1
|
Pulling BW, Braithwaite F, Isvoranu AM, Butler DS, Vogelzang AR, Lorimer Moseley G, Catley MJ, Stanton TR. Scale Development of the Osteoarthritis Conceptualisation Questionnaire: Phase 2 Construct Validity. THE JOURNAL OF PAIN 2025:105435. [PMID: 40403862 DOI: 10.1016/j.jpain.2025.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
An individual's knowledge, beliefs and/or expectations about their osteoarthritis can influence their engagement with physical activity and their treatment decisions surrounding recommended non-surgical management. Yet there is no widely accepted questionnaire to assess complex mental frameworks surrounding osteoarthritis. Therefore, this study aimed to develop an Osteoarthritis Conceptualisation Questionnaire (OACQ) to assess an individual's conceptual framework for osteoarthritis via psychometric evaluation of an established item-bank. The Osteoarthritis Conceptualisation Questionnaire item-bank, co-developed with pain experts and people with lived experience of knee pain, was administered online to people with painful knee osteoarthritis. Psychometric evaluation was undertaken using factor and exploratory graph analyses to create a data-driven model of the Osteoarthritis Conceptualisation Questionnaire which was then compared with the existing theoretical model (construct validity). Four hundred and fifty-four participants completed the survey (n=336 female; 64.52 ±9.21 years). Psychometric evaluation resulted in the Osteoarthritis Conceptualisation Questionnaire, consisting of 36 items across four domains: 'Expectations'; 'Context'; 'Physiology'; and 'Conceptual Change'. Data-driven models aligned with theoretical models, providing preliminary evidence of construct validity. The resultant Osteoarthritis Conceptualisation Questionnaire could be used to assess osteoarthritis conceptualisations in people with painful knee osteoarthritis. Further research to evaluate scale and item functioning and test-retest reliability is warranted. PERSPECTIVE: Classical and innovative psychometric methods were utilised to develop a novel assessment of conceptualisations of osteoarthritis. The combined use of these methods provided a rigorous evaluation of construct validity. The OACQ may be useful for evaluating the effectiveness of pain science education interventions.
Collapse
Affiliation(s)
- Brian W Pulling
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australia Health and Medical Research Institute (SAHMRI), Kaurna Country, Adelaide, South Australia, Australia; IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia.
| | - Felicity Braithwaite
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australia Health and Medical Research Institute (SAHMRI), Kaurna Country, Adelaide, South Australia, Australia; IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia; Pain Education Team to Advance Learning (PETAL) Collaboration.
| | | | - David S Butler
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia.
| | - Anna R Vogelzang
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia.
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia; Pain Education Team to Advance Learning (PETAL) Collaboration.
| | - Mark J Catley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia; Pain Education Team to Advance Learning (PETAL) Collaboration.
| | - Tasha R Stanton
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australia Health and Medical Research Institute (SAHMRI), Kaurna Country, Adelaide, South Australia, Australia; IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia; Pain Education Team to Advance Learning (PETAL) Collaboration.
