1
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
2
|
Zhao W, Paixao L, Shimony JS, Nascimento FA. Teaching Video NeuroImage: Severe Facioglossal Weakness and Dysarthria Due to Bilateral Perisylvian Polymicrogyria. Neurology 2024; 102:e209361. [PMID: 38574323 PMCID: PMC11177585 DOI: 10.1212/wnl.0000000000209361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Wei Zhao
- From the Departments of Neurology (W.Z., L.P., F.A.N.) and Radiology (J.S.S.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology (L.P.), University of Miami Miller School of Medicine, FL
| | - Luis Paixao
- From the Departments of Neurology (W.Z., L.P., F.A.N.) and Radiology (J.S.S.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology (L.P.), University of Miami Miller School of Medicine, FL
| | - Joshua S Shimony
- From the Departments of Neurology (W.Z., L.P., F.A.N.) and Radiology (J.S.S.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology (L.P.), University of Miami Miller School of Medicine, FL
| | - Fábio A Nascimento
- From the Departments of Neurology (W.Z., L.P., F.A.N.) and Radiology (J.S.S.), Washington University School of Medicine, St. Louis, MO; and Department of Neurology (L.P.), University of Miami Miller School of Medicine, FL
| |
Collapse
|
3
|
Salokivi T, Parkkola R, Rajendran Y, Bharadwaj T, Acharya A, Leal SM, Järvelä I, Arvio M, Schrauwen I. A novel variant in CYFIP2 in a girl with severe disabilities and bilateral perisylvian polymicrogyria. Am J Med Genet A 2024; 194:e63478. [PMID: 37975178 PMCID: PMC10939934 DOI: 10.1002/ajmg.a.63478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Bilateral perisylvian polymicrogyria (BPP) is a structural malformation of the cerebral cortex that can be caused by several genetic abnormalities. The most common clinical manifestations of BPP include intellectual disability and epilepsy. Cytoplasmic FMRP-interacting protein 2 (CYFIP2) is a protein that interacts with the fragile X mental retardation protein (FMRP). CYFIP2 variants can cause various brain structural abnormalities with the most common clinical manifestations of intellectual disability, epileptic encephalopathy and dysmorphic features. We present a girl with multiple disabilities and BPP caused by a heterozygous, novel, likely pathogenic variant (c.1651G>C: p.(Val551Leu) in the CYFIP2 gene. Our case report broadens the spectrum of genetic diversity associated with BPP by incorporating CYFIP2.
Collapse
Affiliation(s)
- Tommi Salokivi
- Department of Disability Services, The wellbeing services county of Southwest Finland, Paimio, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Yasmin Rajendran
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Taub Institute, Columbia University Medical Center, New York, NY, USA
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
| | - Maria Arvio
- Department of Neurology, Päijät-Häme Joint Municipal Authority, Lahti, Finland
- General Practice, Turku University and Turku University Central Hospital, Finland
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Fan Y, Yan XY, Guan W. GPR56, an Adhesion GPCR with Multiple Roles in Human Diseases, Current Status and Future Perspective. Curr Drug Targets 2024; 25:558-573. [PMID: 38752635 DOI: 10.2174/0113894501298344240507080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Human G protein-coupled receptor 56 (GPR56) belongs to a member of the adhesion G-protein coupled receptor (aGPCR) family and widely exists in the central nervous system and various types of tumor tissues. Recent studies have shown that abnormal expression or dysfunction of GPR56 is closely associated with many physiological and pathological processes, including brain development, neuropsychiatric disorders, cardiovascular diseases and cancer progression. In addition, GPR56 has been proven to enhance the susceptibility of some antipsychotics and anticarcinogens in response to the treatment of neuropsychological diseases and cancer. Although there have been some reports about the functions of GPR56, the underlying mechanisms implicated in these diseases have not been clarified thoroughly, especially in depression and epilepsy. Therefore, in this review, we described the molecular structure and signal transduction pathway of GPR56 and carried out a comprehensive summary of GPR56's function in the development of psychiatric disorders and cancer. Our review showed that GPR56 deficiency led to depressive-like behaviors and an increase in resistance to antipsychotic treatment. In contrast, the upregulation of GPR56 contributed to tumor cell proliferation and metastasis in malignant diseases such as glioblastoma, colorectal cancer, and ovarian cancer. Moreover, we elucidated specific signaling pathways downstream of GPR56 related to the pathogenesis of these diseases. In summary, our review provides compelling arguments for an attractive therapeutic target of GPR56 in improving the therapeutic efficiency for patients suffering from psychiatric disorders and cancer.
Collapse
Affiliation(s)
- Yan Fan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| | - Xiao-Yan Yan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
5
|
Costa FV, Zabegalov KN, Kolesnikova TO, de Abreu MS, Kotova MM, Petersen EV, Kalueff AV. Experimental models of human cortical malformations: from mammals to 'acortical' zebrafish. Neurosci Biobehav Rev 2023; 155:105429. [PMID: 37863278 DOI: 10.1016/j.neubiorev.2023.105429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Human neocortex controls and integrates cognition, emotions, perception and complex behaviors. Aberrant cortical development can be triggered by multiple genetic and environmental factors, causing cortical malformations. Animal models, especially rodents, are a valuable tool to probe molecular and physiological mechanisms of cortical malformations. Complementing rodent studies, the zebrafish (Danio rerio) is an important model organism in biomedicine. Although the zebrafish (like other fishes) lacks neocortex, here we argue that this species can still be used to model various aspects and brain phenomena related to human cortical malformations. We also discuss novel perspectives in this field, covering both advantages and limitations of using mammalian and zebrafish models in cortical malformation research. Summarizing mounting evidence, we also highlight the importance of translationally-relevant insights into the pathogenesis of cortical malformations from animal models, and discuss future strategies of research in the field.
Collapse
Affiliation(s)
- Fabiano V Costa
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Konstantin N Zabegalov
- Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | - Tatiana O Kolesnikova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Maria M Kotova
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia
| | | | - Allan V Kalueff
- World-class Research Center "Center for Personalized Medicine", Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Ural Federal University, Yekaterinburg, Russia; Neurobiology Program, Sirius University of Science and Technology, Sirius Federal Territory, Russia.
| |
Collapse
|
6
|
Karner E, Kasprian GJ, Farr A, Krampl-Bettelheim E. Polymicrogyria in a patient after twin-twin transfusion syndrome. BMJ Case Rep 2023; 16:e255510. [PMID: 37739446 PMCID: PMC10533711 DOI: 10.1136/bcr-2023-255510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
This case report presents a patient with a monochorionic twin pregnancy, development of twin-twin transfusion-syndrome (TTTS) and polymicrogyria (PMG) of one fetus. Due to TTTS grade 3, fetoscopic laser ablation was performed at gestational week 16+1. Sonographic follow-up showed a cortical malformation of the right parietal lobe in the former donor, which was identified as PMG by MRI scans. We describe the course of the pregnancy, as well as the clinical, especially neurological, development of the child over 3 years. This case report documents the power of neuroplasticity, leading to comparably good neurological outcome in an extensive, likely acquired cortical malformation. Further, it emphasises the importance of a thorough prenatal imaging characterisation of malformations of cortical development for optimal prenatal counselling of these cases.
Collapse
Affiliation(s)
- Eva Karner
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Wien, Austria
| | - Gregor J Kasprian
- Department of Radiology, Division of Neuro- and Musculoskeletal Radiology, Medical University of Vienna, Wien, Austria
| | - Alex Farr
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Wien, Austria
| | - Elisabeth Krampl-Bettelheim
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Medical University of Vienna, Wien, Austria
| |
Collapse
|
7
|
Chacón-González J, Restrepo-Martínez M, Moreno-Avellán Á, Ramírez-Bermúdez J. Polymicrogyria: An Unusual Case of Secondary Mania. J Psychiatr Pract 2023; 29:415-420. [PMID: 37678371 DOI: 10.1097/pra.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Secondary mania refers to a manic episode that arises during a medical illness other than bipolar disorder or in response to a drug or medication. As the psychopathological features of secondary mania resemble those of mania due to bipolar disorder, misdiagnosis is frequent. PURPOSE AND BASIC PROCEDURES We present the case of a 20-year-old woman who developed a manic episode with psychotic symptoms, in whom polymicrogyria, a malformation of the cortical development with abnormal electroencephalographic activity, was documented. After initiating antiepileptic management, the affective symptoms completely subsided. MAIN FINDINGS To date, no specific recommendations are available concerning when to perform advanced studies in patients with a manic episode; however, as our case shows, these are much needed. PRINCIPAL CONCLUSION Because the treatment of secondary conditions largely depends on finding the underlying cause, patients with a new-onset mania should undergo a thorough assessment for secondary causes.
