1
|
Kindberg KM, Nordeng J, Langseth MS, Schandiz H, Roald B, Solheim S, Seljeflot I, Stokke MK, Helseth R. IL-6R Signaling Is Associated with PAD4 and Neutrophil Extracellular Trap Formation in Patients with STEMI. Int J Mol Sci 2025; 26:5348. [PMID: 40508157 PMCID: PMC12154504 DOI: 10.3390/ijms26115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/27/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025] Open
Abstract
Inflammation contributes to myocardial injury in ST-elevation myocardial infarction (STEMI). Interleukin-6 receptor (IL-6R) inhibition has been shown to mitigate myocardial injury and reduce levels of the prothrombotic and inflammatory mediator, neutrophil extracellular traps (NETs). The enzyme peptidylarginine deiminase 4 (PAD4) is central in NET formation. We hypothesized that PAD4 links IL-6R activation and NET formation. METHODS We conducted thrombus aspiration and peripheral blood sampling in 33 STEMI patients. In thrombi and leukocytes, we quantified the mRNA of IL-6, IL-6R, and PAD4. In peripheral blood, the protein levels of IL-6, IL-6R, PAD4, dsDNA, H3Cit, MPO-DNA, and troponin T were quantified. RESULTS In thrombi and circulating leukocytes, PAD4 mRNA was associated with IL-6R mRNA (thrombi: β = 0.34, 95% CI [0.16-0.53], p = 0.001, circulating leukocytes: β = 0.92, 95% CI [0.07-1.77], p = 0.036). There were no correlations between PAD4 and IL-6 in thrombi and leukocytes. The protein levels of IL-6R were associated with the NET marker H3Cit (rs = 0.40, p = 0.02). In thrombi, PAD4 mRNA was associated with high levels of troponin T (β = 1.15 95% CI [0.27-2.04], p = 0.013). CONCLUSION We demonstrate an association between PAD4, IL-6R, and troponin release in STEMI patients. Our findings indicate a PAD4-mediated connection between IL-6R and NET formation and highlight PAD4 as a potential treatment target for mitigating inflammation and myocardial injury in STEMI.
Collapse
Affiliation(s)
- Kristine Mørk Kindberg
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, 0450 Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Jostein Nordeng
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, 0450 Oslo, Norway
| | | | - Hossein Schandiz
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Borghild Roald
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Pathology, Oslo University Hospital Ullevaal, 0450 Oslo, Norway
| | - Svein Solheim
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, 0450 Oslo, Norway
| | - Ingebjørg Seljeflot
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, 0450 Oslo, Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Ragnhild Helseth
- Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
2
|
Holthaus M, Xiong X, Eghbalzadeh K, Großmann C, Geißen S, Piontek F, Mollenhauer M, Abdallah AT, Kamphausen T, Rothschild M, Wahlers T, Paunel-Görgülü A. Loss of peptidylarginine deiminase 4 mitigates maladaptive cardiac remodeling after myocardial infarction through inhibition of inflammatory and profibrotic pathways. Transl Res 2025; 280:1-16. [PMID: 40252995 DOI: 10.1016/j.trsl.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Inflammation and progressive fibrosis represent predictive risk factors for heart failure (HF) development following myocardial infarction (MI). Peptidylargininine deiminase 4 (PAD4) catalyzes the citrullination of arginine residues in polypeptides and has recently been identified as a contributor to HF pathogenesis. This study aimed to evaluate the role of PAD4 in monocytes / macrophages (Mo/Mφ) and cardiac fibroblasts (CFs) for cardiac repair following MI and HF progression. Cardiac Padi4 expression significantly increased in mice subjected to MI by permanent coronary artery ligation as well as in humans who died from MI. Transcriptome analysis revealed marked downregulation of inflammation-related genes in infarcted hearts and cardiac Mo/Mφ from global PAD4 knockout (PAD4-/-) mice on day 7 post-MI accompanied by increased frequency of reparative CD206+ macrophages. Mechanistically, pharmacological and genetic PAD4 inhibition abrogated nuclear NF-κB translocation and inflammatory gene expression in bone marrow-derived macrophages (BMDM). Simultaneously, reduced inflammation and diminished cardiac levels of transforming growth factor-β (TGF-β) along with impaired IL-6 / TGF-β signaling in PAD4-/- CFs were associated with decreased expression of fibrotic genes, reduced collagen deposition, improved cardiac function, and enhanced 28-day survival in PAD4-/- mice. Strikingly, whereas pharmacological PAD inhibition in the acute phase after MI exacerbated cardiac damage, treatment starting on day 7 ameliorated cardiac remodeling and improved long-term survival in mice. Collectively, we here identified PAD4 as a critical regulator of inflammatory genes in Mo/Mφ and of profibrotic pathways in CFs. Thus, therapeutic approaches directed against PAD4 are promising interventions to alleviate adverse cardiac remodeling and subsequent HF development.
