1
|
Singh AK, Sridharan KS, Wu S, Tirosh O, Raghavan M. In-silico neuro-musculoskeletal model demonstrates spasticity progression with descending motor tracts loss in simulated clinical triage. Comput Biol Med 2025; 192:110270. [PMID: 40349580 DOI: 10.1016/j.compbiomed.2025.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
Our study explores the complex mechanisms of spasticity using a multi-scale neuro-musculoskeletal model to investigate its emergence and characteristics following spinal cord injury. We built a large-scale, biologically realistic, closed-loop spino-musculoskeletal model of the lower limb using the NEUROiD co-simulation platform. The in-silico spinal cord incorporated around 50 spinal pathways, 40,000 alpha motor neurons, and approximately 12 million interconnections spanning L2-S2 and was simulated on NEURON. The musculoskeletal model contained 92 muscles and was simulated on OpenSim. We conducted in-silico triage of two clinical assessments of spasticity, the Modified Tardieu Test and Pendulum Test, on this model and compared results with published literature. We also demonstrated subject-specific customized models (virtual subjects) using motion capture data. Our model demonstrated the clasp-knife effect in the Modified Tardieu Test simulations and damped knee oscillations with increased spinal injury in Pendulum Test simulations. We also demonstrated how spastic behavior emerges with varying degrees of supra-spinal disruption. Further, using data from motion capture experiments, we explore subject-specificity in our model. Our work presents methods for creating a virtual subject with triaging capabilities that can demonstrate the onset of spasticity symptoms and its possible subject-specific variances.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Indian Institute of Technology Hyderabad, Sangareddy, 502285, Telangana, India; Swinburne University of Technology, Melbourne, 3122, Victoria, Australia.
| | | | - Sam Wu
- Swinburne University of Technology, Melbourne, 3122, Victoria, Australia.
| | - Oren Tirosh
- Swinburne University of Technology, Melbourne, 3122, Victoria, Australia.
| | - Mohan Raghavan
- Indian Institute of Technology Hyderabad, Sangareddy, 502285, Telangana, India.
| |
Collapse
|
2
|
da Silva VA, da Silva RL, Withers JW, Massenz KJV, Orselli MIV, Menegaldo LL, Manffra EF. Neuromusculoskeletal modeling of spasticity: A scoping review. PLoS One 2025; 20:e0320153. [PMID: 40367071 PMCID: PMC12077711 DOI: 10.1371/journal.pone.0320153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/11/2025] [Indexed: 05/16/2025] Open
Abstract
INTRODUCTION This scoping review aimed to provide an overview of neuromusculoskeletal models used to investigate the mechanisms underlying spasticity and identify issues to be addressed in future models. MATERIALS AND METHODS We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines and searched four bibliographic databases (PubMed, Compendex Engineering Village, IEEE Xplore, and Science Direct). Inclusion criteria were original studies written in English that investigated the underlying mechanisms of spasticity in humans with no age restrictions. Two independent reviewers selected studies. RESULTS Eighteen studies met the inclusion criteria. Stroke was the neurological condition addressed by most studies, followed by cerebral palsy. The studies focused mainly on passive tasks with the knee joint as the primary target. All studies considered that spasticity was associated with alterations in the stretch reflex loop. Among the parameters tested by the studies, the reflex gains and thresholds were the parameters that could better represent levels of severity or effects of botulinum toxin type-A treatment. Recent studies proposed that stretching acceleration, muscle force, and force rate could be fed back into the feedback loop besides the muscle length and stretching velocity. However, no consensus was found among them. Finally, it has been that stiffness and viscosity of muscle-tendon-unit are also relevant for describing resistance to passive movement. CONCLUSION In order to provide relevant clinical and physiological information, future modeling should include supraspinal mechanisms in-depth, use image-based data to personalize non-neural parameters, specify models according to etiology and tasks, especially the active tasks of daily life activities.
Collapse
Affiliation(s)
| | - Rafael Lucio da Silva
- Health Technology Graduate Program, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Joseana Wendling Withers
- Health Technology Graduate Program, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Maria Isabel Veras Orselli
- Department of Biomedical Engineering, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Luciano Luporini Menegaldo
- Biomedical Engineering Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
3
|
Levin MF, Piscitelli D, Khayat J. Tonic stretch reflex threshold as a measure of disordered motor control and spasticity - A critical review. Clin Neurophysiol 2024; 165:138-150. [PMID: 39029274 DOI: 10.1016/j.clinph.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 06/15/2024] [Indexed: 07/21/2024]
Abstract
The Tonic Stretch Reflex Threshold (TSRT) is the joint angle or muscle length (λ) at which muscle activation begins. In spasticity, the TSRT abnormally lies inside the biomechanical joint range. It is determined by measuring the Dynamic Stretch Reflex Thresholds (DSRTs) by stretching the resting muscle at different velocities. The metric μ, characterizes the velocity-sensitivity of the DSRTs and is expressed as the time required to lengthen the passive muscles from DSRT to TSRT at the respective stretch velocity. The original formulation of the TSRT, DSRT and μ is summarized. Then, a thorough search of literature prior to December 2023 was conducted that returned 25 papers that have used the technique. Eleven of these papers come from the research group of the authors, including 1 reporting on treatment effects. Of the remaining 14 papers, 11 report variations of the methodology with different populations and 3 report on the effects of an intervention. The review discusses how specific modifications to data collection and analysis procedures have either improved the methodology or, in some cases, led to uninterpretable results. The influence of modifications to the data collection and analysis procedures is discussed.
Collapse
Affiliation(s)
- Mindy F Levin
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y5, Canada; Center for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada.
| | - Daniele Piscitelli
- Doctor of Physical Therapy Program, Department of Kinesiology, University of Connecticut, Storrs, CT, USA.
| | - Joy Khayat
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 1Y5, Canada; Center for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Foucher JR, Hirjak D, Walther S, Dormegny-Jeanjean LC, Humbert I, Mainberger O, de Billy CC, Schorr B, Vercueil L, Rogers J, Ungvari G, Waddington J, Berna F. From one to many: Hypertonia in schizophrenia spectrum psychosis an integrative review and adversarial collaboration report. Schizophr Res 2024; 263:66-81. [PMID: 37059654 DOI: 10.1016/j.schres.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Different types of resistance to passive movement, i.e. hypertonia, were described in schizophrenia spectrum disorders (SSD) long before the introduction of antipsychotics. While these have been rediscovered in antipsychotic-naïve patients and their non-affected relatives, the existence of intrinsic hypertonia vs drug-induced parkinsonism (DIP) in treated SSD remains controversial. This integrative review seeks to develop a commonly accepted framework to specify the putative clinical phenomena, highlight conflicting issues and discuss ways to challenge each hypothesis and model through adversarial collaboration. The authors agreed on a common framework inspired from systems neuroscience. Specification of DIP, locomotor paratonia (LMP) and psychomotor paratonia (PMP) identified points of disagreement. Some viewed parkinsonian rigidity to be sufficient for diagnosing DIP, while others viewed DIP as a syndrome that should include bradykinesia. Sensitivity of DIP to anticholinergic drugs and the nature of LPM and PMP were the most debated issues. It was agreed that treated SSD should be investigated first. Clinical features of the phenomena at issue could be confirmed by torque, EMG and joint angle measures that could help in challenging the selectivity of DIP to anticholinergics. LMP was modeled as the release of the reticular formation from the control of the supplementary motor area (SMA), which could be challenged by the tonic vibration reflex or acoustic startle. PMP was modeled as the release of primary motor cortex from the control of the SMA and may be informed by subclinical echopraxia. If these challenges are not met, this would put new constraints on the models and have clinical and therapeutic implications.
Collapse
Affiliation(s)
- Jack R Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France, EU; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU.
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany, EU
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Ludovic C Dormegny-Jeanjean
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France, EU; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU
| | - Ilia Humbert
- CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU
| | - Olivier Mainberger
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France, EU; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU
| | - Clément C de Billy
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, France, EU; CEMNIS - Noninvasive Neuromodulation Center, University Hospital Strasbourg, France, EU
| | - Benoit Schorr
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France, EU; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France, EU
| | - Laurent Vercueil
- Unité de neurophysiologie clinique, CHU Grenoble Alpes, Université Grenoble Alpes, France, EU; INSERM U1216, Institut de neurosciences, Grenoble, France, EU
| | - Jonathan Rogers
- Division of Psychiatry, University College London, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Gabor Ungvari
- Section of Psychiatry, School of Medicine, University Notre Dame Australia, Fremantle, Australia
| | - John Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland, EU
| | - Fabrice Berna
- Pôle de Psychiatrie, Santé Mentale et Addictologie, University Hospital Strasbourg, France, EU; Physiopathologie et Psychopathologie Cognitive de la Schizophrénie - INSERM 1114, FMTS, University of Strasbourg, France, EU
| |
Collapse
|
5
|
Dalin D, Wiesmeier IK, Heimbach B, Weiller C, Maurer C. Postural control deficits due to bilateral pyramidal tract lesions exemplified by hereditary spastic paraplegia (HSP) originate from increased feedback time delay and reduced long-term error corrections. Front Hum Neurosci 2023; 17:1229055. [PMID: 38116238 PMCID: PMC10728727 DOI: 10.3389/fnhum.2023.1229055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Pyramidal tract lesions determine the clinical syndrome of Hereditary Spastic Paraplegia (HSP). The clinical impairments of HSP are typically exemplified by their deficits in mobility, leading to falls and injuries. The first aim of this study was to identify the cause for postural abnormalities caused by pyramidal tract lesions in HSP. The second aim was to specify the effect of treadmill training for postural abnormalities. We examined nine HSP patients before and after treadmill training, as well as nine healthy control subjects during perturbed and unperturbed stance. We found that HSP was associated with larger sway amplitudes and velocities. Body excursions following platform tilts were larger, and upper body excursions showed a phase lead. Model-based analysis detected a greater time delay and a reduced long-term error correction of postural reactions in the center of mass. HSP patients performed significantly better in clinical assessments after treadmill training. In addition, treadmill training reduced sway amplitudes and body excursions, most likely by increasing positional and velocity error correction gain as a compensatory mechanism, while the time delay and long-term error correction gain remained largely unaffected. Moreover, the upper body's phase lead was reduced. We conclude that HSP leads to very specific postural impairments. While postural control generally benefits from treadmill training, the effect seems to mainly rely on compensatory mechanisms, whereas the original deficits are not affected significantly.
