1
|
Sibbett S, Oh J, Carrougher G, Muffley L, Ashford N, Pacleb M, Mandell S, Schneider J, Wolf S, Stewart B, Gibran NS. Establishing a Collaborative Genomic Repository for Adult Burn Survivors: A Burn Model System Feasibility Study. EUROPEAN BURN JOURNAL 2024; 5:389-398. [PMID: 39727910 DOI: 10.3390/ebj5040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024]
Abstract
In this study, we aimed to integrate a genetic repository with an existing longitudinal national burn database. We set out two primary objectives, namely (1) to develop standard operating procedures for genetic sample collection and storage, DNA isolation, and data integration into an existing multicenter database; and (2) to demonstrate the feasibility of correlating genetic variation to functional outcomes in a pilot study, using the catechol-O-methyltransferase (COMT) gene. Dubbed the worrier/warrior gene, COMT variants have been associated with varying phenotypes of post-traumatic stress, wellbeing, and resilience. Between August 2018 and July 2020, COMT variants were identified for 111 participants from three sites and correlated with their outcome data. We found no association between COMT variants and functional outcomes, likely due to the inadequate sample size. We also asked all potential participants why they consented to or refused genetic analysis. A thematic analysis of responses revealed altruism and personal interest/enthusiasm in the study as top reasons for consenting. Privacy concerns were the most common reason for refusal. In conclusion, we successfully developed standard operating procedures for genetic sample collection and storage, DNA isolation, and data integration into an existing database, and we demonstrated the feasibility of conducting a multicenter collaborative study using a centralized lab location.
Collapse
Affiliation(s)
- Stephen Sibbett
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jamie Oh
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | | | - Lara Muffley
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nathaniel Ashford
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Maiya Pacleb
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Samuel Mandell
- Parkland Regional Burn Center, Department of Surgery, University of Texas Southwestern, Dallas, TX 75235, USA
| | - Jeffrey Schneider
- Rehabilitation Outcomes Center at Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
| | - Steven Wolf
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Barclay Stewart
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Nicole S Gibran
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Reekes TH, Higginson CI, Sigvardt KA, King DS, Levine D, Wheelock VL, Disbrow EA. Sex differences in Parkinson disease-associated episodic memory and processing speed deficits. J Int Neuropsychol Soc 2023; 29:813-820. [PMID: 36971238 DOI: 10.1017/s1355617723000097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
OBJECTIVES This study aims to address a gap in the data on cognitive sex differences in persons living with Parkinson disease (PD). There is some evidence that cognitive dysfunction is more severe in male PD, however data on episodic memory and processing speed is incomplete. METHODS One hundred and sixty-seven individuals with a diagnosis of PD were included in this study. Fifty-six of those individuals identified as female. The California Verbal Learning Test 1st edition and the Wechsler Memory Scale 3rd edition were used to evaluate verbal and visuospatial episodic memory and the Wechsler Adult Intelligence Scale 3rd edition was used to evaluate processing speed. Multivariate analysis of covariance was used to identify sex-specific differences across groups. RESULTS Our results show that males with PD performed significantly worse than females in verbal and visuospatial recall as well as a trend for the processing speed task of coding. CONCLUSIONS Our finding of superior performance among females with PD in verbal episodic memory is consistent with reports in both healthy and PD individuals; however, females outperforming males in measures of visuospatial episodic memory is unique to PD. Cognitive deficits preferentially affecting males appear to be associated with frontal lobe-related function. Therefore, males may represent a disease subgroup more susceptible to disease mechanisms affecting frontal lobe deterioration and cognitive disturbances in PD.
Collapse
Affiliation(s)
- Tyler H Reekes
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- LSU Health Shreveport Center for Brain Health, Shreveport, LA, USA
| | | | - Karen A Sigvardt
- Department of Neurology, University of California Davis, Davis, CA, USA
| | - David S King
- Clinical Functional Neuroscience Department, Kaiser Permanente Northern California, Sacramento, CA, USA
| | - Dawn Levine
- Clinical Functional Neuroscience Department, Kaiser Permanente Northern California, Sacramento, CA, USA
| | - Vicki L Wheelock
- Department of Neurology, University of California Davis, Davis, CA, USA
- Clinical Functional Neuroscience Department, Kaiser Permanente Northern California, Sacramento, CA, USA
| | - Elizabeth A Disbrow
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- LSU Health Shreveport Center for Brain Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
3
|
Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022; 5:49. [PMID: 35027645 PMCID: PMC8758783 DOI: 10.1038/s42003-021-02973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michela Bernini
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Rodius
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Won JH, Youn J, Park H. Enhanced neuroimaging genetics using multi-view non-negative matrix factorization with sparsity and prior knowledge. Med Image Anal 2022; 77:102378. [DOI: 10.1016/j.media.2022.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
|
5
|
Harrison AT, McAllister T, McCrea M, Broglio SP, Moore RD. Recovery Profiles after Concussion among Male Student-Athletes and Service Cadets with a Family History of Neurodegenerative Disease: Data from the NCAA-DoD CARE Consortium. J Neurotrauma 2020; 38:485-492. [PMID: 33280495 DOI: 10.1089/neu.2020.7386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Preliminary evidence indicates that genetic factors associated with having a family history of neurodegenerative disease (fhNDD) may predispose an individual to persistent symptoms and poorer cognitive performance after concussion. No previous study, however, longitudinally examined athletes with (+) and without (-) a fhNDD. Therefore, we aimed to compare clinical symptoms and cognitive performance of fhNDD+ and fhNDD- athletes at baseline and at multiple time points after concussion. Questionnaire data from the Concussion Assessment, Research and Education (CARE) Consortium were used to identify male athletes and cadets with (n = 51) and without (n = 102) a fhNDD (Alzheimer disease, Parkinson disease, mild cognitive impairment, and non-Alzheimer dementia). All athletes completed the SCAT3 symptom checklist and ImPACT test before their sport season and again within 24-48 h of injury, at the unrestricted return-to-play, and at six months post-concussion. Compared with fhNDD-, fhNDD+ individuals demonstrated greater decrements in visual memory (relative to baseline) 24-48 h post-injury (p < 0.05, d = 0.18). In addition, a main effect of group was observed for impulse control. Compared with fhNDD- athletes, fhNDD+ individuals demonstrated greater decrements in impulse control, 24-48 h post-injury, at the return to play, and at six-month assessments (p < 0.01, d = 0.23). These findings suggest that male athletes with a fhNDD may exhibit greater decrements in cognitive performance after concussion. Small, subtle deficits in cognitive performance may still significantly hinder day-to-day function in student-athletes.
Collapse
Affiliation(s)
- Adam T Harrison
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Thomas McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert D Moore
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | | |
Collapse
|
6
|
Zhu SG, Lu H, Mao M, Li ZF, Cui L, Ovlyakulov B, Zhang X, Zhu JH. The cis-Regulatory Element of SNCA Intron 4 Modulates Susceptibility to Parkinson's Disease in Han Chinese. Front Genet 2020; 11:590365. [PMID: 33193729 PMCID: PMC7645113 DOI: 10.3389/fgene.2020.590365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: A novel functional cis-regulatory element (CRE) located at SNCA intron 4 has recently been identified in association with Parkinson's disease (PD) risk in European descendants. We aimed to investigate whether this CRE is associated with PD in Han Chinese ethnicity. Methods: A Chinese cohort comprising 513 sporadic PD patients and 517 controls was recruited. CRE variants were identified by sequencing and then analyzed. Results: A total of nine variants were detected, namely eight single nucleotide variants and one new insertion variant. Two variants, rs17016188 and rs7684892, had minor allele frequency greater than 5%. A difference of rs17016188 was observed in males with the C allele serving as a recessive risk factor (p = 0.001, OR = 2.349, 95% CI = 1.414-3.901) following Bonferroni correction. Haplotypes of rs17016188 and rs7684892 showed distribution differences in the total and the male populations (p = 0.002 and 4.08 × 10-5, respectively). Among the haplotypes, rs17016188/T-rs7684892/G was associated with a reduced risk for PD (p = 4.8 × 10-4, OR = 0.731, 95% CI = 0.614-0.872). Conclusions: Our results provide insight into how the SNCA intron 4 CRE harbors variants and its contribution to PD risk in Chinese ethnicity.