Collapse
Affiliation(s)
- Michelle Holthaus
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Xiaolin Xiong
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kaveh Eghbalzadeh
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Clara Großmann
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Fabian Piontek
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ali T Abdallah
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD) Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne Germany
| | - Thomas Kamphausen
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus Rothschild
- Institute of Legal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiac Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Manoj H, Gomes SM, Thimmappa PY, Nagareddy PR, Jamora C, Joshi MB. Cytokine signalling in formation of neutrophil extracellular traps: Implications for health and diseases. Cytokine Growth Factor Rev 2025; 81:27-39. [PMID: 39681501 DOI: 10.1016/j.cytogfr.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Neutrophils, as essential component of the innate immune response, form a crucial part in the defence mechanisms through the release of extracellular traps (NETs). These web-like structures, composed of chromatin and antimicrobial proteins, are essential for the entrapment and inactivation of pathogens. However, either constitutive formation or inefficient clearance of NETs leads to adverse effects such as fibrosis, thrombosis, delayed wound healing and tissue damage in multiple diseases associated with sterile inflammation. This dichotomy casts NETs as both protective agents and harmful factors in several diseases such as autoimmune diseases, metabolic syndromes, systemic infections, and malignancies. Besides microbes and their products, variety of stimulants including pro-inflammatory cytokines induce NETs. The complex interactions and cross talk among the pro-inflammatory cytokines including IL-8, IL-6, GM-CSF, TNF-α, IFNs, and IL-1β activate neutrophils to form NETs and also contributes to a vicious circle of inflammatory cascade, leading to increased inflammation, oxidative stress, and thrombotic events. Emerging evidence indicates that the dysregulated cytokine milieus in diseases, such as diabetes mellitus, obesity, atherosclerosis, stroke, rheumatoid arthritis, and systemic lupus erythematosus, potentiate NETs release, thereby promoting disease development. Thus, neutrophils represent both critical effectors and potential therapeutic targets, underscoring their importance in the context of cytokine-mediated therapies for a spectrum of diseases. In the present review, we describe various cytokines and associated signalling pathways activating NETs formation in different human pathologies. Further, the review identifies potential strategies to pharmacologically modulate cytokine pathways to reduce NETs.