Collapse
Affiliation(s)
- Daniela Dalin
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Isabella Katharina Wiesmeier
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Bernhard Heimbach
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Cornelius Weiller
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Maurer
- Department of Neurology and Neurophysiology, Medical Faculty, University Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Wang H, Geng Y, Fang P, Li G. Spasticity assessment with muscle coactivation of elbow flexors during passive stretch in Post-stroke Hemiplegia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083311 DOI: 10.1109/embc40787.2023.10340440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
the assessment of muscle properties is an essential prerequisite in the treatment of post-stroke muscle spasticity. Previous studies have shown that muscle coactivation, which reflects the simultaneous activation of agonist and antagonist muscle groups, is associated with muscle spasticity during voluntary contraction. However, current spasticity assessment approaches do not often consider muscle coactivation for passive contraction measured with surface electromyography (sEMG). The purpose here is to evaluate the validity and reliability of muscle co-activation based on sEMG for assessing spasticity of post-stroke patients. This study was conducted on 39 chronic hemiplegia post-stroke patients with varying degrees of elbow flexor spasticity. The severity of spasticity was assessed with Modified Ashworth Scale (MAS). The patients produced elbow flexion passively on affected arm. Two-channel surface sEMG recordings were acquired simultaneously for the biceps and triceps muscles. The effectiveness and reliability of the EMG-based spasticity assessment method were evaluated using Spearman's correlation analysis and intra class correlation coefficients (ICCs). The results showed that there was a statistically significant positive relationship between the level of activity and the coactivation index (R=0.710, P=0.003), while the ICCs for intra trial measures ranged between 0.928 and 0.976. Muscle coactivation is a promising tool for continuously quantifying muscle spasticity in post-stroke patients, suggesting that the EMG-based muscle coactivation index could be useful for assessing motor function.
Collapse
|
7
|
Plaisier TAM, Acosta AM, Dewald JPA. A Method for Quantification of Stretch Reflex Excitability During Ballistic Reaching. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2698-2704. [PMID: 37285243 PMCID: PMC10327419 DOI: 10.1109/tnsre.2023.3283861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stretch reflexes are crucial for performing accurate movements and providing rapid corrections for unpredictable perturbations. Stretch reflexes are modulated by supraspinal structures via corticofugal pathways. Neural activity in these structures is difficult to observe directly, but the characterization of reflex excitability during volitional movement can be used to study how these structures modulate reflexes and how neurological injuries impact this control, such as in spasticity after stroke. We have developed a novel protocol to quantify stretch reflex excitability during ballistic reaching. This novel method was implemented using a custom haptic device (NACT-3D) capable of applying high-velocity (270 °/s) joint perturbations in the plane of the arm while participants performed 3D reaching tasks in a large workspace. We assessed the protocol on four participants with chronic hemiparetic stroke and two control participants. Participants reached ballistically from a near to a far target, with elbow extension perturbations applied in random catch trials. Perturbations were applied before movement, during the early phase of movement, or near peak movement velocity. Preliminary results show that stretch reflexes were elicited in the stroke group in the biceps muscle during reaching, as measured by electromyographic (EMG) activity both before (pre-motion phase) and during (early motion phase) movement. Reflexive EMG was also seen in the anterior deltoid and pectoralis major in the pre-motion phase. In the control group, no reflexive EMG was seen, as expected. This newly developed methodology allows the study of stretch reflex modulation in new ways by combining multijoint movements with haptic environments and high-velocity perturbations.
Collapse
|
8
|
van’t Veld RC, Flux E, van Oorschot W, Schouten AC, van der Krogt MM, van der Kooij H, Vos-van der Hulst M, Keijsers NLW, van Asseldonk EHF. Examining the role of intrinsic and reflexive contributions to ankle joint hyper-resistance treated with botulinum toxin-A. J Neuroeng Rehabil 2023; 20:19. [PMID: 36750869 PMCID: PMC9906865 DOI: 10.1186/s12984-023-01141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understood, because clinical measures, e.g. modified Ashworth scale (MAS), cannot differentiate between the symptoms affecting joint resistance. This paper distinguishes the contributions of the reflexive and intrinsic pathways to ankle joint hyper-resistance for participants treated with BoNT-A injections. We hypothesized that the overall joint resistance and reflexive contribution decrease 6 weeks after injection, while returning close to baseline after 12 weeks. METHODS Nine participants with spasticity after spinal cord injury or after stroke were evaluated across three sessions: 0, 6 and 12 weeks after BoNT-A injection in the calf muscles. Evaluation included clinical measures (MAS, Tardieu Scale) and motorized instrumented assessment using the instrumented spasticity test (SPAT) and parallel-cascade (PC) system identification. Assessments included measures for: (1) overall resistance from MAS and fast velocity SPAT; (2) reflexive resistance contribution from Tardieu Scale, difference between fast and slow velocity SPAT and PC reflexive gain; and (3) intrinsic resistance contribution from slow velocity SPAT and PC intrinsic stiffness/damping. RESULTS Individually, the hypothesized BoNT-A effect, the combination of a reduced resistance (week 6) and return towards baseline (week 12), was observed in the MAS (5 participants), fast velocity SPAT (2 participants), Tardieu Scale (2 participants), SPAT (1 participant) and reflexive gain (4 participants). On group-level, the hypothesis was only confirmed for the MAS, which showed a significant resistance reduction at week 6. All instrumented measures were strongly correlated when quantifying the same resistance contribution. CONCLUSION At group-level, the expected joint resistance reduction due to BoNT-A injections was only observed in the MAS (overall resistance). This observed reduction could not be attributed to an unambiguous group-level reduction of the reflexive resistance contribution, as no instrumented measure confirmed the hypothesis. Validity of the instrumented measures was supported through a strong association between different assessment methods. Therefore, further quantification of the individual contributions to joint resistance changes using instrumented measures across a large sample size are essential to understand the heterogeneous response to BoNT-A injections.
Collapse
Affiliation(s)
- Ronald C. van’t Veld
- grid.6214.10000 0004 0399 8953Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Eline Flux
- grid.12380.380000 0004 1754 9227Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wieneke van Oorschot
- grid.452818.20000 0004 0444 9307Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands ,grid.452818.20000 0004 0444 9307Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Alfred C. Schouten
- grid.6214.10000 0004 0399 8953Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands ,grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Marjolein M. van der Krogt
- grid.12380.380000 0004 1754 9227Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Herman van der Kooij
- grid.6214.10000 0004 0399 8953Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands ,grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Marije Vos-van der Hulst
- grid.452818.20000 0004 0444 9307Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands
| | - Noël L. W. Keijsers
- grid.452818.20000 0004 0444 9307Department of Research, Sint Maartenskliniek, Nijmegen, The Netherlands ,grid.10417.330000 0004 0444 9382Department of Rehabilitation, Cognition and Behavior, Donders Institute for Brain, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Edwin H. F. van Asseldonk
- grid.6214.10000 0004 0399 8953Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
9
|
Andringa A, Meskers C, van de Port I, Zandvliet S, Scholte L, de Groot J, Kwakkel G, van Wegen E. Quantifying neural and non-neural components of wrist hyper-resistance after stroke: Comparing two instrumented assessment methods. Med Eng Phys 2021; 98:57-64. [PMID: 34848039 DOI: 10.1016/j.medengphy.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022]
Abstract
Patients with poor upper limb motor recovery after stroke are likely to develop increased resistance to passive wrist extension, i.e., wrist hyper-resistance. Quantification of the underlying neural and non-neural elastic components is of clinical interest. This cross-sectional study compared two methods: a commercially available device (NeuroFlexor®) with an experimental EMG-based device (Wristalyzer) in 43 patients with chronic stroke. Spearman's rank correlation coefficients (r) between components, modified Ashworth scale (MAS) and range of passive wrist extension (PRoM) were calculated with 95% confidence intervals. Neural as well as elastic components assessed by both devices were associated (r = 0.61, 95%CI: 0.38-0.77 and r = 0.53, 95%CI: 0.28-0.72, respectively). The neural component assessed by the NeuroFlexor® associated significantly with the elastic components of NeuroFlexor® (r = 0.46, 95%CI: 0.18-0.67) and Wristalyzer (r = 0.36, 95%CI: 0.06-0.59). The neural component assessed by the Wristalyzer was not associated with the elastic components of both devices. Neural and elastic components of both devices associated similarly with the MAS (r = 0.58, 95%CI: 0.34-0.75 vs. 0.49, 95%CI: 0.22-0.69 and r = 0.51, 95%CI: 0.25-0.70 vs. 0.30, 95%CI: 0.00-0.55); elastic components associated with PRoM (r = -0.44, 95%CI: -0.65- -0.16 vs. -0.74, 95%CI: -0.85- -0.57 for NeuroFlexor® and Wristalyzer respectively). Results demonstrate that both methods perform similarly regarding the quantification of neural and elastic wrist hyper-resistance components and have an added value when compared to clinical assessment with the MAS alone. The added value of EMG in the discrimination between neural and non-neural components requires further investigation.
Collapse
Affiliation(s)
- Aukje Andringa
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Carel Meskers
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Department of Neurorehabilitation, Amsterdam Rehabilitation Research Centre, Reade, Amsterdam, the Netherlands.
| | | | - Sarah Zandvliet
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Larissa Scholte
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | - Jurriaan de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Department of Neurorehabilitation, Amsterdam Rehabilitation Research Centre, Reade, Amsterdam, the Netherlands
| | - Erwin van Wegen
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Fernandez-Lobera M, Morales M, Valls-Solé J. Repetitive peripheral magnetic stimulation for the assessment of wrist spasticity: reliability, validation and correlation with clinical measures. Disabil Rehabil 2021; 44:5257-5267. [PMID: 34027756 DOI: 10.1080/09638288.2021.1925979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine feasibility and reliability of using repetitive peripheral magnetic stimulation (rPMS) to induce wrist extension movement for the assessment of spasticity in wrist flexors, instead of the passive stretch used in the modified Tardieu scale. METHODS Spasticity was assessed with the index of movement restriction (iMR), calculated as the difference between the range of maximum wrist passive movement and the rPMS-induced movement, in 12 healthy subjects (HS), 12 acute stroke patients without spasticity (AS) and 12 chronic stroke patients with spasticity (CS). Test-retest reliability and clinical correlation were assessed in CS patients before Botulinum neurotoxin type A (BoNT-A) treatment. RESULTS In comparison to HS and AS patients, CS patients showed statistically significant reduction of rPMS-induced movement amplitude, velocity, and acceleration. The mean iMR was 2.8 (SD = 2.6) in HS, 13.0 (SD = 11.2) in AS and 59.2 (SD = 23.4) in CS. This score significantly reduced to 41.1 (SD = 19.7) in CS after BoNT-A (p < 0.01). Test-retest reliability was very good, with an intraclass correlation coefficient ranging between 0.85 and 0.99 for the variables analysed. CONCLUSIONS We have shown good reliability and feasibility of a new method providing quantifiable data for the assessment of spasticity and its response to BoNT-A treatment.IMPLICATIONS FOR REHABILITATIONThe muscle contraction induced by repetitive peripheral magnetic stimulation (rPMS) in paretic muscles of post-stroke patients was used to assess spasticity.The index of movement restriction (iMR), calculated as the difference between the maximum passive range of movement and the rPMS induced movement, improved after botulinum toxin treatment.Measuring spastic reactions to rPMS provides quantifiable and reliable data for follow-up and assessment of therapeutic benefits.