Collapse
Affiliation(s)
- Shi-Guo Zhu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hui Lu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, China
| | - Miao Mao
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhao-Feng Li
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lei Cui
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, China
| | - Begench Ovlyakulov
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Sampedro F, Marín-Lahoz J, Martínez-Horta S, Camacho V, Lopez-Mora DA, Pagonabarraga J, Kulisevsky J. Extrastriatal SPECT-DAT uptake correlates with clinical and biological features of de novo Parkinson's disease. Neurobiol Aging 2020; 97:120-128. [PMID: 33212336 DOI: 10.1016/j.neurobiolaging.2020.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
Striatal dopamine transporter (DAT) uptake assessment through I123-Ioflupane Single-Pphoton Emission Computed Tomography (SPECT) provides valuable information about the dopaminergic denervation occurring in Parkinson's disease (PD). However, little is known about the clinical or biological relevance of extrastriatal DAT uptake in PD. Here, from the Parkinson's Progression Markers Initiative, we studied 623 participants (431 PD and 192 healthy controls) with available SPECT data. Even though striatal denervation was undoubtedly the imaging hallmark of PD, extrastriatal DAT uptake was also reduced in patients with PD. Topographically, widespread frontal but also temporal and posterior cortical regions showed lower DAT uptake in PD patients with respect to healthy controls. Importantly, a longitudinal voxelwise analysis confirmed an active one-year loss of extrastriatal DAT uptake within the PD group. Extrastriatal DAT uptake also correlated with the severity of motor symptoms, cognitive performance, and cerebrospinal fluid α-synuclein levels. In addition, we found an association between the Catechol-O-methyltransferase val158met genotype and extrastriatal DAT uptake. These results highlight the clinical and biological relevance of extrastriatal SPECT-DAT uptake in PD.
Collapse
Affiliation(s)
- Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Saul Martínez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Valle Camacho
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson's Disease. Cell Rep 2020; 29:1767-1777.e8. [PMID: 31722195 PMCID: PMC6856723 DOI: 10.1016/j.celrep.2019.10.035] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/17/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) exhibits systemic effects on the human metabolism, with emerging roles for the gut microbiome. Here, we integrate longitudinal metabolome data from 30 drug-naive, de novo PD patients and 30 matched controls with constraint-based modeling of gut microbial communities derived from an independent, drug-naive PD cohort, and prospective data from the general population. Our key results are (1) longitudinal trajectory of metabolites associated with the interconversion of methionine and cysteine via cystathionine differed between PD patients and controls; (2) dopaminergic medication showed strong lipidomic signatures; (3) taurine-conjugated bile acids correlated with the severity of motor symptoms, while low levels of sulfated taurolithocholate were associated with PD incidence in the general population; and (4) computational modeling predicted changes in sulfur metabolism, driven by A. muciniphila and B. wadsworthia, which is consistent with the changed metabolome. The multi-omics integration reveals PD-specific patterns in microbial-host sulfur co-metabolism that may contribute to PD severity. Longitudinal metabolomics reveal disturbed transsulfuration in Parkinson’s disease Metabolic modeling of gut microbiomes show altered microbial sulfur metabolism Changed microbial sulfur metabolism is linked to B. wadsworthia and A. muciniphila Taurine-conjugated bile acids are associated with incident Parkinson’s disease
Collapse
|
9
|
Gamache J, Yun Y, Chiba-Falek O. Sex-dependent effect of APOE on Alzheimer's disease and other age-related neurodegenerative disorders. Dis Model Mech 2020; 13:dmm045211. [PMID: 32859588 PMCID: PMC7473656 DOI: 10.1242/dmm.045211] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
10
|
Won JH, Kim M, Youn J, Park H. Prediction of age at onset in Parkinson's disease using objective specific neuroimaging genetics based on a sparse canonical correlation analysis. Sci Rep 2020; 10:11662. [PMID: 32669683 PMCID: PMC7363828 DOI: 10.1038/s41598-020-68301-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/22/2020] [Indexed: 01/19/2023] Open
Abstract
The age at onset (AAO) is an important determinant in Parkinson's disease (PD). Neuroimaging genetics is suitable for studying AAO in PD as it jointly analyzes imaging and genetics. We aimed to identify features associated with AAO in PD by applying the objective-specific neuroimaging genetics approach and constructing an AAO prediction model. Our objective-specific neuroimaging genetics extended the sparse canonical correlation analysis by an additional data type related to the target task to investigate possible associations of the imaging-genetic, genetic-target, and imaging-target pairs simultaneously. The identified imaging, genetic, and combined features were used to construct analytical models to predict the AAO in a nested five-fold cross-validation. We compared our approach with those from two feature selection approaches where only associations of imaging-target and genetic-target were explored. Using only imaging features, AAO prediction was accurate in all methods. Using only genetic features, the results from other methods were worse or unstable compared to our model. Using both imaging and genetic features, our proposed model predicted the AAO well (r = 0.5486). Our findings could have significant impacts on the characterization of prodromal PD and contribute to diagnosing PD early because genetic features could be measured accurately from birth.
Collapse
Affiliation(s)
- Ji Hye Won
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Mansu Kim
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
11
|
Tan MMX, Malek N, Lawton MA, Hubbard L, Pittman AM, Joseph T, Hehir J, Swallow DMA, Grosset KA, Marrinan SL, Bajaj N, Barker RA, Burn DJ, Bresner C, Foltynie T, Hardy J, Wood N, Ben-Shlomo Y, Grosset DG, Williams NM, Morris HR. Genetic analysis of Mendelian mutations in a large UK population-based Parkinson's disease study. Brain 2019; 142:2828-2844. [PMID: 31324919 PMCID: PMC6735928 DOI: 10.1093/brain/awz191] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 04/05/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Our objective was to define the prevalence and clinical features of genetic Parkinson's disease in a large UK population-based cohort, the largest multicentre prospective clinico-genetic incident study in the world. We collected demographic data, Movement Disorder Society Unified Parkinson's Disease Rating Scale scores, and Montreal Cognitive Assessment scores. We analysed mutations in PRKN (parkin), PINK1, LRRK2 and SNCA in relation to age at symptom onset, family history and clinical features. Of the 2262 participants recruited to the Tracking Parkinson's study, 424 had young-onset Parkinson's disease (age at onset ≤ 50) and 1799 had late onset Parkinson's disease. A range of methods were used to genotype 2005 patients: 302 young-onset patients were fully genotyped with multiplex ligation-dependent probe amplification and either Sanger and/or exome sequencing; and 1701 late-onset patients were genotyped with the LRRK2 'Kompetitive' allele-specific polymerase chain reaction assay and/or exome sequencing (two patients had missing age at onset). We identified 29 (1.4%) patients carrying pathogenic mutations. Eighteen patients carried the G2019S or R1441C mutations in LRRK2, and one patient carried a heterozygous duplication in SNCA. In PRKN, we identified patients carrying deletions of exons 1, 4 and 5, and P113Xfs, R275W, G430D and R33X. In PINK1, two patients carried deletions in exon 1 and 5, and the W90Xfs point mutation. Eighteen per cent of patients with age at onset ≤30 and 7.4% of patients from large dominant families carried pathogenic Mendelian gene mutations. Of all young-onset patients, 10 (3.3%) carried biallelic mutations in PRKN or PINK1. Across the whole cohort, 18 patients (0.9%) carried pathogenic LRRK2 mutations and one (0.05%) carried an SNCA duplication. There is a significant burden of LRRK2 G2019S in patients with both apparently sporadic and familial disease. In young-onset patients, dominant and recessive mutations were equally common. There were no differences in clinical features between LRRK2 carriers and non-carriers. However, we did find that PRKN and PINK1 mutation carriers have distinctive clinical features compared to young-onset non-carriers, with more postural symptoms at diagnosis and less cognitive impairment, after adjusting for age and disease duration. This supports the idea that there is a distinct clinical profile of PRKN and PINK1-related Parkinson's disease. We estimate that there are approaching 1000 patients with a known genetic aetiology in the UK Parkinson's disease population. A small but significant number of patients carry causal variants in LRRK2, SNCA, PRKN and PINK1 that could potentially be targeted by new therapies, such as LRRK2 inhibitors.
