALS. Most of these patients had no family history of other neurodegenerative or neuromuscular disorders. Our findings indicated that AFG3L2, ATP7A, BICD2, KIF1A, and MSTO1 should be further explored as potential ALS-causing genes.
Collapse
Affiliation(s)
- Cathrine Goberg Olsen
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
- Institute of Clinical Medicine, University of Oslo, Nordbyhagen, Norway
| | | | | | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine, University of Oslo, Nordbyhagen, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway, and
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Helle Høyer
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| |
Collapse
|
11
|
Awuah WA, Tan JK, Shkodina AD, Ferreira T, Adebusoye FT, Mazzoleni A, Wellington J, David L, Chilcott E, Huang H, Abdul-Rahman T, Shet V, Atallah O, Kalmanovich J, Jiffry R, Madhu DE, Sikora K, Kmyta O, Delva MY. Hereditary spastic paraplegia: Novel insights into the pathogenesis and management. SAGE Open Med 2023; 12:20503121231221941. [PMID: 38162912 PMCID: PMC10757446 DOI: 10.1177/20503121231221941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Hereditary spastic paraplegia is a genetically heterogeneous neurodegenerative disorder characterised primarily by muscle stiffness in the lower limbs. Neurodegenerative disorders are conditions that result from cellular and metabolic abnormalities, many of which have strong genetic ties. While ageing is a known contributor to these changes, certain neurodegenerative disorders can manifest early in life, progressively affecting a person's quality of life. Hereditary spastic paraplegia is one such condition that can appear in individuals of any age. In hereditary spastic paraplegia, a distinctive feature is the degeneration of long nerve fibres in the corticospinal tract of the lower limbs. This degeneration is linked to various cellular and metabolic processes, including mitochondrial dysfunction, remodelling of the endoplasmic reticulum membrane, autophagy, abnormal myelination processes and alterations in lipid metabolism. Additionally, hereditary spastic paraplegia affects processes like endosome membrane trafficking, oxidative stress and mitochondrial DNA polymorphisms. Disease-causing genetic loci and associated genes influence the progression and severity of hereditary spastic paraplegia, potentially affecting various cellular and metabolic functions. Although hereditary spastic paraplegia does not reduce a person's lifespan, it significantly impairs their quality of life as they age, particularly with more severe symptoms. Regrettably, there are currently no treatments available to halt or reverse the pathological progression of hereditary spastic paraplegia. This review aims to explore the metabolic mechanisms underlying the pathophysiology of hereditary spastic paraplegia, emphasising the interactions of various genes identified in recent network studies. By comprehending these associations, targeted molecular therapies that address these biochemical processes can be developed to enhance treatment strategies for hereditary spastic paraplegia and guide clinical practice effectively.
Collapse
Affiliation(s)
| | | | - Anastasiia D Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | - Jack Wellington
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Lian David
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Ellie Chilcott
- Cardiff University School of Medicine, Cardiff University, Wales, UK
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Vallabh Shet
- Faculty of Medicine, Bangalore Medical College and Research Institute, Karnataka, India
| | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Riaz Jiffry
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | | | - Mykhailo Yu Delva
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
| |
Collapse
|
12
|
Lin J, Li N, Yao R, Yu T, Wang X, Wang J. Autosomal dominant neurodevelopmental disorders associated with KIF1A gene variants in 6 pediatric patients. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:693-700. [PMID: 38105687 PMCID: PMC10764188 DOI: 10.3724/zdxbyxb-2023-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES To analyze the clinical and genetic characteristics of children with autosomal dominant neurodevelopmental disorders caused by kinesin family member 1A (KIF1A) gene variation. METHODS Clinical and genetic testing data of 6 children with KIF1A gene de novo heterozygous variation diagnosed in Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine from the year 2018 to 2020 were retrospectively analyzed. Pathogenic variants were identified based on whole exome sequencing, and verified by Sanger sequencing. Moreover, the effect of variants on three-dimensional structure and stability of protein was analyzed by bioinformatics. RESULTS Among 6 patients there were 4 males and 2 females, and the age of consultation varied from 7 months to 18 years. All cases had varying degrees of motor developmental delay since childhood, and 4 of them had gait abnormalities or fell easily. In addition, 2 children were accompanied by delayed mental development, epilepsy and abnormal eye development. Genetic tests showed that all 6 cases had heterozygous de novo variations of KIF1A gene, including 4 missense mutations c.296C>T (p.T99M), c.761G>A (p.R254Q), c.326G>T (p.G109V), c.745C>G (p.L249V) and one splicing mutation c.798+1G>A, among which the last three variants have not been previously reported. Bioinformatics analysis showed that G109V and L249V may impair their interaction with the neighboring amino acid residues, thereby impacting protein function and reducing protein stability, and were assessed as "likely pathogenic". Meanwhile, c.798+1G>A may damage an alpha helix in the motor domain of the KIF1A protein, and was assessed as "likely pathogenic". CONCLUSIONS KIF1A-associated neurological diseases are clinically heterogeneous, with motor developmental delay and abnormal gait often being the most common clinical features. The clinical symptoms in T99M carriers are more severe, while those in R254Q carriers are relatively mild.