Collapse
Affiliation(s)
- Marta Fernandez-Lobera
- Escoles Universitaries de Fisioterapia i infermeria Gimbernat, Universitat Autònoma de Barcelona, Sant Cugat del Vallès, Spain
| | | | - Josep Valls-Solé
- IDIBAPS (Institut d, Investigació August Pi i Sunyer), Barcelona, Spain
| |
Collapse
|
11
|
Andringa A, van Wegen E, van de Port I, Guit L, Polomski W, Kwakkel G, Meskers C. The effect of botulinum toxin-A on neural and non-neural components of wrist hyper-resistance in adults with stroke or cerebral palsy. PM R 2021; 14:486-495. [PMID: 33811454 PMCID: PMC9290733 DOI: 10.1002/pmrj.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/05/2022]
Abstract
Background Botulinum toxin‐A (BoNT) is widely used to manage focal upper limb spasticity and is effective in reducing resistance to passive movement, as measured with the modified Ashworth scale. Discrimination and quantification of the underlying neural and non‐neural components of hyper‐resistance may further improve understanding of the effect of BoNT. Objective To explore the effects of BoNT on neural (NC), non‐neural elastic (EC), and viscous (VC) components of resistance to passive wrist extension in adults with stroke or cerebral palsy and the association between the effects on wrist hyper‐resistance components and clinical spasticity, pain and motor function scales. Design Pre‐experimental study with pre‐ and post‐intervention measurements at 6 and 12 weeks. Setting An outpatient clinic of a hospital. Participants Adults with chronic stroke or cerebral palsy indicated for BoNT treatment for hyper‐resistance in the wrist (N = 18). Interventions BoNT injections in the wrist and/or finger flexor muscles. Main Outcome Measures Wrist hyper‐resistance components, using the NeuroFlexor, and clinical scales (modified Ashworth scale, Tardieu scale, passive wrist extension, pain, Fugl‐Meyer motor assessment of the upper extremity, and action research arm test). Results NC was significantly reduced 6 and 12 weeks post‐intervention (median −11.96 Newton, P < .001 and median −9.34 Newton, P = .001, respectively); non‐neural EC and VC showed no change. NC reduction 6 weeks post‐intervention correlated significantly with BoNT dose (Pearson correlation coefficient rp = −0.56). No significant correlations were found between change scores in wrist hyper‐resistance components and clinical scales. Conclusions BoNT affected the neural component of resistance to passive wrist extension, while leaving the non‐neural elastic and viscous components unaffected. This instrumented approach to quantify the effects of BoNT in the wrist and finger flexor muscles on the components of wrist hyper‐resistance may have an added value for BoNT treatment evaluation in clinical practice.
Collapse
Affiliation(s)
- Aukje Andringa
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin van Wegen
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Lisette Guit
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA.,Amsterdam Rehabilitation Research Centre, Reade, Amsterdam, The Netherlands
| | - Carel Meskers
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Andringa A, Meskers C, van de Port I, van Wegen E, Kwakkel G. Time Course of Wrist Hyper-Resistance in Relation to Upper Limb Motor Recovery Early Post Stroke. Neurorehabil Neural Repair 2020; 34:690-701. [PMID: 32508291 PMCID: PMC7502985 DOI: 10.1177/1545968320932135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background. Patients with an upper limb motor impairment are likely to develop wrist hyper-resistance during the first months post stroke. The time course of wrist hyper-resistance in terms of neural and biomechanical components, and their interaction with motor recovery, is poorly understood. Objective. To investigate the time course of neural and biomechanical components of wrist hyper-resistance in relation to upper limb motor recovery in the first 6 months post stroke. Methods. Neural (NC), biomechanical elastic (EC), and viscous (VC) components of wrist hyper-resistance (NeuroFlexor device), and upper limb motor recovery (Fugl-Meyer upper extremity scale [FM-UE]), were assessed in 17 patients within 3 weeks and at 5, 12, and 26 weeks post stroke. Patients were stratified according to the presence of voluntary finger extension (VFE) at baseline. Time course of wrist hyper-resistance components and assumed interaction effects were analyzed using linear mixed models. Results. On average, patients without VFE at baseline (n = 8) showed a significant increase in NC, EC, and VC, and an increase in FM-UE from 13 to 26 points within the first 6 months post stroke. A significant increase in NC within 5 weeks preceded a significant increase in EC between weeks 12 and 26. Patients with VFE at baseline (n = 9) showed, on average, no significant increase in components from baseline to 6 months whereas FM-UE scores improved from 38 to 60 points. Conclusion. Our findings suggest that the development of neural and biomechanical wrist hyper-resistance components in patients with severe baseline motor deficits is determined by lack of spontaneous neurobiological recovery early post stroke.
Collapse
Affiliation(s)
- Aukje Andringa
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carel Meskers
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | | | - Erwin van Wegen
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.,Department of Neurorehabilitation, Amsterdam Rehabilitation Research Centre, Reade, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Dash A, Dutta A, Lahiri U. Quantification of grip strength with complexity analysis of surface electromyogram for hemiplegic post-stroke patients. NeuroRehabilitation 2019; 45:45-56. [PMID: 31403956 DOI: 10.3233/nre-192734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reduction in grip-strength due to spasticity is a common cause of impairment after stroke. OBJECTIVE To find an objective measure of post-stroke spasticity affecting grip-strength through quantification of interaction between antagonist and agonist muscles using complexity analysis of surface electromyogrm (sEMG) signals during isometric grip in healthy and post-stroke participants. METHODS The interaction between sEMG signals from antagonist and agonist muscles is quantified through Multiscale-Multivariate-Sample-Entropy (MMSE). This is used to quantify dissimilarity between hands of 12 healthy and 8 post-stroke participants during isometric grip. The clinical relevance of MMSE is explored by examining its correlation with spasticity score i.e. Modified-Ashworth-Scale (MAS). Further, potential of sEMG-based approach to quantify muscle-specific dissimilarity in sEMG activation across hands is investigated in terms of Cepstral-coefficients and power content of sEMG during grip tasks. RESULTS Mean MMSE scores of sEMG signals were significantly different (p < 0.05) between paretic and non-paretic hands of Post-stroke participants. High negative correlation was observed between spasticity and complexity scores of paretic hand for post-stroke participants. CONCLUSIONS A negative correlation between MAS and MMSE shows higher spasticity can lead to reduced complexity in sEMG. Thus, MMSE based complexity analysis can be used as an indicator of spasticity, affecting grip function.
Collapse
Affiliation(s)
- Adyasha Dash
- "Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Uttama Lahiri
- "Electrical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| |
Collapse
|
14
|
Plantin J, Pennati GV, Roca P, Baron JC, Laurencikas E, Weber K, Godbolt AK, Borg J, Lindberg PG. Quantitative Assessment of Hand Spasticity After Stroke: Imaging Correlates and Impact on Motor Recovery. Front Neurol 2019; 10:836. [PMID: 31456734 PMCID: PMC6699580 DOI: 10.3389/fneur.2019.00836] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Objective: This longitudinal observational study investigated how neural stretch-resistance in wrist and finger flexors develops after stroke and relates to motor recovery, secondary complications, and lesion location. Methods: Sixty-one patients were assessed at 3 weeks (T1), three (T2), and 6 months (T3) after stroke using the NeuroFlexor method and clinical tests. Magnetic Resonance Imaging was used to calculate weighted corticospinal tract lesion load (wCST-LL) and to perform voxel-based lesion symptom mapping. Results: NeuroFlexor assessment demonstrated spasticity (neural component [NC] >3.4N normative cut-off) in 33% of patients at T1 and in 51% at T3. Four subgroups were identified: early Severe spasticity (n = 10), early Moderate spasticity (n = 10), Late developing spasticity (n = 17) and No spasticity (n = 24). All except the Severe spasticity group improved significantly in Fugl-Meyer Assessment (FMA-HAND) to T3. The Severe and Late spasticity groups did not improve in Box and Blocks Test. The Severe spasticity group showed a 25° reduction in passive range of movement and more frequent arm pain at T3. wCST-LL correlated positively with NC at T1 and T3, even after controlling for FMA-HAND and lesion volume. Voxel-based lesion symptom mapping showed that lesioned white matter below cortical hand knob correlated positively with NC. Conclusion: Severe hand spasticity early after stroke is negatively associated with hand motor recovery and positively associated with the development of secondary complications. Corticospinal tract damage predicts development of spasticity. Early quantitative hand spasticity measurement may have potential to predict motor recovery and could guide targeted rehabilitation interventions after stroke.