Collapse
Affiliation(s)
- Manuela M X Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Naveed Malek
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Alan M Pittman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Theresita Joseph
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jason Hehir
- University College London Hospitals NHS Foundation Trust, UK
| | - Diane M A Swallow
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Katherine A Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sarah L Marrinan
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK
| | - Nin Bajaj
- Department of Clinical Neurosciences, University of Nottingham, UK
| | - Roger A Barker
- UCL Movement Disorders Centre, University College London, London, UK
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Cambridge, UK
| | - David J Burn
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - John Hardy
- Reta Lila Weston Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Nicholas Wood
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | | | - Donald G Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| |
Collapse
|
12
|
Tang C, Wang W, Shi M, Zhang N, Zhou X, Li X, Ma C, Chen G, Xiang J, Gao D. Meta-Analysis of the Effects of the Catechol-O-Methyltransferase Val158/108Met Polymorphism on Parkinson's Disease Susceptibility and Cognitive Dysfunction. Front Genet 2019; 10:644. [PMID: 31354790 PMCID: PMC6639434 DOI: 10.3389/fgene.2019.00644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/18/2019] [Indexed: 01/11/2023] Open
Abstract
Background: There is a continued debate and inconsistent findings in previous literature about the relationship of catechol-O-methyltransferase (COMT) and Parkinson’s disease (PD) susceptibility as well as cognitive dysfunction. To substantiate this existing gap, we comprehensively examine COMT genotype effects on the development of PD and test the hypothesis that the Met158 allele of the COMT gene is associated with cognitive dysfunction by conducting a meta-analysis review. Methods: PubMed/MEDLINE, Embase, Cochrane databases search (18/30/08) yielded 49 included studies. Data were extracted by two reviewers and included COMT genotype, publication year, diagnostic status, ancestry, the proportion of male participants, and whether genotype frequencies were consistent with Hardy–Weinberg equilibrium. Unadjusted odds ratios (ORs) were used to derive pooled estimates of PD risk overall and in subgroups defined by ethnicity, gender, and onset of disease. Moreover, the association of certain cognitive domains in PD and COMT gene type was explored. Meta-analyses were performed using random-effect models and p value–based methods. All statistical tests were two-sided. The present study was registered with PROSPERO (CRD42018087323). Results: In the current studies, we found no association between COMT Val158/108Met polymorphism and PD susceptibility. However, the gender-stratified analyses revealed marginally significant effects in heterozygote model analyses in women (P = 0.053). In addition, stratification according to onset of PD also shows significant effects of COMT Val158/108Met polymorphism on late-onset population both in recessive (P = 0.017) and allelic (P = 0.017) genetic models. For the intelligence quotient (IQ) score and Unified Parkinson Disease Rating Scale III (UPDRS III), there was no evidence for genetic association, except in subgroup analyses in Asian populations (IQ score, P = 0.016; UPDRS III, P < 0.001). Conclusion: The COMT Val158/108Met polymorphism is associated with the risk for PD in female or late-onset PD. Methionine/methionine carriers of Asian population performed significantly worse than the valine allele carriers in IQ score and UPDRS III.
Collapse
Affiliation(s)
- Chuanxi Tang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Wei Wang
- Medical Technology School, Xuzhou Medical University, Xuzhou, China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Na Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Zhou
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xue Li
- School of Nursing, Xuzhou Medical University, Xuzhou, China
| | - Chengcheng Ma
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Gang Chen
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Xiang
- Medical Technology School, Xuzhou Medical University, Xuzhou, China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Blauwendraat C, Heilbron K, Vallerga CL, Bandres-Ciga S, von Coelln R, Pihlstrøm L, Simón-Sánchez J, Schulte C, Sharma M, Krohn L, Siitonen A, Iwaki H, Leonard H, Noyce AJ, Tan M, Gibbs JR, Hernandez DG, Scholz SW, Jankovic J, Shulman LM, Lesage S, Corvol JC, Brice A, van Hilten JJ, Marinus J, The 23andMe Research Team3, Tienari P, Majamaa K, Toft M, Grosset DG, Gasser T, Heutink P, Shulman JM, Wood N, Hardy J, Morris HR, Hinds DA, Gratten J, Visscher PM, Gan-Or Z, Nalls MA, Singleton AB, International Parkinson’s Disease Genomics Consortium (IPDGC). Parkinson's disease age at onset genome-wide association study: Defining heritability, genetic loci, and α-synuclein mechanisms. Mov Disord 2019; 34:866-875. [PMID: 30957308 PMCID: PMC6579628 DOI: 10.1002/mds.27659] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increasing evidence supports an extensive and complex genetic contribution to PD. Previous genome-wide association studies (GWAS) have shed light on the genetic basis of risk for this disease. However, the genetic determinants of PD age at onset are largely unknown. OBJECTIVES To identify the genetic determinants of PD age at onset. METHODS Using genetic data of 28,568 PD cases, we performed a genome-wide association study based on PD age at onset. RESULTS We estimated that the heritability of PD age at onset attributed to common genetic variation was ∼0.11, lower than the overall heritability of risk for PD (∼0.27), likely, in part, because of the subjective nature of this measure. We found two genome-wide significant association signals, one at SNCA and the other a protein-coding variant in TMEM175, both of which are known PD risk loci and a Bonferroni-corrected significant effect at other known PD risk loci, GBA, INPP5F/BAG3, FAM47E/SCARB2, and MCCC1. Notably, SNCA, TMEM175, SCARB2, BAG3, and GBA have all been shown to be implicated in α-synuclein aggregation pathways. Remarkably, other well-established PD risk loci, such as GCH1 and MAPT, did not show a significant effect on age at onset of PD. CONCLUSIONS Overall, we have performed the largest age at onset of PD genome-wide association studies to date, and our results show that not all PD risk loci influence age at onset with significant differences between risk alleles for age at onset. This provides a compelling picture, both within the context of functional characterization of disease-linked genetic variability and in defining differences between risk alleles for age at onset, or frank risk for disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Karl Heilbron
- 23andMe, Inc., 899 W Evelyn Avenue, Mountain View, CA, USA
| | - Costanza L. Vallerga
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Rainer von Coelln
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Javier Simón-Sánchez
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tubingen, Germany
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Ari Siitonen
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- The Michael J Fox Foundation for Parkinson’s Research, NY, USA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J. Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Manuela Tan
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Jankovic
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa M. Shulman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Suzanne Lesage
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Christophe Corvol
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alexis Brice
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | | | - Johan Marinus
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Pentti Tienari
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Kari Majamaa
- Institute of Clinical Medicine, Department of Neurology, University of Oulu, Oulu, Finland
- Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Donald G. Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Peter Heutink
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Joshua M Shulman
- Departments of Molecular & Human Genetics and Neuroscience, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, USA
| | - Nicolas Wood
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - John Hardy
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London UK
- UCL Movement Disorders Centre, UCL Institute of Neurology, London, UK
| | - David A. Hinds
- 23andMe, Inc., 899 W Evelyn Avenue, Mountain View, CA, USA
| | - Jacob Gratten
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter M. Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
14
|
Hall KT, Loscalzo J, Kaptchuk TJ. Systems pharmacogenomics - gene, disease, drug and placebo interactions: a case study in COMT. Pharmacogenomics 2019; 20:529-551. [PMID: 31124409 PMCID: PMC6563236 DOI: 10.2217/pgs-2019-0001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Disease, drugs and the placebos used as comparators are inextricably linked in the methodology of the double-blind, randomized controlled trial. Nonetheless, pharmacogenomics, the study of how individuals respond to drugs based on genetic substrate, focuses primarily on the link between genes and drugs, while the link between genes and disease is often overlooked and the link between genes and placebos is largely ignored. Herein, we use the example of the enzyme catechol-O-methyltransferase to examine the hypothesis that genes can function as pharmacogenomic hubs across system-wide regulatory processes that, if perturbed in andomized controlled trials, can have primary and combinatorial effects on drug and placebo responses.
Collapse
Affiliation(s)
- Kathryn T Hall
- Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham & Women’s Hospital, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ted J Kaptchuk
- Harvard Medical School, Boston, MA 02115, USA
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
15
|
Cuyàs E, Verdura S, Lozano-Sánchez J, Viciano I, Llorach-Parés L, Nonell-Canals A, Bosch-Barrera J, Brunet J, Segura-Carretero A, Sanchez-Martinez M, Encinar JA, Menendez JA. The extra virgin olive oil phenolic oleacein is a dual substrate-inhibitor of catechol-O-methyltransferase. Food Chem Toxicol 2019; 128:35-45. [PMID: 30935952 DOI: 10.1016/j.fct.2019.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Catechol-containing polyphenols present in coffee and tea, while serving as excellent substrates for catechol-O-methyltransferase (COMT)-catalyzed O-methylation, can also operate as COMT inhibitors. However, little is known about the relationship between COMT and the characteristic phenolics present in extra virgin olive oil (EVOO). We here selected the EVOO dihydroxy-phenol oleacein for a computational study of COMT-driven methylation using classic molecular docking/molecular dynamics simulations and hybrid quantum mechanical/molecular mechanics, which were supported by in vitro activity studies using human COMT. Oleacein could be superimposed onto the catechol-binding site of COMT, maintaining the interactions with the atomic positions involved in methyl transfer from the S-adenosyl-L-methionine cofactor. The transition state structure for the meta-methylation in the O5 position of the oleacein benzenediol moiety was predicted to occur preferentially. Enzyme analysis of the conversion ratio of catechol to O-alkylated guaiacol confirmed the inhibitory effect of oleacein on human COMT, which remained unaltered when tested against the protein version encoded by the functional Val158Met polymorphism of the COMT gene. Our study provides a theoretical determination of how EVOO dihydroxy-phenols can be metabolized via COMT. The ability of oleacein to inhibit COMT adds a new dimension to the physiological and therapeutic utility of EVOO secoiridoids.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara Verdura
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jesús Lozano-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain; Research and Development Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | | | | | | | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Oncology, Catalan Institute of Oncology (ICO) Dr. Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO) Dr. Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, Medical School University of Girona, Girona, Spain; Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL) L'Hospitalet del Llobregat, Barcelona, Spain; Hereditary Cancer Programme, Catalan Institute of Oncology (ICO) Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain; Research and Development Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | | | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain.