Collapse
|
8
|
Kolbjer S, Martín Muñoz DA, Örtqvist AK, Pettersson M, Hammarsjö A, Anderlid BM, Dahlin M. Polymicrogyria: epidemiology, imaging, and clinical aspects in a population-based cohort. Brain Commun 2023; 5:fcad213. [PMID: 37614989 PMCID: PMC10443657 DOI: 10.1093/braincomms/fcad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Polymicrogyria is estimated to be one of the most common brain malformations, accounting for ∼16% of malformations of cortical development. However, the prevalence and incidence of polymicrogyria is unknown. Our aim was to estimate the prevalence, incidence rate, neuroimaging diversity, aetiology, and clinical phenotype of polymicrogyria in a population-based paediatric cohort. We performed a systematic search of MRI scans at neuroradiology department databases in Stockholm using the keyword polymicrogyria. The study population included all children living in the Stockholm region born from January 2004 to June 2021 with polymicrogyria. Information on the number of children living in the region during 2004-21 was collected from records from Statistics Sweden, whereas the number of births for each year during the study period was collected from the Swedish Medical Birth Register. All MRI scans were re-evaluated, and malformations were classified by a senior paediatric neuroradiologist. The prevalence and yearly incidence were estimated. Clinical data were collected from medical records. A total of 109 patients with polymicrogyria were included in the study. The overall polymicrogyria prevalence in Stockholm was 2.3 per 10 000 children, and the overall estimated yearly incidence between 2004 and 2020 was 1.9 per 10 000 person-years. The most common polymicrogyria distribution was in the frontal lobe (71%), followed by the parietal lobe (37%). Polymicrogyria in the peri-sylvian region was observed in 53%. Genetic testing was performed in 90 patients revealing pathogenic variants in 32%. Additionally, 12% had variants of uncertain significance. Five patients had a confirmed congenital infection, and in six individuals, the cause of polymicrogyria was assumed to be vascular. Epilepsy was diagnosed in 54%. Seizure onset during the first year of life was observed in 44%. The most common seizure types were focal seizures with impaired awareness, followed by epileptic spasms. Thirty-three of 59 patients with epilepsy (56%) were treated with more than two anti-seizure medications, indicating that pharmacoresistant epilepsy is common in polymicrogyria patients. Neurodevelopmental symptoms were observed in 94% of the individuals. This is the first population-based study on polymicrogyria prevalence and incidence. Confirmed genetic aetiology was present in one-third of individuals with polymicrogyria. Epilepsy was common in this patient group, and the majority had pharmacoresistant epilepsy. These findings increase our knowledge about polymicrogyria and will help in counselling patients and their families.
Collapse
Affiliation(s)
- Sintia Kolbjer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Paediatric Neurology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Daniel A Martín Muñoz
- Department of Neuroradiology and Paediatric Radiology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Anne K Örtqvist
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Obstetrics and Gynaecology, Visby County Hospital, Visby 62155, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Maria Dahlin
- Department of Paediatric Neurology, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm 17176, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
9
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
10
|
Su T, Guan Q, Cheng H, Zhu Z, Jiang C, Guo P, Tai Y, Sun H, Wang M, Wei W, Wang Q. Functions of G protein-coupled receptor 56 in health and disease. Acta Physiol (Oxf) 2022; 236:e13866. [PMID: 35959520 DOI: 10.1111/apha.13866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023]
Abstract
Human G protein-coupled receptor 56 (GPR56) is encoded by gene ADGRG1 from chromosome 16q21 and is homologously encoded in mice, at chromosome 8. Both 687 and 693 splice forms are present in humans and mice. GPR56 has a 381 amino acid-long N-terminal extracellular segment and a GPCR proteolysis site upstream from the first transmembrane domain. GPR56 is mainly expressed in the heart, brain, thyroid, platelets, and peripheral blood mononuclear cells. Accumulating evidence indicates that GPR56 promotes the formation of myelin sheaths and the development of oligodendrocytes in the cerebral cortex of the central nervous system. Moreover, GPR56 contributes to the development and differentiation of hematopoietic stem cells, induces adipogenesis, and regulates the function of immune cells. The lack of GPR56 leads to nervous system dysfunction, platelet disorders, and infertility. Abnormal expression of GPR56 is related to the malignant transformation and tumor metastasis of several cancers including melanoma, neuroglioma, and gastrointestinal cancer. Metabolic disorders and cardiovascular diseases are also associated with dysregulation of GPR56 expression, and GPR56 is involved in the pharmacological resistance to some antidepressant and cancer drug treatments. In this review, the molecular structure, expression profile, and signal transduction of GPR56 are introduced, and physiological and pathological functions of GRP56 are comprehensively summarized. Attributing to its significant biological functions and its long N-terminal extracellular region that interacts with multiple ligands, GPR56 is becoming an attractive therapeutic target in treating neurological and hematopoietic diseases.
Collapse
Affiliation(s)
- Tiantian Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Huijuan Cheng
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Chunru Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
11
|
Tocco C, Bertacchi M, Studer M. Structural and Functional Aspects of the Neurodevelopmental Gene NR2F1: From Animal Models to Human Pathology. Front Mol Neurosci 2022; 14:767965. [PMID: 34975398 PMCID: PMC8715095 DOI: 10.3389/fnmol.2021.767965] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.
Collapse
Affiliation(s)
- Chiara Tocco
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | |
Collapse
|
12
|
Sarrà‐Rovira M, Carrera I, Maeso C, Montoliu P. Polymicrogyria in a miniature poodle dog: Clinical and MRI findings. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Ortiz JF, Ruxmohan S, Khurana M, Hidalgo J, Alzamora IM, Patel A. Megalencephaly Polymicrogyria Polydactyly Hydrocephalus (MPPH): A Case Report and Review of Literature. Cureus 2021; 13:e16132. [PMID: 34354878 PMCID: PMC8327302 DOI: 10.7759/cureus.16132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 11/11/2022] Open
Abstract
Megacephaly polymicrogyria, polydactyly, hydrocephalus (MPPH) is an extremely rare condition caused by a defect in the AKT3, CCND2, or PIKR2 genes. Although the prevalence of the syndrome is very low, there is a significant clinical and radiological variation in the syndrome. We present a case with MPPH admitted to the hospital due to an increase in seizure frequency. The patient had a history of cerebral palsy, global developmental delay, spasticity, and hypoglycemic episodes. MRI findings revealed ventriculomegaly, polymicrogyria, abnormal encephalon, and pachygyria. The addition of clobazam and alprazolam diminished the seizures' frequency and the patient's spasticity, respectively. To highlight the clinical and radiological variation of the syndrome, we review cases of MPPH with clinical and radiological variants. Pachygyria and cerebral palsy are new associations not previously described before in MPPH. Pachygyria and cerebral palsy could be worsening the seizures and the global delay in this patient. Hypoglycemic episodes are probably related to the AKT3 gene, promoting more glucose consumption. Spasticity is most probably related to an upper motor sign due to the patient's cerebral palsy. This case highlights the clinical and radiological variation of the syndrome. More cases of MPPH need to be described to consolidate the knowledge and have a better understanding of the clinical and radiological variation of the syndrome.
Collapse
Affiliation(s)
- Juan Fernando Ortiz
- Neurology, Universidad San Francisco de Quito, Quito, ECU.,Neurology, Larkin Community Hospital, Miami, USA
| | | | - Mahika Khurana
- Public Health, University of California Berkeley, Berkeley, USA
| | - Jessica Hidalgo
- Internal Medicine, San Francisco de Quito University, Quito, ECU
| | | | - Amrapali Patel
- Public Health, George Washington University, Washington, USA
| |
Collapse
|
14
|
Thomas DL, Pierson CR. Neuropathology of Surgically Managed Epilepsy Specimens. Neurosurgery 2021; 88:1-14. [PMID: 33231262 DOI: 10.1093/neuros/nyaa366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/08/2020] [Indexed: 11/14/2022] Open
Abstract
Epilepsy is characterized as recurrent seizures, and it is one of the most prevalent disorders of the human nervous system. A large and diverse profile of different syndromes and conditions can cause perturbations in neural networks that are associated with epilepsy. Advances in neuroimaging and electrophysiological monitoring have enhanced our ability to localize the neuropathological lesions that alter the neural networks giving rise to epilepsy, whereas advances in surgical management have resulted in excellent seizure control in many patients following resections. Histopathologic study using a variety of special stains, molecular analysis, and functional studies of these resected tissues has facilitated the neuropathological characterization of these lesions. Here, we review the neuropathology of common structural lesions that cause epilepsy and are amenable to neurosurgical resection, such as hippocampal sclerosis, focal cortical dysplasia, and its associated principal lesions, including long-term epilepsy-associated tumors, as well as other malformations of cortical development and Rasmussen encephalitis.
Collapse
Affiliation(s)
- Diana L Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pathology, The Ohio State University, Columbus, Ohio.,Division of Anatomy, Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
15
|
Excitatory/Inhibitory Synaptic Ratios in Polymicrogyria and Down Syndrome Help Explain Epileptogenesis in Malformations. Pediatr Neurol 2021; 116:41-54. [PMID: 33450624 DOI: 10.1016/j.pediatrneurol.2020.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The ratio between excitatory (glutamatergic) and inhibitory (GABAergic) inputs into maturing individual cortical neurons influences their epileptic potential. Structural factors during development that alter synaptic inputs can be demonstrated neuropathologically. Increased mitochondrial activity identifies neurons with excessive discharge rates. METHODS This study focuses on the neuropathological examinaion of surgical resections for epilepsy and at autopsy, in fetuses, infants, and children, using immunocytochemical markers, and electron microscopy in selected cases. Polymicrogyria and Down syndrome are highlighted. RESULTS Factors influencing afferent synaptic ratios include the following: (1) synaptic short-circuitry in fused molecular zones of adjacent gyri (polymicrogyria); (2) impaired development of dendritic spines decreasing excitation (Down syndrome); (3) extracellular keratan sulfate proteoglycan binding to somatic membranes but not dendritic spines may be focally diminished (cerebral atrophy, schizencephaly, lissencephaly, polymicrogyria) or augmented, ensheathing individual axons (holoprosencephaly), or acting as a barrier to axonal passage in the U-fiber layer. If keratan is diminished, glutamate receptors on the neuronal soma enable ectopic axosomatic excitatory synapses to form; (4) dysplastic, megalocytic neurons and balloon cells in mammalian target of rapamycin disorders; (5) satellitosis of glial cells displacing axosomatic synapses; (6) peri-neuronal inflammation (tuberous sclerosis) and heat-shock proteins. CONCLUSIONS Synaptic ratio of excitatory/inhibitory afferents is a major fundamental basis of epileptogenesis at the neuronal level. Neuropathology can demonstrate subcellular changes that help explain either epilepsy or lack of seizures in immature brains. Synaptic ratios in malformations influence postnatal epileptogenesis. Single neurons can be hypermetabolic and potentially epileptogenic.
