1
|
Ho HH, Wing SS. α-Synuclein ubiquitination - functions in proteostasis and development of Lewy bodies. Front Mol Neurosci 2024; 17:1498459. [PMID: 39600913 PMCID: PMC11588729 DOI: 10.3389/fnmol.2024.1498459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by the accumulation of α-synuclein containing Lewy bodies. Ubiquitination, a key post-translational modification, has been recognized as a pivotal regulator of α-synuclein's cellular dynamics, influencing its degradation, aggregation, and associated neurotoxicity. This review examines comprehensively the current understanding of α-synuclein ubiquitination and its role in the pathogenesis of synucleinopathies, particularly in the context of Parkinson's disease. We explore the molecular mechanisms responsible for α-synuclein ubiquitination, with a focus on the roles of E3 ligases and deubiquitinases implicated in the degradation process which occurs primarily through the endosomal lysosomal pathway. The review further discusses how the dysregulation of these mechanisms contributes to α-synuclein aggregation and LB formation and offers suggestions for future investigations into the role of α-synuclein ubiquitination. Understanding these processes may shed light on potential therapeutic avenues that can modulate α-synuclein ubiquitination to alleviate its pathological impact in synucleinopathies.
Collapse
Affiliation(s)
- Hung-Hsiang Ho
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Simon S. Wing
- Department of Medicine, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Moors TE, Milovanovic D. Defining a Lewy Body: Running Up the Hill of Shifting Definitions and Evolving Concepts. JOURNAL OF PARKINSON'S DISEASE 2024; 14:17-33. [PMID: 38189713 PMCID: PMC10836569 DOI: 10.3233/jpd-230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Mito S, Cheng B, Garcia BA, Yee Ooi X, Gonzalez D, Ruiz TC, Elisarraras FX, Tsin A. SAR study of niclosamide derivatives for neuroprotective function in SH-SY5Y neuroblastoma. Bioorg Med Chem Lett 2023; 96:129498. [PMID: 37804994 DOI: 10.1016/j.bmcl.2023.129498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/06/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Neurodegenerative disease is a debilitating and incurable condition that affects millions of people around the world. The loss of functions or malfunctions of neural cells are the causes of mortality. A proteosome inhibitor, MG132, is well known to cause neurodegeneration in vitro when model neuronal-derived cell lines are exposed to it. Niclosamide, an anthelmintic drug, which has been used to treat tapeworm infections for more than 50 years, has recently attracted renewed attention in drug repurposing because it has been found to be a good candidate in many drug development screenings. We recently found that all markers of MG132-induced neuronal cell toxicity, including the accumulation of ubiquitinated proteins, were prevented by the presence of niclosamide. In addition, niclosamide was shown to enhance autophagy induced by MG132. There results suggested that niclosamide could act as a neuroprotective agent. In the present study, niclosamide derivatives were synthesized, and the structure-activity relationship (SAR) were determined with respect to protein ubiquitination induced by MG132 and effect on cell survival signaling pathways for neuroprotective function. Our results indicate that phenol OH plays a significant role in neuroprotective activity while the niclosamide derivatives without Cl (5- or 2'-Cl) showed almost the same neuroprotective effect. 4'-NO2 can be replaced by N3 or CF3 whereas NH2 significantly decreased activity. These findings provide guidance for the development of new niclosamide analogues against neurodegenerative diseases including Parkinson's disease.
Collapse
Affiliation(s)
- Shizue Mito
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; Department of Medical Education, School of Medicine, The University of Texas Rio Grande Valley, Edinburg 78541, USA.
| | - Benxu Cheng
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Benjamin A Garcia
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Xin Yee Ooi
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Daniela Gonzalez
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tess C Ruiz
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Francisco X Elisarraras
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Andrew Tsin
- Department of Neuroscience, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
4
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
5
|
Mukherjee J, Ladwa RM, Liang C, Syed AU. Elevated Monoamine Oxidase-A in Anterior Cingulate of Post-Mortem Human Parkinson's Disease: A Potential Surrogate Biomarker for Lewy Bodies? Cells 2022; 11:cells11244000. [PMID: 36552764 PMCID: PMC9777299 DOI: 10.3390/cells11244000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Lewy bodies (LB) play a neuropathological role in Parkinson's disease (PD). Our goal was to evaluate LB using anti-ubiquitin immunohistochemistry (UIHC) and find correlations with monoamine oxidase-A (MAO-A) using imaging agent, [18F]FAZIN3. Human post-mortem anterior cingulate (AC) and corpus callosum (CC) from control subjects (CN), n = 6; age 81-90 LB = 0 and PD, n = 6, age 77-89, LB = III-IV were sectioned (10 μm slices). Brain slices were immunostained with anti-ubiquitin for LB (UIHC) and analyzed using QuPath for percent anti-ubiquitin per unit area (μm2). Adjacent brain slices were incubated with [18F]FAZIN3 and cortical layers I-III, IV-VI and CC (white matter) regions were quantified for the binding of [18F]FAZIN3. UIHC was correlated with [18F]FAZIN3 binding. All PD brains were positively UIHC stained and confirmed presence of LB. Outer cortical layers (I-III) of PD AC had 21% UIHC while inner layers (IV-VI) had >75% UIHC. In the CN brains LB were absent (<1% UIHC). Increased [18F]FAZIN3 binding to MAO-A in AC was observed in all PD subjects. [18F]FAZIN3 ratio in PD was AC/CC = 3.57 while in CN subjects it was AC/CC = 2.24. Increases in UIHC μm2 correlated with [18F]FAZIN3 binding to MAO-A in DLU/mm2. Increased [18F]FAZIN3 binding to MAO-A in PD is a potential novel "hot spot" PET imaging approach.
Collapse
|
6
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Lashuel HA. Do Lewy bodies contain alpha-synuclein fibrils? and Does it matter? A brief history and critical analysis of recent reports. Neurobiol Dis 2020; 141:104876. [PMID: 32339655 DOI: 10.1016/j.nbd.2020.104876] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Several lines of evidence from neuropathological studies, human genetics, in vitro aggregation studies and cellular and animal models support the hypothesis that aSyn plays a central role in the formation of Lewy pathologies. These are cytoplasmic proteinaceous and lipid-rich inclusions that represent key pathological hallmarks of Parkinson's disease (PD) and other neurodegenerative diseases, collectively referred to as synucleinopathies. For decades, light microscopy and electron microscopy studies of these inclusions have consistently shown that they are rich in filamentous structures that exhibit distinct distribution and organizational patterns depending on where they occur in the brain (e.g., classical brain-stem Lewy bodies (LBs) and cortical LBs) and the type of synucleinopathies. Although the identity of the protein that form these filaments was a subject of debate for decades, the discovery of PD-linked aSyn mutations, the demonstration that LBs are enriched in insoluble forms of aSyn, and the ability of aSyn to form fibrils of similar dimensions have led to convergence on the hypothesis that aSyn fibrils are key components of LBs. In a recent study, Shahmoradian et al used a combination of advanced electron microscopy and immunofluorescence based imaging techniques to investigate the structure, composition, and architecture of LBs from postmortem brain tissues of individuals with PD or other synucleinopathies (Shahmoradian et al., 2019). The paper's main conclusions suggest that "lipid membrane fragments and distorted organelles together with a non-fibrillar form of αSyn are the main structural building blocks for the formation of Lewy pathology". Their proposal that LBs are devoid of aSyn fibrils or that LB formation occurs independently of aSyn fibril formation casts doubts on a substantial body of work that forms the foundation of many of the current basic and translational research programs in academia and industry. In this article, I present a critical analysis of their data and claims in the context of the existing literature In addition, I examine the extent to which their findings and proposed models of the mechanisms of LB formation are consistent with existing data and are supported by other experimental evidence. The results from this analysis caution against overinterpretation of observations from a single report, especially given the limitations of the techniques and experimental approaches used by Shahmoradian et al and for more collaborative and systematic efforts to revisit and characterize LBs and other aSyn pathologies in the brain pathologies at the biochemical, morphological and structural level.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, CH 1015, Switzerland.