Collapse
Affiliation(s)
- Jingqi Lin
- Central Laboratory, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Niu Li
- Central Laboratory, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ru'en Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children's Medical Center,Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jian Wang
- Central Laboratory, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
13
|
Finsterer J. The High Prevalence of Cardiac Autonomic Neuropathy in Selected Epilepsy Patients May Depend on the Diagnostic Methods Used. Niger J Clin Pract 2023; 26:1777-1778. [PMID: 38044788 DOI: 10.4103/njcp.njcp_1318_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/21/2023] [Indexed: 12/05/2023]
Affiliation(s)
- J Finsterer
- Department of Neurological, Neurology and Neurophysiology Center, Vienna, Austria
| |
Collapse
|
14
|
Rizalar FS, Lucht MT, Petzoldt A, Kong S, Sun J, Vines JH, Telugu NS, Diecke S, Kaas T, Bullmann T, Schmied C, Löwe D, King JS, Cho W, Hallermann S, Puchkov D, Sigrist SJ, Haucke V. Phosphatidylinositol 3,5-bisphosphate facilitates axonal vesicle transport and presynapse assembly. Science 2023; 382:223-230. [PMID: 37824668 PMCID: PMC10938084 DOI: 10.1126/science.adg1075] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/16/2023] [Indexed: 10/14/2023]
Abstract
Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Max T. Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Astrid Petzoldt
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Shuhan Kong
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jiachen Sun
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - James H. Vines
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Narasimha Swamy Telugu
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Technology Platform Pluripotent Stem Cells, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Sebastian Diecke
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Technology Platform Pluripotent Stem Cells, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Thomas Kaas
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Torsten Bullmann
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Delia Löwe
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jason S. King
- School of Biosciences, University of Sheffield, Firth Court Western Bank, Sheffield S10 2TN, UK
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Stefan Hallermann
- Leipzig University, Carl-Ludwig-Institute of Physiology, Faculty of Medicine, 04103 Leipzig, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Stephan J. Sigrist
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
15
|
Ikeda A, Kumaki T, Tsuyusaki Y, Tsuji M, Enomoto Y, Fujita A, Saitsu H, Matsumoto N, Kurosawa K, Goto T. Genetic and clinical features of pediatric-onset hereditary spastic paraplegia: a single-center study in Japan. Front Neurol 2023; 14:1085228. [PMID: 37251230 PMCID: PMC10213624 DOI: 10.3389/fneur.2023.1085228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Hereditary spastic paraplegias (HSPs) are a set of heterogeneous neurodegenerative disorders characterized by bilateral lower limb spasticity. They may present from infancy onwards at any time. Although next-generation sequencing has allowed the identification of many causative genes, little is known about which genes are specifically associated with pediatric-onset variants. Methods This study retrospectively evaluated the genetic analyses, family history clinical courses, magnetic resonance imaging (MRI) findings, and electrophysiologic findings of patients diagnosed with HSP in childhood at a tertiary pediatric hospital in Japan. Genetic analyses were performed using direct sequencing, disease-associated panels, and whole-exome sequencing. Results Of the 37 patients included, 14 had a family history of HSP and 23 had a sporadic form of the disease. In 20 patients, HSP was the pure type, whereas the remaining 17 patients had complex types of HSP. Genetic data were available for 11 of the pure-type patients and 16 of those with complex types. Of these, genetic diagnoses were possible in 5 (45%) of the pure-type and 13 (81%) of the complex-type patients. SPAST variants were found in five children, KIF1A variants in four, ALS2 variants in three, SACS and L1CAM variants in two each, and an ATL1 variant in one. One child had a 10p15.3p13 duplication. Four patients with pure-type HSPs had SPAST variants and one had an ALT1 variant. The KIF1A, ALS2, SACS, and L1CAM variants and the 10p15.3p13 duplication were seen in children with complex-type HSPs, with just one complex-type patient having a SPAST variant. The identification of brain abnormalities on MRI was significantly more common among children with complex-type (11 [69%] of 16) than pure-type HSPs (one [5%] of 19) (p < 0.001). Scores on the modified Rankin Scale for Neurologic Disability were also significantly higher among children with complex-type compared with pure-type HSPs (3.5 ± 1.0 vs. 2.1 ± 0.9, p < 0.001). Conclusion Pediatric-onset HSP was found to be sporadic and genetic in a substantial proportion of patients. The causative gene patterns differed between children with pure-type and complex-type HSPs. The causative roles of SPAST and KIF1A variants in pure-type and complex-type HSPs, respectively, should be explored further.