Collapse
Affiliation(s)
- Haritha Manoj
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma, OK, USA
| | - Colin Jamora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Zhao X, Wang M, Zhang Y, Zhang Y, Tang H, Yue H, Zhang L, Song D. Macrophages in the inflammatory response to endotoxic shock. Immun Inflamm Dis 2024; 12:e70027. [PMID: 39387442 PMCID: PMC11465138 DOI: 10.1002/iid3.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Endotoxic shock, particularly prevalent in intensive care units, represents a significant medical challenge. Endotoxin, upon invading the host, triggers intricate interactions with the innate immune system, particularly macrophages. This activation leads to the production of inflammatory mediators such as tumor necrosis factor-alpha, interleukin-6, and interleukin-1-beta, as well as aberrant activation of the nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways. OBJECTIVE This review delves into the intricate inflammatory cascades underpinning endotoxic shock, with a particular focus on the pivotal role of macrophages. It aims to elucidate the clinical implications of these processes and offer insights into potential therapeutic strategies. RESULTS Macrophages, central to immune regulation, manifest in two distinct subsets: M1 (classically activated subtype) macrophages and M2 (alternatively activated subtype) macrophages. The former exhibit an inflammatory phenotype, while the latter adopt an anti-inflammatory role. By modulating the inflammatory response in patients with endotoxic shock, these macrophages play a crucial role in restoring immune balance and facilitating recovery. CONCLUSION Macrophages undergo dynamic changes within the immune system, orchestrating essential processes for maintaining tissue homeostasis. A deeper comprehension of the mechanisms governing macrophage-mediated inflammation lays the groundwork for an anti-inflammatory, targeted approach to treating endotoxic shock. This understanding can significantly contribute to the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Xinjie Zhao
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
- School of MedicineXizang Minzu UniversityXianyangChina
| | - Mengjie Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Yanru Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Yiyi Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Haojie Tang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Hongyi Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| | - Li Zhang
- Affiliated Hospital of Xizang Minzu UniversityXianyangShaanxiChina
| | - Dan Song
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of MedicineXizang Minzu UniversityXianyangShaanxiChina
| |
Collapse
|
5
|
Bai LK, Su YZ, Ning ZD, Zhang CQ, Zhang LY, Zhang GL. Challenges and opportunities in animal models of psoriatic arthritis. Inflamm Res 2023:10.1007/s00011-023-01752-w. [PMID: 37300584 DOI: 10.1007/s00011-023-01752-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
OBJECTIVE To review the preparation, characteristics and research progress of different PsA animal models. METHODS Computerized searches were conducted in CNKI, PubMed and other databases to classify and discuss the relevant studies on PsA animal models. The search keywords were "PsA and animal model(s), PsA and animal(s), PsA and mouse, PsA and mice, PsA and rat(s), PsA and rabbit(s), PsA and dog(s)" RESULTS: The experimental animals currently used to study PsA are mainly rodents, including mice and rats. According to the different methods of preparing the models, the retrieved animal models were classified into spontaneous or genetic mutation, transgenic and induced animal models. These PsA animal models involve multiple pathogenesis, some experimental animals' lesions appear in a short and comprehensive cycle, some have a high success rate in molding, and some are complex and less reproducibility. This article summarizes the preparation methods, advantages and disadvantages of different models. CONCLUSIONS The animal models of PsA aim to mimic the clinicopathological alterations of PsA patients through gene mutation, transgenesis or targeted proinflammatory factor and to reveal new pathogenic pathways and therapeutic targets by exploring the pathological features and clinical manifestations of the disease. This work will have very far-reaching implications for the in-depth understanding of PsA and the development of new drugs.
Collapse
Affiliation(s)
- Lin-Kun Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ya-Zhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Zong-Di Ning
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Cheng-Qiang Zhang
- Fifth Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Li-Yun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Gai-Lian Zhang
- Fifth Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China.
| |
Collapse
|
6
|
Nazarova LS, Danilko KV, Malievsky VA, Karimov DO, Bakirov AB, Viktorova TV. Interaction Of Immune Response Mediator Genes In A Predisposition To Juvenile Idiopathic Arthritis. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background/objective — The goal of our study was to investigate the role of interaction between the polymorphic loci of immune response mediator genes (TNFA rs1800629, LTA rs909253, IL1B rs16944, IL2-IL21 rs6822844, IL2RA rs2104286, IL6 rs1800795, IL10 rs1800872, MIF rs755622, CTLA4 rs3087243, NFKB1 rs28362491, PTPN22 rs2476601, and PADI4 rs2240336) in the formation of a genetic predisposition to juvenile idiopathic arthritis (JIA). Material and Methods — The study involved 330 JIA patients and 342 volunteers from the Republic of Bashkortostan. Genotyping was conducted via the real-time polymerase chain reaction. The gene-gene interactions were studied using the multifactor dimensionality reduction algorithm. Results — In general analysis, the best model of gene-gene interaction in JIA was a combination of IL1B rs16944 – IL10 rs1800872 – NFKB1 rs28362491 – PADI4 rs2240336 polymorphic loci. However, after gender-based stratification the best results were obtained when examining the combinations of IL6 rs1800795 – PADI4 rs2240336 loci in girls and of IL10 rs1800872 – IL6 rs1800795 – IL2RA rs2104286 loci in boys. Within all of these models, the genotype combinations associated with both augmented and reduced JIA risks were identified (taking into account gender-specific differences). Conclusion — The results of our study implied that an important role in the formation of a predisposition to JIA is played by gene-gene interactions of IL1B rs16944, IL2RA rs2104286, IL6 rs1800795, IL10 rs1800872, NFKB1 rs28362491, and PADI4 rs2240336 polymorphic loci (taking into account gender-specific differences).