| |
Collapse
|
8
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
9
|
Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. Int J Neurosci 2018; 129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Asmat Ullah Khan
- Department of Pharmacology, Laboratory of Neuroanatomy and Neuropsychobiology, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Eastern Medicine and Surgery, School of Medical and Health Sciences, The University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Hunan University, Changsha, China
| | - Rida Zainab
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, Old Campus, Allama Iqbal Road, Government College University, Faisalabad, Pakistan
| |
Collapse
|
10
|
Prigent A, Lionnet A, Corbillé AG, Derkinderen P. Neuropathologie et physiopathologie de la maladie de Parkinson : focus sur l’α-synucléine. Presse Med 2017; 46:182-186. [DOI: 10.1016/j.lpm.2016.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 02/04/2023] Open
|
11
|
Gomez-Tortosa E, Newell K, Irizarry M, Hyman BT. Clinical and neuropathological features of dementia with Lewy bodies. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/153331759801300603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dementia with Lewy bodies (DLB) is an increasingly recognized entity which overlaps in clinical, pathological and genetic features with Alzheimer's (AD) and Parkinson's disease (PD). Clinically, it is characterized by progressive cognitive impairment with significant fluctuations in alertness, parkinsonism, and psychosis with recurrent hallucinations. The neuropathological hallmarks are the intracytoplasmic inclusions in substantia nigra typical of PD, known as Lewy bodies (LB), but widely distributed throughout paralimbic and neocortical regions. Most of the cases also coexist with a plaque predominant AD. The evidence of alpha-synuclein in LB and related neurites as well as of a synuclein fragment in AD plaques opens new links among these neurodegenerative diseases. This article will review briefly the clinical and pathologicalfeatures that DLB shares with AD and PD, as well as those that support the idea that it is a distinct disorder.
Collapse
Affiliation(s)
| | | | | | - Bradley T. Hyman
- Alzheimer's Disease Research Unit, Massachusetts General Hospital East, Charlestown, Massachusetts
| |
Collapse
|
12
|
Song L, Cortopassi G. Mitochondrial complex I defects increase ubiquitin in substantia nigra. Brain Res 2014; 1594:82-91. [PMID: 25446449 DOI: 10.1016/j.brainres.2014.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/16/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022]
Abstract
Parkinson׳s disease (PD) is the second most common neurodegenerative disorder in the developed world, and is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN) of midbrain. Mitochondrial complex I dysfunction has been implicated in PD pathophysiology, yet the molecular mechanism by which complex I defects may cause DA neurodegeneration remain unclear. Using Ndufs4 mouse model of mitochondrial complex I deficiency, we observed a remarkable ubiquitin protein increase in SN of Ndufs4-/- (KO) mice. By contrast, neurofilaments were significantly decreased in SN of KO mice. Furthermore, mass spectrometry and co-immunoprecipitation (Co-IP) analysis indicated an increase in ubiquitinated neurofilaments in midbrain of KO mice, whereas 20S proteasome activities were decreased, which could potentially explain the buildup of ubiquitin protein. Collectively, these data suggest that mitochondrial complex I defects cause proteasome inhibition, a consequent increase in ubiquitinated neurofilaments and other proteins, and decrease the expression of neurofilaments that could be relevant to the mechanism of DA neuronal death in PD.
Collapse
Affiliation(s)
- Lanying Song
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Yamada T, Kawabata Y. Pneumocyte injury and ubiquitin-positive pneumocytes in interstitial lung diseases. Histopathology 2014; 66:161-72. [PMID: 25123224 PMCID: PMC4329384 DOI: 10.1111/his.12528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pneumocyte injury is a characteristic of pulmonary interstitial pneumonias (IPs). Histological markers of pneumocyte injury and inflammation include pneumocyte necrosis, erosion, hyaline membrane and fibrin exudation with subsequent intraluminal granulation tissue formation. We found that intracytoplasmic inclusions in pneumocytes are ubiquitin-positive (Ub+) and that the number of Ub+ pneumocytes shows positive correlation with the extent of diffuse alveolar damage (DAD). To determine the role of Ub+ pneumocytes and inclusions in IPs, we studied their relationship with pathological and clinical features of DAD, usual interstitial pneumonia (UIP) and organizing pneumonia (OP), including airspace enlargement with fibrosis (AEF). We analysed Ub+ pneumocytes, inclusions, erosions and intraluminal granulation tissue in relation to pneumocyte injury. The numbers of immunohistochemically identified Ub+ inclusions in each IP were higher than the number of inclusions detected by light microscopy. The inclusions detected by Ub+ immunostaining were identical to the inclusions observed by light microscopy. UIP and DAD had many Ub+ inclusions, while OP and AEF had fewer Ub+ inclusions. These results suggest that the extent of Ub+ inclusions reflects the severity of pneumocyte injury among IPs. Thus, Ub+ inclusions are a histological marker of pneumocyte injury that may be helpful in determining the severity and prognosis of IPs.
Collapse
Affiliation(s)
- Tsutomu Yamada
- Department of Pathology, Nihon University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
14
|
Sato H, Kato T, Arawaka S. Potential of Cellular and Animal Models Based on a Prion-Like Propagation of α-Synuclein for Assessing Antiparkinson Agents. Mol Neurobiol 2014; 52:226-35. [PMID: 25143237 DOI: 10.1007/s12035-014-8858-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
The pathological hallmark of Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies (LBs). LBs are intracellular inclusions typically found in these neurons and in noradrenergic neurons of the locus coeruleus in patients with PD. However, LBs can be found more widely in neurons of the olfactory bulb, cerebral cortex, and spinal cord. Additionally, LBs appear in neurons of the cardiac, cutaneous, and intestinal autonomic nervous systems. LBs are composed of fibrillar aggregates of α-synuclein (α-syn). The widespread distribution of LBs indicates that α-syn aggregation occurs in neurons in various areas, supporting the concept that PD is not only a simple movement disorder but also a complex one with nonmotor impairments. However, it is unclear how α-syn pathology spreads in the nervous system. Postmortem analyses of patients with PD who received transplants of fetal mesencephalic dopaminergic neurons revealed LB formation in surviving grafts, providing a crucial clue regarding the host-to-graft disease propagation. Recent experiments demonstrated that fibrillar α-syn is transferred from neurons to neurons in cellular and animal models, suggesting that fibrillar α-syn is repeatedly generated in cells by triggering the continuous conversion of normal soluble species into fibrillar ones. These findings suggest a "prion-like" mechanism for α-syn propagation in the pathogenesis of PD. This review summarizes the experimental findings on the prion-like propagation of α-syn and discusses the potential of cellular and animal models for testing the protective effects of chemical agents against neurodegeneration in PD.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan
| | | | | |
Collapse
|
15
|
|
16
|
Shim YS, Roe CM, Buckles VD, Morris JC. Clinicopathologic study of Alzheimer's disease: Alzheimer mimics. J Alzheimers Dis 2013; 35:799-811. [PMID: 23481687 DOI: 10.3233/jad-121594] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A definite diagnosis of Alzheimer's disease (AD) can only be made at autopsy. Even at expert research centers, diagnostic accuracy is relatively low. We conducted this study to examine the accuracy of clinical diagnosis of AD and present a list of clinical and neuropsychological findings that could render the clinical diagnosis difficult. Using the National Alzheimer's Coordinating Center database, the records of 533 patients who had been diagnosed clinically with AD, and later underwent autopsy, were reviewed retrospectively. Since the pathologic results of 119 subjects did not meet the criteria for definite AD, we labeled them as Alzheimer "mimics". The neuropathological diagnoses of Alzheimer mimics consisted of dementia with Lewy bodies (n = 35, 29%), insufficient AD (n = 22, 18%), vascular disease (n = 15, 13%), frontotemporal lobar degeneration (n = 14, 12%), and hippocampal sclerosis (n = 10, 8%). History of pacemaker insertion (10.92% versus 4.11%, p = 0.005), congestive heart failure (13.45% versus 6.04%, p = 0.007), hypertension (56.30% versus 47.83%, p = 0.037), and resting tremor (14.29% versus 10.87%, p = 0.170) was more prevalent in Alzheimer mimics. Clinical Dementia Rating score and frequency of Neuropsychiatric Inventory Questionnaire items reflecting delusions, agitation, depression, and motor disturbance were more severe in confirmed AD. In addition to Mini-Mental State Examination (16.97 ± 8.29 versus 12.74 ± 15.26, p < 0.001), Logical Memory, Animal Fluency, Boston Naming Test, and Digit Span scores showed more severe impairment in confirmed AD. Continuing systematic comparisons of the current criteria for the clinical and pathological dementia diagnoses are essential to clinical practice and research, and may also lead to further improvement of the diagnostic procedure.