| |
Collapse
|
2
|
Wang Z, Zhao C, Wang Z, Li M, Zhang L, Diao J, Chen J, Zhang L, Wang Y, Li M, Zhou Y, Xu H. Elucidating Causal Relationships Among Gut Microbiota, Human Blood Metabolites, and Knee Osteoarthritis: Evidence from a Two-Stage Mendelian Randomization Analysis. Rejuvenation Res 2025. [PMID: 40193247 DOI: 10.1089/rej.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Background: Although previous observational studies suggest a potential association between gut microbiota (GM) and knee osteoarthritis (KOA), the causal relationships remain unclear, particularly concerning the role of blood metabolites (BMs) as potential mediators. Elucidating these interactions is crucial for understanding the mechanisms underlying KOA progression and may inform the development of novel therapeutic strategies. Objective: This study aimed to determine the causal relationship between GM and KOA and to quantify the potential mediating role of BMs. Methods: Instrumental variables (IVs) for GM and BMs were retrieved from the MiBioGen consortium and metabolomics genome-wide association studies (GWAS) databases. KOA-associated single-nucleotide polymorphisms were sourced from the FinnGen consortium. Inverse-variance weighted approach was utilized as the main analytical method for Mendelian randomization (MR) analysis, complemented by MR-Egger, simple mode, weighted mode, and weighted median methods. The causal relationships between GM, BMs, and KOA were sequentially analyzed by multivariate MR. False discovery rate correction was applied to account for multiple comparisons in the MR results. Sensitivity analyses and reverse MR analysis were also conducted to verify the reliability of the findings. Finally, a two-step approach was employed to determine the proportion of BMs mediating the effects of GM on KOA. Results: MR analysis identified seven gut microbial species that are causally associated with KOA. Additionally, MR analysis of 1091 BMs and 309 metabolite ratios revealed 13 metabolites that influence the risk of KOA. Through two-step analysis, three BMs were identified as mediators of the effects of two GMs on KOA. Among them, 6-hydroxyindole sulfate exhibited the highest mediation percentage (10.26%), followed by N-formylanthranilic acid (6.55%). Sensitivity and reverse causality analyses further supported the robustness of these findings. Conclusion: This research identified specific GMs and BMs that have a causal association with KOA. These findings provide critical insights into how GM may influence KOA risk by modulating specific metabolites, which could be valuable for the targeted treatment and prevention of KOA.
Collapse
Affiliation(s)
- Zhen Wang
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
| | - Chi Zhao
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
- Tuina Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zheng Wang
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mengmeng Li
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
- Tuina Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lili Zhang
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jieyao Diao
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
| | - Juntao Chen
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lijuan Zhang
- Rehabilitation Department, Jiaozuo Coal Industry (Group) Co. Ltd., Central Hospital, Jiaozuo, China
| | - Yu Wang
- College of Computer Science, Xidian University, Xian, China
| | - Miaoxiu Li
- College of Acupuncture and Massage, Shanghai University of Chinese Medicine, Shanghai, China
| | - Yunfeng Zhou
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Xu
- College of Acupuncture and Massage, Henan University of Chinese Medicine, Zhengzhou, China
- Tuina Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Karim A, Iqbal MS, Khan HA, Ahmad F, Qaisar R. Plasma zonulin levels forecast sarcopenia and physical performance in patients with knee osteoarthritis. Geriatr Nurs 2025; 62:115-122. [PMID: 39892327 DOI: 10.1016/j.gerinurse.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/09/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE Knee Osteoarthritis (KOA) is a common disease in the elderly; however, its causative factors remain poorly elucidated. We investigated the potential contribution of intestinal mucosal disruption to the severity of KOA and physical capacity. METHOD We recruited women, healthy controls (age = 65.3 ± 6.6 years, n = 75) and patients with mild (age = 70.5 ± 3.8 years), moderate (age = 68.3 ± 5.5 years), and poor KOA (age = 73.8 ± 4.5 years, n = 43-50/group), characterized on oxford knee scoring (OKS) system. We also measured plasma zonulin as a marker of intestinal mucosal disruption alongwith plasma biochemistry, body composition, short physical performance battery (SPPB) score, gait speed, and hand grip strength (HGS) in control and KOA patients. RESULTS KOA patients had elevated plasma zonulin levels, along with lower appendicular skeletal muscle mass (ASMI), and higher body fats than controls (all p < 0.05). Furthermore, KOA patients had lower SPPB scores, gait speed, and HGS than controls (all p < 0.05). Simple regression analysis revealed robust negative correlations of plasma zonulin with OKS, HGS, gait speed, and SPPB scores in KOA patients. These patients also exhibited higher levels of markers of inflammation and oxidative stress. Zonulin also exhibited significant areas under the curve in diagnosing low OKS scores, reduced physical capacity, and muscle weakness in KOA patients. SIGNIFICANCE Taken together, increased intestinal permeability may contribute to the reduced functional performance in KOA, and plasma zonulin may be a useful diagnostic tool in KOA.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - M Shahid Iqbal