Collapse
Affiliation(s)
- Liliia Sh. Nazarova
- Ufa Research Institute of Occupational Health and Human Ecology; Bashkir State Medical University, Ufa, Russia
| | | | | | - Denis O. Karimov
- Ufa Research Institute of Occupational Health and Human Ecology, Ufa, Russia
| | - Akhat B. Bakirov
- Ufa Research Institute of Occupational Health and Human Ecology; Bashkir State Medical University, Ufa, Russia
| | | |
Collapse
|
7
|
The Effect of Inhaled Air Particulate Matter SRM 1648a on the Development of Mild Collagen-Induced Arthritis in DBA/J Mice. Arch Immunol Ther Exp (Warsz) 2022; 70:17. [PMID: 35900599 PMCID: PMC9334371 DOI: 10.1007/s00005-022-00654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 11/05/2022]
Abstract
Air pollution is considered to be one of a risk factor for rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) is commonly used as a mouse model of human RA. However, the impact of specific particulate matter (PM) components on the incidence and severity of RA has still not been established. The aim of this study was to develop an experimental model of CIA suitable to test arthritogenicity of inhaled PM. A mild form of CIA was induced in DBA1/J mice inhaled with various components of SRM 1648a PM. The incidence and severity of arthritis was assessed, and the selected serum markers of autoimmunity and inflammation were determined. Clinical arthritis was observed from the booster CII immunisation onward. Anti-cyclic citrullinated peptide antibodies, a diagnostic marker of RA, were detected in serum of these mice. All inhaled pollutants, crude PM, PM with reduced organic content, ferric, and silica nanoparticles markedly increased CIA incidence and severity. The fastest progression of CIA development was caused by crude PM and was linked to enhanced serum levels of anti-CII IgG, the prominent arthritogenic autoantibodies. On the other hand, inhaled nanoparticles enhanced serum levels of TNFα, a major proinflammatory arthritogenic cytokine. We recommend this experimental model of mild CIA to test the mechanisms of arthritis exacerbation by inhaled air pollutants. Further studies are necessary to determine whether PM-aggravated arthritis is caused by inflammatory mediators translocated from inflamed lung into systemic circulation or whether PM translocated into the bloodstream directly exacerbate joint inflammation.
Collapse
|
8
|
Vasconcelos DP, Jabangwe C, Lamghari M, Alves CJ. The Neuroimmune Interplay in Joint Pain: The Role of Macrophages. Front Immunol 2022; 13:812962. [PMID: 35355986 PMCID: PMC8959978 DOI: 10.3389/fimmu.2022.812962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 12/29/2022] Open
Abstract
Chronic pain associated with joint disorders, such as rheumatoid arthritis (RA), osteoarthritis (OA) and implant aseptic loosening (AL), is a highly debilitating symptom that impacts mobility and quality of life in affected patients. The neuroimmune crosstalk has been demonstrated to play a critical role in the onset and establishment of chronic pain conditions. Immune cells release cytokines and immune mediators that can activate and sensitize nociceptors evoking pain, through interaction with receptors in the sensory nerve terminals. On the other hand, sensory and sympathetic nerve fibers release neurotransmitters that bind to their specific receptor expressed on surface of immune cells, initiating an immunomodulatory role. Macrophages have been shown to be key players in the neuroimmune crosstalk. Moreover, macrophages constitute the dominant immune cell population in RA, OA and AL. Importantly, the targeting of macrophages can result in anti-nociceptive effects in chronic pain conditions. Therefore, the aim of this review is to discuss the nature and impact of the interaction between the inflammatory response and nerve fibers in these joint disorders regarding the genesis and maintenance of pain. The role of macrophages is highlighted. The alteration in the joint innervation pattern and the inflammatory response are also described. Additionally, the immunomodulatory role of sensory and sympathetic neurotransmitters is revised.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Clive Jabangwe
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Meriem Lamghari
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Instituto Ciências Biomédicas Abel Salazar, Universidade de Porto, Porto, Portugal