Collapse
Affiliation(s)
- Yong S Shim
- Department of Neurology, Bucheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Bucheon, Gyeonggi-do, South Korea.
| | | | | | | |
Collapse
|
17
|
Heman-Ackah SM, Hallegger M, Rao MS, Wood MJA. RISC in PD: the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis. Front Mol Neurosci 2013; 6:40. [PMID: 24312000 PMCID: PMC3834244 DOI: 10.3389/fnmol.2013.00040] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/31/2013] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized primarily by the selective death of dopaminergic (DA) neurons in the substantia nigra pars compacta of the midbrain. Although several genetic forms of PD have been identified, the precise molecular mechanisms underlying DA neuron loss in PD remain elusive. In recent years, microRNAs (miRNAs) have been recognized as potent post-transcriptional regulators of gene expression with fundamental roles in numerous biological processes. Although their role in PD pathogenesis is still a very active area of investigation, several seminal studies have contributed significantly to our understanding of the roles these small non-coding RNAs play in the disease process. Among these are studies which have demonstrated specific miRNAs that target and down-regulate the expression of PD-related genes as well as those demonstrating a reciprocal relationship in which PD-related genes act to regulate miRNA processing machinery. Concurrently, a wealth of knowledge has become available regarding the molecular mechanisms that unify the underlying etiology of genetic and sporadic PD pathogenesis, including dysregulated protein quality control by the ubiquitin-proteasome system and autophagy pathway, activation of programmed cell death, mitochondrial damage and aberrant DA neurodevelopment and maintenance. Following a discussion of the interactions between PD-related genes and miRNAs, this review highlights those studies which have elucidated the roles of these pathways in PD pathogenesis. We highlight the potential of miRNAs to serve a critical regulatory role in the implicated disease pathways, given their capacity to modulate the expression of entire families of related genes. Although few studies have directly linked miRNA regulation of these pathways to PD, a strong foundation for investigation has been laid and this area holds promise to reveal novel therapeutic targets for PD.
Collapse
Affiliation(s)
- Sabrina M Heman-Ackah
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK ; Center for Regenerative Medicine, US National Institutes of Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
18
|
Henley BM, Williams BA, Srinivasan R, Cohen BN, Xiao C, Mackey EDW, Wold BJ, Lester HA. Transcriptional regulation by nicotine in dopaminergic neurons. Biochem Pharmacol 2013; 86:1074-83. [PMID: 23939186 DOI: 10.1016/j.bcp.2013.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 01/21/2023]
Abstract
Dopaminergic neurons in the substantia nigra pars compacta (SNc) degenerate in Parkinson's disease. These neurons robustly express several nicotinic acetylcholine receptor (nAChR) subtypes. Smoking appears to be neuroprotective for Parkinson's disease but the mechanism is unknown. To determine whether chronic nicotine-induced changes in gene expression contribute to the neuroprotective effects of smoking, we develop methods to measure the effect of prolonged nicotine exposure on the SNc neuronal transcriptome in an unbiased manner. Twenty neurons were collected using laser-capture microscopy and transcriptional changes were assessed using RNA deep sequencing. These results are the first whole-transcriptome analyses of chronic nicotine treatment in SNc neurons. Overall, 129 genes were significantly regulated: 67 upregulated, 62 downregulated. Nicotine-induced relief of endoplasmic reticulum (ER) stress has been postulated as a potential mechanism for the neuroprotective effects of smoking. Chronic nicotine did not significantly affect the expression of ER stress-related genes, nor of dopamine-related or nAChR genes, but it did modulate expression of 129 genes that could be relevant to the neuroprotective effects of smoking, including genes involved in (1) the ubiquitin-proteasome pathway, (2) cell cycle regulation, (3) chromatin modification, and (4) DNA binding and RNA regulation. We also report preliminary transcriptome data for single-cell dopaminergic and GABAergic neurons isolated from midbrain cultures. These novel techniques will facilitate advances in understanding the mechanisms taking place at the cellular level and may have applications elsewhere in the fields of neuroscience and molecular biology. The results give an emerging picture of the role of nicotine on the SNc and on dopaminergic neurons.
Collapse
Affiliation(s)
- Beverley M Henley
- California Institute of Technology, 156-29 Caltech, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Parkinson's disease (PD), like a number of neurodegenerative diseases associated with aging, is characterized by the abnormal accumulation of protein in a specific subset of neurons. Although researchers have recently elucidated the genetic causes of PD, much remains unknown about what causes increased protein deposition in the disease. Given that increased protein aggregation may result not only from an increase in production, but also from decreased protein clearance, it is imperative to investigate both possibilities as potential PD culprits. This article provides a review of the systems that regulate protein clearance, including the ubiquitin proteasome system (UPS) and the autophagy-lysosomal pathway. Literature implicating failure of these mechanisms-such as UPS dysfunction resulting from environmental toxins and mutations in α-synuclein and parkin, as well as macroautophagic pathway failure because of oxidative stress and aging-in the pathogenesis of PD is also discussed.
Collapse
|
20
|
Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathol 2012; 124:153-72. [PMID: 22744791 DOI: 10.1007/s00401-012-1004-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 11/24/2022]
Abstract
Protein misfolding, aggregation and deposition are common disease mechanisms in many neurodegenerative diseases including Parkinson's disease (PD). Accumulation of damaged or abnormally modified proteins may lead to perturbed cellular function and eventually to cell death. Thus, neurons rely on elaborated pathways of protein quality control and removal to maintain intracellular protein homeostasis. Molecular chaperones, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are critical pathways that mediate the refolding or removal of abnormal proteins. The successive failure of these protein degradation pathways, as a cause or consequence of early pathological alterations in vulnerable neurons at risk, may present a key step in the pathological cascade that leads to spreading neurodegeneration. A growing number of studies in disease models and patients have implicated dysfunction of the UPS and ALP in the pathogenesis of Parkinson's disease and related disorders. Deciphering the exact mechanism by which the different proteolytic systems contribute to the elimination of pathogenic proteins, like α-synuclein, is therefore of paramount importance. We herein review the role of protein degradation pathways in Parkinson's disease and elaborate on the different contributions of the UPS and the ALP to the clearance of altered proteins. We examine the interplay between different degradation pathways and provide a model for the role of the UPS and ALP in the evolution and progression of α-synuclein pathology. With regards to exciting recent studies we also discuss the putative potential of using protein degradation pathways as novel therapeutic targets in Parkinson's disease.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Institute of Anatomy and Cell Biology, Ruprecht-Karls University Heidelberg, INF 307, 69120, Heidelberg, Germany.
