1
|
Tokisawa S, Kondo R, Nakayama M, Ogasawara S, Murotani K, Mitsuoka M, Hoshino T, Yano H, Akiba J. Clinicopathological significance of sulfite oxidase expression in surgically resected lung adenocarcinoma. Med Mol Morphol 2025; 58:106-113. [PMID: 39652223 DOI: 10.1007/s00795-024-00413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/24/2024] [Indexed: 05/25/2025]
Abstract
AIM The coenzyme sulfite oxidase (SUOX), located in mitochondria, plays a role in redox and metabolism. Its expression has been associated with cancer progression and prognosis. Lung cancer has a high incidence rate and poor prognosis. We aim to clarify its expression in lung adenocarcinomas and investigated the utility of SUOX expression as a recurrence factor in operable lung adenocarcinoma. METHODS We used 60 formalin-fixed paraffin-embedded samples of operable primary lung adenocarcinoma between 2017 and 2018 to immunohistochemically assess SUOX expression levels. Patients were classified into a high or low SUOX expression group, and the associations of SUOX expression with clinicopathological findings and recurrence were analyzed. RESULTS We revealed that high SUOX expression was significantly (p < 0.05) associated with sex, low Brinkman index, histological type, histological grade and positive for epidermal growth factor receptor (EGFR) mutation. High SUOX expression (HR = 10.218, 95% CI 1.758‒59.376, p = 0.0096) and pathological Stage (HR = 7.538, 95% CI 1.95‒29.14, p = 0.0034) were independently associated with relapse free survival. CONCLUSION High SUOX expression may be a new indicator of recurrence risk in surgically resected lung adenocarcinomas.
Collapse
Affiliation(s)
- Saeko Tokisawa
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan.
| | - Masamichi Nakayama
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Sachiko Ogasawara
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Kenta Murotani
- School of Medical Technology, Kurume University, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
- Biostatistics Center, Kurume University, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Masahiro Mitsuoka
- Department of Surgery, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Hirohisa Yano
- Clinical Laboratory, Saiseikai Futsukaichi Hospital, 3-13-1, Yu-Machi, Chikushino, Fukuoka, 818-8516, Japan
- Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| | - Jun Akiba
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
2
|
Olson KR. H 2S and polysulfide metabolism: Conventional and unconventional pathways. Biochem Pharmacol 2017; 149:77-90. [PMID: 29248597 DOI: 10.1016/j.bcp.2017.12.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
It is now well established that hydrogen sulfide (H2S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H2S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H2S but require prior oxidation of H2S and the formation of per- and polysulfides (H2Sn, n = 2-8). Attendant with understanding the regulatory functions of H2S and H2Sn is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA.
| |
Collapse
|
3
|
Velayutham M, Hemann CF, Cardounel AJ, Zweier JL. Sulfite Oxidase Activity of Cytochrome c: Role of Hydrogen Peroxide. Biochem Biophys Rep 2016; 5:96-104. [PMID: 26709389 PMCID: PMC4689149 DOI: 10.1016/j.bbrep.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In humans, sulfite is generated endogenously by the metabolism of sulfur containing amino acids such as methionine and cysteine. Sulfite is also formed from exposure to sulfur dioxide, one of the major environmental pollutants. Sulfite is used as an antioxidant and preservative in dried fruits, vegetables, and beverages such as wine. Sulfite is also used as a stabilizer in many drugs. Sulfite toxicity has been associated with allergic reactions characterized by sulfite sensitivity, asthma, and anaphylactic shock. Sulfite is also toxic to neurons and cardiovascular cells. Recent studies suggest that the cytotoxicity of sulfite is mediated by free radicals; however, molecular mechanisms involved in sulfite toxicity are not fully understood. Cytochrome c (cyt c) is known to participate in mitochondrial respiration and has antioxidant and peroxidase activities. Studies were performed to understand the related mechanism of oxidation of sulfite and radical generation by ferric cytochrome c (Fe3+cyt c) in the absence and presence of H2O2. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with sulfite, Fe3+cyt c, and H2O2. An EPR spectrum corresponding to the sulfite radical adducts of DMPO (DMPO-SO3-) was obtained. The amount of DMPO-SO3- formed from the oxidation of sulfite by the Fe3+cyt c increased with sulfite concentration. In addition, the amount of DMPO-SO3- formed by the peroxidase activity of Fe3+cyt c also increased with sulfite and H2O2 concentration. From these results, we propose a mechanism in which the Fe3+cyt c and its peroxidase activity oxidizes sulfite to sulfite radical. Our results suggest that Fe3+cyt c could have a novel role in the deleterious effects of sulfite in biological systems due to increased production of sulfite radical. It also shows that the increased production of sulfite radical may be responsible for neurotoxicity and some of the injuries which occur to humans born with molybdenum cofactor and sulfite oxidase deficiencies. Cytochrome c oxidizes sulfite to sulfite radical. In the presence of H2O2, sulfite radical generation from cyt c increases. The formation of sulfite radical is sulfite concentration dependent. This mechanism of sulfite radical formation may be important in sulfite toxicity.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210 ; Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219