| | - Cecília J Alves
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto- Associação, Porto, Portugal.,Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Tan Y, Chu Z, Shan H, Zhangsun D, Zhu X, Luo S. Inflammation Regulation via an Agonist and Antagonists of α7 Nicotinic Acetylcholine Receptors in RAW264.7 Macrophages. Mar Drugs 2022; 20:md20030200. [PMID: 35323499 PMCID: PMC8955479 DOI: 10.3390/md20030200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is widely distributed in the central and peripheral nervous systems and is closely related to a variety of nervous system diseases and inflammatory responses. The α7 nAChR subtype plays a vital role in the cholinergic anti-inflammatory pathway. In vivo, ACh released from nerve endings stimulates α7 nAChR on macrophages to regulate the NF-κB and JAK2/STAT3 signaling pathways, thereby inhibiting the production and release of downstream proinflammatory cytokines and chemokines. Despite a considerable level of recent research on α7 nAChR-mediated immune responses, much is still unknown. In this study, we used an agonist (PNU282987) and antagonists (MLA and α-conotoxin [A10L]PnIA) of α7 nAChR as pharmacological tools to identify the molecular mechanism of the α7 nAChR-mediated cholinergic anti-inflammatory pathway in RAW264.7 mouse macrophages. The results of quantitative PCR, ELISAs, and transcriptome analysis were combined to clarify the function of α7 nAChR regulation in the inflammatory response. Our findings indicate that the agonist PNU282987 significantly reduced the expression of the IL-6 gene and protein in inflammatory macrophages to attenuate the inflammatory response, but the antagonists MLA and α-conotoxin [A10L]PnIA had the opposite effects. Neither the agonist nor antagonists of α7 nAChR changed the expression level of the α7 nAChR subunit gene; they only regulated receptor function. This study provides a reference and scientific basis for the discovery of novel α7 nAChR agonists and their anti-inflammatory applications in the future.
Collapse
Affiliation(s)
- Yao Tan
- Medical School, Guangxi University, Nanning 530004, China; (Y.T.); (H.S.)
| | - Zhaoli Chu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.C.); (D.Z.)
| | - Hongyu Shan
- Medical School, Guangxi University, Nanning 530004, China; (Y.T.); (H.S.)
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.C.); (D.Z.)
| | - Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China; (Y.T.); (H.S.)
- Correspondence: (X.Z.); (S.L.)
| | - Sulan Luo
- Medical School, Guangxi University, Nanning 530004, China; (Y.T.); (H.S.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Z.C.); (D.Z.)
- Correspondence: (X.Z.); (S.L.)
| |
Collapse
|
10
|
Ohyama A, Osada A, Kawaguchi H, Kurata I, Nishiyama T, Iwai T, Ishigami A, Kondo Y, Tsuboi H, Sumida T, Matsumoto I. Specific Increase in Joint Neutrophil Extracellular Traps and Its Relation to Interleukin 6 in Autoimmune Arthritis. Int J Mol Sci 2021; 22:ijms22147633. [PMID: 34299252 PMCID: PMC8303722 DOI: 10.3390/ijms22147633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/25/2022] Open
Abstract
Neutrophils and their extracellular traps have been shown to play an important role in the pathogenesis of rheumatoid arthritis (RA), but the detailed mechanisms in joints are still unclear, and their regulation remains to be solved. Here, we explored neutrophil extracellular trap (NET)osis in experimental models of arthritis and further investigated the effects of interleukin-6 (IL-6) inhibition in neutrophils and NETosis. In skins of peptide GPI-induced arthritis (pGIA), citrullinated protein was detected as well as citrullinated histone expression in immunized skin but this was not specific to pGIA. Citrullinated histone expression in pGIA joints was specific to pGIA and was merged with neutrophil elastase, suggesting NETosis. Neutrophils in joints tend to upregulate IL-6 receptors when compared with bone marrow neutrophils. Administration of mouse anti-IL-6 receptor antibodies in pGIA suppressed arthritis in association with a decrease in neutrophil infiltration and NETosis in joints. In the plasma of RA patients, citrullinated protein was significantly reduced after tocilizumab treatment. Our results suggest that IL-6 enhances neutrophil chemotaxis and NETosis in inflammatory joints and could be the source of citrullinated proteins.