- Department of Neurology and Stroke Medicine, Rehman Medical Institute, Peshawar 25124, Pakistan
| | - Haroon Ahmed Khan
- Department of Trauma and Orthopaedic Surgery, Rehman Medical Institute, Peshawar 25124, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
4
|
Wei Y, Qian H, Zhang X, Wang J, Yan H, Xiao N, Zeng S, Chen B, Yang Q, Lu H, Xie J, Xie Z, Qin D, Li Z. Progress in multi-omics studies of osteoarthritis. Biomark Res 2025; 13:26. [PMID: 39934890 DOI: 10.1186/s40364-025-00732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Osteoarthritis (OA), a ubiquitous degenerative joint disorder, is marked by pain and disability, profoundly impacting patients' quality of life. As the population ages, the global prevalence of OA is escalating. Omics technologies have become instrumental in investigating complex diseases like OA, offering comprehensive insights into its pathogenesis and progression by uncovering disease-specific alterations across genomics, transcriptomics, proteomics, and metabolomics levels. In this review, we systematically analyzed and summarized the application and recent achievements of omics technologies in OA research by scouring relevant literature in databases such as PubMed. These studies have shed light on new potential therapeutic targets and biomarkers, charting fresh avenues for OA diagnosis and treatment. Furthermore, in our discussion, we highlighted the immense potential of spatial omics technologies in unraveling the molecular mechanisms of OA and in the development of novel therapeutic strategies, proposing future research directions and challenges. Collectively, this study encapsulates the pivotal advances in current OA research and prospects for future investigation, providing invaluable references for a deeper understanding and treatment of OA. This review aims to synthesize the recent progress of omics technologies in the realm of OA, aspiring to furnish theoretical foundations and research orientations for more profound studies of OA in the future.
Collapse
Affiliation(s)
- Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - He Qian
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Heguo Yan
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sanjin Zeng
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bingbing Chen
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qianqian Yang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hongting Lu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Zhaofu Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Muruganandam A, Migliorini F, Jeyaraman N, Vaishya R, Balaji S, Ramasubramanian S, Maffulli N, Jeyaraman M. Molecular Mimicry Between Gut Microbiome and Rheumatoid Arthritis: Current Concepts. Med Sci (Basel) 2024; 12:72. [PMID: 39728421 PMCID: PMC11677576 DOI: 10.3390/medsci12040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Rheumatoid arthritis (RA) represents an autoimmune condition impacted by a combination of genetic and environmental factors, with the gut microbiome (GMB) being one of the influential environmental factors. Patients with RA display notable modifications in the composition of their GMB, characterised by decreased diversity and distinct bacterial alterations. The GMB, comprising an extensive array of approximately 35,000 bacterial species residing within the gastrointestinal tract, has garnered considerable attention as a pivotal contributor to both human health and the pathogenesis of diseases. This article provides an in-depth exploration of the intricate involvement of the GMB in the context of RA. The oral-GMB axis highlights the complex role of bacteria in RA pathogenesis by producing antibodies to citrullinated proteins (ACPAs) through molecular mimicry. Dysbiosis affects Tregs, cytokine levels, and RA disease activity, suggesting that regulating cytokines could be a strategy for managing inflammation in RA. The GMB also has significant implications for drug responses and toxicity, giving rise to the field of pharmacomicrobiomics. The composition of the microbiota can impact the efficacy and toxicity of drugs, while the microbiota's metabolites can influence drug response. Recent research has identified specific bacteria, metabolites, and immune responses associated with RA, offering potential targets for personalised management. However, several challenges, including the variation in microbial composition, establishing causality, accounting for confounding factors, and translating findings into clinical practice, need to be addressed. Microbiome-targeted therapy is still in its early stages and requires further research and standardisation for effective implementation.