Collapse
Affiliation(s)
- Jeanette Plantin
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Gaia V Pennati
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Pauline Roca
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Paris, France.,Department of Neuroimaging, Sainte-Anne Hospital Center, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Jean-Claude Baron
- Department of Neurology, Hôpital Sainte-Anne, Université de Paris, Paris, France
| | - Evaldas Laurencikas
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.,Division of Radiology, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Karin Weber
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Alison K Godbolt
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Jörgen Borg
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| | - Påvel G Lindberg
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden.,Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Paris, France
| |
Collapse
|
15
|
Carvalho AAD, Silva Filho EMD, Nascimento RSD, Medeiros SFDD, Lima NMFV, Cacho EWA, Cacho RDO. Análise da ativação muscular durante o movimento de alcance nas condições ativo, ativo-assistido e autoassistido em pacientes pós-AVE. FISIOTERAPIA E PESQUISA 2019. [DOI: 10.1590/1809-2950/17023226012019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO O Acidente Vascular Encefálico (AVE) é uma patologia que frequentemente causa limitações motoras nos Membros Superiores (MMSS) gerando prejuízos funcionais nos movimentos de alcance. O objetivo do estudo foi analisar o recrutamento muscular do membro superior parético durante três condições de alcance: ativo, ativo-assistido e autoassistido, através de dados eletromiográficos das fibras anteriores do Músculo Deltoide (MD), Bíceps Braquial (BB) e Tríceps Braquial (TB). Estudo do tipo transversal que utilizou como testes clínicos o miniexame do estado mental, escala de equilíbrio de Berg, medida de independência funcional, escala modificada de Ashworth e escala de Fugl-Meyer - seção MMSS. A coleta dos dados eletromiográficos de superfície foi realizada utilizando-se o eletromiógrafo e eletrodos de configuração bipolar da EMG System do Brasil com três canais posicionados nos pontos motores do MD (fibras anteriores), BB e TB de ambos os membros superiores. As variáveis clínicas apresentaram resultados de comprometimento motor, cognitivo e funcional leves. Os dados eletromiográficos mostraram que o MD e TB durante o alcance ativo-assistido contraíram mais que no alcance autoassistido (p<0.05). Os MD e TB apresentaram diferenças significativas durante os movimentos de alcance, enquanto que o músculo BB não mostrou alterações. Entre os diversos tipos de alcance, o ativo-assistido foi o que proporcionou maior ativação muscular. Sugere-se que sejam feitos ensaios clínicos para verificar a eficácia dos treinamentos.
Collapse
|
16
|
van der Krogt H, Kouwijzer I, Klomp A, Meskers CGM, Arendzen JH, de Groot JH. Loss of selective wrist muscle activation in post-stroke patients. Disabil Rehabil 2019; 42:779-787. [PMID: 30634868 DOI: 10.1080/09638288.2018.1509241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Loss of selective muscle activation after stroke contributes to impaired arm function, is difficult to quantify and is not systematically assessed yet. The aim of this study was to describe and validate a technique for quantification of selective muscle activation of wrist flexor and extensor muscles in a cohort of post-stroke patients. Patterns of selective muscle activation were compared to healthy volunteers and test-retest reliability was assessed.Materials and methods: Activation Ratios describe selective activation of a muscle during its expected optimal activation as agonist and antagonist. Activation Ratios were calculated from electromyography signals during an isometric maximal torque task in 31 post-stroke patients and 14 healthy volunteers. Participants with insufficient voluntary muscle activation (maximal electromyography signal <3SD higher than baseline) were excluded.Results: Activation Ratios at the wrist were reliably quantified (Intraclass correlation coefficients 0.77-0.78). Activation Ratios were significantly lower in post-stroke patients compared to healthy participants (p < 0.05).Conclusion: Activation Ratios allow for muscle-specific quantification of selective muscle activation at the wrist in post-stroke patients. Loss of selective muscle activation may be a relevant determinant in assigning and evaluating therapy to improve functional outcome.Implications for RehabilitationLoss of selective muscle activation after stroke contributes to impaired arm function, is difficult to quantify and is not systematically assessed yet.The ability for selective muscle activation is a relevant determinant in assigning and evaluating therapy to improve functional outcome, e.g., botulinum toxin.Activation Ratios allow for reliable and muscle-specific quantification of selective muscle activation in post-stroke patients.
Collapse
Affiliation(s)
- Hanneke van der Krogt
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Kouwijzer
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Asbjørn Klomp
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Laboratory for Neuromuscular Control, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Carel G M Meskers
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - J Hans Arendzen
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurriaan H de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
McPherson JG, Stienen AHA, Schmit BD, Dewald JPA. Biomechanical parameters of the elbow stretch reflex in chronic hemiparetic stroke. Exp Brain Res 2018; 237:121-135. [PMID: 30353212 DOI: 10.1007/s00221-018-5389-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
We sought to determine the relative velocity sensitivity of stretch reflex threshold angle and reflex stiffness during stretches of the paretic elbow joint in individuals with chronic hemiparetic stroke, and to provide guidelines to streamline spasticity assessments. We applied ramp-and-hold elbow extension perturbations ranging from 15 to 150°/s over the full range of motion in 13 individuals with hemiparesis. After accounting for the effects of passive mechanical resistance, we modeled velocity-dependent reflex threshold angle and torque-angle slope to determine their correlation with overall resistance to movement. Reflex stiffness exhibited substantially greater velocity sensitivity than threshold angle, accounting for ~ 74% (vs. ~ 15%) of the overall velocity-dependent increases in movement resistance. Reflex stiffness is a sensitive descriptor of the overall velocity-dependence of movement resistance in spasticity. Clinical spasticity assessments can be streamlined using torque-angle slope, a measure of reflex stiffness, as their primary outcome measure, particularly at stretch velocities greater than 100°/s.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, 10555 W. Flagler St., EC #3171, Miami, FL, 33176, USA
| | - Arno H A Stienen
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.
| |
Collapse
|
18
|
de Gooijer-van de Groep KL, de Groot JH, van der Krogt H, de Vlugt E, Arendzen JH, Meskers CGM. Early Shortening of Wrist Flexor Muscles Coincides With Poor Recovery After Stroke. Neurorehabil Neural Repair 2018; 32:645-654. [PMID: 29938584 PMCID: PMC6066858 DOI: 10.1177/1545968318779731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background. The mechanism and time course of increased wrist
joint stiffness poststroke and clinically observed wrist flexion deformity is
still not well understood. The components contributing to increased joint
stiffness are of neural reflexive and peripheral tissue origin and quantified by
reflexive torque and muscle slack length and stiffness coefficient parameters.
Objective. To investigate the time course of the components
contributing to wrist joint stiffness during the first 26 weeks poststroke in a
group of patients, stratified by prognosis and functional recovery of the upper
extremity. Methods. A total of 36 stroke patients were measured
on 8 occasions within the first 26 weeks poststroke using ramp-and-hold
rotations applied to the wrist joint by a robot manipulator. Neural reflexive
and peripheral tissue components were estimated using an electromyography-driven
antagonistic wrist model. Outcome was compared between groups cross-sectionally
at 26 weeks poststroke and development over time was analyzed longitudinally.
Results. At 26 weeks poststroke, patients with poor
recovery (Action Research Arm Test [ARAT] ≤9 points) showed a higher predicted
reflexive torque of the flexors (P < .001) and reduced
predicted slack length (P < .001) indicating shortened
muscles contributing to higher peripheral tissue stiffness (P
< .001), compared with patients with good recovery (ARAT ≥10 points).
Significant differences in peripheral tissue stiffness between groups could be
identified around weeks 4 and 5; for neural reflexive stiffness, this was the
case around week 12. Conclusions. We found onset of peripheral
tissue stiffness to precede neural reflexive stiffness. Temporal identification
of components contributing to joint stiffness after stroke may prompt
longitudinal interventional studies to further evaluate and eventually prevent
these phenomena.
Collapse
Affiliation(s)
| | | | | | | | | | - Carel G M Meskers
- 3 VU Medical Center, Amsterdam, Netherlands.,4 Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
19
|
McPherson JG, Ellis MD, Harden RN, Carmona C, Drogos JM, Heckman CJ, Dewald JPA. Neuromodulatory Inputs to Motoneurons Contribute to the Loss of Independent Joint Control in Chronic Moderate to Severe Hemiparetic Stroke. Front Neurol 2018; 9:470. [PMID: 29977224 PMCID: PMC6021513 DOI: 10.3389/fneur.2018.00470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
In chronic hemiparetic stroke, increased shoulder abductor activity causes involuntary increases in elbow, wrist, and finger flexor activation, an abnormal muscle coactivation pattern known as the flexion synergy. Recent evidence suggests that flexion synergy expression may reflect recruitment of contralesional cortico-reticulospinal motor pathways following damage to the ipsilesional corticospinal tract. However, because reticulospinal motor pathways produce relatively weak post-synaptic potentials in motoneurons, it is unknown how preferential use of these pathways could lead to robust muscle activation. Here, we hypothesize that the descending neuromodulatory component of the ponto-medullary reticular formation, which uses the monoaminergic neurotransmitters norepinephrine and serotonin, serves as a gain control mechanism to facilitate motoneuron responses to reticulospinal motor commands. Thus, inhibition of the neuromodulatory component would reduce flexion synergy expression by disfacilitating spinal motoneurons. To test this hypothesis, we conducted a pre-clinical study utilizing two targeted neuropharmacological probes and inert placebo in a cohort of 16 individuals with chronic hemiparetic stroke. Test compounds included Tizanidine (TIZ), a noradrenergic α2 agonist and imidazoline ligand selected for its ability to reduce descending noradrenergic drive, and Isradipine, a dihyropyridine calcium-channel antagonist selected for its ability to post-synaptically mitigate a portion of the excitatory effects of monoamines on motoneurons. We used a previously validated robotic measure to quantify flexion synergy expression. We found that Tizanidine significantly reduced expression of the flexion synergy. A predominantly spinal action for this effect is unlikely because Tizanidine is an agonist acting on a baseline of spinal noradrenergic drive that is likely to be pathologically enhanced post-stroke due to increased reliance on cortico-reticulospinal motor pathways. Although spinal actions of TIZ cannot be excluded, particularly from Group II pathways, our finding is consistent with a supraspinal action of Tizanidine to reduce descending noradrenergic drive and disfacilitate motoneurons. The effects of Isradipine were not different from placebo, likely related to poor central bioavailability. These results support the hypothesis that the descending monoaminergic component of the ponto-medullary reticular formation plays a key role in flexion synergy expression in chronic hemiparetic stroke. These results may provide the basis for new therapeutic strategies to complement physical rehabilitation.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - R Norman Harden
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Carolina Carmona
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
20
|
McPherson JG, McPherson LM, Thompson CK, Ellis MD, Heckman CJ, Dewald JPA. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke. Front Hum Neurosci 2018; 12:131. [PMID: 29686611 PMCID: PMC5900019 DOI: 10.3389/fnhum.2018.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/22/2018] [Indexed: 12/05/2022] Open
Abstract
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laura M McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Therapy, Florida International University, Miami, FL, United States
| | - Christopher K Thompson
- Department of Physical Therapy, Temple University, Philadelphia, PA, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
21
|
Gholami S, Ansari NN, Naghdi S, Tabatabaei A, Jannat D, Senobari M, Dadgoo M. Biomechanical investigation of the modified Tardieu Scale in assessing knee extensor spasticity poststroke. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2018; 23. [PMID: 29148611 DOI: 10.1002/pri.1698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/15/2017] [Accepted: 10/10/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The modified Tardieu Scale (MTS) is a clinical tool for the measurement of muscle spasticity. The present study aimed to investigate the relationship between the MTS and the slope of the work-velocity curve as a biomechanical measure in assessing knee extensor muscle spasticity in patients with stroke. METHODS Thirty patients with stroke (22 female, 8 male; mean age 55.4 ± 12.0 years) participated in this study. The knee extensor spasticity was assessed with the MTS. An isokinetic dynamometer was used to move the knee passively from full extension to 90° flexion at speeds of 60°/s, 120°/s, 180°/s, and 240°/s to collect torque-angle data. The slope of the work-velocity curve was calculated using linear regression [J/(°/s)]. RESULTS The mean of R2-R1 component of MTS was 19.73 (SD 29.85). The mean work significantly decreased as the speed increased (p < .001). The mean (SD) slope for the work-velocity curve was -0.83 (SD 0.73, range -2.6-0.3). There was no significant relationship between the R2 -R1 and the slope of work-velocity curve (r = 0.09, p = .62). CONCLUSIONS The lack of significant relationship between the MTS and the slope of work-velocity curve may question the usefulness of the MTS as a valid measure of muscle spasticity after stroke.