Collapse
Affiliation(s)
- Ayako Ohyama
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
| | - Atsumu Osada
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
| | - Hoshimi Kawaguchi
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
- Ichihara Hospital, Tsukuba, Ibaraki 300-3295, Japan
| | - Izumi Kurata
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
| | - Taihei Nishiyama
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
| | - Tamaki Iwai
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Yuya Kondo
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
| | - Hiroto Tsuboi
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
| | - Takayuki Sumida
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
| | - Isao Matsumoto
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; (A.O.); (A.O.); (H.K.); (I.K.); (T.N.); (T.I.); (Y.K.); (H.T.); (T.S.)
- Correspondence: ; Tel.: +81-29-853-3186
| |
Collapse
|
11
|
Osada A, Matsumoto I, Mikami N, Ohyama A, Kurata I, Kondo Y, Tsuboi H, Ishigami A, Sano Y, Arai T, Ise N, Sumida T. Citrullinated inter-alpha-trypsin inhibitor heavy chain 4 in arthritic joints and its potential effect in the neutrophil migration. Clin Exp Immunol 2021; 203:385-399. [PMID: 33238047 PMCID: PMC7874842 DOI: 10.1111/cei.13556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/31/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The citrullinated inter-alpha-trypsin inhibitor heavy chain 4 (cit-ITIH4) was identified as its blood level was associated with the arthritis score in peptide glucose-6-phosphate-isomerase-induced arthritis (pGIA) mice and the disease activity in patients with rheumatoid arthritis (RA). This study aimed to clarify its citrullination pathway and function as related to neutrophils. In pGIA-afflicted joints, ITIH4 and cit-ITIH4 levels were examined by immunohistochemistry (IHC), immunoprecipitation (IP) and Western blotting (WB), while peptidylarginine deiminase (PAD) expression was measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), IHC and immunofluorescent methods. The pGIA mice received anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibodies to deplete neutrophils and the expression of cit-ITIH4 was investigated by WB. The amounts of ITIH4 and cit-ITIH4 in synovial fluid (SF) from RA and osteoarthritis (OA) patients were examined by I.P. and W.B. Recombinant ITIH4 and cit-ITIH4 were incubated with sera from healthy volunteers before its chemotactic ability and C5a level were evaluated using Boyden's chamber assay and enzyme-linked immunosorbent assay (ELISA). During peak arthritic phase, ITIH4 and cit-ITIH4 were increased in joints while PAD4 was over-expressed, especially in the infiltrating neutrophils of pGIA mice. Levels of cit-ITIH4 in plasma and joints significantly decreased upon neutrophil depletion. ITIH4 was specifically citrullinated in SF from RA patients compared with OA patients. Native ITIH4 inhibited neutrophilic migration and decreased C5a levels, while cit-ITIH4 increased its migration and C5a levels significantly. Cit-ITIH4 is generated mainly in inflamed joints by neutrophils via PAD4. Citrullination of ITIH4 may change its function to up-regulate neutrophilic migration by activating the complement cascade, exacerbating arthritis.