Collapse
|
16
|
Braden RO, Boyce JO, Stutterd CA, Pope K, Goel H, Leventer RJ, Scheffer IE, Morgan AT. Speech, Language, and Oromotor Skills in Patients With Polymicrogyria. Neurology 2021; 96:e1898-e1912. [PMID: 33589534 DOI: 10.1212/wnl.0000000000011698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/06/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether specific speech, language, and oromotor profiles are associated with different patterns of polymicrogyria, we assessed 52 patients with polymicrogyria using a battery of standardized tests and correlated findings with topography and severity of polymicrogyria. METHODS Patients were identified via clinical research databases and invited to participate, irrespective of cognitive and verbal language abilities. We conducted standardized assessments of speech, oromotor structure and function, language, and nonverbal IQ. Data were analyzed according to normative assessment data and descriptive statistics. We conducted a correlation analysis between topographic pattern and speech and language findings. RESULTS Fifty-two patients (33 male, 63%) were studied at an average age of 12.7 years (range 2.5-36 years). All patients had dysarthria, which ranged from mild impairment to anarthria. Developmental speech errors (articulation and phonology), oral motor structure and function deficits, and language disorder were frequent. A total of 23/29 (79%) had cognitive abilities in the low average to extremely low range. In the perisylvian polymicrogyria group (36/52), speech, everyday language, and oral motor impairments were more severe, compared to generalized (1 patient), frontal (3), polymicrogyria with periventricular nodular heterotopia (3), parasagittal parieto-occipital (1), mesial occipital (1), and other (7) patterns. CONCLUSIONS Dysarthria is a core feature of polymicrogyria, often accompanied by receptive and expressive language impairments. These features are associated with all polymicrogyria distribution patterns and more severe in individuals with bilateral polymicrogyria, particularly in the perisylvian region.
Collapse
Affiliation(s)
- Ruth O Braden
- From Murdoch Children's Research Institute (R.O.B., J.O.B., C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Departments of Audiology and Speech Pathology (R.O.B., J.O.B., A.T.M.) and Paediatrics (C.A.S., R.J.L., I.E.S.), University of Melbourne; The Royal Children's Hospital (C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Victorian Clinical Genetics Service (C.A.S., K.P.), Parkville, Victoria; Hunter Genetics (H.G.), John Hunter Hospital, New Lambton Heights, New South Wales; Austin Health (I.E.S.), Heidelberg, Victoria; and Florey Institute of Neuroscience and Mental Health (I.E.S.), Parkville, Victoria, Australia
| | - Jessica O Boyce
- From Murdoch Children's Research Institute (R.O.B., J.O.B., C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Departments of Audiology and Speech Pathology (R.O.B., J.O.B., A.T.M.) and Paediatrics (C.A.S., R.J.L., I.E.S.), University of Melbourne; The Royal Children's Hospital (C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Victorian Clinical Genetics Service (C.A.S., K.P.), Parkville, Victoria; Hunter Genetics (H.G.), John Hunter Hospital, New Lambton Heights, New South Wales; Austin Health (I.E.S.), Heidelberg, Victoria; and Florey Institute of Neuroscience and Mental Health (I.E.S.), Parkville, Victoria, Australia
| | - Chloe A Stutterd
- From Murdoch Children's Research Institute (R.O.B., J.O.B., C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Departments of Audiology and Speech Pathology (R.O.B., J.O.B., A.T.M.) and Paediatrics (C.A.S., R.J.L., I.E.S.), University of Melbourne; The Royal Children's Hospital (C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Victorian Clinical Genetics Service (C.A.S., K.P.), Parkville, Victoria; Hunter Genetics (H.G.), John Hunter Hospital, New Lambton Heights, New South Wales; Austin Health (I.E.S.), Heidelberg, Victoria; and Florey Institute of Neuroscience and Mental Health (I.E.S.), Parkville, Victoria, Australia
| | - Kate Pope
- From Murdoch Children's Research Institute (R.O.B., J.O.B., C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Departments of Audiology and Speech Pathology (R.O.B., J.O.B., A.T.M.) and Paediatrics (C.A.S., R.J.L., I.E.S.), University of Melbourne; The Royal Children's Hospital (C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Victorian Clinical Genetics Service (C.A.S., K.P.), Parkville, Victoria; Hunter Genetics (H.G.), John Hunter Hospital, New Lambton Heights, New South Wales; Austin Health (I.E.S.), Heidelberg, Victoria; and Florey Institute of Neuroscience and Mental Health (I.E.S.), Parkville, Victoria, Australia
| | - Himanshu Goel
- From Murdoch Children's Research Institute (R.O.B., J.O.B., C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Departments of Audiology and Speech Pathology (R.O.B., J.O.B., A.T.M.) and Paediatrics (C.A.S., R.J.L., I.E.S.), University of Melbourne; The Royal Children's Hospital (C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Victorian Clinical Genetics Service (C.A.S., K.P.), Parkville, Victoria; Hunter Genetics (H.G.), John Hunter Hospital, New Lambton Heights, New South Wales; Austin Health (I.E.S.), Heidelberg, Victoria; and Florey Institute of Neuroscience and Mental Health (I.E.S.), Parkville, Victoria, Australia
| | - Richard J Leventer
- From Murdoch Children's Research Institute (R.O.B., J.O.B., C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Departments of Audiology and Speech Pathology (R.O.B., J.O.B., A.T.M.) and Paediatrics (C.A.S., R.J.L., I.E.S.), University of Melbourne; The Royal Children's Hospital (C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Victorian Clinical Genetics Service (C.A.S., K.P.), Parkville, Victoria; Hunter Genetics (H.G.), John Hunter Hospital, New Lambton Heights, New South Wales; Austin Health (I.E.S.), Heidelberg, Victoria; and Florey Institute of Neuroscience and Mental Health (I.E.S.), Parkville, Victoria, Australia
| | - Ingrid E Scheffer
- From Murdoch Children's Research Institute (R.O.B., J.O.B., C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Departments of Audiology and Speech Pathology (R.O.B., J.O.B., A.T.M.) and Paediatrics (C.A.S., R.J.L., I.E.S.), University of Melbourne; The Royal Children's Hospital (C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Victorian Clinical Genetics Service (C.A.S., K.P.), Parkville, Victoria; Hunter Genetics (H.G.), John Hunter Hospital, New Lambton Heights, New South Wales; Austin Health (I.E.S.), Heidelberg, Victoria; and Florey Institute of Neuroscience and Mental Health (I.E.S.), Parkville, Victoria, Australia
| | - Angela T Morgan
- From Murdoch Children's Research Institute (R.O.B., J.O.B., C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Departments of Audiology and Speech Pathology (R.O.B., J.O.B., A.T.M.) and Paediatrics (C.A.S., R.J.L., I.E.S.), University of Melbourne; The Royal Children's Hospital (C.A.S., K.P., R.J.L., I.E.S., A.T.M.); Victorian Clinical Genetics Service (C.A.S., K.P.), Parkville, Victoria; Hunter Genetics (H.G.), John Hunter Hospital, New Lambton Heights, New South Wales; Austin Health (I.E.S.), Heidelberg, Victoria; and Florey Institute of Neuroscience and Mental Health (I.E.S.), Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Stutterd CA, Brock S, Stouffs K, Fanjul-Fernandez M, Lockhart PJ, McGillivray G, Mandelstam S, Pope K, Delatycki MB, Jansen A, Leventer RJ. Genetic heterogeneity of polymicrogyria: study of 123 patients using deep sequencing. Brain Commun 2020; 3:fcaa221. [PMID: 33604570 PMCID: PMC7878248 DOI: 10.1093/braincomms/fcaa221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Polymicrogyria is a malformation of cortical development characterized by overfolding and abnormal lamination of the cerebral cortex. Manifestations include epilepsy, speech disturbance and motor and cognitive disability. Causes include acquired prenatal insults and inherited and de novo genetic variants. The proportion of patients with polymicrogyria and a causative germline or mosaic variant is not known. The aim of this study was to identify the monogenic causes of polymicrogyria in a heterogeneous cohort of patients reflective of specialized referral services. Patients with polymicrogyria were recruited from two clinical centres in Australia and Belgium. Patients with evidence of congenital cytomegalovirus infection or causative chromosomal copy number variants were excluded. One hundred and twenty-three patients were tested using deep sequencing gene panels including known and candidate genes for malformations of cortical development. Causative and potentially causative variants were identified and correlated with phenotypic features. Pathogenic or likely pathogenic variants were identified in 25/123 (20.3%) patients. A candidate variant was identified for an additional patient but could not be confirmed as de novo, and therefore it was classified as being of uncertain significance with high clinical relevance. Of the 22 dominant variants identified, 5 were mosaic with allele fractions less than 0.33 and the lowest allele fraction 0.09. The most common causative genes were TUBA1A and PIK3R2. The other eleven causative genes were PIK3CA, NEDD4L, COL4A1, COL4A2, GPSM2, GRIN2B, WDR62, TUBB3, TUBB2B, ACTG1 and FH. A genetic cause was more likely to be identified in the presence of an abnormal head size or additional brain malformations suggestive of a tubulinopathy, such as dysmorphic basal ganglia. A gene panel test provides greater sequencing depth and sensitivity for mosaic variants than whole exome or genome sequencing but is limited to the genes included, potentially missing variants in newly discovered genes. The diagnostic yield of 20.3% indicates that polymicrogyria may be associated with genes not yet known to be associated with brain malformations, brain-specific somatic mutations or non-genetic causes.