Collapse
Affiliation(s)
- Anandanarayan Muruganandam
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India;
| | - Filippo Migliorini
- Department of Orthopedics and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100 Bolzano, Italy
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India;
| | - Raju Vaishya
- Department of Orthopaedics and Joint Replacement Surgery, Indraprastha Apollo Hospital, New Delhi 110076, India;
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, India; (S.B.); (S.R.)
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, India; (S.B.); (S.R.)
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, 00185 Roma, Italy;
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent ST4 7QB, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London E1 4DG, UK
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, India;
| |
Collapse
|
6
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
7
|
Korsten SGPJ, Hartog M, Berends AJ, Koenders MI, Popa CD, Vromans H, Garssen J, van de Ende CHM, Vermeiden JPW, Willemsen LEM. A Sustained-Release Butyrate Tablet Suppresses Ex Vivo T Helper Cell Activation of Osteoarthritis Patients in a Double-Blind Placebo-Controlled Randomized Trial. Nutrients 2024; 16:3384. [PMID: 39408351 PMCID: PMC11478393 DOI: 10.3390/nu16193384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Degenerative joint disease osteoarthritis (OA) is characterized by the degeneration of cartilage, synovial inflammation and low-grade systemic inflammation in association with microbial dysbiosis and intestinal barrier defects. Butyrate is known for its anti-inflammatory and barrier protective effects and might benefit OA patients. In a double-blind placebo-controlled randomized trial, the effects of four to five weeks of oral treatment with sustained-release (SR) butyrate tablets (600 mg/day) on systemic inflammation and immune function were studied in hand OA patients. Serum markers for systemic inflammation and lipopolysaccharide (LPS) leakage were measured and ex vivo stimulation of whole blood or peripheral blood mononuclear cells (PBMCs) was performed at baseline and after treatment. Butyrate treatment did not affect the serum markers nor the cytokine release of ex vivo LPS-stimulated whole blood or PBMCs nor the phenotype of restimulated monocytes. By contrast, butyrate treatment reduced the percentage of activated T helper (Th) cells and the Th17/Treg ratio in αCD3/CD28-activated PBMCs, though cytokine release upon stimulation remained unaffected. Nevertheless, the percentage of CD4+IL9+ cells was reduced by butyrate as compared to the placebo. In both groups, the frequency of Th1, Treg, Th17, activated Th17, CD4+IFNγ+ and CD4+TNFα+ cells was reduced. This study shows a proof of principle of some immunomodulatory effects using a SR butyrate treatment in hand OA patients. The inflammatory phenotype of Th cells was reduced, as indicated by a reduced percentage of Th9 cells, activated Th cells and improved Th17/Treg balance in ex vivo αCD3/CD28-activated PBMCs. Future studies are warranted to further optimize the butyrate dose regime to ameliorate inflammation in OA patients.
Collapse
Affiliation(s)
- Sandra G. P. J. Korsten
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands (J.G.)
- Tiofarma B.V., 3261 ME Oud-Beijerland, The Netherlands
| | - Merel Hartog
- Department of Research, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands; (M.H.); (C.H.M.v.d.E.)
- Department of Rheumatology, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands;
| | - Alinda J. Berends
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands (J.G.)
| | - Marije I. Koenders
- Department of Rheumatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Calin D. Popa
- Department of Rheumatology, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands;
- Department of Rheumatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Herman Vromans
- Tiofarma B.V., 3261 ME Oud-Beijerland, The Netherlands
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands (J.G.)
- Danone/Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Cornelia H. M. van de Ende
- Department of Research, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands; (M.H.); (C.H.M.v.d.E.)