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
16
|
Wang YC, Zou YB, Xiao J, Pan CD, Jiang SD, Zheng ZJ, Yan ZR, Tang KY, Tan LM, Tang MS. COMT Val158Met polymorphism and Parkinson’s disease risk: a pooled analysis in different populations. Neurol Res 2019; 41:319-325. [PMID: 30644790 DOI: 10.1080/01616412.2018.1564183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yan-chun Wang
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Yao-bing Zou
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Jing Xiao
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Cheng-de Pan
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Si-de Jiang
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Zong-ju Zheng
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Zong-ren Yan
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Kun-yu Tang
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Lang-min Tan
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| | - Ming-shan Tang
- Department of Neurology, Ba-nan people’s Hospital, Chongqing, China
| |
Collapse
|
17
|
Sagud M, Tudor L, Uzun S, Perkovic MN, Zivkovic M, Konjevod M, Kozumplik O, Vuksan Cusa B, Svob Strac D, Rados I, Mimica N, Mihaljevic Peles A, Nedic Erjavec G, Pivac N. Haplotypic and Genotypic Association of Catechol- O-Methyltransferase rs4680 and rs4818 Polymorphisms and Treatment Resistance in Schizophrenia. Front Pharmacol 2018; 9:705. [PMID: 30018555 PMCID: PMC6037851 DOI: 10.3389/fphar.2018.00705] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) continues to be a challenge. It was related to different factors, including alterations in the activity of brain dopaminergic system, which could be influenced by the dopamine-degrading enzyme, catechol-O-methyltransferase (COMT). Variants of the COMT gene have been extensively studied as risk factors for schizophrenia; however, their association with TRS has been poorly investigated. The aim of the present study was to determine the haplotypic and genotypic association of COMT rs4680 and rs4818 polymorphisms with the presence of TRS. Overall, 931 Caucasian patients diagnosed with schizophrenia (386 females and 545 males) were included, while 270 participants met the criteria for TRS. In males, no significant haplotypic and genotypic associations between COMT rs4680 and rs4818 polymorphisms and TRS were detected. However, genotypic analyses demonstrated higher frequency of COMT rs4680 AA genotype carriers compared to G-allele carriers (p = 0.033) and higher frequency of COMT rs4818 CC genotype carriers than G-allele carriers (p = 0.014) in females with TRS. Haplotype analyses confirmed that the presence of the G allele in females was associated with lower risk of TRS. In women with TRS, the high activity G-G/G-G haplotype was rare, while carriers of other haplotypes were overrepresented (p = 0.009). Such associations of COMT rs4680 and rs4818 high-activity (G variants), as well as G-G/G-G haplotype, with the lower risk of TRS in females, but not in males, suggest significant, but sex-specific influence of COMT variants on the development of treatment-resistance in patients with schizophrenia. However, due to relatively low number of females, those findings require replication in a larger sample.
Collapse
Affiliation(s)
- Marina Sagud
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- Department of Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Zagreb, Croatia.,School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Maja Zivkovic
- Department of Integrative Psychiatry, University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Oliver Kozumplik
- Department of Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Zagreb, Croatia.,School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Bjanka Vuksan Cusa
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Iva Rados
- Department of Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, Zagreb, Croatia
| | - Alma Mihaljevic Peles
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
18
|
You H, Mariani LL, Mangone G, Le Febvre de Nailly D, Charbonnier-Beaupel F, Corvol JC. Molecular basis of dopamine replacement therapy and its side effects in Parkinson's disease. Cell Tissue Res 2018. [PMID: 29516217 DOI: 10.1007/s00441-018-2813-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is currently no cure for Parkinson's disease. The symptomatic therapeutic strategy essentially relies on dopamine replacement whose efficacy was demonstrated more than 50 years ago following the introduction of the dopamine precursor, levodopa. The spectacular antiparkinsonian effect of levodopa is, however, balanced by major limitations including the occurrence of motor complications related to its particular pharmacokinetic and pharmacodynamic properties. Other therapeutic strategies have thus been developed to overcome these problems such as the use of dopamine receptor agonists, dopamine metabolism inhibitors and non-dopaminergic drugs. Here we review the pharmacology and molecular mechanisms of dopamine replacement therapy in Parkinson's disease, both at the presynaptic and postsynaptic levels. The perspectives in terms of novel drug development and prediction of drug response for a more personalised medicine will be discussed.
Collapse
Affiliation(s)
- Hana You
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France.,Department of Neurology, University Hospital (Inselspital) and University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Louise-Laure Mariani
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Graziella Mangone
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France.,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
| | - Delphine Le Febvre de Nailly
- INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France.,Assistance Publique Hôpitaux de Paris, Department of Pharmacy, Hôpital Pitié-Salpêtrière, Paris, France
| | - Fanny Charbonnier-Beaupel
- Assistance Publique Hôpitaux de Paris, Department of Pharmacy, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, ICM, Hôpital Pitié-Salpêtrière, Paris, France. .,INSERM, Unit 1127, CIC 1422, NS-PARK/FCRIN, Hôpital Pitié-Salpêtrière, Paris, France. .,CNRS, Unit 7225, Hôpital Pitié-Salpêtrière, Paris, France. .,Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France. .,CIC Neurosciences, ICM building, Hôpital Pitié-Salpêtrière, 47/83 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
19
|
San Luciano M, Wang C, Ortega RA, Giladi N, Marder K, Bressman S, Saunders-Pullman R. Sex differences in LRRK2 G2019S and idiopathic Parkinson's Disease. Ann Clin Transl Neurol 2017; 4:801-810. [PMID: 29159192 PMCID: PMC5682117 DOI: 10.1002/acn3.489] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Objective To evaluate sex differences and the relative effect of G2019S LRRK2 mutations in Parkinson's disease (PD). Methods 530 LRRK2 PD carriers and 759 noncarrier PD (idiopathic, IPD) evaluated as part of the Fox Foundation (MJFF) Consortium were included. All participants completed a study visit including information on clinical features, treatment, examination, and motor and nonmotor questionnaires. Clinical features were compared between men and women separately for IPD and LRRK2 PD; and features were compared between IPD and LRRK2 PD separately for men and women. Results Among IPD: men had higher levodopa equivalency dose (LED), worse activities of daily living and motoric severity but lower complications of therapy (UPDRS-IV). IPD women had higher olfaction and thermoregulatory scores and were more likely to report family history of PD. Among LRRK2 PD: Male predominance was not observed among G2019S LRRK2 cases. Women had worse UPDRS-IV but better olfaction. Among same sex:LRRK2 men and women had better olfaction than IPD counterparts. LRRK2 men demonstrated lower motor and higher cognitive, RBD and thermoregulation scores than IPD men and LRRK2 women had greater UDPRS-IV and rates of dyskinesia. Interpretation There were clinical differences between sexes with a more severe phenotype in IPD men and more complications of therapy in women. The more severe male phenotype was moderated by LRRK2, with LRRK2 men and women showing less diversity of phenotype. Our study supports that both genetics and sex drive phenotype, and thus trials in LRRK2 and IPD should consider gender stratification in design or analysis.
Collapse
Affiliation(s)
- Marta San Luciano
- Department of Neurology Mount Sinai Beth Israel Medical Center New York New York.,Department of Neurology University of California San Francisco San Francisco California
| | - Cuiling Wang
- Department of Epidemiology and Population Health Albert Einstein College of Medicine Bronx New York
| | - Roberto A Ortega
- Department of Neurology Mount Sinai Beth Israel Medical Center New York New York
| | - Nir Giladi
- Movement Disorders Unit Neurological Institute Tel Aviv Medical Center Sackler School of Medicine Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Karen Marder
- Department of Neurology Columbia University New York New York
| | - Susan Bressman
- Department of Neurology Mount Sinai Beth Israel Medical Center New York New York.,Department of Neurology Albert Einstein College of Medicine Bronx New York.,Department of Neurology Icahn School of Medicine at Mount Sinai New York New York
| | - Rachel Saunders-Pullman
- Department of Neurology Mount Sinai Beth Israel Medical Center New York New York.,Department of Neurology Albert Einstein College of Medicine Bronx New York.,Department of Neurology Icahn School of Medicine at Mount Sinai New York New York
| | | |
Collapse
|
20
|
Xu J, Boström AE, Saeed M, Dubey RK, Waeber G, Vollenweider P, Marques-Vidal P, Mwinyi J, Schiöth HB. A genetic variant in the catechol-O-methyl transferase (COMT) gene is related to age-dependent differences in the therapeutic effect of calcium-channel blockers. Medicine (Baltimore) 2017; 96:e7029. [PMID: 28746172 PMCID: PMC5627798 DOI: 10.1097/md.0000000000007029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypertension is the leading risk factor for cardiovascular disease and one of the major health concerns worldwide. Genetic factors impact both the risk for hypertension and the therapeutic effect of antihypertensive drugs. Sex- and age-specific variances in the prevalence of hypertension are partly induced by estrogen. We investigated 6 single nucleotide polymorphisms in genes encoding enzymes involved in estrogen metabolism in relation to sex- and age-specific differences in the systolic and diastolic blood pressure (SBP and DBP) outcome under the treatment of diuretics, calcium-channel blockers (CCBs), angiotensin-converting-enzyme inhibitors, and angiotensin-receptor blockers (ARBs).We included 5064 subjects (age: 40-82) from the population-based CoLaus cohort. Participants were genotyped for the catechol-O-methyltransferase gene (COMT) variants rs4680, rs737865, and rs165599; the uridine-diphospho-glucuronosyltransferase 1A gene family (UGT1A) variants rs2070959 and rs887829; and the aromatase gene (CYP19A1) variant rs10046. Binomial and linear regression analyses were performed correcting for age, sex, body mass index, smoking, diabetes, and antihypertensive therapy to test whether the variants in focus are significantly associated with BP.All investigated COMT variants were strongly associated with the effect of diuretics, CCBs, and ARBs on SBP or DBP (P < .05), showing an additive effect when occurring in combination. After Bonferroni correction the polymorphism rs4680 (ValMet) in COMT was significantly associated with lower SBP in participants treated with CCBs (P = .009) with an especially strong impact in elderly individuals (age ≥ 70) alone (Δ = -14.08 mm Hg, P = .0005).These results underline the important role of estrogens and catecholamines in hypertension and the importance of genotype dependent, age-related adjustments of calcium-channel blocker treatment.