Collapse
Affiliation(s)
- Samaneh Gholami
- School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Noureddin Nakhostin Ansari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soofia Naghdi
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Tabatabaei
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Jannat
- Industrial Engineering, Tarbiat Modares University, Tehran, Iran
| | - Maryam Senobari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Dadgoo
- Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Miller DM, Rymer WZ. Sound-Evoked Biceps Myogenic Potentials Reflect Asymmetric Vestibular Drive to Spastic Muscles in Chronic Hemiparetic Stroke Survivors. Front Hum Neurosci 2017; 11:535. [PMID: 29176945 PMCID: PMC5686083 DOI: 10.3389/fnhum.2017.00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 10/20/2017] [Indexed: 11/13/2022] Open
Abstract
Aberrant vestibular nuclear function is proposed to be a principle driver of limb muscle spasticity after stroke. We sought to determine whether altered cortical modulation of descending vestibulospinal pathways post-stroke could impact the excitability of biceps brachii motoneurons. Twelve chronic hemispheric stroke survivors aged 46–68 years were enrolled. Sound evoked biceps myogenic potentials (SEBMPs) were recorded from the spastic and contralateral biceps muscles using surface EMG electrodes. We assessed the impact of descending vestibulospinal pathways on biceps muscle activity and evaluated the relationship between vestibular function and the severity of spasticity. Spastic SEBMP responses were recorded in 11/12 subjects. Almost 60% of stroke subjects showed evoked responses solely on the spastic side. These data strongly support the idea that vestibular drive is asymmetrically distributed to biceps motoneuron pools in hemiparetic spastic stroke survivors. This abnormal vestibular drive is very likely to be a factor mediating the striking differences in motoneuron excitability between the clinically affected and clinically spared sides. This study extends our previous observations on vestibular nuclear changes following hemispheric stroke and potentially sheds light on the underlying mechanisms of post-stroke spasticity.
Collapse
Affiliation(s)
- Derek M Miller
- Single Motor Unit Laboratory, Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, United States.,Interdepartmental Neurosciences Program, Northwestern University, Evanston, IL, United States
| | - William Z Rymer
- Single Motor Unit Laboratory, Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, United States.,Interdepartmental Neurosciences Program, Northwestern University, Evanston, IL, United States
| |
Collapse
|
23
|
Leech KA, Kim HE, Hornby TG. Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury. J Neurophysiol 2017; 119:894-903. [PMID: 29093168 DOI: 10.1152/jn.00051.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many studies highlight the remarkable plasticity demonstrated by spinal circuits following an incomplete spinal cord injury (SCI). Such plasticity can contribute to improvements in volitional motor recovery, such as walking function, although similar mechanisms underlying this recovery may also contribute to the manifestation of exaggerated responses to afferent input, or spastic behaviors. Rehabilitation interventions directed toward augmenting spinal excitability have shown some initial success in improving locomotor function. However, the potential effects of these strategies on involuntary motor behaviors may be of concern. In this article, we provide a brief review of the mechanisms underlying recovery of volitional function and exaggerated reflexes, and the potential overlap between these changes. We then highlight findings from studies that explore changes in spinal excitability during volitional movement in controlled conditions, as well as altered kinematic and behavioral performance during functional tasks. The initial focus will be directed toward recovery of reflex and volitional behaviors following incomplete SCI, followed by recent work elucidating neurophysiological mechanisms underlying patterns of static and dynamic muscle activation following chronic incomplete SCI during primarily single-joint movements. We will then transition to studies of locomotor function and the role of altered spinal integration following incomplete SCI, including enhanced excitability of specific spinal circuits with physical and pharmacological interventions that can modulate locomotor output. The effects of previous and newly developed strategies will need to focus on changes in both volitional function and involuntary spastic reflexes for the successful translation of effective therapies to the clinical setting.
Collapse
Affiliation(s)
- Kristan A Leech
- Department of Neuroscience, Johns Hopkins University , Baltimore, Maryland
| | - Hyosub E Kim
- Department of Psychology, University of California at Berkeley , Berkeley, California
| | | |
Collapse
|
24
|
Turpin NA, Feldman AG, Levin MF. Stretch-reflex threshold modulation during active elbow movements in post-stroke survivors with spasticity. Clin Neurophysiol 2017; 128:1891-1897. [DOI: 10.1016/j.clinph.2017.07.411] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/24/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
25
|
McPherson JG, Stienen AH, Drogos JM, Dewald JP. Modification of Spastic Stretch Reflexes at the Elbow by Flexion Synergy Expression in Individuals With Chronic Hemiparetic Stroke. Arch Phys Med Rehabil 2017; 99:491-500. [PMID: 28751255 DOI: 10.1016/j.apmr.2017.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To systematically characterize the effect of flexion synergy expression on the manifestation of elbow flexor stretch reflexes poststroke, and to relate these findings to elbow flexor stretch reflexes in individuals without neurologic injury. DESIGN Controlled cohort study. SETTING Academic medical center. PARTICIPANTS Participants (N=20) included individuals with chronic hemiparetic stroke (n=10) and a convenience sample of individuals without neurologic or musculoskeletal injury (n=10). INTERVENTIONS Participants with stroke were interfaced with a robotic device that precisely manipulated flexion synergy expression (by regulating shoulder abduction loading) while delivering controlled elbow extension perturbations over a wide range of velocities. This device was also used to elicit elbow flexor stretch reflexes during volitional elbow flexor activation, both in the cohort of individuals with stroke and in a control cohort. In both cases, the amplitude of volitional elbow flexor preactivation was matched to that generated involuntarily during flexion synergy expression. MAIN OUTCOME MEASURES The amplitude of short- and long-latency stretch reflexes in the biceps brachii, assessed by electromyography, and expressed as a function of background muscle activation and stretch velocity. RESULTS Increased shoulder abduction loading potentiated elbow flexor stretch reflexes via flexion synergy expression in the paretic arm. Compared with stretch reflexes in individuals without neurologic injury, paretic reflexes were larger at rest but were approximately equal to control muscles at matched levels of preactivation. CONCLUSIONS Because flexion synergy expression modifies stretch reflexes in involved muscles, interventions that reduce flexion synergy expression may confer the added benefit of reducing spasticity during functional use of the arm.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Arno H Stienen
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Julius P Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL.