Collapse
Affiliation(s)
- Azusa Ikeda
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Megumi Tsuji
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children’s Medical Center, Yokohama, Japan
| |
Collapse
|
16
|
Paprocka J, Jezela-Stanek A, Śmigiel R, Walczak A, Mierzewska H, Kutkowska-Kaźmierczak A, Płoski R, Emich-Widera E, Steinborn B. Expanding the Knowledge of KIF1A-Dependent Disorders to a Group of Polish Patients. Genes (Basel) 2023; 14:972. [PMID: 37239332 PMCID: PMC10217861 DOI: 10.3390/genes14050972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND KIF1A (kinesin family member 1A)-related disorders encompass a variety of diseases. KIF1A variants are responsible for autosomal recessive and dominant spastic paraplegia 30 (SPG, OMIM610357), autosomal recessive hereditary sensory and autonomic neuropathy type 2 (HSN2C, OMIM614213), and autosomal dominant neurodegeneration and spasticity with or without cerebellar atrophy or cortical visual impairment (NESCAV syndrome), formerly named mental retardation type 9 (MRD9) (OMIM614255). KIF1A variants have also been occasionally linked with progressive encephalopathy with brain atrophy, progressive neurodegeneration, PEHO-like syndrome (progressive encephalopathy with edema, hypsarrhythmia, optic atrophy), and Rett-like syndrome. MATERIALS AND METHODS The first Polish patients with confirmed heterozygous pathogenic and potentially pathogenic KIF1A variants were analyzed. All the patients were of Caucasian origin. Five patients were females, and four were males (female-to-male ratio = 1.25). The age of onset of the disease ranged from 6 weeks to 2 years. RESULTS Exome sequencing identified three novel variants. Variant c.442G>A was described in the ClinVar database as likely pathogenic. The other two novel variants, c.609G>C; p.(Arg203Ser) and c.218T>G, p.(Val73Gly), were not recorded in ClinVar. CONCLUSIONS The authors underlined the difficulties in classifying particular syndromes due to non-specific and overlapping signs and symptoms, sometimes observed only temporarily.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Robert Śmigiel
- Department of Family and Pediatric Nursing, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Walczak
- Department of Medical Genetics, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Hanna Mierzewska
- Department of Child and Adolescent Neurology, Institute of Mother and Child, 01- 211 Warsaw, Poland
| | | | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| | - Barbara Steinborn
- Department of Developmental Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
17
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
18
|
Fink JK. The hereditary spastic paraplegias. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:59-88. [PMID: 37620092 DOI: 10.1016/b978-0-323-98817-9.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The hereditary spastic paraplegias (HSPs) are a group of more than 90 genetic disorders in which lower extremity spasticity and weakness are either the primary neurologic impairments ("uncomplicated HSP") or when accompanied by other neurologic deficits ("complicated HSP"), important features of the clinical syndrome. Various genetic types of HSP are inherited such as autosomal dominant, autosomal recessive, X-linked, and maternal (mitochondrial) traits. Symptoms that begin in early childhood may be nonprogressive and resemble spastic diplegic cerebral palsy. Symptoms that begin later, typically progress insidiously over a number of years. Genetic testing is able to confirm the diagnosis for many subjects. Insights from gene discovery indicate that abnormalities in diverse molecular processes underlie various forms of HSP, including disturbance in axon transport, endoplasmic reticulum morphogenesis, vesicle transport, lipid metabolism, and mitochondrial function. Pathologic studies in "uncomplicated" HSP have shown axon degeneration particularly involving the distal ends of corticospinal tracts and dorsal column fibers. Treatment is limited to symptom reduction including amelioration of spasticity, reducing urinary urgency, proactive physical therapy including strengthening, stretching, balance, and agility exercise.