Collapse
Affiliation(s)
- Jiayue Xu
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Adrian E. Boström
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Mohamed Saeed
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Raghvendra K. Dubey
- Department of Obstetrics and Gynecology, Clinic for Reproductive Endocrinology, University Hospital Zurich, Zurich
| | - Gérard Waeber
- Department of Internal Medicine, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Internal Medicine, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Internal Medicine, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Jessica Mwinyi
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Bastos P, Gomes T, Ribeiro L. Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases. Rev Physiol Biochem Pharmacol 2017; 173:1-39. [DOI: 10.1007/112_2017_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Polymorphism in MIR4697 but not VPS13C, GCH1, or SIPA1L2 is associated with risk of Parkinson's disease in a Han Chinese population. Neurosci Lett 2017; 650:8-11. [PMID: 28380328 DOI: 10.1016/j.neulet.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 02/05/2023]
Abstract
A large meta-analysis recently identified six new loci associated with risk of PD, but subsequent studies have given discrepant results. Here we conducted a case-control study in a Han Chinese population in an attempt to clarify risk associations in Chinese. Among the four single-nucleotide polymorphisms (SNPs) that we examined - VPS13C-rs2414739, MIR4697-rs329648, GCH1-rs11158026, and SIPA1L2- rs10797576 we detected a significant association between rs329648 and risk of developing PD in a recessive model. This association remained significant after adjusting for gender and age (OR 1.87, 95%CI 1.295-2.694, p=8.21×10-4) or Bonferroni correction. The T allele of rs329648 occurred significantly more frequently among patients with PD than among healthy controls (OR 1.22, 95%CI 1.033-1.443, p=0.02), while there was no statistic significant after Bonferroni correction. Subgroup analysis showed a significant association specifically among males in a recessive model (OR 1.943, 95%CI 1.200-3.147, p=0.007). In contrast, genotye and allele frequencies at rs329648 did not differ significantly between female patients with PD and healthy female controls, or between patients with early-onset or late-onset PD. Our results suggest that rs329648 is associated with risk of developing PD in the Han Chinese population. Our findings should be verified in further studies, and they highlight the need for functional studies of MIR4697.
Collapse
|
23
|
Picillo M, Nicoletti A, Fetoni V, Garavaglia B, Barone P, Pellecchia MT. The relevance of gender in Parkinson’s disease: a review. J Neurol 2017; 264:1583-1607. [DOI: 10.1007/s00415-016-8384-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
24
|
Zhang Y, Feng S, Nie K, Zhao X, Gan R, Wang L, Zhao J, Tang H, Gao L, Zhu R, Wang L, Zhang Y. Catechol-O-methyltransferase Val158Met polymorphism influences prefrontal executive function in early Parkinson's disease. J Neurol Sci 2016; 369:347-353. [DOI: 10.1016/j.jns.2016.08.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
|
25
|
Pons R, Kekou K, Antonellou R, Svingou M, Kanavakis E, Stefanis L. Analysis of a founder mutation in the TH
gene in a cohort of greek patients with Parkinson's disease. Mov Disord 2016; 31:1753-1754. [DOI: 10.1002/mds.26807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/11/2016] [Indexed: 11/07/2022] Open
Affiliation(s)
- Roser Pons
- First Department of Pediatrics, Agia Sophia Children's Hospital; National and Kapodistrian University of Athens; Greece
| | - Kyriaki Kekou
- Department of Medical Genetics, Agia Sophia Children's Hospital; National and Kapodistrian University of Athens; Greece
| | - Roubina Antonellou
- Second Department of Neurology; Attikon University Hospital, National and Kapodistrian University of Athens; Athens Greece
| | - Maria Svingou
- Department of Medical Genetics, Agia Sophia Children's Hospital; National and Kapodistrian University of Athens; Greece
| | - Emmanouel Kanavakis
- Department of Medical Genetics, Agia Sophia Children's Hospital; National and Kapodistrian University of Athens; Greece
| | - Leonidas Stefanis
- Second Department of Neurology; Attikon University Hospital, National and Kapodistrian University of Athens; Athens Greece
| |
Collapse
|
26
|
Fan K, Tang BS, Wang YQ, Kang JF, Li K, Liu ZH, Sun QY, Xu Q, Yan XX, Guo JF. The GBA, DYRK1A and MS4A6A polymorphisms influence the age at onset of Chinese Parkinson patients. Neurosci Lett 2016; 621:133-136. [PMID: 27085534 DOI: 10.1016/j.neulet.2016.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is known as the most common neurodegenerative disease after Alzheimer's disease (AD). The precise pathogenic mechanism of PD remains unclear, but genetic and environmental factors are widely recognized to be associated with it. Although many associated genes have been discovered, they account for only a few PD patients. Recently, there are growing evidences indicating that patients with PD and AD share similarities in clinical features, pathology and genetic risks. However, no study has been conducted on the relations between AD associated genes and age at onset (AAO) of PD. In this study, we have detected 14 single nucleotide polymorphisms (SNPs) in 9 AD genome wide association studies top hit genes and 4 SNPs in 4 PD-cognitive impairment related genes among 297 Chinese PD patients. Through the linear regression analysis, we identified the significant associations of the GBA L444P mutation and DYRK1A rs8126696 T allele with the earlier AAO in PD patients, and the A allele at MS4A6A rs610932 with the delayed AAO of PD. This is the first report of significant associations of DYRK1A and MS4A6A SNPs and the AAO of PD. On account of their effects both in AD and PD, it is indicated that AD and PD possibly share some common pathways.
Collapse
Affiliation(s)
- Kuan Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; State Key Laboratory of Medical Genetics, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China; Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069, China; Collaborative Innovation Center for Brain Science, Shanghai 200032, China
| | - Ya-Qin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ji-Feng Kang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen-Hua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qi-Ying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; State Key Laboratory of Medical Genetics, Changsha, Hunan 410078, China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
27
|
Association between polymorphism of COMT gene (Val158Met) with Alzheimer's disease: An updated analysis. J Neurol Sci 2016; 361:250-5. [DOI: 10.1016/j.jns.2016.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 11/17/2022]
|
28
|
Davis AA, Andruska KM, Benitez BA, Racette BA, Perlmutter JS, Cruchaga C. Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression. Neurobiol Aging 2016; 37:209.e1-209.e7. [PMID: 26601739 PMCID: PMC4688052 DOI: 10.1016/j.neurobiolaging.2015.09.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/31/2015] [Accepted: 09/19/2015] [Indexed: 11/18/2022]
Abstract
Multiple genetic variants have been linked to risk of Parkinson disease (PD), but known mutations do not explain a large proportion of the total PD cases. Similarly, multiple loci have been associated with PD risk by genome-wide association studies (GWAS). The influence that genetic factors confer on phenotypic diversity remains unclear. Few studies have been performed to determine whether the GWAS loci are also associated with age at onset (AAO) or motor progression. We used 2 PD case-control data sets (Washington University and the Parkinson's Progression Markers Initiative) to determine whether polymorphisms located at the GWAS top hits (GBA, ACMSD/TMEM163, STK39, MCCC1/LAMP3, GAK/TMEM175, SNCA, and MAPT) show association with AAO or motor progression. We found associations between single nucleotide polymorphisms at the GBA and MAPT loci and PD AAO and progression. These findings reinforce the complex genetic basis of PD and suggest that distinct genes and variants explain the genetic architecture of PD risk, onset, and progression.