| | | | | |
Collapse
|
21
|
α-Syn suppression reverses synaptic and memory defects in a mouse model of dementia with Lewy bodies. J Neurosci 2011; 31:10076-87. [PMID: 21734300 DOI: 10.1523/jneurosci.0618-11.2011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abnormally accumulated α-synuclein (α-syn) is a pathological hallmark of Lewy body-related disorders such as Parkinson's disease (PD) and dementia with Lewy body disease (DLB). However, it is not well understood whether and how abnormal accumulation of α-syn leads to cognitive impairment or dementia in PD and DLB. Furthermore, it is not known whether targeted removal of α-syn pathology can reverse cognitive decline. Here, we found that the distribution of α-syn pathology in an inducible α-syn transgenic mouse model recapitulates that in human DLB. Abnormal accumulation of α-syn in the limbic system, particularly in the hippocampus, correlated with memory impairment and led to structural synaptic deficits. Furthermore, when α-syn expression was suppressed, we observed partial clearing of pre-existing α-syn pathology and reversal of structural synaptic defects, resulting in an improvement in memory function.
Collapse
|
22
|
Olanow CW, McNaught K. Parkinson's disease, proteins, and prions: Milestones. Mov Disord 2011; 26:1056-71. [DOI: 10.1002/mds.23767] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
23
|
Proteomics in human Parkinson's disease research. J Proteomics 2009; 73:10-29. [PMID: 19632367 DOI: 10.1016/j.jprot.2009.07.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/25/2009] [Accepted: 07/08/2009] [Indexed: 11/20/2022]
Abstract
During the last decades, considerable advances in the understanding of specific mechanisms underlying neurodegeneration in Parkinson's disease have been achieved, yet neither definite etiology nor unifying sequence of molecular events has been formally established. Current unmet needs in Parkinson's disease research include exploring new hypotheses regarding disease susceptibility, occurrence and progression, identifying reliable diagnostic, prognostic and therapeutic biomarkers, and translating basic research into appropriate disease-modifying strategies. The most popular view proposes that Parkinson's disease results from the complex interplay between genetic and environmental factors and mechanisms believed to be at work include oxidative stress, mitochondrial dysfunction, excitotoxicity, iron deposition and inflammation. More recently, a plethora of data has accumulated pinpointing an abnormal processing of the neuronal protein alpha-synuclein as a pivotal mechanism leading to aggregation, inclusions formation and degeneration. This protein-oriented scenario logically opens the door to the application of proteomic strategies to this field of research. We here review the current literature on proteomics applied to Parkinson's disease research, with particular emphasis on pathogenesis of sporadic Parkinson's disease in humans. We propose the view that Parkinson's disease may be an acquired or genetically-determined brain proteinopathy involving an abnormal processing of several, rather than individual neuronal proteins, and discuss some pre-analytical and analytical developments in proteomics that may help in verifying this concept.
Collapse
|
24
|
Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener 2009; 4:9. [PMID: 19193223 PMCID: PMC2646729 DOI: 10.1186/1750-1326-4-9] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/04/2009] [Indexed: 11/16/2022] Open
Abstract
α-Synuclein is a small protein that has special relevance for understanding Parkinson disease and related disorders. Not only is α-synuclein found in Lewy bodies characteristic of Parkinson disease, but also mutations in the gene for α-synuclein can cause an inherited form of Parkinson disease and expression of normal α-synuclein can increase the risk of developing Parkinson disease in sporadic, or non-familial, cases. Both sporadic and familial Parkinson disease are characterized by substantial loss of several groups of neurons, including the dopaminergic cells of the substantia nigra that are the target of most current symptomatic therapies. Therefore, it is predicted that α-synuclein, especially in its mutant forms or under conditions where its expression levels are increased, is a toxic protein in the sense that it is associated with an increased rate of neuronal cell death. This review will discuss the experimental contexts in which α-synuclein has been demonstrated to be toxic. I will also outline what is known about the mechanisms by which α-synuclein triggers neuronal damage, and identify some of the current gaps in our knowledge about this subject. Finally, the therapeutic implications of toxicity of α-synuclein will be discussed.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Building 35, Room 1A116, MSC 3707, 35 Convent Drive, Bethesda, MD 20982-3707, USA.
| |
Collapse
|
25
|
Cook C, Petrucelli L. A critical evaluation of the ubiquitin-proteasome system in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:664-75. [PMID: 19419700 DOI: 10.1016/j.bbadis.2009.01.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 01/12/2009] [Accepted: 01/27/2009] [Indexed: 01/04/2023]
Abstract
The evidence for impairment in the ubiquitin proteasome system (UPS) in Parkinson's disease (PD) is mounting and becoming increasingly more convincing. However, it is presently unclear whether UPS dysfunction is a cause or result of PD pathology, a crucial distinction which impedes both the understanding of disease pathogenesis and the development of effectual therapeutic approaches. Recent findings discussed within this review offer new insight and provide direction for future research to conclusively resolve this debate.
Collapse
Affiliation(s)
- Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | |
Collapse
|
26
|
Um JW, Stichel-Gunkel C, Lübbert H, Lee G, Chung KC. Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Mol Cell Neurosci 2009; 40:421-32. [PMID: 19167501 DOI: 10.1016/j.mcn.2008.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/09/2008] [Accepted: 12/11/2008] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the deterioration of dopaminergic neurons in the pars compacta of substantia nigra and the formation of intraneuronal protein inclusions. The etiology of PD is not known, but the recent identification of several mutation genes in familial PD has provided a rich understanding of the molecular mechanisms of PD pathology. Mutations in PTEN-induced putative kinase 1 (PINK1) and parkin are linked to early-onset autosomal recessive forms of familial PD. Here we show molecular and functional interactions between parkin and PINK1. Parkin selectively binds to PINK1 and upregulates PINK1 levels. In addition, PINK1 reduces the solubility of parkin, which induces the formation of microtubule-dependent cytoplasmic aggresomes. Our findings reveal that parkin and PINK1 affect each other's stability, solubility and tendency to form aggresomes, and have important implications regarding the formation of Lewy bodies.
Collapse
Affiliation(s)
- Ji Won Um
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Yamada T, Satoh S, Sueyoshi S, Mitsumata M, Matsumoto T, Ueno T, Uehara K, Mizutani T. Ubiquitin-Positive Foam Cells are Identified in the Aortic and Mitral Valves with Atherosclerotic Involvement. J Atheroscler Thromb 2009; 16:472-9. [DOI: 10.5551/jat.no1248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
28
|
Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease? Biochim Biophys Acta Mol Basis Dis 2008; 1782:683-90. [PMID: 18976704 DOI: 10.1016/j.bbadis.2008.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 01/24/2023]
Abstract
Neuropathological investigations have identified major hallmarks of chronic neurodegenerative disease. These include protein aggregates called Lewy bodies in dementia with Lewy bodies and Parkinson's disease. Mutations in the alpha-synuclein gene have been found in familial disease and this has led to intense focused research in vitro and in transgenic animals to mimic and understand Parkinson's disease. A decade of transgenesis has lead to overexpression of wild type and mutated alpha-synuclein, but without faithful reproduction of human neuropathology and movement disorder. In particular, widespread regional neuronal cell death in the substantia nigra associated with human disease has not been described. The intraneuronal protein aggregates (inclusions) in all of the human chronic neurodegenerative diseases contain ubiquitylated proteins. There could be several reasons for the accumulation of ubiquitylated proteins, including malfunction of the ubiquitin proteasome system (UPS). This hypothesis has been genetically tested in mice by conditional deletion of a proteasomal regulatory ATPase gene. The consequences of gene ablation in the forebrain include extensive neuronal death and the production of Lewy-like bodies containing ubiquitylated proteins as in dementia with Lewy bodies. Gene deletion in catecholaminergic neurons, including in the substantia nigra, recapitulates the neuropathology of Parkinson's disease.