Collapse
Affiliation(s)
- John K Fink
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Liao P, Yuan Y, Liu Z, Hou X, Li W, Wen J, Zhang K, Jiao B, Shen L, Jiang H, Guo J, Tang B, Zhang Z, Hu Z, Wang J. Association of variants in the KIF1A gene with amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:46. [PMID: 36284339 PMCID: PMC9597953 DOI: 10.1186/s40035-022-00320-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord. As in many other neurodegenerative disorders, the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport. Notably, sensory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2 (HSAN2) and spastic paraplegia 30 (SPG30) share several causative genes with ALS, as well as having common clinical phenotypes. KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors (SVPs) and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30. METHODS Here, we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS. RESULTS We identified rare damage variants (RDVs) in the KIF1A gene associated with ALS and delineated the clinical characteristics of ALS patients with KIF1A RDVs. Clinically, these patients tended to exhibit sensory disturbance. Interestingly, the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein. Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A, VAMP2, and synaptophysin. Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor. CONCLUSIONS Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS, indicating KIF1A as an important player in the oligogenic scenario of ALS.
Collapse
Affiliation(s)
- Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, China.
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
| |
Collapse
|
20
|
Hsu SL, Liao YC, Lin KP, Lin PY, Yu KW, Tsai YS, Guo YC, Lee YC. Investigating KIF1A mutations in a Taiwanese cohort with hereditary spastic paraplegia. Parkinsonism Relat Disord 2022; 103:144-149. [PMID: 36155026 DOI: 10.1016/j.parkreldis.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited neurodegenerative disorders characterized by slowly progressive lower limbs spasticity and weakness. HSP type 30 (SPG30) is a HSP subtype caused by mutations in the kinesin family member 1A gene (KIF1A) and could be either autosomal dominantly or recessively inherited. The aim of this study was to investigate the clinical and genetic features of KIF1A mutations in a Taiwanese HSP cohort. METHODS Mutational analysis of KIF1A was performed in 242 unrelated Taiwanese patients of Han Chinese ethnicity with clinically suspected HSP using targeted resequencing panel covering the entire coding regions of KIF1A. Clinical, electrophysiological and neuroimaging features of the HSP patients carrying a KIF1A mutation were characterized. RESULTS Three different KIF1A mutations were identified in three patients with autosomal dominantly inherited HSP. Among them, KIF1A p.E19K was a novel mutation. The patient harboring KIF1A p.G321D presented with pure HSP, while the individuals carrying KIF1A p.E19K or p.R316Q manifested complex HSP with additional axonal sensorimotor polyneuropathy. The patients carrying KIF1A p.R316Q also had thoracic cord atrophy, thin corpus callosum and white matter hyperintensity. CONCLUSION SPG30 accounts for 1.2% (3/242) of patients in the Taiwanese HSP cohort, suggesting that it is an uncommon HSP subtype in Taiwan. This study delineates the clinical and genetic features of SPG30 in Taiwan and provides useful information for the diagnosis and management of SPG30, especially in patients of Han Chinese descent.