Collapse
Affiliation(s)
- Albert A Davis
- Department of Neurology, Washington University, St. Louis, MO, USA
| | | | - Bruno A Benitez
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, MO, USA
| | - Brad A Racette
- Department of Neurology, Washington University, St. Louis, MO, USA; Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University, St. Louis, MO, USA; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Joel S Perlmutter
- Department of Neurology, Washington University, St. Louis, MO, USA; Department of Radiology, Washington University, St. Louis, MO, USA; Department of Anatomy and Neurobiology, Washington University, St. Louis, MO, USA; Programs in Physical Therapy and Occupational Therapy, Washington University, St. Louis, MO, USA; Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, MO, USA; Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University, St. Louis, MO, USA.
| |
Collapse
|
29
|
Ge L, Wu HY, Pan SL, Huang L, Sun P, Liang QH, Pang GF, Lv ZP, Hu CY, Liu CW, Zhou XL, Huang LJ, Yin RX, Peng JH. COMT Val158Met polymorphism is associated with blood pressure and lipid levels in general families of Bama longevous area in China. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15055-15064. [PMID: 26823844 PMCID: PMC4713630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
To see the possible relationship between COMT Val158Met polymorphism and blood pressure (BP) and serum lipid levels and its putative role in human longevity, we genotyped COMT Val158Met (rs4680) by PCR-RFLP for members from Bama long-lived families (BLF, n = 1538), Bama non-long-lived families (BNLF, n = 600), Pingguo (a county outside Bama region) long-lived families (PLF, n = 538) and Pingguo non-long-lived families (PNLF, n = 403) after anthropometric measures were collected and serum lipid levels were detected. The distribution of genotypes and alleles among four family groups was significantly different (all P < 0.01), with GA/AA genotype and minor allele A presenting more frequently in Bama population than Pingguo Population (P < 0.01). The systolic blood pressure (SBP), pulse pressure (PP), total cholesterol (TC), triglyceride (TG) and low density lipoprotein-cholesterol (LDL-C) levels of GG genotype carriers were dramatically higher than non-GG carriers in BNLF (P < 0.05); the SBP and PP levels of GG carriers were lower (P < 0.05) while TC, LDL-C level were higher (P < 0.01) than that of non-GG carriers in PLF; no difference in blood pressure and lipids were observed between genotypes in BLF and PNLF (P > 0.05). Correlation analyses revealed that COMT Val158Met was mainly correlated negatively with SBP, diastolic blood pressure (DBP) and LDL-C in BNLF and negatively with TC level in BLF, BNLF and PLF. These data suggest that COMT Val158Met polymorphism may have more impact on the modulation of BP and lipid profiles in the average families than in the long-lived families in Bama region. The association between this SNP and other phenotypes (e.g. cognition) and its roles in the longevity in Bama area thus warrant further investigation.
Collapse
Affiliation(s)
- Lin Ge
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Hua-Yu Wu
- Department of Cell Biology & Genetics, Guangxi Medical UniversityNanning , Guangxi, China
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Ling Huang
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Peng Sun
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Qing-Hua Liang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Guo-Fang Pang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Ze-Ping Lv
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Cai-You Hu
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Cheng-Wu Liu
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Xiao-Ling Zhou
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Ling-Jin Huang
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Rui-Xing Yin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, China
| | - Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| |
Collapse
|
30
|
Corvol JC, Devos D, Hulot JS, Lacomblez L. Clinical implications of neuropharmacogenetics. Rev Neurol (Paris) 2015; 171:482-97. [PMID: 26008819 DOI: 10.1016/j.neurol.2015.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/24/2015] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Pharmacogenetics aims to identify the underlying genetic factors participating in the variability of drug response. Indeed, genetic variability at the DNA or RNA levels can directly or indirectly modify the pharmacokinetic or the pharmacodynamic parameters of a drug. The ultimate aim of pharmacogenetics is to move towards a personalised medicine by predicting responders and non-responders, adjusting the dose of the treatment, and identifying individuals at risk of adverse drug effects. METHODS A literature research was performed in which we reviewed all pharmacogenetic studies in neurological disorders including neurodegenerative diseases, multiple sclerosis, stroke and epilepsy. RESULTS Several pharmacogenetic studies have been performed in neurology, bringing insights into the inter-individual drug response variability and in the pathophysiology of neurological diseases. The principal implications of these studies for the management of patients in clinical practice are discussed. CONCLUSION/DISCUSSION Although several genetic factors have been identified in the modification of drug response in neurological disorders, most of them have a marginal predictive effect at the single gene level, suggesting mutagenic interactions as well as other factors related to drug interaction and disease subtypes. Most pharmacogenetic studies deserve further replication in independent populations and, ideally, in pharmacogenetic clinical trials to demonstrate their relevance in clinical practice.
Collapse
Affiliation(s)
- J-C Corvol
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; CIC_1422, département des maladies du système nerveux, hôpital Pitié-Salpêtrière, AP-HP, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm, UMR_S1127, ICM, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; CNRS, UMR_7225, ICM, 4, place Jussieu, 75005 Paris, France.
| | - D Devos
- Inserm U1171, department of movement disorders and neurology, department of medical pharmacology, university of Lille, CHU Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - J-S Hulot
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; Inserm, UMR_S1166, ICAN, 4, place Jussieu, 75005 Paris, France
| | - L Lacomblez
- Sorbonne universités, UPMC université Paris 06, 4, place Jussieu, 75005 Paris, France; CIC_1422, département des maladies du système nerveux, hôpital Pitié-Salpêtrière, AP-HP, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France; Inserm, UMR_S1146, 47, boulevard de l'Hôpital, 75651 Paris cedex 13, France
| |
Collapse
|
31
|
Moreau C, Meguig S, Corvol JC, Labreuche J, Vasseur F, Duhamel A, Delval A, Bardyn T, Devedjian JC, Rouaix N, Petyt G, Brefel-Courbon C, Ory-Magne F, Guehl D, Eusebio A, Fraix V, Saulnier PJ, Lagha-Boukbiza O, Durif F, Faighel M, Giordana C, Drapier S, Maltête D, Tranchant C, Houeto JL, Debû B, Azulay JP, Tison F, Destée A, Vidailhet M, Rascol O, Dujardin K, Defebvre L, Bordet R, Sablonnière B, Devos D. Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson's disease. Brain 2015; 138:1271-83. [PMID: 25805645 DOI: 10.1093/brain/awv063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/17/2015] [Indexed: 11/14/2022] Open
Abstract
After more than 50 years of treating Parkinson's disease with l-DOPA, there are still no guidelines on setting the optimal dose for a given patient. The dopamine transporter type 1, now known as solute carrier family 6 (neurotransmitter transporter), member 3 (SLC6A3) is the most powerful determinant of dopamine neurotransmission and might therefore influence the treatment response. We recently demonstrated that methylphenidate (a dopamine transporter inhibitor) is effective in patients with Parkinson's disease with motor and gait disorders. The objective of the present study was to determine whether genetic variants of the dopamine transporter type 1-encoding gene (SLC6A3) are associated with differences in the response to treatment of motor symptoms and gait disorders with l-DOPA and methylphenidate (with respect to the demographic, the disease and the treatment parameters and the other genes involved in the dopaminergic neurotransmission). This analysis was part of a multicentre, parallel-group, double-blind, placebo-controlled, randomized clinical trial of methylphenidate in Parkinson's disease (Protocol ID:2008-005801-20; ClinicalTrials.gov:NCT00914095). We scored the motor Unified Parkinson's Disease Rating Scale and the Stand-Walk-Sit Test before and after a standardized acute l-DOPA challenge before randomization and then after 3 months of methylphenidate treatment. Patients were screened for variants of genes involved in dopamine metabolism: rs28363170 and rs3836790 polymorphisms in the SLC6A3 gene, rs921451 and rs3837091 in the DDC gene (encoding the aromatic L-amino acid decarboxylase involved in the synthesis of dopamine from l-DOPA), rs1799836 in the MAOB gene (coding for monoamine oxidase B) and rs4680 in the COMT gene (coding for catechol-O-methyltransferase). Investigators and patients were blinded to the genotyping data throughout the study. Eighty-one subjects were genotyped and 61 were analysed for their acute motor response to l-DOPA. The SLC6A3 variants were significantly associated with greater efficacy of l-DOPA for motor symptoms. The SLC6A3 variants were also associated with greater efficacy of methylphenidate for motor symptoms and gait disorders in the ON l-DOPA condition. The difference between motor Unified Parkinson's Disease Rating Scale scores for patients with different SLC6A3 genotypes was statistically significant in a multivariate analysis that took account of other disease-related, treatment-related and pharmacogenetic parameters. Our preliminary results suggest that variants of SLC6A3 are genetic modifiers of the treatment response to l-DOPA and methylphenidate in Parkinson's disease. Further studies are required to assess the possible value of these genotypes for (i) guiding l-DOPA dose adaptations over the long term; and (ii) establishing the risk/benefit balance associated with methylphenidate treatment for gait disorders.