Collapse
Affiliation(s)
- Chloe A Stutterd
- Murdoch Children's Research Institute, Melbourne, 3052, Australia.,University of Melbourne Department of Paediatrics, Melbourne, 3052, Australia.,Royal Children's Hospital, Melbourne, 3052, Australia.,Victorian Clinical Genetics Service, Melbourne, 3052, Australia
| | - Stefanie Brock
- Neurogenetics Research group, Vrije Universiteit Brussel, Belgium.,Department of Pathology, UZ Brussel, Belgium
| | - Katrien Stouffs
- Neurogenetics Research group, Vrije Universiteit Brussel, Belgium.,Centre for Medical Genetics, UZ Brussel, Belgium
| | | | - Paul J Lockhart
- Murdoch Children's Research Institute, Melbourne, 3052, Australia.,University of Melbourne Department of Paediatrics, Melbourne, 3052, Australia
| | | | - Simone Mandelstam
- Murdoch Children's Research Institute, Melbourne, 3052, Australia.,University of Melbourne Department of Paediatrics, Melbourne, 3052, Australia.,Royal Children's Hospital, Melbourne, 3052, Australia
| | - Kate Pope
- Murdoch Children's Research Institute, Melbourne, 3052, Australia
| | - Martin B Delatycki
- Murdoch Children's Research Institute, Melbourne, 3052, Australia.,University of Melbourne Department of Paediatrics, Melbourne, 3052, Australia.,Victorian Clinical Genetics Service, Melbourne, 3052, Australia
| | - Anna Jansen
- Neurogenetics Research group, Vrije Universiteit Brussel, Belgium.,Pediatric Neurology Unit, UZ Brussel, Belgium
| | - Richard J Leventer
- Murdoch Children's Research Institute, Melbourne, 3052, Australia.,University of Melbourne Department of Paediatrics, Melbourne, 3052, Australia.,Royal Children's Hospital, Melbourne, 3052, Australia
| |
Collapse
|
18
|
Kobow K, Jabari S, Pieper T, Kudernatsch M, Polster T, Woermann FG, Kalbhenn T, Hamer H, Rössler K, Mühlebner A, Spliet WGM, Feucht M, Hou Y, Stichel D, Korshunov A, Sahm F, Coras R, Blümcke I, von Deimling A. Mosaic trisomy of chromosome 1q in human brain tissue associates with unilateral polymicrogyria, very early-onset focal epilepsy, and severe developmental delay. Acta Neuropathol 2020; 140:881-891. [PMID: 32979071 PMCID: PMC7666281 DOI: 10.1007/s00401-020-02228-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Polymicrogyria (PMG) is a developmental cortical malformation characterized by an excess of small and frustrane gyration and abnormal cortical lamination. PMG frequently associates with seizures. The molecular pathomechanisms underlying PMG development are not yet understood. About 40 genes have been associated with PMG, and small copy number variations have also been described in selected patients. We recently provided evidence that epilepsy-associated structural brain lesions can be classified based on genomic DNA methylation patterns. Here, we analyzed 26 PMG patients employing array-based DNA methylation profiling on formalin-fixed paraffin-embedded material. A series of 62 well-characterized non-PMG cortical malformations (focal cortical dysplasia type 2a/b and hemimegalencephaly), temporal lobe epilepsy, and non-epilepsy autopsy controls was used as reference cohort. Unsupervised dimensionality reduction and hierarchical cluster analysis of DNA methylation profiles showed that PMG formed a distinct DNA methylation class. Copy number profiling from DNA methylation data identified a uniform duplication spanning the entire long arm of chromosome 1 in 7 out of 26 PMG patients, which was verified by additional fluorescence in situ hybridization analysis. In respective cases, about 50% of nuclei in the center of the PMG lesion were 1q triploid. No chromosomal imbalance was seen in adjacent, architecturally normal-appearing tissue indicating mosaicism. Clinically, PMG 1q patients presented with a unilateral frontal or hemispheric PMG without hemimegalencephaly, a severe form of intractable epilepsy with seizure onset in the first months of life, and severe developmental delay. Our results show that PMG can be classified among other structural brain lesions according to their DNA methylation profile. One subset of PMG with distinct clinical features exhibits a duplication of chromosomal arm 1q.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Samir Jabari
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Tom Pieper
- Department of Neurology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Department of Neurosurgery and Epilepsy Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
- Research Institute "Rehabilitation, Transition, Palliation", PMU Salzburg, Salzburg, Austria
| | - Tilman Polster
- Epilepsy Center Bethel, Krankenhaus Mara, Bielefeld, Germany
| | | | - Thilo Kalbhenn
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Hajo Hamer
- Department of Neurology, Epilepsy Center, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Affiliated Partner of the ERN EpiCARE, Medical University Vienna, Vienna, Austria
| | - Yanghao Hou
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Coras
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, Institute of Neuropathology, Affiliated Partner of the ERN EpiCARE, Universitätsklinikum Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Universitätsklinikum Heidelberg, and, CCU Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Yang W, Williams A, Sun QQ. Circuit Mechanisms Underlying Epileptogenesis in a Mouse Model of Focal Cortical Malformation. Curr Biol 2020; 31:334-345.e4. [PMID: 33157021 DOI: 10.1016/j.cub.2020.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/23/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
The way in which aberrant neural circuits contribute to epilepsy remains unclear. To elucidate this question, we dissected the circuit mechanisms underlying epileptogenesis using a mouse model of focal cortical malformation with spontaneous epileptiform discharges. We found that spontaneous spike-wave discharges and optogenetically induced hyperexcitable bursts in vivo were present in a cortical region distal to (>0.7 mm) freeze-lesion-induced microgyrus, instead of near the microgyrus. ChR2-assisted circuit mapping revealed ectopic inter-laminar excitatory input from infragranular layers to layers 2/3 pyramidal neurons as the key component of hyperexcitable circuitry. This hyperactivity disrupted the balance between excitation and inhibition and was more prominent in the cortical region distal to the microgyrus. Consistently, the inhibition from both parvalbumin-positive interneurons (PV) and somatostatin-positive interneurons (SOM) to pyramidal neurons were altered in a layer- and site-specific fashion. Finally, closed-loop optogenetic stimulation of SOM, but not PV, terminated spontaneous spike-wave discharges. Together, these results demonstrate the occurrence of highly site- and cell-type-specific synaptic reorganization underlying epileptic cortical circuits and provide new insights into potential treatment strategies.
Collapse
Affiliation(s)
- Weiguo Yang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Anthony Williams
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Qian-Quan Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
20
|
Andelman-Gur MM, Leventer RJ, Hujirat M, Ganos C, Yosovich K, Carmi N, Lev D, Nissenkorn A, Dobyns WB, Bhatia K, Lerman-Sagie T, Blumkin L. Bilateral polymicrogyria associated with dystonia: A new neurogenetic syndrome? Am J Med Genet A 2020; 182:2207-2213. [PMID: 33001581 DOI: 10.1002/ajmg.a.61795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/15/2020] [Accepted: 06/23/2020] [Indexed: 11/07/2022]
Abstract
The clinical presentation of bilateral perisylvian polymicrogyria (PMG) is highly variable, including oromotor dysfunction, epilepsy, intellectual disability, and pyramidal signs. Extrapyramidal features are extremely rare. We present four apparently unrelated patients with a unique association of PMG with dystonia. The clinical, genetic, and radiologic features are described and possible mechanisms of dystonia are discussed. All patients were female and two were born to consanguineous families. All presented with early childhood onset dystonia. Other neurologic symptoms and signs classically seen in bilateral perisylvian PMG were observed, including oromotor dysfunction and speech abnormalities ranging from dysarthria to anarthria (4/4), pyramidal signs (3/4), hypotonia (3/4), postnatal microcephaly (1/4), and seizures (1/4). Neuroimaging showed a unique pattern of bilateral PMG with an infolded cortex originating primarily from the perisylvian region in three out of four patients. Whole exome sequencing was performed in two out of four patients and did not reveal pathogenic variants in known genes for cortical malformations or movement disorders. The dystonia seen in our patients is not described in bilateral PMG and suggests an underlying mechanism of impaired connectivity within the motor network or compromised cortical inhibition. The association of bilateral PMG with dystonia in our patients may represent a new neurogenetic disorder.
Collapse
Affiliation(s)
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Melbourne, Australia
- Murdoch Children's Research Institute, Melbourne, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | | | - Christos Ganos
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Keren Yosovich
- Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
- Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
- Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel
| | - Nirit Carmi
- Child Development Center, Maccabi Health Services, Bnei Brak, Israel
| | - Dorit Lev
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
- Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Andreea Nissenkorn
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, Washington, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| | - Tally Lerman-Sagie
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Lubov Blumkin
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
- Pediatric Movement Disorders Service, Wolfson Medical Center, Holon, Israel
| |
Collapse
|
21
|
Nishimura N, Kumaki T, Murakami H, Enomoto Y, Katsumata K, Toyoshima K, Kurosawa K. Arthrogryposis multiplex congenita with polymicrogyria and infantile encephalopathy caused by a novel GRIN1 variant. Hum Genome Var 2020; 7:29. [PMID: 33062288 PMCID: PMC7519642 DOI: 10.1038/s41439-020-00116-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Variants of GRIN1, which encodes GluN1, are associated with developmental delay, epilepsy, and cortical malformation. Here, we report a case of arthrogryposis multiplex congenita with polymicrogyria and infantile encephalopathy caused by a heterozygous variant, c.1949A>C, p.(Asn650Thr) of GRIN1, which could result in the disruption of the third transmembrane domain (M3) of GluN1. This case expands our understanding of the known phenotypes of GRIN1-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Naoto Nishimura
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Kaoru Katsumata
- Department of Neonatology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Katsuaki Toyoshima
- Department of Neonatology, Kanagawa Children’s Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children’s Medical Center, Yokohama, Japan
| |
Collapse
|
22
|
International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nat Rev Neurol 2020; 16:618-635. [PMID: 32895508 PMCID: PMC7790753 DOI: 10.1038/s41582-020-0395-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.