| | - Craig F Hemann
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Arturo J Cardounel
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, and Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
4
|
Abstract
SIGNIFICANCE Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. RECENT ADVANCES The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. CRITICAL ISSUES Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. FUTURE DIRECTIONS Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend , South Bend, India na
| |
Collapse
|
5
|
Zimmermann G, Schmeckenbecher KHK, Boeuf S, Weiss S, Bock R, Moghaddam A, Richter W. Differential gene expression analysis in fracture callus of patients with regular and failed bone healing. Injury 2012; 43:347-56. [PMID: 22138123 DOI: 10.1016/j.injury.2011.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 10/05/2011] [Accepted: 10/23/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Although several systemic and local factors are known to impair fracture healing, there is still no explanation, why some patients with sufficient fracture stability, showing none of the existing risk factors, still fail to heal normally. An investigation of local gene expression patterns in the fracture gap of patients with non-unions could decisively contribute to a better understanding of the pathophysiology of impaired fracture healing. For the first time, this study compares the expression of a large variety of osteogenic and chondrogenic genes in patients with regular and failed fracture healing. METHODS Between March 2006 and May 2007, a total of 130 patients who were surgically treated at the Berufsgenossenschaftliche Unfallklink Ludwigshafen were screened for the study. Tissue samples of patients with normal and failed fracture healing were collected intraoperatively. Patients were divided into groups depending on the fracture date, and only patients with fractures two to four weeks old and patients with non-unions more than 9 months old were included in the final analysis. For the gene expression analysis, a customised cDNA array - containing 226 genes involved in osteo- and chondrogenesis - was used. RESULTS In the cDNA array analysis, the expression of eight genes was significantly elevated two-fold or more in the group with failed fracture healing relative to the normal controls. Conversely, no genes were found to be expressed at a higher level in the control group. The identified genes are supposed to be involved in extracellular matrix assembly, cytoskeletal structure, and differentiative and proliferative processes. CONCLUSIONS The differences in gene expression pattern indicate a change in the composition and structure of the extracellular matrix, and a possible turn in the healing programme towards fibrous scar tissue formation, leading to non-union.
Collapse
Affiliation(s)
- G Zimmermann
- Department of Traumatology and Orthopedic Surgery, Theresienhospital of the University of Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 2011; 121:459-88. [PMID: 21843150 DOI: 10.1042/cs20110267] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
H2S (hydrogen sulfide) is a well known and pungent gas recently discovered to be synthesized enzymatically in mammalian and human tissues. In a relatively short period of time, H2S has attracted substantial interest as an endogenous gaseous mediator and potential target for pharmacological manipulation. Studies in animals and humans have shown H2S to be involved in diverse physiological and pathophysiological processes, such as learning and memory, neurodegeneration, regulation of inflammation and blood pressure, and metabolism. However, research is limited by the lack of specific analytical and pharmacological tools which has led to considerable controversy in the literature. Commonly used inhibitors of endogenous H2S synthesis have been well known for decades to interact with other metabolic pathways or even generate NO (nitric oxide). Similarly, commonly used H2S donors release H2S far too quickly to be physiologically relevant, but may have therapeutic applications. In the present review, we discuss the enzymatic synthesis of H2S and its emerging importance as a mediator in physiology and pathology. We also critically discuss the suitability of proposed 'biomarkers' of H2S synthesis and metabolism, and highlight the complexities of the currently used pharmacological H2S 'donor' molecules and 'specific' H2S synthesis inhibitors in their application to studying the role of H2S in human disease.