Collapse
Affiliation(s)
- Shao-Lun Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kon-Ping Lin
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Po-Yu Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Wei Yu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Cherng Guo
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
21
|
Panza E, Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp Neurol 2022; 357:114203. [PMID: 35970204 DOI: 10.1016/j.expneurol.2022.114203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023]
Abstract
Hereditary Spastic Paraplegias (HSPs) are a heterogeneous group of disease, mainly characterized by progressive spasticity and weakness of the lower limbs resulting from distal degeneration of corticospinal tract axons. Although HSPs represent rare or ultra-rare conditions, with reported cases of mutated genes found in single families, overall, with 87 forms described, they are an important health and economic problem for society and patients. In fact, they are chronic and life-hindering conditions, still lacking a specific therapy. Notwithstanding the number of forms described, and 73 causative genes identified, overall, the molecular diagnostic rate varies among 29% to 61.8%, based on recent published analysis, suggesting that more genes are involved in HSP and/or that different molecular diagnostic approaches are necessary. The accumulating data in this field highlight several peculiar features of HSPs, such as genetic heterogeneity, the discovery that different mutations in a single gene can be transmitted in dominant and recessive trait in families and allelic heterogeneity, resulting in the involvement of HSP-genes in other conditions. Based on the observation of protein functions, the activity of many different proteins encoded by HSP-related genes converges into some distinct pathophysiological mechanisms. This suggests that common pathways could be a potential target for a therapy, possibly addressing several forms at once. Furthermore, the overlap of HSP genes with other neurological conditions can further expand this concept.
Collapse
Affiliation(s)
- Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Arun Meyyazhagan
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Antonio Orlacchio
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy; Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
22
|
Shi Y, Wang A, Chen B, Wang X, Niu S, Li W, Li S, Zhang Z. Clinical Features and Genetic Spectrum of Patients With Clinically Suspected Hereditary Progressive Spastic Paraplegia. Front Neurol 2022; 13:872927. [PMID: 35572931 PMCID: PMC9097539 DOI: 10.3389/fneur.2022.872927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background and Purpose A variety of hereditary diseases overlap with neurological phenotypes or even share genes with hereditary spastic paraplegia (HSP). The aim of this study was to determine the clinical features and genetic spectrum of patients with clinically suspected HSPs. Methods A total of 52 patients with clinically suspected HSPs were enrolled in this study. All the patients underwent next-generation sequencing (NGS) and triplet repeat primed PCR to screen for the dynamic mutations typical of spinocerebellar ataxia (SCA). Multiplex ligation-dependent probe amplification (MLPA) was further conducted in patients with no causative genetic mutations detected to examine for large deletions and duplications in genes of SPAST, ATL1, REEP1, PGN, and SPG11. Clinical characteristics and findings of brain MRI were analyzed in patients with definite diagnoses. Results The mean age of the patients studied was 36.90 ± 14.57 years. 75% (39/52) of patients manifested a phenotype of complex form of HSPs. A genetic diagnosis was made in 51.9% (27/52) of patients, of whom 40.3% (21/52) of patients had mutations in HSPs genes (SPG4/SPG6/SPG8/SPG11/SPG15/SPG78/SPG5A) and 11.5% (6/52) of patients had mutations in SCAs genes (SCA3/SCA17/SCA28). SPG4 and SPG11 were the most common cause of pure form of HSPs (5/6, 83.3%) and complex form of HSPs (5/15, 33.3%), respectively. Gait disturbance was the most common initial symptom in both the patients with HSPs (15/21) and in patients with SCAs (5/6). Dysarthria and cerebellar ataxia were detected in 28.5% (6/21) and 23.8% (5/21) of patients with HSPs, respectively, and were the most common symptoms in addition to progressive weakness and spasticity of the lower limbs. Cerebellar atrophy was seen on the brain MRI of patients with SPG5A, SCA3, and SCA28. Conclusion Causative genetic mutations were identified in 51.9% of patients with clinically suspected HSPs by NGS and triplet repeat primed PCR. A final diagnosis of HSPs or SCAs was made in 40.3% and 11.5% of patients, respectively. The clinical manifestations and neuroimaging findings overlapped between patients with HSPs and patients with SCAs. Dynamic mutations should be screened in patients with clinically suspected HSPs, especially in those with phenotypes of complex form of HSPs.