Collapse
|
23
|
Jha R, Kovilapu UB, Devgan A, Sondhi V. Two Novel Compound Heterozygous ADGRG1/GPR56 Mutations Associated with Diffuse Cerebral Polymicrogyria. J Pediatr Genet 2020; 11:74-80. [PMID: 35186395 DOI: 10.1055/s-0040-1714716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Background Polymicrogyria (PMG) has environmental or genetic etiologies. We report a 8-year-old boy with diffuse PMG and two novel adhesion G protein-coupled receptor G1 ( ADGRG1 ) / G protein-coupled receptor 56 ( GPR56 ) mutations. Case Report The proband has intellectual disability, spastic quadriparesis, and intractable epilepsy without antenatal or perinatal insults. Brain magnetic resonance imaging revealed PMG involving fronto-polar, parietal and occipital lobes with decreasing antero-posterior gradient, and a thinned-out brain stem. Targeted exome sequencing identified two novel compound heterozygote ADGRG1/GPR56 mutations (c.C209T and c.1010dupT), and each parent carries one of these mutations. Subsequent pregnancy was terminated because the fetus had the same mutations. Conclusion The detected mutations expanded the genetic etiology of PMG and helped the family to avoid another child with this devastating condition.
Collapse
Affiliation(s)
- Ruchika Jha
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| | - Uday B Kovilapu
- Department of Radiodiagnosis, Armed Forces Medical College, Pune, Maharashtra, India
| | - Amit Devgan
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| | - Vishal Sondhi
- Department of Pediatrics, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
24
|
Quezada S, van de Looij Y, Hale N, Rana S, Sizonenko SV, Gilchrist C, Castillo-Melendez M, Tolcos M, Walker DW. Genetic and microstructural differences in the cortical plate of gyri and sulci during gyrification in fetal sheep. Cereb Cortex 2020; 30:6169-6190. [PMID: 32609332 DOI: 10.1093/cercor/bhaa171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/28/2022] Open
Abstract
Gyrification of the cerebral cortex is a developmentally important process, but the mechanisms that drive cortical folding are not fully known. Theories propose that changes within the cortical plate (CP) cause gyrification, yet differences between the CP below gyri and sulci have not been investigated. Here we report genetic and microstructural differences in the CP below gyri and sulci assessed before (at 70 days of gestational age [GA] 70), during (GA 90), and after (GA 110) gyrification in fetal sheep. The areal density of BDNF, CDK5, and NeuroD6 immunopositive cells were increased, and HDAC5 and MeCP2 mRNA levels were decreased in the CP below gyri compared with sulci during gyrification, but not before. Only the areal density of BDNF-immunopositive cells remained increased after gyrification. MAP2 immunoreactivity and neurite outgrowth were also increased in the CP below gyri compared with sulci at GA 90, and this was associated with microstructural changes assessed via diffusion tensor imaging and neurite orientation dispersion and density imaging at GA 98. Differential neurite outgrowth may therefore explain the localized changes in CP architecture that result in gyrification.
Collapse
Affiliation(s)
- Sebastian Quezada
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Yohan van de Looij
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland.,Functional and Metabolic Imaging Lab, Federal Institute of Technology of Lausanne, Lausanne 1015, Switzerland
| | - Nadia Hale
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shreya Rana
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Stéphane V Sizonenko
- Division of Development and Growth, Department of Paediatrics and Gynaecology-Obstetrics, School of Medicine, University of Geneva, 1204 Geneva, Switzerland
| | - Courtney Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia.,Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Mary Tolcos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
25
|
Bertacchi M, Romano AL, Loubat A, Tran Mau-Them F, Willems M, Faivre L, Khau van Kien P, Perrin L, Devillard F, Sorlin A, Kuentz P, Philippe C, Garde A, Neri F, Di Giaimo R, Oliviero S, Cappello S, D'Incerti L, Frassoni C, Studer M. NR2F1 regulates regional progenitor dynamics in the mouse neocortex and cortical gyrification in BBSOAS patients. EMBO J 2020; 39:e104163. [PMID: 32484994 PMCID: PMC7327499 DOI: 10.15252/embj.2019104163] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra‐Bosch‐Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss‐of‐function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria‐like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long‐term self‐renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area‐specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.
Collapse
Affiliation(s)
- Michele Bertacchi
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France.,Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France
| | - Frederic Tran Mau-Them
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Marjolaine Willems
- Hôpital Arnaud de Villeneuve, Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Philippe Khau van Kien
- Hôpital Carémeau, UF de Génétique Médicale et Cytogénétique, Centre de Compétences Anomalies du Développement et Syndromes Malformatifs, CHU de Nîmes, Nîmes, France
| | - Laurence Perrin
- Unité Fonctionnelle de Génétique Clinique, Hôpital Robert Debré, Paris, France
| | - Françoise Devillard
- Département de Génétique et Procréation, Hôpital Couple-Enfant, CHU de Grenoble, Grenoble, France
| | - Arthur Sorlin
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de référence maladies rares « Déficiences intellectuelles de causes rares », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Paul Kuentz
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Génétique Biologique, PCBio, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Christophe Philippe
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France.,Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Aurore Garde
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence maladies rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Francesco Neri
- Epigenetics Unit, Italian Institute for Genomic Medicine, University of Torino, Torino, Italy.,Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, Napoli, Italy.,Max Planck Institute of Psychiatry, München, Germany
| | - Salvatore Oliviero
- Epigenetics Unit, Italian Institute for Genomic Medicine, University of Torino, Torino, Italy
| | | | - Ludovico D'Incerti
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Carolina Frassoni
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Michèle Studer
- Université Côte d'Azur, CNRS, Inserm, iBV, Paris, France
| |
Collapse
|
26
|
Smith RS, Walsh CA. Ion Channel Functions in Early Brain Development. Trends Neurosci 2020; 43:103-114. [PMID: 31959360 PMCID: PMC7092371 DOI: 10.1016/j.tins.2019.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022]
Abstract
During prenatal brain development, ion channels are ubiquitous across several cell types, including progenitor cells and migrating neurons but their function has not been clear. In the past, ion channel dysfunction has been primarily studied in the context of postnatal, differentiated neurons that fire action potentials - notably ion channels mutated in the epilepsies - yet data now support a surprising role in prenatal human brain disorders as well. Modern gene discovery approaches have identified defective ion channels in individuals with cerebral cortex malformations, which reflect abnormalities in early-to-middle stages of embryonic development (prior to ubiquitous action potentials). These human genetics studies and recent in utero animal modeling work suggest that precise control of ionic flux (calcium, sodium, and potassium) contributes to in utero developmental processes such as neural proliferation, migration, and differentiation.
Collapse
Affiliation(s)
- Richard S Smith
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Groden M, Weigand M, Triesch J, Jedlicka P, Cuntz H. A Model of Brain Folding Based on Strong Local and Weak Long-Range Connectivity Requirements. Cereb Cortex 2019; 30:2434-2451. [DOI: 10.1093/cercor/bhz249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Abstract
Throughout the animal kingdom, the structure of the central nervous system varies widely from distributed ganglia in worms to compact brains with varying degrees of folding in mammals. The differences in structure may indicate a fundamentally different circuit organization. However, the folded brain most likely is a direct result of mechanical forces when considering that a larger surface area of cortex packs into the restricted volume provided by the skull. Here, we introduce a computational model that instead of modeling mechanical forces relies on dimension reduction methods to place neurons according to specific connectivity requirements. For a simplified connectivity with strong local and weak long-range connections, our model predicts a transition from separate ganglia through smooth brain structures to heavily folded brains as the number of cortical columns increases. The model reproduces experimentally determined relationships between metrics of cortical folding and its pathological phenotypes in lissencephaly, polymicrogyria, microcephaly, autism, and schizophrenia. This suggests that mechanical forces that are known to lead to cortical folding may synergistically contribute to arrangements that reduce wiring. Our model provides a unified conceptual understanding of gyrification linking cellular connectivity and macroscopic structures in large-scale neural network models of the brain.
Collapse
Affiliation(s)
- Moritz Groden
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main D-60528, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
- ICAR3R—Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, Giessen D-35390, Germany
| | - Marvin Weigand
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main D-60528, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
- Faculty of Biological Sciences, Goethe University, Frankfurt am Main D-60438, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
- Faculty of Physics, Goethe University, Frankfurt am Main D-60438, Germany
- Faculty of Computer Science and Mathematics, Goethe University, Frankfurt am Main D-60438, Germany
| | - Peter Jedlicka
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
- ICAR3R—Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University Giessen, Giessen D-35390, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt am Main D-60528, Germany
| | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main D-60528, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main D-60438, Germany
| |
Collapse
|
28
|
Amrom D, Poduri A, Goldman JS, Dan B, Deconinck N, Pichon B, Nadaf J, Andermann F, Andermann E, Walsh CA, Dobyns WB. Duplication 2p16 is associated with perisylvian polymicrogyria. Am J Med Genet A 2019; 179:2343-2356. [PMID: 31660690 DOI: 10.1002/ajmg.a.61342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 11/07/2022]
Abstract
Polymicrogyria (PMG) is a heterogeneous brain malformation that may result from prenatal vascular disruption or infection, or from numerous genetic causes that still remain difficult to identify. We identified three unrelated patients with polymicrogyria and duplications of chromosome 2p, defined the smallest region of overlap, and performed gene pathway analysis using Cytoscape. The smallest region of overlap in all three children involved 2p16.1-p16.3. All three children have bilateral perisylvian polymicrogyria (BPP), intrauterine and postnatal growth deficiency, similar dysmorphic features, and poor feeding. Two of the three children had documented intellectual disability. Gene pathway analysis suggested a number of developmentally relevant genes and gene clusters that were over-represented in the critical region. We narrowed a rare locus for polymicrogyria to a region of 2p16.1-p16.3 that contains 33-34 genes, 23 of which are expressed in cerebral cortex during human fetal development. Using pathway analysis, we showed that several of the duplicated genes contribute to neurodevelopmental pathways including morphogen, cytokine, hormonal and growth factor signaling, regulation of cell cycle progression, cell morphogenesis, axonal guidance, and neuronal migration. These findings strengthen the evidence for a novel locus associated with polymicrogyria on 2p16.1-p16.3, and comprise the first step in defining the underlying genetic etiology.