| |
Collapse
|
26
|
Li S. Spasticity, Motor Recovery, and Neural Plasticity after Stroke. Front Neurol 2017; 8:120. [PMID: 28421032 PMCID: PMC5377239 DOI: 10.3389/fneur.2017.00120] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Spasticity and weakness (spastic paresis) are the primary motor impairments after stroke and impose significant challenges for treatment and patient care. Spasticity emerges and disappears in the course of complete motor recovery. Spasticity and motor recovery are both related to neural plasticity after stroke. However, the relation between the two remains poorly understood among clinicians and researchers. Recovery of strength and motor function is mainly attributed to cortical plastic reorganization in the early recovery phase, while reticulospinal (RS) hyperexcitability as a result of maladaptive plasticity, is the most plausible mechanism for poststroke spasticity. It is important to differentiate and understand that motor recovery and spasticity have different underlying mechanisms. Facilitation and modulation of neural plasticity through rehabilitative strategies, such as early interventions with repetitive goal-oriented intensive therapy, appropriate non-invasive brain stimulation, and pharmacological agents, are the keys to promote motor recovery. Individualized rehabilitation protocols could be developed to utilize or avoid the maladaptive plasticity, such as RS hyperexcitability, in the course of motor recovery. Aggressive and appropriate spasticity management with botulinum toxin therapy is an example of how to create a transient plastic state of the neuromotor system that allows motor re-learning and recovery in chronic stages.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, USA.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
27
|
Powers RK, Heckman CJ. Synaptic control of the shape of the motoneuron pool input-output function. J Neurophysiol 2017; 117:1171-1184. [PMID: 28053245 DOI: 10.1152/jn.00850.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 01/14/2023] Open
Abstract
Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage-clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. We also found that the nonlinearity can be increased by increasing neuromodulatory input and/or balanced inhibitory input and minimized by a reciprocal, push-pull pattern of inhibition. We consider the possibility that a flexible input-output function may allow motor output to be tuned to match the widely varying demands of the normal motor repertoire.NEW & NOTEWORTHY Motoneuron activity is generally considered to reflect the level of excitatory drive. However, the activation of voltage-dependent intrinsic conductances can distort the relation between excitatory drive and the total output of a pool of motoneurons. Using a pool of realistic motoneuron models, we show that pool output can be a highly nonlinear function of synaptic input but linearity can be achieved through adjusting the time course of excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Randall K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington; and
| | - Charles J Heckman
- Departments of Physiology, Physical Medicine and Rehabilitation, and Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
28
|
Wang J, Yu P, Zeng M, Gu X, Liu Y, Xiao M. Reduction in spasticity in stroke patient with paraffin therapy. Neurol Res 2016; 39:36-44. [PMID: 27876449 DOI: 10.1080/01616412.2016.1248169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jing Wang
- Department of Rehabilitation Medicine, Beijing United Family Rehabilitation Hospital , Beijing, China
- Department of Rehabilitation Medicine, Taikang Yanyuan Rehabilitation Hospital , Beijing, China
| | - Peng Yu
- Department of Anethesiology, Beijing Puhua international hospital , Beijing, China
- Department of Pain Medicine, Kunming LiH Skycity Rehabilitation Hospital , Kunming, China
| | - Ming Zeng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University , Jiaxing, China
| | - Xudong Gu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University , Jiaxing, China
| | - Yan Liu
- Department of Rehabilitation Medicine, Beijing United Family Rehabilitation Hospital , Beijing, China
| | - Mingyue Xiao
- Department of Rehabilitation Medicine, Beijing United Family Rehabilitation Hospital , Beijing, China
| |
Collapse
|
29
|
Ascending vestibular drive is asymmetrically distributed to the inferior oblique motoneuron pools in a subset of hemispheric stroke survivors. Clin Neurophysiol 2016; 127:2022-30. [PMID: 26971485 DOI: 10.1016/j.clinph.2016.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Aberrant vestibular nuclear function is proposed to be a principle driver of limb muscle spasticity after stroke. Although spasticity does not manifest in ocular muscles, we sought to determine whether altered cortical modulation of ascending vestibuloocular pathways post-stroke could impact the excitability of ocular motoneurons. METHODS Nineteen chronic stroke survivors, aged 49-68 yrs. were enrolled. Vestibular evoked myogenic potentials (VEMPs) were recorded from the inferior oblique muscles of the eye using surface EMG electrodes. We assessed the impact of ascending otolith pathways on eye muscle activity and evaluated the relationship between otolith-ocular function and the severity of spasticity. RESULTS VEMP responses were recorded bilaterally in 14/19 subjects. Response magnitude on the affected side was significantly larger than on the spared side. In a subset of subjects, there was a strong relationship between affected response amplitude and the severity of limb spasticity, as estimated using a standard clinical scale. CONCLUSIONS This study suggests that alterations in ascending vestibular drive to ocular motoneurons contribute to post-stroke spasticity in a subset of spastic stroke subjects. We speculate this imbalance is a consequence of the unilateral disruption of inhibitory corticobulbar projections to the vestibular nuclei. SIGNIFICANCE This study potentially sheds light on the underlying mechanisms of post-stroke spasticity.
Collapse
|
30
|
Sloot LH, van den Noort JC, van der Krogt MM, Bruijn SM, Harlaar J. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles? PLoS One 2015; 10:e0144815. [PMID: 26669665 PMCID: PMC4682928 DOI: 10.1371/journal.pone.0144815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022] Open
Abstract
Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during treadmill-based clinical gait analysis.
Collapse
Affiliation(s)
- Lizeth H. Sloot
- Dept. of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Josien C. van den Noort
- Dept. of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Marjolein M. van der Krogt
- Dept. of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Sjoerd M. Bruijn
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University, Amsterdam, the Netherlands
- Department of Orthopedics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jaap Harlaar
- Dept. of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol Clin 2015; 45:335-55. [PMID: 26547547 DOI: 10.1016/j.neucli.2015.09.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022] Open
Abstract
We reviewed neural control and biomechanical description of gait in both non-disabled and post-stroke subjects. In addition, we reviewed most of the gait rehabilitation strategies currently in use or in development and observed their principles in relation to recent pathophysiology of post-stroke gait. In both non-disabled and post-stroke subjects, motor control is organized on a task-oriented basis using a common set of a few muscle modules to simultaneously achieve body support, balance control, and forward progression during gait. Hemiparesis following stroke is due to disruption of descending neural pathways, usually with no direct lesion of the brainstem and cerebellar structures involved in motor automatic processes. Post-stroke, improvements of motor activities including standing and locomotion are variable but are typically characterized by a common postural behaviour which involves the unaffected side more for body support and balance control, likely in response to initial muscle weakness of the affected side. Various rehabilitation strategies are regularly used or in development, targeting muscle activity, postural and gait tasks, using more or less high-technology equipment. Reduced walking speed often improves with time and with various rehabilitation strategies, but asymmetric postural behaviour during standing and walking is often reinforced, maintained, or only transitorily decreased. This asymmetric compensatory postural behaviour appears to be robust, driven by support and balance tasks maintaining the predominant use of the unaffected side over the initially impaired affected side. Based on these elements, stroke rehabilitation including affected muscle strengthening and often stretching would first need to correct the postural asymmetric pattern by exploiting postural automatic processes in various particular motor tasks secondarily beneficial to gait.
Collapse
Affiliation(s)
- C Beyaert
- EA3450, Université de Lorraine, Faculty of Medicine, 54500 Vandœuvre-lès-Nancy, France; Motion Analysis Laboratory, L.-Pierquin Rehabilitation Center, 54000 Nancy, France.
| | - R Vasa
- RV Foundation, Centre for Brain and Spinal Injury Rehab, Mumbai, India
| | - G E Frykberg
- Department of Neuroscience/Rehabilitation Medicine, Uppsala University, 75158 Uppsala, Sweden
| |
Collapse
|
32
|
Meskers CGM, de Groot JH, de Vlugt E, Schouten AC. NeuroControl of movement: system identification approach for clinical benefit. Front Integr Neurosci 2015; 9:48. [PMID: 26441563 PMCID: PMC4561669 DOI: 10.3389/fnint.2015.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 08/10/2015] [Indexed: 01/18/2023] Open
Abstract
Progress in diagnosis and treatment of movement disorders after neurological diseases like stroke, cerebral palsy (CP), dystonia and at old age requires understanding of the altered capacity to adequately respond to physical obstacles in the environment. With posture and movement disorders, the control of muscles is hampered, resulting in aberrant force generation and improper impedance regulation. Understanding of this improper regulation not only requires the understanding of the role of the neural controller, but also attention for: (1) the interaction between the neural controller and the "plant", comprising the biomechanical properties of the musculaskeletal system including the viscoelastic properties of the contractile (muscle) and non-contractile (connective) tissues: neuromechanics; and (2) the closed loop nature of neural controller and biomechanical system in which cause and effect interact and are hence difficult to separate. Properties of the neural controller and the biomechanical system need to be addressed synchronously by the combination of haptic robotics, (closed loop) system identification (SI), and neuro-mechanical modeling. In this paper, we argue that assessment of neuromechanics in response to well defined environmental conditions and tasks may provide for key parameters to understand posture and movement disorders in neurological diseases and for biomarkers to increase accuracy of prediction models for functional outcome and effects of intervention.
Collapse
Affiliation(s)
- Carel G. M. Meskers
- Department of Rehabilitation Medicine, VU University Medical CenterAmsterdam, Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation Medicine, Leiden University Medical CenterLeiden, Netherlands
| | - Erwin de Vlugt
- Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands
| | - Alfred C. Schouten
- Department of Biomechanical Engineering, Delft University of TechnologyDelft, Netherlands
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of TwenteEnschede, Netherlands
| |
Collapse
|
33
|
Graham JV, Eustace C, Brock K, Swain E, Irwin-Carruthers S. The Bobath Concept in Contemporary Clinical Practice. Top Stroke Rehabil 2015; 16:57-68. [DOI: 10.1310/tsr1601-57] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
The validity and reliability of modelled neural and tissue properties of the ankle muscles in children with cerebral palsy. Gait Posture 2015; 42:7-15. [PMID: 25936760 DOI: 10.1016/j.gaitpost.2015.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Spastic cerebral palsy (CP) is characterized by increased joint resistance, caused by a mix of increased tissue stiffness, as well as involuntary reflex and background muscle activity. These properties can be quantified using a neuromechanical model of the musculoskeletal complex and instrumented assessment. The construct validity of the neuromechanical parameters was examined (i.e. the internal model validity, effect of knee angle, speed and age, sensitivity to patients versus controls, spasticity severity and treatment), together with the repeatability. We included 38 children with CP and 35 controls. A motor driven footplate applied two slow (15°/s) and two fast (100°/s) rotations around the ankle joint, at two different knee angles. Ankle angle, torque and EMG of the gastrocnemius (GA), soleus (SO) and tibialis anterior (TA) muscle were used to optimize a nonlinear neuromuscular model. Outcome measures were tissue stiffness, reflex and background activity for GA, SO and TA. The internal model validity showed medium to high parameter confidence and good model fits. All parameter could discriminate between patients with CP and controls according to CP pathology. Other measures of external model validity (effect of test position, speed and age) showed behaviour along the lines of current knowledge of physiology. GA/SO background activity was sensitive to spasticity severity, but reflex activity was not. Preliminary data indicated that reflex activity was reduced after spasticity treatment. The between-trial and -day repeatability was moderate to good. The large variance between patients in the ratio of stiffness and neural resistance indicates that the method could potentially contribute to patient-specific treatment selection.
Collapse
|
35
|
Kim HE, Corcos DM, Hornby TG. Increased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury. J Neurophysiol 2015; 114:427-39. [PMID: 25972590 DOI: 10.1152/jn.01074.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
This study of chronic incomplete spinal cord injury (SCI) subjects investigated patterns of central motor drive (i.e., central activation) of the plantar flexors using interpolated twitches, and modulation of soleus H-reflexes during lengthening, isometric, and shortening muscle actions. In a recent study of the knee extensors, SCI subjects demonstrated greater central activation ratio (CAR) values during lengthening (i.e., eccentric) maximal voluntary contractions (MVCs), compared with during isometric or shortening (i.e., concentric) MVCs. In contrast, healthy controls demonstrated lower lengthening CAR values compared with their isometric and shortening CARs. For the present investigation, we hypothesized SCI subjects would again produce their highest CAR values during lengthening MVCs, and that these increases in central activation were partially attributable to greater efficacy of Ia-α motoneuron transmission during muscle lengthening following SCI. Results show SCI subjects produced higher CAR values during lengthening vs. isometric or shortening MVCs (all P < 0.001). H-reflex testing revealed normalized H-reflexes (maximal SOL H-reflex-to-maximal M-wave ratios) were greater for SCI than controls during passive (P = 0.023) and active (i.e., 75% MVC; P = 0.017) lengthening, suggesting facilitation of Ia transmission post-SCI. Additionally, measures of spinal reflex excitability (passive lengthening maximal SOL H-reflex-to-maximal M-wave ratio) in SCI were positively correlated with soleus electromyographic activity and CAR values during lengthening MVCs (both P < 0.05). The present study presents evidence that patterns of dynamic muscle activation are altered following SCI, and that greater central activation during lengthening contractions is partly due to enhanced efficacy of Ia-α motoneuron transmission.