Collapse
|
29
|
Brunnström H, Gustafson L, Passant U, Englund E. Prevalence of dementia subtypes: a 30-year retrospective survey of neuropathological reports. Arch Gerontol Geriatr 2008; 49:146-9. [PMID: 18692255 DOI: 10.1016/j.archger.2008.06.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 06/14/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
We investigated the distribution of neuropathologically defined dementia subtypes among individuals with dementia disorder. The neuropathological reports were studied on all patients (n=524; 55.3% females; median age 80, range 39-102 years) with clinically diagnosed dementia disorder who underwent complete autopsy including neuropathological examination within the Department of Pathology at the University Hospital in Lund, Sweden, during the years 1974-2004. The neuropathological diagnosis was Alzheimer's disease (AD) in 42.0% of the cases, vascular dementia (VaD) in 23.7%, dementia of combined Alzheimer and vascular pathology in 21.6%, and frontotemporal dementia in 4.0% of the patients. The remaining 8.8% of the patients had other dementia disorders, including combinations other than combined Alzheimer and vascular pathology. The registered prevalence of dementia subtypes depends on many variables, including referral habits, clinical and neuropathological judgments and diagnostic traditions, all of these variables potentially changing over time. This, however, does not seem to obscure the delineation of the major dementia subgroups. In this material of 30 years from Lund in the south of Sweden, AD by far dominated among dementia subtypes, while cerebrovascular pathology corresponded with the dementia disorder, either entirely or partly, in almost half of the demented patients.
Collapse
Affiliation(s)
- Hans Brunnström
- Department of Pathology, University Hospital, S-221 85 Lund, Sweden
| | | | | | | |
Collapse
|
30
|
Oinas M, Sulkava R, Polvikoski T, Kalimo H, Paetau A. Reappraisal of a consecutive autopsy series of patients with primary degenerative dementia: Lewy-related pathology. APMIS 2007; 115:820-7. [PMID: 17614849 DOI: 10.1111/j.1600-0463.2007.apm_521.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dementia with Lewy bodies (DLB) is a common but underdiagnosed dementing disorder. Its criteria were defined in 1996, and revised in 2005. DLB is characterised neuropathologically by widely distributed cortical Lewy bodies (LBs), usually associated with Alzheimer-type pathology. We have re-evaluated the neuropathology of 55 autopsied patients with clinically diagnosed primary degenerative dementia to determine the frequency of DLB in this cohort, which was originally examined when neither the entity of DLB nor its diagnostic criteria had been defined. We also evaluated how discovery of a new entity affects previous diagnoses. Of the 55 brains, 16 (29%) contained LBs. All 16 originally had a neuropathological diagnosis of Alzheimer's disease (AD). 11 (20%) fulfilled the neuropathological criteria for DLB. Three patients had AD with LBs in the brain stem only, and two patients had LBs in the limbic cortex only. Because the criteria and reliable markers for DLB were not available at the time of the autopsies, the diagnosis of DLB had not been possible. The common co-occurrence of AD-type pathology in DLB makes the clinical diagnosis of DLB problematic even today. This study also raises the question of the relative significances of Lewy-related and AD-type pathologies to the development of dementia.
Collapse
Affiliation(s)
- M Oinas
- Department of Pathology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
31
|
Henriksen AL, St Dennis C, Setter SM, Tran JT. Dementia with lewy bodies: therapeutic opportunities and pitfalls. ACTA ACUST UNITED AC 2007; 21:563-75. [PMID: 16934009 DOI: 10.4140/tcp.n.2006.563] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To review diagnoses and challenges of treating patients with dementia with Lewy bodies (DLB), commonly considered the second most common form of dementia. DATA SOURCES MEDLINE, Web of Science, and International Pharmaceutical Abstracts databases were searched in January 2006 for clinical studies, case series, case studies, letters, and review articles on the treatment of DLB. Search terms included: aripiprazole, cholinesterase inhibitors, clozapine, dementia with Lewy bodies, donepezil, galantamine, Lewy body dementia, neuroleptics, olanzapine, quetiapine, risperidone, rivastigmine, tacrine, ziprasidone. Applicable articles in the English language were reviewed. The bibliographies of these articles provided additional references. STUDY SELECTION Articles describing studies, case series, and case studies are included in this review. DATA SYNTHESIS DLB is commonly considered the second most common form of dementia, although some experts believe vascular dementia to be the second most common form. DLB is often under-diagnosed and misdiagnosed as Alzheimer's disease or Parkinson's related dementia. The core features of dementia with Lewy bodies are cognitive decline plus at least one of the following: fluctuations in cognition, visual hallucinations, and parkinsonism. Other supportive features include: neuroleptic sensitivity, repeated falls, syncope, transient loss of consciousness, REM sleep disturbances, depression, delusions, and nonvisual hallucinations. CONCLUSION Increased prudence with the use of neuroleptic agents is essential in DLBs because the use of these agents is associated with physical and cognitive decline and increased mortality. While neuroleptic sensitivity has been reported with the use of both typical and atypical antipsychotic medications, these medications are often necessary for the treatment of psychotic symptoms. Decreases in neuroleptic sensitivity can often be achieved by dose reductions, although neuroleptic discontinuation is sometimes necessary. Cholinesterase inhibitors may be especially useful in the treatment of DLB. Cholinergic deficits are associated with visual hallucinations, and cholinesterase inhibitors often result in resolution of hallucinations, improved cognition, and decreased behavioral disturbances.
Collapse
|
32
|
Fornai F, Lazzeri G, Bandettini Di Poggio A, Soldani P, De Blasi A, Nicoletti F, Ruggieri S, Paparelli A. Convergent roles of alpha-synuclein, DA metabolism, and the ubiquitin-proteasome system in nigrostriatal toxicity. Ann N Y Acad Sci 2007; 1074:84-9. [PMID: 17105905 DOI: 10.1196/annals.1369.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies disclosed the relevance of specific molecules for the onset of Parkinson's disease (PD) and for the composition of neuronal inclusions. The scenario which is now emerging leads to identify a potential common pathway named the ubiquitin-proteasome (UP) system. In line with this, striatal or systemic inhibiton of the UP system causes experimental Parkinsonism characterized by the formation of neuronal inclusions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also a complex I inhibitor, has been used for decades to produce experimental Parkinsonism with no evidence for neuronal inclusions in rodents. This leaves open the question whether neuronal inclusions need an alternative mechanism or the inhibition of complex I needs to be carried out continuously to build up inclusions. In the present article, we administered continuously MPTP. In these experimental conditions we compared the neurological consequence of intermittent versus continuous MPTP. In both cases we observed a severe dopamine (DA) denervation and cell loss. However, when MPTP was delivered continuously, spared DA nigral neurons develop ubiquitin, parkin, and alpha-synuclein positive inclusions, which are not detectable after intermittent dosing. The onset of Parkinsonism is associated with inhibition of the UP system. We compared these results with those obtained with amphetamine derivative in vivo and in vitro in which occurrence of neuronal inclusions was associated with inhibition of the UP system and we evaluated the role of DA metabolism in inducing these effects.