Collapse
Affiliation(s)
- Dina Amrom
- Neurogenetics Unit, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.,Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Annapurna Poduri
- Division of Epilepsy & Clinical Neurophysiology, Children's Hospital, Boston, Massachusetts.,Department of Neurology, Children's Hospital, Boston, Massachusetts
| | - Jennifer S Goldman
- Ludmer Centre for Neuroinformatics and Mental Health and the Department of Biomedical Engineering, McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | | | - Bruno Pichon
- Department of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Javad Nadaf
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Genome Quebec Innovation Center, McGill University, Montreal, Quebec, Canada
| | - Frederick Andermann
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada.,Epilepsy Research Group, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| | - Eva Andermann
- Neurogenetics Unit, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.,Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Epilepsy Research Group, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Christopher A Walsh
- Department of Neurology, Children's Hospital, Boston, Massachusetts.,Division of Genetics and Manton Center for Orphan Disease Research, Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
| | - William B Dobyns
- Department of Pediatrics (Genetics) and Neurology, University of Washington, and Seattle Children's Research Institute, Seattle, Washington
| |
Collapse
|
29
|
Interneuron dysfunction in epilepsy: An experimental approach using immature brain insults to induce neuronal migration disorders. Epilepsy Res 2019; 156:106185. [DOI: 10.1016/j.eplepsyres.2019.106185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 01/16/2023]
|
30
|
Urgen BM, Topac Y, Ustun FS, Demirayak P, Oguz KK, Kansu T, Saygi S, Ozcelik T, Boyaci H, Doerschner K. Homozygous LAMC3 mutation links to structural and functional changes in visual attention networks. Neuroimage 2019; 190:242-253. [DOI: 10.1016/j.neuroimage.2018.03.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 03/09/2018] [Accepted: 03/31/2018] [Indexed: 01/26/2023] Open
|
31
|
Llinares-Benadero C, Borrell V. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat Rev Neurosci 2019; 20:161-176. [DOI: 10.1038/s41583-018-0112-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Guzeva VI, Okhrim IV, Guzeva OV, Guzeva VV. Phenotypic and neuroimaging differentiation of polymicrogiry in children. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:14-20. [DOI: 10.17116/jnevro201911904114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Zavadenko NN, Kholin AA, Zavadenko AN, Michurina ES. [Speech and language neurodevelopmental disorders in epilepsy: pathophysiologic mechanisms and therapeutic approaches]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:118-125. [PMID: 30251989 DOI: 10.17116/jnevro2018118081118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Speech and language development may be impaired in all forms of epilepsy involving specialized functional areas in the dominant cerebral hemisphere and their connections. The concept of epilepsy-aphasia clinical spectrum was recently proposed, but the notion of aphasia is quite conditional here as many of these patients demonstrate disorders of speech and language development from their infancy. Those forms of epilepsy are considered as continuum from the most severe Landau-Kleffner syndrome (LKS) and epilepsy with continuous spike-and-wave during sleep (CSWS) (also indicating as electrical status epilepticus during sleep - ESES) to intermediate epilepsy-aphasia disorders (with incomplete correspondence to diagnostic criteria of LKS and epilepsy with CSWS). The mild end of the spectrum is represented by benign childhood epilepsy with centrotemporal spikes (rolandic), which is often associated with speech and language disorders. The importance of genetic factors is discussed, including mutations in SRPX2, GRIN2A and other genes. The perspectives of individualized pharmacotherapy in epilepsy, co-morbid with neurodevelopmental disorders or impairments of speech and language development, are depending on the progress in genetic studies. In the new generation of antiepileptic drugs the positive influence on neuroplasticity mechanisms and higher cerebral functions are supposed for levetiracetam.
Collapse
Affiliation(s)
- N N Zavadenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Kholin
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A N Zavadenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E S Michurina
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
34
|
Singh A, Malhotra HS, Tripathi A, Kar SK. Personality Changes in Bilateral Superior Frontal and Parafalcine Frontoparietal Polymicrogyria: A Rare Case Report. Indian J Psychol Med 2018; 40:186-188. [PMID: 29962577 PMCID: PMC6008994 DOI: 10.4103/ijpsym.ijpsym_159_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Polymicrogyria is a neurodevelopmental abnormality which results in the formation of excessive, small, abnormal, partially fused gyri with superficially located sulci replacing the normal gyral pattern. Intellectual disability, global developmental delay, epilepsy, language deficits, and motor deficits are commonly reported in patients with polymicrogyria. We present here the case of a young male with a rare pattern of bilateral superior frontal and parafalcine frontoparietal polymicrogyria, who had a mild intellectual disability, intractable seizures along with personality changes. This case report also highlights the relevance of neuroimaging in such cases, possible explanations of personality change in polymicrogyria and relevant management issues with a review of the literature.
Collapse
Affiliation(s)
- Astha Singh
- Department of Psychiatry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Hardeep Singh Malhotra
- Department of Neurology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Adarsh Tripathi
- Department of Psychiatry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
35
|
Fry AE, Fawcett KA, Zelnik N, Yuan H, Thompson BAN, Shemer-Meiri L, Cushion TD, Mugalaasi H, Sims D, Stoodley N, Chung SK, Rees MI, Patel CV, Brueton LA, Layet V, Giuliano F, Kerr MP, Banne E, Meiner V, Lerman-Sagie T, Helbig KL, Kofman LH, Knight KM, Chen W, Kannan V, Hu C, Kusumoto H, Zhang J, Swanger SA, Shaulsky GH, Mirzaa GM, Muir AM, Mefford HC, Dobyns WB, Mackenzie AB, Mullins JGL, Lemke JR, Bahi-Buisson N, Traynelis SF, Iago HF, Pilz DT. De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain 2018; 141:698-712. [PMID: 29365063 PMCID: PMC5837214 DOI: 10.1093/brain/awx358] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 11/14/2022] Open
Abstract
Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria.
Collapse
Affiliation(s)
- Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Katherine A Fawcett
- MRC Computational Genomics Analysis and Training Programme (CGAT), MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Nathanel Zelnik
- Pediatric Neurology Unit, Carmel Medical Center, Haifa, Israel
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Belinda A N Thompson
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | - Thomas D Cushion
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Hood Mugalaasi
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - David Sims
- MRC Computational Genomics Analysis and Training Programme (CGAT), MRC Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Neil Stoodley
- Department of Neuroradiology, North Bristol NHS Trust, Frenchay Hospital, Bristol BS16 1LE, UK
| | - Seo-Kyung Chung
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Mark I Rees
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Brisbane, Queensland 4029, Australia
| | - Louise A Brueton
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women’s Hospital, Birmingham B15 2TG, UK
| | - Valérie Layet
- Service de Génétique Médicale, Groupe Hospitalier du Havre, Hôpital Jacques Monod, Le Havre, France
| | - Fabienne Giuliano
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Michael P Kerr
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
- Learning Disabilities Directorate, Abertawe Bro Morgannwg University NHS Trust, Treseder Way, Caerau, Cardiff CF5 5WF, UK
| | - Ehud Banne
- Clinical Genetics Institute, Kaplan Medical Centre, Rehovot, Israel
| | - Vardiella Meiner
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Tally Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Centre, Holon, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Katherine L Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura H Kofman
- Kaiser Permanente Mid-Atlantic States, McLean, VA 22102, USA
| | | | - Wenjuan Chen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Varun Kannan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chun Hu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hirofumi Kusumoto
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, the First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Sharon A Swanger
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gil H Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ghayda M Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98195, USA
| | - Alison M Muir
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98195, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Amanda B Mackenzie
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Jonathan G L Mullins
- Genome and Structural Bioinformatics Group, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Johannes R Lemke
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Nadia Bahi-Buisson
- Imagine Institute, INSERM UMR-1163, Laboratory Genetics and Embryology of Congenital Malformations, Paris Descartes University, Paris, France
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Heledd F Iago
- Genome and Structural Bioinformatics Group, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Daniela T Pilz
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
36
|
Abstract
Epilepsy is one of the most common neurologic disorders, affecting about 50 million people worldwide. The disease is characterized by recurrent seizures, which are due to aberrant neuronal networks resulting in synchronous discharges. The term epilepsy encompasses a large spectrum of syndromes and diseases with different etiopathogenesis. The recent development of imaging and epilepsy surgery techniques is now enabling the identification of structural abnormalities that are part of the epileptic network, and the removal of these lesions may result in control of seizures. Access of this clinically well-characterized neurosurgical material has provided neuropathologists with the opportunity to study a variety of structural brain abnormalities associated with epilepsy, by combining traditional routine histopathologic methods with molecular genetics and functional analysis of the resected tissue. This approach has contributed greatly to a better diagnosis and classification of these structural lesions, and has provided important new insights into their pathogenesis and epileptogenesis. The present chapter provides a detailed description of the large spectrum of histopathologic findings encountered in epilepsy surgery patients, addressing in particular the nonneoplastic pathologies, including hippocampal sclerosis, malformations of cortical development, Sturge-Weber syndrome, and Rasmussen encephalitis, and reviews current knowledge regarding the underlying molecular pathomechanisms and cellular mechanisms mediating hyperexcitability.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of Neuropathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland, the Netherlands.