- Department of Rheumatology, Sint Maartenskliniek, 6574 NA Ubbergen, The Netherlands;
| | | | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands (J.G.)
| |
Collapse
|
8
|
Li H, Wang J, Hao L, Huang G. Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review. Biomedicines 2024; 12:2182. [PMID: 39457494 PMCID: PMC11505131 DOI: 10.3390/biomedicines12102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders-such as obesity, diabetes, and dyslipidemia-and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits. We further explore the role of GM dysbiosis in OA, elucidating how systemic inflammation, oxidative stress, and immune dysregulation driven by metabolic dysfunction and altered microbial metabolites contribute to OA progression. Additionally, the concept of "leaky gut syndrome" is discussed, illustrating how compromised gut barrier function exacerbates systemic and local joint inflammation. Therapeutic strategies targeting metabolic dysfunction and GM composition, including lifestyle interventions, pharmacological and non-pharmacological factors, and microbiota-targeted therapies, are reviewed for their potential to mitigate OA progression. Future research directions emphasize the importance of identifying novel biomarkers for OA risk and treatment response, adopting personalized treatment approaches, and integrating multiomics data to enhance our understanding of the metabolic-GM-OA connection and advance precision medicine in OA management.
Collapse
Affiliation(s)
- Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Guilin Huang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
9
|
Elsawy NA, Ibrahiem AH, Younis GA, Meheissen MA, Abdel-Fattah YH. Microbiome and Femoral Cartilage Thickness in Knee Osteoarthritis: Is There a Link? Cartilage 2024:19476035241276852. [PMID: 39235213 PMCID: PMC11569570 DOI: 10.1177/19476035241276852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE To assess the relation between microbiome and lipopolysaccharide (LPS), in the blood and synovial fluid (SF) with femoral cartilage thickness (FCT) measured by ultrasound (US) in knee osteoarthritis (KOA) patients. METHODS This cross-sectional study included 40 primary KOA patients recruited between September 2022 and June 2023. Age, gender, and body mass index (BMI) were recorded. Patients underwent full clinical examination, standing plain x-ray of the knee joint and knee US examination to measure medial, intercondylar, and lateral FCT. Microbiomes (specific bacterial phyla) were detected by real-time polymerase chain reaction and LPS levels were measured by enzyme-linked immunosorbent assay kit in the patients' serum and SF. RESULTS The patient's age ranged from 43 to 72 years. Most patients were females (72.5%), with a mean BMI of 35.8 ± 6.21 kg/m2. The mean medial, intercondylar, and lateral FCT were less than cut-off values. All 40 (100%) patients showed positive bacterial deoxyribonucleic acid (16S ribosomal RNA) in both blood and SF samples. Firmicutes was the most abundant in patients' blood (48.49%) and SF (63.59%). The mean serum LPS level was significantly higher compared to mean SF LPS (t =4.702, P < 0.001). There was a statistically significant negative correlation between lateral FCT and Firmicutes relative abundance in both patients' blood and SF. CONCLUSION Microbiome and LPS are present in the blood and SF of primary KOA patients. Microbiome (Firmicutes) was associated with decreased lateral FCT. This might provide a potential link between both systemic and local microbiomes and cartilage affection in KOA patients.