Collapse
Affiliation(s)
- Hyosub E Kim
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Daniel M Corcos
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, Illinois; and
| | - T George Hornby
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
36
|
Li S, Francisco GE. New insights into the pathophysiology of post-stroke spasticity. Front Hum Neurosci 2015; 9:192. [PMID: 25914638 PMCID: PMC4392691 DOI: 10.3389/fnhum.2015.00192] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
Spasticity is one of many consequences after stroke. It is characterized by a velocity-dependent increase in resistance during passive stretch, resulting from hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable stretch reflex, however, remains poorly understood. Accumulated experimental evidence has supported supraspinal origins of spasticity, likely from an imbalance between descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary to cortical disinhibition after stroke. The excitability of reticulospinal (RST) and vestibulospinal tracts (VSTs) has been assessed in stroke survivors with spasticity using non-invasive indirect measures. There are strong experimental findings that support the RST hyperexcitability as a prominent underlying mechanism of post-stroke spasticity. This mechanism can at least partly account for clinical features associated with spasticity and provide insightful guidance for clinical assessment and management of spasticity. However, the possible role of VST hyperexcitability cannot be ruled out from indirect measures. In vivo measure of individual brainstem nuclei in stroke survivors with spasticity using advanced fMRI techniques in the future is probably able to provide direct evidence of pathogenesis of post-stroke spasticity.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston Houston, TX, USA ; NeuroRehabilitation Research Laboratory, NeuroRecovery Research Center, TIRR Memorial Hermann Research Center Houston, TX, USA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston Houston, TX, USA ; NeuroRehabilitation Research Laboratory, NeuroRecovery Research Center, TIRR Memorial Hermann Research Center Houston, TX, USA
| |
Collapse
|
37
|
van der Krogt H, Klomp A, de Groot JH, de Vlugt E, van der Helm FC, Meskers CG, Arendzen JH. Comprehensive neuromechanical assessment in stroke patients: reliability and responsiveness of a protocol to measure neural and non-neural wrist properties. J Neuroeng Rehabil 2015; 12:28. [PMID: 25889671 PMCID: PMC4436851 DOI: 10.1186/s12984-015-0021-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/24/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Understanding movement disorder after stroke and providing targeted treatment for post stroke patients requires valid and reliable identification of biomechanical (passive) and neural (active and reflexive) contributors. Aim of this study was to assess test-retest reliability of passive, active and reflexive parameters and to determine clinical responsiveness in a cohort of stroke patients with upper extremity impairments and healthy volunteers. METHODS Thirty-two community-residing chronic stroke patients with an impairment of an upper limb and fourteen healthy volunteers were assessed with a comprehensive neuromechanical assessment protocol consisting of active and passive tasks and different stretch reflex-eliciting measuring velocities, using a haptic manipulator and surface electromyography of wrist flexor and extensor muscles (Netherlands Trial Registry number NTR1424). Intraclass correlation coefficients (ICC) and Standard Error of Measurement were calculated to establish relative and absolute test-retest reliability of passive, active and reflexive parameters. Clinical responsiveness was tested with Kruskal Wallis test for differences between groups. RESULTS ICC of passive parameters were fair to excellent (0.45 to 0.91). ICC of active parameters were excellent (0.88-0.99). ICC of reflexive parameters were fair to good (0.50-0.74). Only the reflexive loop time of the extensor muscles performed poor (ICC 0.18). Significant differences between chronic stroke patients and healthy volunteers were found in ten out of fourteen parameters. CONCLUSIONS Passive, active and reflexive parameters can be assessed with high reliability in post-stroke patients. Parameters were responsive to clinical status. The next step is longitudinal measurement of passive, active and reflexive parameters to establish their predictive value for functional outcome after stroke.
Collapse
Affiliation(s)
- Hanneke van der Krogt
- Department of Rehabilitation Medicine, Leiden University Medical Center, Postzone B0-Q, P.O. box 9600, 2300 RC, Leiden, the Netherlands.
| | - Asbjørn Klomp
- Department of Rehabilitation Medicine, Leiden University Medical Center, Postzone B0-Q, P.O. box 9600, 2300 RC, Leiden, the Netherlands. .,Laboratory for Neuromuscular Control, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands.
| | - Jurriaan H de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center, Postzone B0-Q, P.O. box 9600, 2300 RC, Leiden, the Netherlands.
| | - Erwin de Vlugt
- Laboratory for Neuromuscular Control, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands.
| | - Frans Ct van der Helm
- Laboratory for Neuromuscular Control, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, the Netherlands.
| | - Carel Gm Meskers
- Department of Rehabilitation Medicine, Leiden University Medical Center, Postzone B0-Q, P.O. box 9600, 2300 RC, Leiden, the Netherlands. .,Current address: Department of Rehabilitation Medicine, VU Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - J Hans Arendzen
- Department of Rehabilitation Medicine, Leiden University Medical Center, Postzone B0-Q, P.O. box 9600, 2300 RC, Leiden, the Netherlands.
| |
Collapse
|
38
|
Androwis GJ, Michael PA, Strongwater A, Foulds RA. Estimation of intrinsic joint impedance using quasi-static passive and dynamic methods in individuals with and without Cerebral Palsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4403-6. [PMID: 25570968 DOI: 10.1109/embc.2014.6944600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Modeling the passive behavior of the knee in subjects with spasticity involves the applied external torques (e.g. gravitational torque), the intrinsic moments due to tissue properties, as well as active, neurally defined moments resulting from the hypersensitivity of reflexes introduced by disability. In order to provide estimates of the necessary intrinsic terms in the equation of motion, the push-pull and Wartenberg Pendulum Knee Drop (PKD) tests were administered. Four subjects without disability and two subjects with Cerebral Palsy (CP) were evaluated for their active and intrinsic knee stiffness parameters. Separation of these two terms requires an additional stiffness term be added to the traditional equation of motion. This holds true for subjects with and without neurological disability. Very interestingly, the optimized non-disabled PKD produced lumped stiffness (K) that is similar to the push-pull passive stiffness (KI) for both populations. On the other hand the optimized K value in the PKD test for subjects with disability was approximately 19 times larger than the KI value found graphically from the push-pull test. This leads us to the conclusion that we can partition our lumped K as the sum of a neurally generated stiffness (Ka) and KI to complete the trajectory model. Therefore, this study shows that spasticity is a velocity dependent, that would not appear in disabled individuals unless the examined limb has a non-zero velocity.
Collapse
|
39
|
Kim HE, Thompson CK, Hornby TG. Muscle activation varies with contraction mode in human spinal cord injury. Muscle Nerve 2014; 51:235-45. [PMID: 24825184 DOI: 10.1002/mus.24285] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2014] [Indexed: 11/06/2022]
Abstract
INTRODUCTION To better understand volitional force generation after chronic incomplete spinal cord injury (SCI), we examined muscle activation during single and repeated isometric, concentric, and eccentric knee extensor (KE) maximal voluntary contractions (MVCs). METHODS Torque and electromyographic (EMG) activity were recorded during single and repeated isometric and dynamic KE MVCs in 11 SCI subjects. Central activation ratios (CARs) were calculated for all contraction modes in SCI subjects and 11 healthy controls. RESULTS SCI subjects generated greater torque, KE EMG, and CARs during single eccentric vs. isometric and concentric MVCs (all P < 0.05). Torque and EMG remained similar during repeated eccentric MVCs; however, both increased during repeated isometric (>25%) and concentric (>30%) MVCs. CONCLUSIONS SCI subjects demonstrated greater muscle activation during eccentric MVCs vs. isometric and concentric MVCs. This pattern of activation contrasts with the decreased eccentric activation demonstrated by healthy controls. Such information may aid development of novel rehabilitation interventions.
Collapse
Affiliation(s)
- Hyosub E Kim
- Graduate Program in Neuroscience, University of Illinois at Chicago, 1919 West Taylor Street, M/C 898, Chicago, Illinois, 60612, USA
| | | | | |
Collapse
|
40
|
Mirbagheri MM, Kindig MW, Niu X. Effects of robotic-locomotor training on stretch reflex function and muscular properties in individuals with spinal cord injury. Clin Neurophysiol 2014; 126:997-1006. [PMID: 25449559 DOI: 10.1016/j.clinph.2014.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We sought to determine the therapeutic effect of robotic-assisted step training (RAST) on neuromuscular abnormalities associated with spasticity by characterization of their recovery patterns in people with spinal cord injury (SCI). METHODS Twenty-three motor-incomplete SCI subjects received one-hour RAST sessions three times per week for 4 weeks, while an SCI control group received no training. Neuromuscular properties were assessed using ankle perturbations prior to and during the training, and a system-identification technique quantified stretch reflex and intrinsic stiffness magnitude and modulation with joint position. Growth-mixture modeling classified subjects based on similar intrinsic and reflex recovery patterns. RESULTS All recovery classes in the RAST group presented significant (p<0.05) reductions in intrinsic and reflex stiffness magnitude and modulation with position; the control group presented no changes over time. Subjects with larger baseline abnormalities exhibited larger reductions, and over longer training periods. CONCLUSIONS Our findings demonstrate that RAST can effectively reduce neuromuscular abnormalities, with greater improvements for subjects with higher baseline abnormalities. SIGNIFICANCE Our findings suggest, in addition to its primary goal of improving locomotor patterns, RAST can also reduce neuromuscular abnormalities associated with spasticity. These findings also demonstrate that these techniques can be used to characterize neuromuscular recovery patterns in response to various types of interventions.