| | - Angelika Mühlebner
- Department of Neuropathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Sarnat HB, Flores-Sarnat L. Telencephalic Flexure and Malformations of the Lateral Cerebral (Sylvian) Fissure. Pediatr Neurol 2016; 63:23-38. [PMID: 27590993 DOI: 10.1016/j.pediatrneurol.2016.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 05/04/2016] [Indexed: 11/20/2022]
Abstract
After sagittal division of the prosencephalon at 4.5 weeks of gestation, the early fetal cerebral hemisphere bends or rotates posteroventrally from seven weeks of gestation. The posterior pole of the telencephalon thus becomes not the occipital but the temporal lobe as the telencephalic flexure forms the operculum and finally the lateral cerebral or Sylvian fissure. The ventral part is infolded to become the insula. The frontal and temporal lips of the Sylvian fissure, as well as the insula, all derive from the ventral margin of the primitive telencephalon, hence may be influenced by genetic mutations with a ventrodorsal gradient of expression. The telencephalic flexure also contributes to a shift of the hippocampus from a dorsal to a ventral position, the early rostral pole of the hippocampus becoming caudal and dorsal becoming ventral. The occipital horn is the most recent recess of the lateral ventricle, hence most vulnerable to anatomic variations that affect the calcarine fissure. Many major malformations include lack of telencephalic flexure (holoprosencephaly, extreme micrencephaly) or dysplastic Sylvian fissure (lissencephalies, hemimegalencephaly, schizencephaly). Although fissures and sulci are genetically programmed, mechanical forces of growth and volume expansion are proposed to be mainly extrinsic (including ventricles) for fissures and intrinsic for sulci. In fetal hydrocephalus, the telencephalic flexure is less affected because ventricular dilatation occurs later in gestation. Flexures can be detected prenatally by ultrasound and fetal magnetic resonance imaging and should be described neuropathologically in cerebral malformations.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pathology and Laboratory Medicine (Neuropathology), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Laura Flores-Sarnat
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Kelly JP, Ishak GE, Phillips JO, Nguyen H, Weiss AH. Visual sensory and ocular motor function in children with polymicrogyria: relationship to magnetic resonance imaging. J AAPOS 2016; 20:37-43. [PMID: 26917070 DOI: 10.1016/j.jaapos.2015.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 01/23/2023]
Abstract
PURPOSE To assess visual and ocular motor function in children with polymicrogyria (PMG). METHODS The medical records of 15 children (0.4-4 years of age) with PMG documented by magnetic resonance imaging (MRI) and with age-corrected visual acuity measured by Teller acuity cards were reviewed retrospectively. Cortical function was assessed by pattern visually evoked potentials (VEP). Ocular motor function was assessed by video-oculography or clinical assessment. Results were compared to age-matched controls. RESULTS Extent of PMG involvement varied from bilateral fronto-parietal to bilateral-diffuse. Nine children had involvement of the occipital lobe. Visual acuity at presentation was normal in 5 children (≥20/40 Snellen equivalent for age) and subnormal in 10 (average 20/200 equivalent). Visual acuity was similar in children with or without involvement of the occipital lobe (P = 0.4). Follow-up visual acuity was available for 9 children; 3 improved and 6 failed to improve (5 of whom had seizures). PMG involving the occipital lobe significantly reduced VEP amplitude and signal-to-noise ratios. Three infants without visually-guided behaviors had VEP responses. All 3 children with cytomegalovirus-related PMG without retinal disease had preserved visual function despite generalized MRI abnormalities. CONCLUSIONS All children with PMG had recordable visual function either by visual acuity or VEP testing, however the majority did not show longitudinal improvement in acuity. Seizures may impose limits on visual acuity development. Children with cytomegalovirus-related PMG, microcephaly, and developmental delay can have normal visual acuity. Children with a recordable VEP but without visually guided behaviors may have a defect in sensorimotor transformation.
Collapse
Affiliation(s)
- John P Kelly
- Roger H. Johnson Vision Lab, Division of Ophthalmology, Seattle Children's Hospital, Seattle, Washington; Department of Ophthalmology, University of Washington Medical Center, Seattle
| | - Gisele E Ishak
- Division of Radiology, Seattle Children's Hospital, Seattle, Washington; Department of Radiology, University of Washington Medical Center, Seattle
| | - James O Phillips
- Roger H. Johnson Vision Lab, Division of Ophthalmology, Seattle Children's Hospital, Seattle, Washington; Department of Otolaryngology, University of Washington Medical Center, Seattle
| | - Ho Nguyen
- Division of Radiology, Seattle Children's Hospital, Seattle, Washington
| | - Avery H Weiss
- Roger H. Johnson Vision Lab, Division of Ophthalmology, Seattle Children's Hospital, Seattle, Washington; Department of Ophthalmology, University of Washington Medical Center, Seattle.
| |
Collapse
|
39
|
Miyazaki Y, Song JW, Takahashi E. Asymmetry of Radial and Symmetry of Tangential Neuronal Migration Pathways in Developing Human Fetal Brains. Front Neuroanat 2016; 10:2. [PMID: 26834572 PMCID: PMC4724714 DOI: 10.3389/fnana.2016.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/02/2016] [Indexed: 11/13/2022] Open
Abstract
The radial and tangential neural migration pathways are two major neuronal migration streams in humans that are critical during corticogenesis. Corticogenesis is a complex process of neuronal proliferation that is followed by neuronal migration and the formation of axonal connections. Existing histological assessments of these two neuronal migration pathways have limitations inherent to microscopic studies and are confined to small anatomic regions of interest (ROIs). Thus, little evidence is available about their three-dimensional (3-D) fiber pathways and development throughout the entire brain. In this study, we imaged and analyzed radial and tangential migration pathways in the whole human brain using high-angular resolution diffusion MR imaging (HARDI) tractography. We imaged ten fixed, postmortem fetal (17 gestational weeks (GW), 18 GW, 19 GW, three 20 GW, three 21 GW and 22 GW) and eight in vivo newborn (two 30 GW, 34 GW, 35 GW and four 40 GW) brains with no neurological/pathological conditions. We statistically compared the volume of the left and right radial and tangential migration pathways, and the volume of the radial migration pathways of the anterior and posterior regions of the brain. In specimens 22 GW or younger, the volume of radial migration pathways of the left hemisphere was significantly larger than that of the right hemisphere. The volume of posterior radial migration pathways was also larger when compared to the anterior pathways in specimens 22 GW or younger. In contrast, no significant differences were observed in the radial migration pathways of brains older than 22 GW. Moreover, our study did not identify any significant differences in volumetric laterality in the tangential migration pathways. These results suggest that these two neuronal migration pathways develop and regress differently, and radial neuronal migration varies regionally based on hemispheric and anterior-posterior laterality, potentially explaining regional differences in the amount of excitatory neurons that migrate along the radial scaffold.
Collapse
Affiliation(s)
- Yuta Miyazaki
- Department of Medicine, Chiba University School of Medicine Chiba, Japan
| | - Jae W Song
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine New Haven, CT, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
40
|
Jansen AC, Robitaille Y, Honavar M, Mullatti N, Leventer RJ, Andermann E, Andermann F, Squier W. The histopathology of polymicrogyria: a series of 71 brain autopsy studies. Dev Med Child Neurol 2016; 58:39-48. [PMID: 26179148 DOI: 10.1111/dmcn.12840] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 11/30/2022]
Abstract
AIM Polymicrogyria (PMG) is one of the most common forms of cortical malformation yet the mechanism of its development remains unknown. This study describes the histopathological aspects of PMG in a large series including a significant proportion of fetal cases. METHOD We have reviewed the neuropathology and medical records of 44 fetuses and 27 children and adults in whom the cortical architecture was focally or diffusely replaced by one or more festooning bands of neurons. RESULTS The pial surface of the brain overlying the polymicrogyric cortex was abnormal in almost 90% of cases irrespective of the aetiology. This accords with animal studies indicating the importance of the leptomeninges in cortical development. The aetiology of PMG was highly heterogeneous and there was no correlation between cortical layering patterns and aetiology. PMG was almost always associated with other brain malformations. INTERPRETATION The inclusion of many fetal cases has allowed us to examine the early developmental stages of PMG. The study indicates the significance of surface signals responsible for human corticogenesis and the complex interaction between genetic and environmental factors leading to this common endpoint of cortical maldevelopment.