Collapse
Affiliation(s)
- Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Via Roma, 55, I-56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mrak RE, Griffin WST. Dementia with Lewy bodies: Definition, diagnosis, and pathogenic relationship to Alzheimer's disease. Neuropsychiatr Dis Treat 2007; 3:619-25. [PMID: 19300591 PMCID: PMC2656298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Clinical dementia associated with the appearance of Lewy bodies in the cerebral cortex has been recognized for over 40 years. Until the 1990s, however, cortical Lewy body disease was thought to be a rare cause of dementia. At that time, the advent of sensitive and specific immunohistochemical techniques for highlighting these elusive structures led to the recognition of cortical Lewy body disease as a common substrate for clinical dementia. Current diagnostic criteria recognize dementia with Lewy bodies as a clinicopathological entity. Also recognized is the closely related (and perhaps biologically identical) entity of Parkinson's disease dementia, which differs from dementia with Lewy bodies only in the temporal sequence of appearance of clinical symptoms. The generic term "Lewy body disease" encompasses both entities. There is frequent and extensive overlap, both clinically and pathologically, between dementia with Lewy bodies and Alzheimer's disease. The two diseases share several genetic and environmental risk factors that have in common increased inflammatory states associated with increased disease risk. Moreover, pathological and experimental work has implicated the involvement of activated microglia and of microglia-derived interleukin-1 in the pathogenesis of the pathognomonic lesions of both diseases. Such neuroinflammatory processes may be the common link driving progression in both diseases and explaining the frequent overlap between the two diseases.
Collapse
Affiliation(s)
- Robert E Mrak
- Department of Pathology #1090, University of Toledo Health Sciences, Campus, 3000 Arlington Avenue, Toledo, Ohio, USA.
| | | |
Collapse
|
34
|
Ferman TJ, Smith GE, Boeve BF, Graff-Radford NR, Lucas JA, Knopman DS, Petersen RC, Ivnik RJ, Wszolek Z, Uitti R, Dickson DW. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer's disease. Clin Neuropsychol 2006; 20:623-36. [PMID: 16980250 DOI: 10.1080/13854040500376831] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We examined the diagnostic utility of selected neuropsychological measures in the differentiation of dementia with Lewy bodies (DLB) from normal aging and Alzheimer's disease (AD). Patients with DLB (n = 87), AD (n = 138), and a group of normal controls (n = 103) were recruited from the Mayo Alzheimer's disease patient registry and Alzheimer's Disease Research Center. Neuropsychological measures shown to have utility in previous studies were included in the analysis. The final multivariate logistic regression model distinguishing DLB from normal controls included Auditory Verbal Learning Test (AVLT) percent retention, Block Design, Trail Making Test-Part A, and Benton Visual Form Discrimination. This model has a sensitivity of 88.6% and specificity of 96.1%. The final multivariate logistic model distinguishing DLB from AD included Trail Making Part A, Boston Naming Test (BNT), AVLT percent retention, and copy of the Rey-Osterrieth Complex Figure. This model had a sensitivity of 83.3% and a specificity of 91.4%. AVLT and BNT had negative coefficients, indicating that lower scores decreased the likelihood of DLB relative to AD. These finding extend prior research suggesting a cognitive profile that can aid in the clinical diagnosis of DLB. Early attention and visual perceptual disturbance suggests DLB, while early impairment in memory and naming suggests AD.
Collapse
Affiliation(s)
- Tanis J Ferman
- The Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yamada T, Uehara K, Kawanishi R, Mizutani T, Sunagawa K, Araya J, Kawabata Y. Immunohistochemical detection of ubiquitin-positive intracytoplasmic eosinophilic inclusion bodies in diffuse alveolar damage. Histopathology 2006; 48:846-54. [PMID: 16722934 DOI: 10.1111/j.1365-2559.2006.02445.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS To clarify the relationship between ubiquitin-positive pneumocytes and intracytoplasmic eosinophilic inclusion bodies (IB) in patients who died of diffuse alveolar damage (DAD). METHODS AND RESULTS Eighteen patients with DAD were studied, in whom hyaline membranes were present in one or more out of five sections from each lobe of the lungs and 15 patients with no DAD. Light microscopy revealed hyaline membrane in over 25% of lobes from 18 patients with DAD. The cytoplasm of pneumocytes from six of 18 cases of DAD contained IB. Immunohistochemically, all IBs were characteristically positive for both ubiquitin (Ub) and cytokeratin KL-1. Cytoplasmic granules were also Ub+ in four cases of DAD without IB. IB+ or Ub+ pneumocytes were undetectable in non-DAD patients. We evaluated DAD severity based on hyaline membrane formation; the mean score in DAD with IB (3.60; n = 6) was significantly higher than that in Ub- (2.92; n = 8). Ub+ pneumocytes were found with or without IB among those cases with high DAD scores. CONCLUSIONS These findings suggest that disordered proteolysis in the Ub-mediated proteasome system leads to the accumulation of abnormal ubiquitinated protein, which includes cytokeratin, in pneumocytes. This is the first report to suggest that Ub+ pneumocytes are associated with disease severity in patients with DAD.
Collapse
Affiliation(s)
- T Yamada
- Department of Pathology, Nihon University School of Medicine, Itabashi, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
McNaught KSP, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. Neurobiol Aging 2006; 27:530-45. [PMID: 16207501 DOI: 10.1016/j.neurobiolaging.2005.08.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/25/2005] [Accepted: 08/20/2005] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a slowly progressive, age-related, neurodegenerative disorder. The cause and mechanism of neuronal death have been elusive. However, recent genetic, postmortem and experimental evidence show that protein accumulation and aggregation are prominent occurrences in both sporadic and familial PD. The relevance of these events to other cellular and biochemical changes, and to the neurodegenerative process, is being unraveled. It is increasingly evident that one or a combination of defects, including mutations, oxidative stress, mitochondrial impairment and dysfunction of the ubiquitin-proteasome system, lead to an excess production and aggregation of abnormal proteins in PD. In this respect, altered protein handling appears to be a central factor in the pathogenic process occurring in the various hereditary and sporadic forms of PD. This suggests that manipulation of proteolytic systems is a rational approach in the development of neuroprotective therapies that could modify the pathological course of PD.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-73, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
37
|
Buracchio T, Arvanitakis Z, Gorbien M. Dementia with Lewy bodies: current concepts. Dement Geriatr Cogn Disord 2005; 20:306-20. [PMID: 16174977 DOI: 10.1159/000088346] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 01/29/2005] [Indexed: 11/19/2022] Open
Abstract
As life expectancy continues to increase over time, dementia is becoming an increasingly more common problem and a major cause of disability in older persons. It is now more important than ever to identify and manage common causes of dementia given variations in disease course, treatments and the possibility for modification of risk factors. Dementia with Lewy bodies (DLB) is a dementia syndrome characterized by progressive cognitive decline, with fluctuating cognition, recurrent detailed and well-formed hallucinations, and parkinsonism. This article aims to provide an overview of current concepts of DLB, including a description of the key clinical features and neuropathology, neurochemistry, and genetics of DLB, then a discussion of the relationship of DLB with Alzheimer's disease and Parkinson's disease, and, finally, a summary of current management strategies available for this disorder.