Collapse
Affiliation(s)
- A. Osada
- Division of RheumatologyDepartment of Internal MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - I. Matsumoto
- Division of RheumatologyDepartment of Internal MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - N. Mikami
- Division of RheumatologyDepartment of Internal MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - A. Ohyama
- Division of RheumatologyDepartment of Internal MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - I. Kurata
- Division of RheumatologyDepartment of Internal MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Y. Kondo
- Division of RheumatologyDepartment of Internal MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - H. Tsuboi
- Division of RheumatologyDepartment of Internal MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| | - A. Ishigami
- Molecular Regulation of AgingTokyo Metropolitan Institute of GerontologyItabashi‐kuJapan
| | - Y. Sano
- Faculty of Arts and Sciences at FujiyoshidaShowa universityFujiyoshidaJapan
| | | | - N. Ise
- Fujirebio IncHachiojiJapan
| | - T. Sumida
- Division of RheumatologyDepartment of Internal MedicineFaculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
12
|
Shatunova EA, Korolev MA, Omelchenko VO, Kurochkina YD, Davydova AS, Venyaminova AG, Vorobyeva MA. Aptamers for Proteins Associated with Rheumatic Diseases: Progress, Challenges, and Prospects of Diagnostic and Therapeutic Applications. Biomedicines 2020; 8:biomedicines8110527. [PMID: 33266394 PMCID: PMC7700471 DOI: 10.3390/biomedicines8110527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers’ research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.
Collapse
Affiliation(s)
- Elizaveta A. Shatunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Maksim A. Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Vitaly O. Omelchenko
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Yuliya D. Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (M.A.K.); (V.O.O.); (Y.D.K.)
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.S.); (A.S.D.); (A.G.V.)
- Correspondence:
| |
Collapse
|
13
|
Hamamoto Y, Ouhara K, Munenaga S, Shoji M, Ozawa T, Hisatsune J, Kado I, Kajiya M, Matsuda S, Kawai T, Mizuno N, Fujita T, Hirata S, Tanimoto K, Nakayama K, Kishi H, Sugiyama E, Kurihara H. Effect of Porphyromonas gingivalis infection on gut dysbiosis and resultant arthritis exacerbation in mouse model. Arthritis Res Ther 2020; 22:249. [PMID: 33076980 PMCID: PMC7574451 DOI: 10.1186/s13075-020-02348-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Porphyromonas gingivalis (Pg) infection causes periodontal disease and exacerbates rheumatoid arthritis (RA). It is reported that inoculation of periodontopathogenic bacteria (i.e., Pg) can alter gut microbiota composition in the animal models. Gut microbiota dysbiosis in human has shown strong associations with systemic diseases, including RA, diabetes mellitus, and inflammatory bowel disease. Therefore, this study investigated dysbiosis-mediated arthritis by Pg oral inoculation in an experimental arthritis model mouse. METHODS Pg inoculation in the oral cavity twice a week for 6 weeks was performed to induce periodontitis in SKG mice. Concomitantly, a single intraperitoneal (i.p.) injection of laminarin (LA) was administered to induce experimental arthritis (Pg-LA mouse). Citrullinated protein (CP) and IL-6 levels in serum as well as periodontal, intestinal, and joint tissues were measured by ELISA. Gut microbiota composition was determined by pyrosequencing the 16 s ribosomal RNA genes after DNA purification of mouse feces. Fecal microbiota transplantation (FMT) was performed by transferring Pg-LA-derived feces to normal SKG mice. The effects of Pg peptidylarginine deiminase (PgPAD) on the level of citrullinated proteins and arthritis progression were determined using a PgPAD knockout mutant. RESULTS Periodontal alveolar bone loss and IL-6 in gingival tissue were induced by Pg oral infection, as well as severe joint destruction, increased arthritis scores (AS), and both IL-6 and CP productions in serum, joint, and intestinal tissues. Distribution of Deferribacteres and S24-7 was decreased, while CP was significantly increased in gingiva, joint, and intestinal tissues of Pg-inoculated experimental arthritis mice compared to experimental arthritis mice without Pg inoculation. Further, FMT from Pg-inoculated experimental arthritis mice reproduced donor gut microbiota and resulted in severe joint destruction with increased IL-6 and CP production in joint and intestinal tissues. The average AS of FMT from Pg-inoculated experimental arthritis was much higher than that of donor mouse. However, inoculation of the PgPAD knockout mutant inhibited the elevation of arthritis scores and ACPA level in serum and reduced CP amount in gingival, joint, and intestinal tissues compared to Pg wild-type inoculation. CONCLUSION Pg oral infection affected gut microbiota dysbiosis and joint destruction via increased CP generation.