Collapse
Affiliation(s)
- Anna C Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium.,Department of Public Health, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yves Robitaille
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montreal, Montreal, QC, Canada
| | - Mrinalini Honavar
- Department of Clinical Neuropathology, King's College Hospital, Denmark Hill, London, UK.,Service of Anatomic Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Nandini Mullatti
- Department of Clinical Neurophysiology, King's College Hospital, Denmark Hill, London, UK
| | - Richard J Leventer
- Department of Neurology, University Department of Pediatrics, Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, Parkville, Vic., Australia
| | - Eva Andermann
- Neurogenetics Unit, Montreal Neurological Hospital and Institute, and Departments of Neurology & Neurosurgery and Human Genetics, McGill University, Montreal, QC, Canada
| | - Frederick Andermann
- Seizure Clinic, Montreal Neurological Hospital and Institute, and Departments of Neurology & Neurosurgery and Paediatrics, McGill University, Montreal, QC, Canada
| | - Waney Squier
- Department of Neuropathology, Oxford University John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
41
|
Moffat JJ, Ka M, Jung EM, Kim WY. Genes and brain malformations associated with abnormal neuron positioning. Mol Brain 2015; 8:72. [PMID: 26541977 PMCID: PMC4635534 DOI: 10.1186/s13041-015-0164-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/31/2015] [Indexed: 01/05/2023] Open
Abstract
Neuronal positioning is a fundamental process during brain development. Abnormalities in this process cause several types of brain malformations and are linked to neurodevelopmental disorders such as autism, intellectual disability, epilepsy, and schizophrenia. Little is known about the pathogenesis of developmental brain malformations associated with abnormal neuron positioning, which has hindered research into potential treatments. However, recent advances in neurogenetics provide clues to the pathogenesis of aberrant neuronal positioning by identifying causative genes. This may help us form a foundation upon which therapeutic tools can be developed. In this review, we first provide a brief overview of neural development and migration, as they relate to defects in neuronal positioning. We then discuss recent progress in identifying genes and brain malformations associated with aberrant neuronal positioning during human brain development.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| |
Collapse
|
42
|
Pagnamenta AT, Howard MF, Wisniewski E, Popitsch N, Knight SJL, Keays DA, Quaghebeur G, Cox H, Cox P, Balla T, Taylor JC, Kini U. Germline recessive mutations in PI4KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Hum Mol Genet 2015; 24:3732-41. [PMID: 25855803 PMCID: PMC4459391 DOI: 10.1093/hmg/ddv117] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/03/2015] [Indexed: 01/06/2023] Open
Abstract
Polymicrogyria (PMG) is a structural brain abnormality involving the cerebral cortex that results from impaired neuronal migration and although several genes have been implicated, many cases remain unsolved. In this study, exome sequencing in a family where three fetuses had all been diagnosed with PMG and cerebellar hypoplasia allowed us to identify regions of the genome for which both chromosomes were shared identical-by-descent, reducing the search space for causative variants to 8.6% of the genome. In these regions, the only plausibly pathogenic mutations were compound heterozygous variants in PI4KA, which Sanger sequencing confirmed segregated consistent with autosomal recessive inheritance. The paternally transmitted variant predicted a premature stop mutation (c.2386C>T; p.R796X), whereas the maternally transmitted variant predicted a missense substitution (c.5560G>A; p.D1854N) at a conserved residue within the catalytic domain. Functional studies using expressed wild-type or mutant PI4KA enzyme confirmed the importance of p.D1854 for kinase activity. Our results emphasize the importance of phosphoinositide signalling in early brain development.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Malcolm F Howard
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Eva Wisniewski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niko Popitsch
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Samantha J L Knight
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - David A Keays
- Institute of Molecular Pathology, Vienna 1030, Austria
| | | | - Helen Cox
- West Midlands Regional Clinical Genetics Service, Clinical Genetics Unit and
| | - Phillip Cox
- Department of Histopathology, Birmingham Women's Hospital NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny C Taylor
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Usha Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK,
| |
Collapse
|
43
|
Hunter JM, Kiefer J, Balak CD, Jooma S, Ahearn ME, Hall JG, Baumbach-Reardon L. Review of X-linked syndromes with arthrogryposis or early contractures-aid to diagnosis and pathway identification. Am J Med Genet A 2015; 167A:931-73. [DOI: 10.1002/ajmg.a.36934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Jesse M. Hunter
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Jeff Kiefer
- Knowledge Mining; Translational Genomics Research Institute; Phoenix Arizona
| | - Christopher D. Balak
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Sonya Jooma
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Mary Ellen Ahearn
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Judith G. Hall
- Departments of Medical Genetics and Pediatrics; University of British Columbia and BC Children's Hospital Vancouver; British Columbia Canada
| | - Lisa Baumbach-Reardon
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| |
Collapse
|
44
|
|
45
|
Bootsman F, Brouwer RM, Schnack HG, van Baal GCM, van der Schot AC, Vonk R, Hulshoff Pol HE, Nolen WA, Kahn RS, van Haren NEM. Genetic and environmental influences on cortical surface area and cortical thickness in bipolar disorder. Psychol Med 2015; 45:193-204. [PMID: 25065711 DOI: 10.1017/s0033291714001251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The risk of developing bipolar disorder (BD) has been linked to structural brain abnormalities. The degree to which genes and environment influence the association of BD with cortical surface area remains to be elucidated. In this twin study, genetic and environmental contributions to the association between liability to develop BD and surface area, thickness and volume of the cortex were examined. METHOD The study cohort included 44 affected monozygotic (nine concordant, 12 discordant) and dizygotic (four concordant, 19 discordant) twin pairs, and seven twins from incomplete discordant monozygotic and dizygotic discordant twin pairs. In addition, 37 monozygotic and 24 dizygotic healthy control twin pairs, and six twins from incomplete monozygotic and dizygotic control pairs were included. RESULTS Genetic liability to develop BD was associated with a larger cortical surface in limbic and parietal regions, and a thicker cortex in central and parietal regions. Environmental factors related to BD were associated with larger medial frontal, parietal and limbic, and smaller orbitofrontal surfaces. Furthermore, thinner frontal, limbic and occipital cortex, and larger frontal and parietal, and smaller orbitofrontal volumes were also associated with environmental factors related to BD. CONCLUSIONS Our results suggest that unique environmental factors play a prominent role in driving the associations between liability to develop BD and cortical measures, particularly those involving cortical thickness. Further evaluation of their influence on the surface and thickness of the cortical mantle is recommended. In addition, cortical volume appeared to be primarily dependent on surface and not thickness.
Collapse
Affiliation(s)
- F Bootsman
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - R M Brouwer
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - H G Schnack
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - G C M van Baal
- Julius Center, University Medical Center Utrecht,Utrecht,The Netherlands
| | - A C van der Schot
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - R Vonk
- Reinier van Arkel Group, 's-Hertogenbosch,The Netherlands
| | - H E Hulshoff Pol
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - W A Nolen
- Department of Psychiatry,University Medical Center Groningen,Groningen,The Netherlands
| | - R S Kahn
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| | - N E M van Haren
- Brain Center Rudolf Magnus, University Medical Center Utrecht,Utrecht,The Netherlands
| |
Collapse
|
46
|
Abstract
In the past few years, the increasing accessibility of next-generation sequencing technology has translated to a number of significant advances in our understanding of brain malformations. Genes causing brain malformations, previously intractable due to their complex presentation, rarity, sporadic occurrence, or molecular mechanism, are being identified at an unprecedented rate and are revealing important insights into central nervous system development. Recent discoveries highlight new associations of biological processes with human disease including the PI3K-AKT-mTOR pathway in brain overgrowth syndromes, the trafficking of cellular proteins in microcephaly-capillary malformation syndrome, and the role of the exosome in the etiology of pontocerebellar hypoplasia. Several other gene discoveries expand our understanding of the role of mitosis in the primary microcephaly syndromes and post-translational modification of dystroglycan in lissencephaly. Insights into polymicrogyria and heterotopias show us that these 2 malformations are complex in their etiology, while recent work in holoprosencephaly and Dandy-Walker malformation suggest that, at least in some instances, the development of these malformations requires "multiple-hits" in the sonic hedgehog pathway. The discovery of additional genes for primary microcephaly, pontocerebellar hypoplasia, and spinocerebellar ataxia continue to impress upon us the significant degree of genetic heterogeneity associated with many brain malformations. It is becoming increasingly evident that next-generation sequencing is emerging as a tool to facilitate rapid and cost-effective molecular diagnoses that will be translated into routine clinical care for these rare conditions in the near future.
Collapse
|
47
|
Squier W, Jansen A. Polymicrogyria: pathology, fetal origins and mechanisms. Acta Neuropathol Commun 2014; 2:80. [PMID: 25047116 PMCID: PMC4149230 DOI: 10.1186/s40478-014-0080-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 01/28/2023] Open
Abstract
Polymicrogyria (PMG) is a complex cortical malformation which has so far defied any mechanistic or genetic explanation. Adopting a broad definition of an abnormally folded or festooned cerebral cortical neuronal ribbon, this review addresses the literature on PMG and the mechanisms of its development, as derived from the neuropathological study of many cases of human PMG, a large proportion in fetal life. This reveals the several processes which appear to be involved in the early stages of formation of polymicrogyric cortex. The most consistent feature of developing PMG is disruption of the brain surface with pial defects, over-migration of cells, thickening and reduplication of the pial collagen layers and increased leptomeningeal vascularity. Evidence from animal models is consistent with our observations and supports the notion that disturbance in the formation of the leptomeninges or loss of their normal signalling functions are potent contributors to cortical malformation. Other mechanisms which may lead to PMG include premature folding of the neuronal band, abnormal fusion of adjacent gyri and laminar necrosis of the developing cortex. The observation of PMG in association with other and better understood forms of brain malformation, such as cobblestone cortex, suggests mechanistic pathways for some forms of PMG. The role of altered physical properties of the thickened leptomeninges in exerting mechanical constraints on the developing cortex is also considered.
Collapse
|
48
|
Wierenga LM, Langen M, Oranje B, Durston S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage 2014; 87:120-6. [DOI: 10.1016/j.neuroimage.2013.11.010] [Citation(s) in RCA: 295] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022] Open
|
49
|
Homozygous truncating mutation of the KBP gene, encoding a KIF1B-binding protein, in a familial case of fetal polymicrogyria. Neurogenetics 2013; 14:215-24. [DOI: 10.1007/s10048-013-0373-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/28/2013] [Indexed: 01/12/2023]
|
50
|
Salmi M, Bruneau N, Cillario J, Lozovaya N, Massacrier A, Buhler E, Cloarec R, Tsintsadze T, Watrin F, Tsintsadze V, Zimmer C, Villard C, Lafitte D, Cardoso C, Bao L, Lesca G, Rudolf G, Muscatelli F, Pauly V, Khalilov I, Durbec P, Ben-Ari Y, Burnashev N, Represa A, Szepetowski P. Tubacin prevents neuronal migration defects and epileptic activity caused by rat Srpx2 silencing in utero. ACTA ACUST UNITED AC 2013; 136:2457-73. [PMID: 23831613 DOI: 10.1093/brain/awt161] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Altered development of the human cerebral cortex can cause severe malformations with often intractable focal epileptic seizures and may participate in common pathologies, notably epilepsy. This raises important conceptual and therapeutic issues. Two missense mutations in the sushi repeat-containing protein SRPX2 had been previously identified in epileptic disorders with or without structural developmental alteration of the speech cortex. In the present study, we aimed to decipher the precise developmental role of SRPX2, to have a better knowledge on the consequences of its mutations, and to start addressing therapeutic issues through the design of an appropriate animal model. Using an in utero Srpx2 silencing approach, we show that SRPX2 influences neuronal migration in the developing rat cerebral cortex. Wild-type, but not the mutant human SRPX2 proteins, rescued the neuronal migration phenotype caused by Srpx2 silencing in utero, and increased alpha-tubulin acetylation. Following in utero Srpx2 silencing, spontaneous epileptiform activity was recorded post-natally. The neuronal migration defects and the post-natal epileptic consequences were prevented early in embryos by maternal administration of tubulin deacetylase inhibitor tubacin. Hence epileptiform manifestations of developmental origin could be prevented in utero, using a transient and drug-based therapeutic protocol.
Collapse
Affiliation(s)
- Manal Salmi
- INSERM UMR_S901, Parc Scientifique de Luminy, 13273 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|