Collapse
|
7
|
Whiteman M, Moore PK. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J Cell Mol Med 2009; 13:488-507. [PMID: 19374684 PMCID: PMC3822510 DOI: 10.1111/j.1582-4934.2009.00645.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hydrogen sulfide (H2S) is a well known and pungent toxic gas that has recently been shown to be synthesised in man from the amino acids cystathionine, homocysteine and cysteine by at least two distinct enzymes; cystathionine-γ-lyase and cystathionine-β-synthase. In the past few years, H2S has emerged as a novel and increasingly important mediator in the cardiovascular system but delineating the precise physiology and pathophysiology of H2S is proving to be complex and difficult to unravel with disparate findings reported with cell types, tissue types and animal species reported. Therefore, in this review we summarize the mechanisms by which H2S has been proposed to regulate blood pressure and cardiac function, discuss the mechanistic discrepancies reported in the literature as well as the therapeutic potential of H2S. We also examine the methods of H2S detection in biological fluids, processes for H2S removal and discuss the reported blood levels of H2S in man and animal models of cardiovascular pathology. We also highlight the complex interaction of H2S with nitric oxide in regulating cardiovascular function in health and disease.
Collapse
Affiliation(s)
- Matthew Whiteman
- Institute of Biomedical and Clinical Science, Peninsula Medical School, St Luke's Campus, Exeter, UK.
| | | |
Collapse
|
8
|
Stipanuk MH, Ueki I, Dominy JE, Simmons CR, Hirschberger LL. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 2009; 37:55-63. [PMID: 19011731 PMCID: PMC2736881 DOI: 10.1007/s00726-008-0202-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 10/07/2008] [Indexed: 11/26/2022]
Abstract
Cysteine catabolism in mammals is dependent upon cysteine dioxygenase (CDO), an enzyme that adds molecular oxygen to the sulfur of cysteine, converting the thiol to a sulfinic acid known as cysteinesulfinic acid (3-sulfinoalanine). CDO is one of the most highly regulated metabolic enzymes responding to diet that is known. It undergoes up to 45-fold changes in concentration and up to 10-fold changes in catalytic efficiency. This provides a remarkable responsiveness of the cell to changes in sulfur amino acid availability: the ability to decrease CDO activity and conserve cysteine when cysteine is scarce and to rapidly increase CDO activity and catabolize cysteine to prevent cytotoxicity when cysteine supply is abundant. CDO in both liver and adipose tissues responds to changes in dietary intakes of protein and/or sulfur amino acids over a range that encompasses the requirement level, suggesting that cysteine homeostasis is very important to the living organism.
Collapse
Affiliation(s)
- M H Stipanuk
- Division of Nutritional Sciences, Cornell University, 227 Savage Hall, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
9
|
Zhang X, Vincent AS, Halliwell B, Wong KP. A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 2004; 279:43035-45. [PMID: 15273247 DOI: 10.1074/jbc.m402759200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of Neuro-2a and PC12 cells to micromolar concentrations of sulfite caused an increase in reactive oxygen species and a decrease in ATP. Likewise, the biosynthesis of ATP in intact rat brain mitochondria from the oxidation of glutamate was inhibited by micromolar sulfite. Glutamate-driven respiration increased the mitochondrial membrane potential (MMP), and this was abolished by sulfite but the MMP generated by oxidation of malate and succinate was not affected. The increased rate of production of NADH from exogenous NAD+ and glutamate added to rat brain mitochondrial extracts was inhibited by sulfite, and mitochondria preincubated with sulfite failed to reduce NAD+. Glutamate dehydrogenase (GDH) in rat brain mitochondrial extract was inhibited dose-dependently by sulfite as was the activity of a purified enzyme. An increase in the Km (glutamate) and a decrease in Vmax resulting in an attenuation in Vmax/Km (glutamate) at 100 microm sulfite suggest a mixed type of inhibition. However, uncompetitive inhibition was noted with decreases in both Km (NAD+) and Vmax, whereas Vmax/Km (NAD+) remained relatively constant. We propose that GDH is one target of action of sulfite, leading to a decrease in alpha-ketoglutarate and a diminished flux through the tricarboxylic acid cycle accompanied by a decrease in NADH through the mitochondrial electron transport chain, a decreased MMP, and a decrease in ATP synthesis. Because glutamate is a major metabolite in the brain, inhibition of GDH by sulfite could contribute to the severe phenotype of sulfite oxidase deficiency in human infants.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | |
Collapse
|