Collapse
Affiliation(s)
- Yuta Hamamoto
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Syuichi Munenaga
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jyunzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases (NIID), Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Toshihisa Kawai
- Department of Periodontology, Nova Southeastern University College of Dental Medicine, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Division of Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
14
|
Panezai J, Ali A, Ghaffar A, Benchimol D, Altamash M, Klinge B, Engström PE, Larsson A. Upregulation of circulating inflammatory biomarkers under the influence of periodontal disease in rheumatoid arthritis patients. Cytokine 2020; 131:155117. [PMID: 32403006 DOI: 10.1016/j.cyto.2020.155117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Periodontal disease (PD) and rheumatoid arthritis (RA) are chronic immuno-inflammatory conditions with osteolysis being a hallmark feature. The influence of PD on RA's systemic inflammatory status and disease activity remains unclear. The objective of this study was to assess the systemic inflammation and disease activity of RA under the influence of PD. METHODS In this case-control study, 38 RA patients (19 with PD and 19 without PD) were compared to 38 non-RA patients and 12 healthy controls. Periodontal parameters (bleeding on probing (BOP), probing pocket depth (PPD), PPD Total, PPD Disease and marginal bone loss (MBL) were determined. Serological analyses included quantification of 92 inflammatory biomarkers using a multiplex proximity extension assay, anti-citrullinated protein antibodies (ACPA), rheumatoid factor (IgM-RF) and erythrocyte sedimentation rate (ESR). RA disease activity was determined using Disease Activity Score for 28 joints (DAS28). All RA patients were on medication. RESULTS IgM-RF was higher in RA patients with PD. PD conditions were more severe in the non-RA group. Inflammatory biomarkers (IL-10RB, IL-18, CSF-1, NT-3, TRAIL, PD-L1, LIF-R, SLAMF1, FGF-19, TRANCE, CST5, STAMPB, SIRT2, TWEAK, CX3CL1, CXCL5, MCP-1) were significantly higher in RA patients with PD than RA without PD. DAS28 associated with twice as many inflammatory biomarkers in RA patients with PD whereas IgM-RF and ACPA associated more frequently with biomarkers in the RA without PD group. IgM-RF correlated inversely with BOP. CONCLUSION Periodontal disease augments systemic inflammation in RA. A profound influence exists independent of autoimmune status.
Collapse
Affiliation(s)
- Jeneen Panezai
- Altamash Institute of Dental Medicine, Department of Periodontology, Karachi, Pakistan; Karolinska Institutet, Department of Dental Medicine, Division of Oral Diseases, Section of Periodontology, Huddinge, Sweden; Balochistan University of Information Technology, Engineering and Management Sciences, Department of Microbiology, Faculty of Life Sciences and Informatics, Quetta, Pakistan.
| | - Azra Ali
- Habib Medical Centre, Rheumatology Clinic, Karachi, Pakistan, Karachi, Pakistan
| | - Ambereen Ghaffar
- Habib Medical Centre, Rheumatology Clinic, Karachi, Pakistan, Karachi, Pakistan
| | - Daniel Benchimol
- Karolinska Institutet, Department of Dental Medicine, Division of Oral Diagnostics and Rehabilitation, Section of Oral Diagnostics and Surgery, Huddinge, Sweden
| | - Mohammad Altamash
- Altamash Institute of Dental Medicine, Department of Periodontology, Karachi, Pakistan
| | - Bjӧrn Klinge
- Karolinska Institutet, Department of Dental Medicine, Division of Oral Diseases, Section of Periodontology, Huddinge, Sweden; Malmö University, Faculty of Odontology, Department of Periodontology, Malmö, Sweden
| | - Per-Erik Engström
- Karolinska Institutet, Department of Dental Medicine, Division of Oral Diseases, Section of Periodontology, Huddinge, Sweden
| | - Anders Larsson
- Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| |
Collapse
|