Collapse
Affiliation(s)
- Mehdi M Mirbagheri
- Department of Physical Medicine and Rehabilitation, Northwestern University, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, USA.
| | - Matthew W Kindig
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, USA
| | - Xun Niu
- Department of Physical Medicine and Rehabilitation, Northwestern University, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, USA
| |
Collapse
|
41
|
Miller DM, Klein CS, Suresh NL, Rymer WZ. Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: evidence for a vestibulospinal role. Clin Neurophysiol 2014; 125:2070-8. [PMID: 24680197 DOI: 10.1016/j.clinph.2014.01.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Indirect evidence suggests that lateralized changes in motoneuron behavior post-stroke are potentially due to a depolarizing supraspinal drive to the motoneuron pool, but the pathways responsible are unknown. In this study, we assessed vestibular evoked myogenic potentials (VEMPs) in the neck muscles of hemispheric stroke survivors with contralesional spasticity to quantify the relative levels of vestibular drive to the spastic-paretic and contralateral motoneuron pools. METHODS VEMPs were recorded from each sternocleidomastoid muscle in chronic stroke survivors. Side-to-side differences in cVEMP amplitude were calculated and expressed as an asymmetry ratio, a proxy for the relative amount of vestibular drive to each side. RESULTS Spastic-paretic VEMPs were larger than contralateral VEMPs in 13/16 subjects. There was a strong positive relationship between the degree of asymmetry and the severity of spasticity in this subset of subjects. Remaining subjects had larger contralateral responses. CONCLUSION Vestibular drive to cervical motoneurons is asymmetric in spastic stroke survivors, supporting our hypothesis that there is an imbalance in descending vestibular drive to motoneuron pools post-stroke. We speculate this imbalance is a consequence of the unilateral disruption of inhibitory corticobulbar projections to the vestibular nuclei. SIGNIFICANCE This study sheds new light on the underlying mechanisms of post-stroke spasticity.
Collapse
Affiliation(s)
- Derek M Miller
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | - Cliff S Klein
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| | - Nina L Suresh
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| | - William Z Rymer
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Mottram CJ, Heckman CJ, Powers RK, Rymer WZ, Suresh NL. Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors. J Neurophysiol 2014; 111:2017-28. [PMID: 24572092 DOI: 10.1152/jn.00389.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P < 0.001) and control (1.1 ± 1.0 s; P = 0.005) muscles. The duration of impaired firing rate modulation in the higher-threshold unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing.
Collapse
Affiliation(s)
- C J Mottram
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois;
| | - C J Heckman
- Departments of Physiology, Physical Medicine and Rehabilitation, and Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - R K Powers
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington; and
| | - W Z Rymer
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - N L Suresh
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| |
Collapse
|
43
|
Levin MF. Deficits in spatial threshold control of muscle activation as a window for rehabilitation after brain injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 826:229-49. [PMID: 25330894 DOI: 10.1007/978-1-4939-1338-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade SirWilliam Osler, Montreal, QC, H3G 1Y5, Canada,
| |
Collapse
|
44
|
Activation and intermuscular coherence of distal arm muscles during proximal muscle contraction. Exp Brain Res 2013; 232:739-52. [PMID: 24317552 DOI: 10.1007/s00221-013-3784-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/19/2013] [Indexed: 01/03/2023]
Abstract
In the human upper extremity (UE), unintended effects of proximal muscle activation on muscles controlling the hand could be an important aspect of motor control due to the necessary coordination of distal and proximal segments during functional activities. This study aimed to elucidate the effects of concurrent activation of elbow muscles on the coordination between hand muscles performing a grip task. Eleven healthy subjects performed precision grip tasks while a constant extension or flexion moment was applied to their elbow joints, inducing a sustained submaximal contraction of elbow muscles to counter the applied torque. Activation of four hand muscles was measured during each task condition using surface electromyography (EMG). When concurrent activation of elbow muscles was induced, significant changes in the activation levels of the hand muscles were observed, with greater effects on the extrinsic finger extensor (23.2 % increase under 30 % elbow extensor activation; p = 0.003) than extrinsic finger flexor (14.2 % increase under 30 % elbow flexor activation; p = 0.130). Elbow muscle activation also induced involuntary changes in the intrinsic thumb flexor activation (44.6 % increase under 30 % elbow extensor activation; p = 0.005). EMG-EMG coherence analyses revealed that elbow muscle activation significantly reduced intermuscular coherence between distal muscle pairs, with its greatest effects on coherence in the β-band (13-25 Hz) (average of 17 % decrease under 30 % elbow flexor activation). The results of this study provide evidence for involuntary, muscle-specific interactions between distal and proximal UE muscles, which may contribute to UE motor performance in health and disease.
Collapse
|
45
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
46
|
Abstract
Antispastic medications that are directed to reduce clinical signs of spasticity, such as exaggerated reflexes and muscle tone, do not improve the movement disorder. Medication can even increase weakness which might interfere with functional movements, such as walking. In this chapter we address how spasticity affects mobility and how this should be taken into account in the treatment of spasticity. In clinical practice, signs of exaggerated tendon tap reflexes associated with muscle hypertonia are the consequence of spinal cord injury (SCI). They are generally thought to be responsible for spastic movement disorders. Most antispastic treatments are, therefore, directed at the reduction of reflex activity. In recent years, a discrepancy between spasticity as measured in the clinic and functional spastic movement disorder was noticed, which is primarily due to the different roles of reflexes in passive and active states, respectively. We now know that central motor lesions are associated with loss of supraspinal drive and defective use of afferent input with impaired behavior of short-latency and long-latency reflexes. These changes lead to paresis and maladaptation of the movement pattern. Secondary changes in mechanical muscle fiber, collagen tissue, and tendon properties (e.g., loss of sarcomeres, subclinical contractures) result in spastic muscle tone, which in part compensates for paresis and allows functional movements on a simpler level of organization. Antispastic drugs should primarily be applied in complete SCI. In mobile patients they can accentuate paresis and therefore should be applied with caution.
Collapse
Affiliation(s)
- Volker Dietz
- Balgrist University Hospital, Zurich, Switzerland.
| | | |
Collapse
|
47
|
de Gooijer-van de Groep KL, de Vlugt E, de Groot JH, van der Heijden-Maessen HCM, Wielheesen DHM, van Wijlen-Hempel RMS, Arendzen JH, Meskers CGM. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil 2013; 10:81. [PMID: 23880287 PMCID: PMC3737029 DOI: 10.1186/1743-0003-10-81] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 06/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. METHODS Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. RESULTS In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. CONCLUSIONS Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy.
Collapse
|
48
|
Chang SH, Francisco GE, Zhou P, Rymer WZ, Li S. Spasticity, weakness, force variability, and sustained spontaneous motor unit discharges of resting spastic-paretic biceps brachii muscles in chronic stroke. Muscle Nerve 2013; 48:85-92. [PMID: 23605647 DOI: 10.1002/mus.23699] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2012] [Indexed: 11/12/2022]
Abstract
INTRODUCTION The purpose of our study was to examine relations among spasticity, weakness, force variability, and sustained spontaneous motor unit discharges in spastic-paretic biceps brachii muscles in chronic stroke. METHODS Ten chronic stroke subjects produced submaximal isometric elbow flexion force on impaired and non-impaired sides. Intramuscular EMG (iEMG) was recorded from biceps and triceps brachii muscles. RESULTS We observed sustained spontaneous motor unit discharges in resting biceps on iEMG. Spontaneous discharges increased after voluntary activation only on the impaired side. The impaired side had greater matching errors and greater fluctuations in isometric force. Spontaneous discharges were not related functionally to spasticity, force variability, or weakness. However, greater strength on the impaired side correlated with less force variability. CONCLUSION Weakness rather than spasticity is a main factor interfering with voluntary force control in paretic-spastic biceps brachii muscles in chronic stroke.
Collapse
Affiliation(s)
- Shuo-Hsiu Chang
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | | | | | | | | |
Collapse
|
49
|
Piovesan D, Morasso P, Giannoni P, Casadio M. Arm stiffness during assisted movement after stroke: the influence of visual feedback and training. IEEE Trans Neural Syst Rehabil Eng 2012. [PMID: 23193322 DOI: 10.1109/tnsre.2012.2226915] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Spasticity and muscular hypertonus are frequently found in stroke survivors and may have a significant effect on functional impairment. These abnormal neuro-muscular properties, which are quantifiable by the net impedance of the hand, have a direct consequence on arm mechanics and are likely to produce anomalous motor paths. Literature studies quantifying limb impedance in stroke survivors have focused on multijoint static tasks and single joint movements. Despite this research, little is known about the role of sensory motor integration in post-stroke impedance modulation. The present study elucidates this role by integrating an evaluation of arm impedance into a robotically mediated therapy protocol. Our analysis had three specific objectives: 1) obtaining a reliable measure for the mechanical proprieties of the upper limb during robotic therapy; 2) investigating the effects of robot-assisted training and visual feedback on arm stiffness and viscosity; 3) determining if the stiffness measure and its relationship with either training or visual feedback depend on arm position, speed, and level of assistance. This work demonstrates that the performance improvements produced by minimally assistive robot training are associated with decreased viscosity and stiffness in stroke survivors' paretic arm and that these mechanical impedance components are partially modulated by visual feedback.
Collapse
Affiliation(s)
- Davide Piovesan
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
50
|
McPherson JG, Stienen AHA, Drogos JM, Dewald JPA. The relationship between the flexion synergy and stretch reflexes in individuals with chronic hemiparetic stroke. IEEE Int Conf Rehabil Robot 2012; 2011:5975516. [PMID: 22275712 DOI: 10.1109/icorr.2011.5975516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study utilized a novel robotic device, the ACT-4D, to investigate the relationship between the flexion synergy and stretch reflexes in individuals with chronic hemiparetic stroke. Because the flexion synergy influences the amount of elbow flexor muscle activation present in the paretic limb during tasks requiring shoulder abduction loading, it was hypothesized that stretch reflexes may be modulated by expression of this abnormal muscle coactivation pattern. To test this hypothesis, the ACT-4D was used to enable 10 individuals with chronic hemiparetic stroke to generate varying amounts of shoulder abduction torque while concurrently receiving elbow extension position perturbations. It was found that increased expression of the flexion synergy led to greater reflex amplitudes as well as lower reflex velocity thresholds. The physiological basis of the flexion synergy is briefly discussed, as are the implications of the flexion synergy and stretch reflexes for purposeful movement.
Collapse
Affiliation(s)
- Jacob G McPherson
- Dept of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | | | | | | |
Collapse
|