Collapse
Affiliation(s)
- Yuzhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - An Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Monogenic Disease Research Center for Neurological Disorders & Precision Medicine Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shaowu Li
- Department of Functional Neuroimaging, Beijing Neurosurgical Institute, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Molecular Characterization of Portuguese Patients with Hereditary Cerebellar Ataxia. Cells 2022; 11:cells11060981. [PMID: 35326432 PMCID: PMC8946949 DOI: 10.3390/cells11060981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
Hereditary cerebellar ataxia (HCA) comprises a clinical and genetic heterogeneous group of neurodegenerative disorders characterized by incoordination of movement, speech, and unsteady gait. In this study, we performed whole-exome sequencing (WES) in 19 families with HCA and presumed autosomal recessive (AR) inheritance, to identify the causal genes. A phenotypic classification was performed, considering the main clinical syndromes: spastic ataxia, ataxia and neuropathy, ataxia and oculomotor apraxia (AOA), ataxia and dystonia, and ataxia with cognitive impairment. The most frequent causal genes were associated with spastic ataxia (SACS and KIF1C) and with ataxia and neuropathy or AOA (PNKP). We also identified three families with autosomal dominant (AD) forms arising from de novo variants in KIF1A, CACNA1A, or ATP1A3, reinforcing the importance of differential diagnosis (AR vs. AD forms) in families with only one affected member. Moreover, 10 novel causal-variants were identified, and the detrimental effect of two splice-site variants confirmed through functional assays. Finally, by reviewing the molecular mechanisms, we speculated that regulation of cytoskeleton function might be impaired in spastic ataxia, whereas DNA repair is clearly associated with AOA. In conclusion, our study provided a genetic diagnosis for HCA families and proposed common molecular pathways underlying cerebellar neurodegeneration.
Collapse
|
24
|
Winczewska-Wiktor A, Hirschfeld AS, Badura-Stronka M, Komasińska-Piotrowska P, Steinborn B. Analysis of Factors That May Affect the Effectiveness of Ketogenic Diet Treatment in Pediatric and Adolescent Patients. J Clin Med 2022; 11:606. [PMID: 35160058 PMCID: PMC8836595 DOI: 10.3390/jcm11030606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/16/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The aim was to find predictors for ketogenic diet (KD) treatment effectiveness. In addition, recognized factors influencing the efficacy of KD were analyzed based on the ILAE (International League Against Epilepsy) proposed Classification and Definition of the Epilepsy Syndromes. METHODS A sample of 42 patients treated with KD were analyzed. The effectiveness of KD was assessed according to the type of diet, the type of seizures, and the known (KE) or undetermined genetic etiology (UNKE). The group of KE consisted of patients with CACNA1S, CHD2, DEPDC5, KIF1A, PIGN, SCN1A, SCN8A, SLC2A1, SYNGAP1 pathogenic variants. The usefulness of the new Classification and Definition of Epilepsy Syndromes proposed by the ILAE was evaluated. RESULTS KD therapy was effective in 69.05% of cases. No significant correlation was observed with the type of diet used. KE was related to greater effectiveness after KD treatment. KD treatment was most effective in the reduction of non-focal seizures. Considering the ILAE proposed classification, it was found that KD efficacy was higher in patients with simultaneous focal and tonic-clonic seizures compared to patients with only tonic-clonic or focal seizures. CONCLUSION The occurrence of focal seizures does not determine the potential ineffectiveness of treatment with a ketogenic diet. A significant efficacy of ketogenic diet treatment was observed in the group of patients with focal and generalized seizures, as well as epileptic and developmental encephalopathies. The etiology of epileptic seizures plays a more significant role. The new classification will make it easier to select patients who can benefit from this form of treatment.
Collapse
Affiliation(s)
- Anna Winczewska-Wiktor
- Department of Developmental Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (P.K.-P.); (B.S.)
| | - Adam Sebastian Hirschfeld
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.S.H.); (M.B.-S.)
| | - Magdalena Badura-Stronka
- Department of Medical Genetics, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (A.S.H.); (M.B.-S.)
- Centers for Medical Genetics GENESIS, 60-406 Poznan, Poland
| | - Paulina Komasińska-Piotrowska
- Department of Developmental Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (P.K.-P.); (B.S.)
| | - Barbara Steinborn
- Department of Developmental Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland; (P.K.-P.); (B.S.)