Collapse
Affiliation(s)
- Caroline Moreau
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France
| | - Sayah Meguig
- 3 Department of Molecular Biology and Pathology Centre, Lille University, CHU Lille, Lille, France
| | - Jean-Christophe Corvol
- 4 Sorbonne Universités, UPMC Univ Paris 06, and INSERM UMRS_1127 and CIC_1422, and CNRS UMR_7225, and AP-HP, and ICM, Hôpital Pitié-Salpêtrière, Département des Maladies du Système Nerveux, Paris, France
| | - Julien Labreuche
- 5 Department of Biostatistics, Lille University, CHU Lille, Lille, France
| | - Francis Vasseur
- 5 Department of Biostatistics, Lille University, CHU Lille, Lille, France
| | - Alain Duhamel
- 5 Department of Biostatistics, Lille University, CHU Lille, Lille, France
| | - Arnaud Delval
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France
| | - Thomas Bardyn
- 3 Department of Molecular Biology and Pathology Centre, Lille University, CHU Lille, Lille, France
| | | | - Nathalie Rouaix
- 3 Department of Molecular Biology and Pathology Centre, Lille University, CHU Lille, Lille, France
| | - Gregory Petyt
- 6 Department of Nuclear Medicine, Lille University, CHU Lille, Lille, France
| | - Christine Brefel-Courbon
- 7 Departments of Clinical Pharmacology and Neurosciences, CIC9302, University Hospital and Paul Sabatier University, Toulouse, France
| | - Fabienne Ory-Magne
- 7 Departments of Clinical Pharmacology and Neurosciences, CIC9302, University Hospital and Paul Sabatier University, Toulouse, France
| | - Dominique Guehl
- 8 Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR CNRS 5293 and CHU de Bordeaux, Bordeaux, France
| | - Alexandre Eusebio
- 9 Department of Neurology and Movement Disorders - APHM Timone University Hospital and Institut de Neurosciences de la Timone, AMU-CNRS UMR 7289, Marseille, France
| | - Valérie Fraix
- 10 Department of Psychiatry and Neurology, CHU Grenoble, Grenoble, France
| | - Pierre-Jean Saulnier
- 11 Department of Movement Disorders and Neurology, Centre d'Investigation Clinique, INSERM CIC 0802, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, CHU de Poitiers, Poitiers, France
| | - Ouhaid Lagha-Boukbiza
- 12 Department of Movement Disorders and Neurology, CHU Strasbourg, Strasbourg, France
| | - Frank Durif
- 13 Department of Movement Disorders and Neurology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Mirela Faighel
- 14 Department of Movement Disorders and Neurology, INSERM, CIC04, CHU Nantes, Nantes, France
| | - Caroline Giordana
- 15 Department of Movement Disorders and Neurology, CHU Nice, Nice, France
| | - Sophie Drapier
- 16 Department of Neurology, EA- 425 Université Rennes 1 et CHU Pontchaillou, CHU Rennes, Rennes, France
| | - David Maltête
- 17 Department of Neurology and INSERM CIC-CRB 0204, Rouen University Hospital, CHU Rouen Rouen, France
| | - Christine Tranchant
- 12 Department of Movement Disorders and Neurology, CHU Strasbourg, Strasbourg, France
| | - Jean-Luc Houeto
- 11 Department of Movement Disorders and Neurology, Centre d'Investigation Clinique, INSERM CIC 0802, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, CHU de Poitiers, Poitiers, France
| | - Bettina Debû
- 10 Department of Psychiatry and Neurology, CHU Grenoble, Grenoble, France
| | - Jean-Philippe Azulay
- 9 Department of Neurology and Movement Disorders - APHM Timone University Hospital and Institut de Neurosciences de la Timone, AMU-CNRS UMR 7289, Marseille, France
| | - François Tison
- 8 Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR CNRS 5293 and CHU de Bordeaux, Bordeaux, France
| | - Alain Destée
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 18 INSERM U837/6 Lille JPARC, France
| | - Marie Vidailhet
- 6 Department of Nuclear Medicine, Lille University, CHU Lille, Lille, France
| | - Olivier Rascol
- 7 Departments of Clinical Pharmacology and Neurosciences, CIC9302, University Hospital and Paul Sabatier University, Toulouse, France 19 INSERM NS-PARK National Network, France
| | - Kathy Dujardin
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France
| | - Luc Defebvre
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France
| | - Régis Bordet
- 2 INSERM U1171, Lille University, Lille, France 18 INSERM U837/6 Lille JPARC, France
| | - Bernard Sablonnière
- 3 Department of Molecular Biology and Pathology Centre, Lille University, CHU Lille, Lille, France
| | - David Devos
- 1 Department of Movement Disorders and Neurology, Lille University, CHU Lille, Lille, France 2 INSERM U1171, Lille University, Lille, France 20 Department of Medical Pharmacology, Lille University, CHU Lille, Lille, France
| | | |
Collapse
|
32
|
Greenbaum L, Lerer B. Pharmacogenetics of antipsychotic-induced movement disorders as a resource for better understanding Parkinson's disease modifier genes. Front Neurol 2015; 6:27. [PMID: 25750634 PMCID: PMC4335175 DOI: 10.3389/fneur.2015.00027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 01/30/2015] [Indexed: 12/05/2022] Open
Abstract
Antipsychotic-induced movement disorders are major side effects of antipsychotic drugs among schizophrenia patients, and include antipsychotic-induced parkinsonism (AIP) and tardive dyskinesia (TD). Substantial pharmacogenetic work has been done in this field, and several susceptibility variants have been suggested. In this paper, the genetics of antipsychotic-induced movement disorders is considered in a broader context. We hypothesize that genetic variants that are risk factors for AIP and TD may provide insights into the pathophysiology of motor symptoms in Parkinson’s disease (PD). Since loss of dopaminergic stimulation (albeit pharmacological in AIP and degenerative in PD) is shared by the two clinical entities, genes associated with susceptibility to AIP may be modifier genes that influence clinical expression of PD motor sub-phenotypes, such as age at onset, disease severity, or rate of progression. This is due to their possible functional influence on compensatory mechanisms for striatal dopamine loss. Better compensatory potential might be beneficial at the early and later stages of the PD course. AIP vulnerability variants could also be related to latent impairment in the nigrostriatal pathway, affecting its functionality, and leading to subclinical dopaminergic deficits in the striatum. Susceptibility of PD patients to early development of l-DOPA induced dyskinesia (LID) is an additional relevant sub-phenotype. LID might share a common genetic background with TD, with which it shares clinical features. Genetic risk variants may predispose to both phenotypes, exerting a pleiotropic effect. According to this hypothesis, elucidating the genetics of antipsychotic-induced movement disorders may advance our understanding of multiple aspects of PD and it clinical course, rendering this a potentially rewarding field of study.
Collapse
Affiliation(s)
- Lior Greenbaum
- Department of Neurology, Sheba Medical Center at Tel Hashomer , Ramat Gan , Israel ; The Joseph Sagol Neuroscience Center, Sheba Medical Center at Tel Hashomer , Ramat Gan , Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah - Hebrew University Medical Center , Jerusalem , Israel
| |
Collapse
|
33
|
Muellner J, Gharrad I, Habert MO, Kas A, Martini JB, Cormier-Dequaire F, Tahiri K, Vidailhet M, Meier N, Brice A, Schuepbach M, Mallet A, Hartmann A, Corvol JC. Dopaminergic denervation severity depends on COMT Val158Met polymorphism in Parkinson's disease. Parkinsonism Relat Disord 2015; 21:471-6. [PMID: 25753458 DOI: 10.1016/j.parkreldis.2015.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/05/2015] [Accepted: 02/12/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Catecholamine-O-methyl-tranferase (COMT) initiates dopamine degradation. Its activity is mainly determined by a single nucleotide polymorphism in the COMT gene (Val158Met, rs4680) separating high (Val/Val, COMT(HH)), intermediate (Val/Met, COMT(HL)) and low metabolizers (Met/Met, COMT(LL)). We investigated dopaminergic denervation in the striatum in PD patients according to COMT rs4680 genotype. METHODS Patients with idiopathic PD were assessed for motor severity (UPDRS-III rating scale in OFF-state), dopaminergic denervation using [123I]-FP-CIT SPECT imaging, and genotyped for the COMT rs4680 enzyme. [123I]-FP-CIT binding potential (BP) for each voxel was defined by the ratio of tracer-binding in the region of interest (striatum, caudate nucleus and putamen) to that in a region of non-specific activity. Genotyping was performed using TaqMan(®) SNP genotyping assay. We used a regression model to evaluate the effect of COMT genotype on the BP in the striatum and its sub-regions. RESULTS Genotype distribution was: 11 (27.5%) COMT(HH), 26 (65%) COMT(HL) and 3 (7.5%) COMT(LL). There were no significant differences in disease severity, treatments, or motor scores between genotypes. When adjusted to clinical severity, gender and age, low and intermediate metabolizers showed significantly higher rates of striatal denervation (COMT(HL+LL) BP = 1.32 ± 0.04) than high metabolizers (COMT(HH), BP = 1.6 ± 0.08; F(1.34) = 9.0, p = 0.005). Striatal sub-regions showed similar results. BP and UPDRS-III motor scores (r = 0.44, p = 0.04) (p < 0.001) were highly correlated. There was a gender effect, but no gender-genotype interaction. CONCLUSIONS Striatal denervation differs according to COMT-Val158Met polymorphism. COMT activity may play a role as a compensatory mechanism in PD motor symptoms.