Collapse
Affiliation(s)
- Teresa Buracchio
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush University Medical Center, Chicago, Ill 6012, USA
| | | | | |
Collapse
|
38
|
Fornai F, Soldani P, Lazzeri G, di Poggio AB, Biagioni F, Fulceri F, Batini S, Ruggieri S, Paparelli A. Neuronal inclusions in degenerative disorders. Brain Res Bull 2005; 65:275-90. [PMID: 15811592 DOI: 10.1016/j.brainresbull.2004.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/10/2004] [Accepted: 12/14/2004] [Indexed: 12/21/2022]
Abstract
This brief paper analyzes a few degenerative diseases expressing as movement disorders and featuring at sub-cellular level the presence of neuronal inclusions in selective brain regions. We will first draw a short draft of representative neurological diseases featuring inclusion bodies by describing the type of inclusions occurring in various disorders and analyzing both common features and distinctive aspects. As a further step, we move from the bed to the bench side discussing recent developments obtained from experimental models of these disorders which shed new light into the cause and progression of neuronal inclusions, thus helping to understand the pathophysiology of neuronal degeneration underlying movement disorders. In line with this, we will focus on recent studies which led to reproduce neuronal inclusions in vivo and in vitro by manipulating selective cellular structures/enzymatic pathways. In this way, we will try to encompass the dynamics of inclusion formation based on their fine ultrastructure and the analysis of the molecular components as well as their subcellular compartmentalization trying to relate the dynamics of inclusion formation and the pathophysiology of the disease process. An emphasis will be made on the ubiquitin proteasome system and Parkinson's disease where the analysis of neuronal inclusions enlightened potential therapeutic strategies to occlude the progression of this neuronal degeneration featured by movement disorders.
Collapse
Affiliation(s)
- Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Alpha-synuclein is a 140 amino acid neuronal protein that has been associated with several neurodegenerative diseases. A point mutation in the gene coding for the alpha-synuclein protein was the first discovery linking this protein to a rare familial form of Parkinson's disease (PD). Subsequently, other mutations in the alpha-synuclein gene have been identified in familial PD. The aggregated proteinaceous inclusions called Lewy bodies found in PD and cortical Lewy body dementia (LBD) were discovered to be predominantly alpha-synuclein. Aberrant aggregation of alpha-synuclein has been detected in an increasing number of neurodegenerative diseases, collectively known as synucleopathies. Alpha-synuclein exists physiologically in both soluble and membrane-bound states, in unstructured and alpha-helical conformations, respectively. The physiological function of alpha-synuclein appears to require its translocation between these subcellular compartments and interconversion between the 2 conformations. Abnormal processing of alpha-synuclein is predicted to lead to pathological changes in its binding properties and function. In this review, genetic and environmental risk factors for alpha-synuclein pathology are described. Various mechanisms for in vitro and in vivo alpha-synuclein aggregation and neurotoxicity are summarized, and their relevance to neuropathology is explored.
Collapse
|
40
|
Dickson DW. Required techniques and useful molecular markers in the neuropathologic diagnosis of neurodegenerative diseases. Acta Neuropathol 2005; 109:14-24. [PMID: 15645265 DOI: 10.1007/s00401-004-0950-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 10/25/2004] [Indexed: 11/24/2022]
Abstract
Modern neuropathologic methods and molecular biology have lead to increased understanding of neurodegenerative disorders and biologically based classifications of these disorders. The purpose of this review is to discuss neuropathologic methods that are useful in the characterization of neurodegenerative disorders, with emphasis on disorders of late life that present with dementia or movement disorders. A diagnostic algorithm is suggested for neuropathologic evaluation of neurodegenerative disorders. The importance of clinical information is emphasized in arriving at the most precise and meaningful neuropathologic diagnosis.
Collapse
Affiliation(s)
- Dennis W Dickson
- Departments of Pathology (Neuropathology) and Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL, 32224, USA.
| |
Collapse
|
41
|
Del Ser T, Hachinski V, Merskey H, Munoz DG. Alzheimer's disease with and without cerebral infarcts. J Neurol Sci 2004; 231:3-11. [PMID: 15792814 DOI: 10.1016/j.jns.2004.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 07/29/2004] [Accepted: 08/26/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare the clinical and pathological features of Alzheimer's disease (AD) patients with and without associated cerebral infarcts (CI). METHODS The consecutive records of 57 prospectively studied demented patients fulfilling the CERAD criteria for the pathological diagnosis of AD were reviewed. Cases with cortical Lewy bodies were excluded. CI were found in 22 cases (39%) (AD+CI group): large infarcts (5), lacunes (13) and/or hippocampal sclerosis (4), and were absent in 35 cases (AD group). Microscopic infarcts, cribiform change, amyloid angiopathy, and white matter rarefaction were not considered in this classification, but were quantified. Cortical atrophy, neurofibrillary tangle and senile plaque (diffuse and neuritic) load were also measured. Pathological evaluation was independent of clinical information. Clinical and pathological data were compared between both groups. RESULTS AD+CI cases were significantly older, more commonly female, less educated, and more often had blue collar occupations, sleep disturbances, frontal release signs, and EEG spikes than AD cases. Other differences found (acute/subacute onset, behavioral disturbances, and leukoaraiosis on CT scan) disappeared after controlling for age. The frequency of known vascular risk factors and focal motor and sensory signs did not differ between the groups, which showed remarkable clinical similarity overall. The only significant differences on pathological exam were hippocampal microinfarcts and white matter lesions, although there was a trend for lower neurodegenerative lesion load in the AD+CI group. The ischemic lesions were located in temporal lobe in 50% of AD+CI patients; these cases had a significantly lower neocortical neurodegenerative lesion load than those with CI in other sites. CONCLUSIONS The presence of CI in AD increases significantly with age, but has scarce influence on the clinical features, and cannot be predicted from common vascular risk factors. In spite of a trend, there are no major differences in neurodegenerative lesion load between AD and AD+CI groups, except when CI are located in the temporal lobe (including hippocampus), suggesting that this location may be important in the physiopathology of mixed vascular and AD dementia.
Collapse
Affiliation(s)
- Teodoro Del Ser
- Sección de Neurología, Hospital Severo Ochoa, Avda. Orellana s/n, Leganés, 28911 Madrid, Spain.
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Lawrence Elmer
- Parkinson's Disease and Movement Disorder Program, Department of Neurology, Medical College of Ohio at Toledo, 3000 Arlington Avenue, Toledo, OH 43601, USA.