| |
Collapse
|
25
|
Rao L, Gennerich A. Single-Molecule Studies on the Motion and Force Generation of the Kinesin-3 Motor KIF1A. Methods Mol Biol 2022; 2478:585-608. [PMID: 36063335 PMCID: PMC9609470 DOI: 10.1007/978-1-0716-2229-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
KIF1A is a neuron-specific member of the kinesin-3 family of microtubule (MT) plus-end-directed motor proteins. It powers the migration of nuclei in differentiating brain stem cells and the transport of synaptic precursors and dense core vesicles in axons. Its dysfunction causes severe neurodevelopmental and neurodegenerative diseases termed KIF1A-associated neurological disorders (KAND). KAND mutations span the entirety of the KIF1A protein sequence, of which the majority are located within the motor domain and are thus predicted to affect the motor's motility and force-generating properties. Unfortunately, the molecular etiologies of KAND remain poorly understood, in part because KIF1A's molecular mechanism remains unclear. Here, we describe detailed methods for how to express a tail-truncated dimeric KIF1A in E. coli cells and provide step-by-step protocols for performing single-molecule studies with total internal reflection fluorescence microscopy and optical tweezers assays, which, when combined with structure-function studies, help to decipher KIF1A's molecular mechanism.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
26
|
Vecchia SD, Tessa A, Dosi C, Baldacci J, Pasquariello R, Antenora A, Astrea G, Bassi MT, Battini R, Casali C, Cioffi E, Conti G, De Michele G, Ferrari AR, Filla A, Fiorillo C, Fusco C, Gallone S, Germiniasi C, Guerrini R, Haggiag S, Lopergolo D, Martinuzzi A, Melani F, Mignarri A, Panzeri E, Pini A, Pinto AM, Pochiero F, Primiano G, Procopio E, Renieri A, Romaniello R, Sancricca C, Servidei S, Spagnoli C, Ticci C, Rubegni A, Santorelli FM. Monoallelic KIF1A-related disorders: a multicenter cross sectional study and systematic literature review. J Neurol 2022; 269:437-450. [PMID: 34487232 DOI: 10.1007/s00415-021-10792-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Monoallelic variants in the KIF1A gene are associated with a large set of clinical phenotypes including neurodevelopmental and neurodegenerative disorders, underpinned by a broad spectrum of central and peripheral nervous system involvement. METHODS In a multicenter study conducted in patients presenting spastic gait or complex neurodevelopmental disorders, we analyzed the clinical, genetic and neuroradiological features of 28 index cases harboring heterozygous variants in KIF1A. We conducted a literature systematic review with the aim to comparing our findings with previously reported KIF1A-related phenotypes. RESULTS Among 28 patients, we identified nine novel monoallelic variants, and one a copy number variation encompassing KIF1A. Mutations arose de novo in most patients and were prevalently located in the motor domain. Most patients presented features of a continuum ataxia-spasticity spectrum with only five cases showing a prevalently pure spastic phenotype and six presenting congenital ataxias. Seventeen mutations occurred in the motor domain of the Kinesin-1A protein, but location of mutation did not correlate with neurological and imaging presentations. When tested in 15 patients, muscle biopsy showed oxidative metabolism alterations (6 cases), impaired respiratory chain complexes II + III activity (3/6) and low CoQ10 levels (6/9). Ubiquinol supplementation (1gr/die) was used in 6 patients with subjective benefit. CONCLUSIONS This study broadened our clinical, genetic, and neuroimaging knowledge of KIF1A-related disorders. Although highly heterogeneous, it seems that manifestations of ataxia-spasticity spectrum disorders seem to occur in most patients. Some patients also present secondary impairment of oxidative metabolism; in this subset, ubiquinol supplementation therapy might be appropriate.
Collapse
Affiliation(s)
| | - Alessandra Tessa
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.