Collapse
Affiliation(s)
- Julia Muellner
- Department of Neurology, Inselspital, Freiburgstrasse 100, 3010 Bern, Switzerland; Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France
| | - Iman Gharrad
- Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France
| | - Marie-Odile Habert
- AP-HP, Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC Paris 06, CNRS UMR 7371, INSERM U1146, 75013 Paris, France
| | - Aurélie Kas
- AP-HP, Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC Paris 06, CNRS UMR 7371, INSERM U1146, 75013 Paris, France
| | - Jean-Baptiste Martini
- AP-HP, Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Sorbonne University, UPMC Paris 06, CNRS UMR 7371, INSERM U1146, 75013 Paris, France; Centre d'Analyse et de Traitement des Images (CATI), 75013 Paris, France
| | - Florence Cormier-Dequaire
- Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France; AP-HP, Department of Neurology, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Khadija Tahiri
- Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France
| | - Marie Vidailhet
- Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France; AP-HP, Department of Neurology, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Niklaus Meier
- Department of Neurology, Inselspital, Freiburgstrasse 100, 3010 Bern, Switzerland; Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France
| | - Alexis Brice
- Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France
| | - Michael Schuepbach
- Department of Neurology, Inselspital, Freiburgstrasse 100, 3010 Bern, Switzerland; Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France
| | - Alain Mallet
- Inserm U436, Laboratory of Mathematical and Statistical Modelisation in Biology and Medicine, Pitié-Salpêtrière Hospital, 91 bd de l'hôpital, 75634 Paris Cedex 13, France; APHP, Clinical Research Unit, Department of Biostatistics, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Andreas Hartmann
- Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France; AP-HP, Department of Neurology, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Jean-Christophe Corvol
- Sorbonne University, UPMC Paris 06 UMR S 1127, and Inserm U 1127 and CIC 1422, and CNRS UR 7225, and ICM, 75013 Paris, France; AP-HP, Department of Neurology, Pitié-Salpêtrière Hospital, 75013 Paris, France.
| |
Collapse
|
34
|
Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet 2014; 30:453-63. [DOI: 10.1016/j.tig.2014.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
35
|
Dai D, Wang Y, Zhou X, Tao J, Jiang D, Zhou H, Jiang Y, Pan G, Ru P, Ji H, Li J, Zhang Y, Yin H, Xu M, Duan S. Meta-analyses of seven GIGYF2 polymorphisms with Parkinson's disease. Biomed Rep 2014; 2:886-892. [PMID: 25279164 DOI: 10.3892/br.2014.324] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects ~2% of the global population aged ≥65 years. Grb10-interacting GYF protein-2 (GIGYF2) can influence the development of PD through the regulation of insulin-like growth factor-1. The aim of the present meta-analysis study was to establish the contribution of GIGYF2 polymorphisms to PD. The study was conducted based on nine eligible studies consisting of 7,246 PD patients and 7,544 healthy controls. The results indicated that the GIGYF2 C.3630A>G polymorphism increased the risk of PD by 37% [P=0.008; odds ratio (OR), 1.37; 95% confidence interval (CI), 1.08-1.73] and that the GIGYF2 C.167G>A polymorphism was significantly associated with PD (P=0.003; OR, 3.67; 95% CI, 1.56-8.68). The meta-analyses of the other five GIGYF2 polymorphisms (C.1378C>A, C.1554G>A, C.2940A>G, C.1370C>A and C.3651G>A) did not reveal any significant associations. The present meta-analyses of the GIGYF2 genetic polymorphisms may provide a comprehensive overview of this PD candidate gene for future studies.
Collapse
Affiliation(s)
- Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yunliang Wang
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Xingyu Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jianmin Tao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Danjie Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hanlin Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yi Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guanghui Pan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ping Ru
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jinfeng Li
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Yuzheng Zhang
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Honglei Yin
- Department of Neurology, The 148 Central Hospital of People's Liberation Army, Zibo, Shandong 255300, P.R. China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Xuhui, Shanghai 200240, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
36
|
Dai D, Wang Y, Wang L, Li J, Ma Q, Tao J, Zhou X, Zhou H, Jiang Y, Pan G, Xu L, Ru P, Lin D, Pan J, Xu L, Ye M, Duan S. Polymorphisms of DRD2 and DRD3 genes and Parkinson's disease: A meta-analysis. Biomed Rep 2014; 2:275-281. [PMID: 24649110 DOI: 10.3892/br.2014.220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects ~2% of the population aged ≥65 years. The degeneration of dopamine neurons in the substantia nigra contributes to the pathogenesis of PD. Dopamine receptor D2 (DRD2) and dopamine receptor D3 (DRD3) are two key subtypes of dopamine receptors. The aim of our study was to evaluate the association between the polymorphisms of DRD2 and DRD3 genes and PD. Meta-analyses were conducted from 16 studies (46 stages) among 4,279 cases and 5,661 controls between PD and 9 polymorphisms (DRD2: rs1800497, rs1079597, rs6278, rs6279, rs273482, rs1799732 and rs1076563; DRD3: rs6280 and rs2134655). A significant association was observed between DRD3 rs2134655 polymorphism and PD [P=0.01, odds ratio (OR)=1.17, 95% confidence interval (CI): 1.03-1.32] and a borderline association was observed between DRD2 rs1800497 polymorphism and PD in Europeans (P=0.05, OR=1.13, 95% CI: 1.00-1.27). Findings of the current meta-analysis suggested that DRD3 rs2134655 polymorphism was associated with a 17% increased risk of PD and that DRD2 rs1800497 polymorphism had a potential to increase the risk of PD by 13% in Europeans. Future large-scale studies are required to confirm the ethnic difference of DRD2 rs1800497 polymorphism and to determine whether there were significant associations of PD with other polymorphisms in DRD2 and DRD3 genes.
Collapse
Affiliation(s)
- Dongjun Dai
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China ; Department of Neurology, Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Yunliang Wang
- Department of Neurology, 148 Central Hospital of PLA, Zibo, Shandong 255300, P.R. China
| | - Lingyan Wang
- Bank of Blood Products, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jinfeng Li
- Department of Neurology, 148 Central Hospital of PLA, Zibo, Shandong 255300, P.R. China
| | - Qingqing Ma
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jianmin Tao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xingyu Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hanlin Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yi Jiang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guanghui Pan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Limin Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ping Ru
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Danfeng Lin
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Pan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Leiting Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Neurology, Affiliated Hospital, Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
37
|
Sexual dimorphism in xenobiotic genetic variants-mediated risk for Parkinson’s disease. Neurol Sci 2014; 35:897-903. [DOI: 10.1007/s10072-013-1622-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/24/2013] [Indexed: 01/12/2023]
|
38
|
Dai D, Wang Y, Wang L, Li J, Zhou H, Ma Q, Zhou X, Pan J, Pan G, Chen C, Xu L, Ru P, Wang H, Zhu S, Lv Y, Xu L, Ye M, Duan S. Association of four GSTs gene polymorphisms with Parkinson disease: A meta-analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.52014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Wiggs JL, Howell GR, Linkroum K, Abdrabou W, Hodges E, Braine CE, Pasquale LR, Hannon GJ, Haines JL, John SWM. Variations in COL15A1 and COL18A1 influence age of onset of primary open angle glaucoma. Clin Genet 2013; 84:167-74. [PMID: 23621901 DOI: 10.1111/cge.12176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
Abstract
Primary open angle glaucoma (POAG) is a genetically and phenotypically complex disease that is a leading cause of blindness worldwide. Previously we completed a genome-wide scan for early-onset POAG that identified a locus on 9q22 (GLC1J). To identify potential causative variants underlying GLC1J, we used targeted DNA capture followed by high throughput sequencing of individuals from four GLC1J pedigrees, followed by Sanger sequencing to screen candidate variants in additional pedigrees. A mutation likely to cause early-onset glaucoma was not identified, however COL15A1 variants were found in the youngest affected members of 7 of 15 pedigrees with variable disease onset. In addition, the most common COL15A1 variant, R163H, influenced the age of onset in adult POAG cases. RNA in situ hybridization of mouse eyes shows that Col15a1 is expressed in the multiple ocular structures including ciliary body, astrocytes of the optic nerve and cells in the ganglion cell layer. Sanger sequencing of COL18A1, a related multiplexin collagen, identified a rare variant, A1381T, in members of three additional pedigrees with early-onset disease. These results suggest genetic variation in COL15A1 and COL18A1 can modify the age of onset of both early and late onset POAG.
Collapse
Affiliation(s)
- J L Wiggs
- Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|