| |
Collapse
|
43
|
Olanow CW, Perl DP, DeMartino GN, McNaught KSP. Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol 2004; 3:496-503. [PMID: 15261611 DOI: 10.1016/s1474-4422(04)00827-0] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder that is associated with the formation of intracytoplasmic protein aggregates (Lewy-body inclusions) in neurons of the substantia nigra pars compacta and other brain areas. These inclusions were discovered over 90 years ago, but the mechanism underlying their formation and their relevance to the neurodegenerative process are unknown. Recent studies have begun to shed light on the biogenesis of Lewy bodies and suggest that they are related to aggresomes. Aggresomes are cytoprotective proteinaceous inclusions formed at the centrosome that segregate and facilitate the degradation of excess amounts of unwanted and possibly cytotoxic proteins. The concept of Lewy bodies as aggresome-related inclusions fits well with ongoing discoveries suggesting that altered protein handling might contribute to the neurodegenerative process in familial and sporadic forms of PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
44
|
Sawaguchi T, Franco P, Kadhim H, Groswasser J, Sottiaux M, Nishida H, Kahn A. The correlation between ubiquitin in the brainstem and sleep apnea in SIDS victims. PATHOPHYSIOLOGY 2004. [DOI: 10.1016/j.pathophys.2004.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
Schraen-Maschke S, Dhaenens CM, Delacourte A, Sablonnière B. Microtubule-associated protein tau gene: a risk factor in human neurodegenerative diseases. Neurobiol Dis 2004; 15:449-60. [PMID: 15056452 DOI: 10.1016/j.nbd.2003.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 12/10/2003] [Accepted: 12/10/2003] [Indexed: 11/25/2022] Open
Abstract
Tau is a microtubule-associated protein mainly expressed in neurons of central nervous system, which is crucial in the maintenance of these cells. It has a central role in the polymerization and stabilization of microtubules and in the traffic of organelles along axons and dendrites. Aggregates of hyperphosphorylated forms of tau protein participate in the formation of neurofibrillary tangles, which characterize numerous neurodegenerative disorders named tauopathies. The analysis of tau gene and the study of familial cases of tauopathies have led to the discovery of tau gene mutations that cause inherited dementia designated as Frontotemporal dementia (FTD) with parkinsonism linked to chromosome 17 (FTDP-17). However, these familial cases remain rare compared to the sporadic tauopathies, the later involving both genetic and environmental etiologic factors. As tau pathology represents a primary pathogenic event in various neurodegenerative diseases, the hypothesis that tau genotype could influence the development of these diseases was tested by several groups. This review summarizes advances in the molecular genetics of the tau gene, as well as recent studies addressing the disease incidence of novel tau polymorphisms in different neurodegenerative diseases. Hopefully, the identification of several genetic defects of the tau gene will be helpful in improving our understanding of the role of tau protein in the pathogenesis of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Susanna Schraen-Maschke
- INSERM U422 and Département de Biochimie et de Biologie moléculaire, Faculté de Médecine, Université de Lille 2, Place de Verdun, 59045, Lille Cedex, France
| | | | | | | |
Collapse
|
46
|
Sawaguchi T, Patricia F, Kadhim H, Groswasser J, Sottiaux M, Nishida H, Kahn A. The correlation between ubiquitin in the brainstem and sleep apnea in SIDS victims. Early Hum Dev 2003; 75 Suppl:S75-86. [PMID: 14693394 DOI: 10.1016/j.earlhumdev.2003.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The sudden infant death syndrome (SIDS) is still the main cause of postneonatal infant death and its etiology has stimulated many competing theories, among which is the role of hypoxia and brainstem abnormalities. One report claims an increased in ubiquitin in the liver of SIDS victims, ubiquitin being one of the heat-shock proteins. The correlation between ubiquitin in the brainstem and sleep apnea in SIDS was investigated here. MATERIALS AND METHODS Among 27,000 infants studied prospectively to characterize their sleep-wake behavior, 38 infants died under 6 months of age, including 26 cases of SIDS. All the infants had been recorded during one night in a pediatric sleep laboratory some 3-12 weeks before death. The frequency and duration of sleep apnea were analyzed. Brainstem material was collected at autopsy and examined immunohistochemically for ubiquitin. The density of ubiquitin-positive elements was measured semiquantitatively. Correlation analyses were carried out between the density of ubiquitin-positive elements and the data on sleep apnea. RESULTS In the victims of SIDS, a statistically significant positive correlation was found between the density of ubiquitin-positive neuronal factors in the pons and the frequency of obstructive apnea (p=0.001) and statistically significant negative correlations were seen between the density of ubiquitin-positive cells in the ependyma in the pons and the duration of obstructive apnea (p=0.044) and between the density of ubiquitin-positive cells in the subependyma in the medulla and the frequency of central apnea (p=0.024). CONCLUSIONS It was found that three significant associations existed between the pathological data referring to ubiquitin and physiological data in SIDS victims. These facts are in agreements with the association of sleep apnea in SIDS.
Collapse
Affiliation(s)
- Toshiko Sawaguchi
- Department of Legal Medicine, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
de Brito-Marques PR, de Mello RV, Montenegro L. Nightmares without atonia as an early symptom of diffuse Lewy bodies disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2003; 61:936-41. [PMID: 14762594 DOI: 10.1590/s0004-282x2003000600009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A male 70 years old patient with diffuse or ''pure'' Lewy body disease is described. The diagnosis was made based on clinical features of nightmares with no atonia, attention deficits with fluctuation in cognitive function, incapacity to find his way around the neighbourhood and other formerly familiar environments and mild neuropsychiatric symptoms. Neuropsychological assessment showed memory deficits, visuospatial and visuo-constructive disturbances. He had neither parkinsonism nor recurrent visual hallucinations typically well formed and detailled. Neuroimaging (computed tomography and magnetic resonance spectroscopy) showed mild diffuse cortical atrophy, mostly on the left temporal lobe and a decrease of N-acetil-aspartate levels. A cholinesterase inhibitor was prescribed to this patient during 6 months with clinically relevant behavioral effect. Diagnosis confirmation was made by post-mortem neuropathological findings. Macroscopical features were mild atrophy on the frontal, parietal and temporal lobes, notedly on the frontal lobes. Microscopically, there was neuronal loss and diffuse classic Lewy bodies. Brainstem (substantia nigra, raphe nucleus, locus coeruleus, pedunculopontine nucleus), limbic cortex, and neocortex (frontal, parietal and temporal) were the areas of predilection for Lewy bodies. Hematoxylin-eosin and Bielschowsky staining did not show neuronal swelling (balooned cell), argyrophilic inclusion (Pick's bodies), neurofibrillary tangles nor senile plaques. Immunohistochemical staining for anti-tau, anti-beta-amyloid, and anti-prion protein were negative. Antiubiquitine reaction was positive for Lewy body in the cerebral cortex and brainstem.
Collapse
Affiliation(s)
- Paulo Roberto de Brito-Marques
- Behavioral Neurology Unit, Department of Neurology, Faculty of Medical Sciences, University of Pernambuco, Recife, PE, Brazil.
| | | | | |
Collapse
|
48
|
Tolosa E. Advances in the pharmacological management of Parkinson disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:65-78. [PMID: 12830929 DOI: 10.1007/978-3-7091-6020-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Numerous advances have taken place in the pharmacological management of Parkinson disease (PD) in recent years. Some of the more clinically relevant will be discussed in the text that follows. New drugs have been developed to treat or prevent the motor fluctuations and dyskinesias that occur frequently with the continuous use of levodopa. Such drugs include the catechol-O-methyl-transferase (COMT) inhibitors, such as tolcapone and entecapone, and new dopamine (DA) agonists with long half lives such as cabergoline, pramipexole or ropirinole. Also new, atyical, antipsychotics have appeared which have revolutionized the treatment of PD since they allow us to control hallucinations and other psychotic behaviour without worsening of motor function. Finally preliminary reports suggest that cholinesterase inhibitors, such as rivastigmine, can be usefull in the management of cognitive impairment in PD, one of the most difficult clinical problems encountered in the management of this neurodegenerative disorder.
Collapse
Affiliation(s)
- E Tolosa
- Neurology Service, ICMSN, Banco de Tejidos Neurológicos, Hospital Clinico, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
49
|
Abstract
The nosological relationship between Parkinson's disease, dementing syndromes with Lewy bodies, and Alzheimer's disease has been the subject of continuing debate. Here I argue, on the basis of recent data from families with hereditary versions of these diseases and from transgenic modeling, that these nosological debates are inevitable, impossible to resolve, and a product of the fact that we define diseases as entities rather than processes.
Collapse
Affiliation(s)
- John Hardy
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
50
|
Abstract
Mutations in the Parkin gene are associated with Parkinson s disease (PD). The gene product has been shown to be an E3 protein-ubiquitin ligase, catalyzing the addition of ubiquitin to target proteins prior to their destruction via the proteasome. This activity is thus key in regulating the turnover of substrate proteins. A predictive hypothesis for how this results in PD is that the misregulation of proteasomal degradation of Parkin s substrates is deleterious to neurons. Several different laboratories have identified alternate candidate proteins. In this review, the likelihood of each of the proposed substrates for parkin being robust will be evaluated. The distribution and abundance of the proteins will be examined for clues as to which are the pathologically important substrates for parkin. The possibility that loss of regulation of turnover of one or more of these substrates contributes to the selective neurodegeneration seen in PD is also discussed.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics National Institute on Agins, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|