| | - Claudia Dosi
- Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Jacopo Baldacci
- Kode Solutions, Lungarno Galileo Galilei 1, 56125, Pisa, Italy
| | - Rosa Pasquariello
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Antonella Antenora
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Guja Astrea
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Department of Clinical and Experimental Medicine, Neurological Institute, University of Pisa, 56125, Pisa, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100, Latina, Italy
| | - Ettore Cioffi
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100, Latina, Italy
| | - Greta Conti
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Anna Rita Ferrari
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131, Naples, Italy
| | - Chiara Fiorillo
- Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, DINOGMI, University of Genoa, Genoa, Italy
| | - Carlo Fusco
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS Di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Salvatore Gallone
- Clinical Neurogenetics, Department Neurosciences, Az. Osp. Città della Salute e della Scienza di Torino, 1026, Torino, Italy
| | - Chiara Germiniasi
- Neuromuscular Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Renzo Guerrini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Shalom Haggiag
- Department of Neurology, Azienda Ospedaliera San Camillo Forlanini, 00152, Rome, Italy
| | - Diego Lopergolo
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Andrea Martinuzzi
- Scientific Institute IRCCS E. Medea, Unità Operativa Conegliano, 31015, Treviso, Italy
| | - Federico Melani
- Neurology Unit and Neurogenetics Laboratories, Meyer Children University Hospital, University of Florence, 50139, Florence, Italy
| | - Andrea Mignarri
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100, Siena, Italy
| | - Elena Panzeri
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Antonella Pini
- Neuromuscular Pediatric Unit, IRRCS Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy
| | - Anna Maria Pinto
- Medical Genetics Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Francesca Pochiero
- Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Guido Primiano
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Elena Procopio
- Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Alessandra Renieri
- Medical Genetics Unit, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, 23842, Lecco, Italy
| | - Cristina Sancricca
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy
| | - Serenella Servidei
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome, Italy.,Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology Unit, Pediatric Neurophysiology Laboratory, Department of Pediatrics, Azienda USL-IRCCS Di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Chiara Ticci
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy.,Department of Metabolic and Muscular, Meyer Children's University Hospital, 50139, Florence, Italy
| | - Anna Rubegni
- IRCCS Stella Maris Foundation, Calambrone, via dei Giacinti 2, 56128, Pisa, Italy
| | | |
Collapse
|
27
|
Budaitis BG, Jariwala S, Rao L, Yue Y, Sept D, Verhey KJ, Gennerich A. Pathogenic mutations in the kinesin-3 motor KIF1A diminish force generation and movement through allosteric mechanisms. J Cell Biol 2021; 220:e202004227. [PMID: 33496723 PMCID: PMC7844421 DOI: 10.1083/jcb.202004227] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/27/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
The kinesin-3 motor KIF1A functions in neurons, where its fast and superprocessive motility facilitates long-distance transport, but little is known about its force-generating properties. Using optical tweezers, we demonstrate that KIF1A stalls at an opposing load of ~3 pN but more frequently detaches at lower forces. KIF1A rapidly reattaches to the microtubule to resume motion due to its class-specific K-loop, resulting in a unique clustering of force generation events. To test the importance of neck linker docking in KIF1A force generation, we introduced mutations linked to human neurodevelopmental disorders. Molecular dynamics simulations predict that V8M and Y89D mutations impair neck linker docking. Indeed, both mutations dramatically reduce the force generation of KIF1A but not the motor's ability to rapidly reattach to the microtubule. Although both mutations relieve autoinhibition of the full-length motor, the mutant motors display decreased velocities, run lengths, and landing rates and delayed cargo transport in cells. These results advance our understanding of how mutations in KIF1A can manifest in disease.
Collapse
Affiliation(s)
- Breane G. Budaitis
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
| | - Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Kristen J. Verhey
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY
| |
Collapse
|
28
|
Saputra L, Kumar KR. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr Neurol Neurosci Rep 2021; 21:15. [PMID: 33646413 PMCID: PMC7921051 DOI: 10.1007/s11910-021-01099-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review The hereditary spastic paraplegias (HSPs) are a group of disorders characterised by progressive lower limb weakness and spasticity. We address the challenges and controversies involved in the genetic diagnosis of HSP. Recent Findings There is a large and rapidly expanding list of genes implicated in HSP, making it difficult to keep gene testing panels updated. There is also a high degree of phenotypic overlap between HSP and other disorders, leading to problems in choosing the right panel to analyse. We discuss genetic testing strategies for overcoming these diagnostic hurdles, including the use of targeted sequencing gene panels, whole-exome sequencing and whole-genome sequencing. Personalised treatments for HSP are on the horizon, and a genetic diagnosis may hold the key to access these treatments. Summary Developing strategies to overcome the challenges and controversies in HSP may hold the key to a rapid and accurate genetic diagnosis.
Collapse
Affiliation(s)
- Lydia Saputra
- Northern Beaches Hospital, Frenchs Forest, New South Wales, Australia
| | - Kishore Raj Kumar
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia. .,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, Sydney, New South Wales, Australia. .,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia. .,Institute of Precision Medicine & Bioinformatics, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| |
Collapse
|