Collapse
Affiliation(s)
- Noha Abdelhalim Elsawy
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aya Hanafy Ibrahiem
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gihan Abdellatif Younis
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa Ahmed Meheissen
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yousra Hisham Abdel-Fattah
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
刘 佳, 缪 长, 徐 健, 余 伟, 陈 继, 唐 好, 刘 爱. [Causal relationship between gut microbiota and pigmented villonodular synovitis: a Mendelian randomization analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1397-1406. [PMID: 39051086 PMCID: PMC11270658 DOI: 10.12122/j.issn.1673-4254.2024.07.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate the causal relationship between gut microbiota and pigmented villonodular synovitis using Mendelian randomization analysis. METHODS We conducted a two-sample Mendelian randomization analysis to investigate the causal relationship between 211 gut microbiome taxa and pigmented villonodular synovitis based on GWAS summary data, with inverse variance weighted (IVW) analysis as the primary result and the other methods as supplementary analyses. The reliability of the results was tested using Cochran's Q test, MR-Egger regression, MR-PRESSO method and conditional Mendelian randomization analysis (cML-MA). RESULTS The increased abundance of Barnesiella (OR=3.12, 95% CI: 1.15-8.41, P=0.025) and Rumatococcaceae UCG010 (OR=4.03, 95% CI: 1.19-13.68, P=0.025) may increase the risk of pigmented villous nodular synovitis, and elevated abundance of Lachnospiraceae (OR=0.33, 95% CI: 0.12-0.91, P=0.032), Alistipes (OR=0.16, 95% CI: 0.05-0.53, P=0.003), Blautia (OR=0.20, 95% CI: 0.06-0.61, P=0.005), and Lachnospiraceae FCS020 group (OR=0.38, 95% CI: 0.15-0.94, P=0.036) and Ruminococcaceae UCG014 (OR=0.36, 95% CI: 0.14-0.94, P=0.037) were all associated with a reduced risk of pigmented villonodular synovitis, which were supported by the results of sensitivity analyses. Reverse Mendelian randomization analysis did not reveal any inverse causal association. CONCLUSION Increased abundance of specific intestinal microorganisms is associated with increased or decreased risks of developing hyperpigmented villonodular synovitis, and gut microbiota plays an important role in the pathogenesis of this disease.
Collapse
|
11
|
Li X, Chen W, Liu D, Chen P, Wang S, Li F, Chen Q, Lv S, Li F, Chen C, Guo S, Yuan W, Li P, Hu Z. Pathological progression of osteoarthritis: a perspective on subchondral bone. Front Med 2024; 18:237-257. [PMID: 38619691 DOI: 10.1007/s11684-024-1061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 04/16/2024]
Abstract
Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as "top to bottom." However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone's physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the "bottom-up" progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.
Collapse
Affiliation(s)
- Xuefei Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Liu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pinghua Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shiyun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangfang Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qian Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shunyi Lv
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangyu Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chen Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Suxia Guo
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Weina Yuan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pan Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhijun Hu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
12
|
Scorza C, Goncalves V, Finsterer J, Scorza F, Fonseca F. Exploring the Prospective Role of Propolis in Modifying Aging Hallmarks. Cells 2024; 13:390. [PMID: 38474354 PMCID: PMC10930781 DOI: 10.3390/cells13050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aging populations worldwide are placing age-related diseases at the forefront of the research agenda. The therapeutic potential of natural substances, especially propolis and its components, has led to these products being promising agents for alleviating several cellular and molecular-level changes associated with age-related diseases. With this in mind, scientists have introduced a contextual framework to guide future aging research, called the hallmarks of aging. This framework encompasses various mechanisms including genomic instability, epigenetic changes, mitochondrial dysfunction, inflammation, impaired nutrient sensing, and altered intercellular communication. Propolis, with its rich array of bioactive compounds, functions as a potent functional food, modulating metabolism, gut microbiota, inflammation, and immune response, offering significant health benefits. Studies emphasize propolis' properties, such as antitumor, cardioprotective, and neuroprotective effects, as well as its ability to mitigate inflammation, oxidative stress, DNA damage, and pathogenic gut bacteria growth. This article underscores current scientific evidence supporting propolis' role in controlling molecular and cellular characteristics linked to aging and its hallmarks, hypothesizing its potential in geroscience research. The aim is to discover novel therapeutic strategies to improve health and quality of life in older individuals, addressing existing deficits and perspectives in this research area.
Collapse
Affiliation(s)
- Carla Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | - Valeria Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | | | - Fúlvio Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.G.); (F.S.)
| | - Fernando Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil;
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| |
Collapse
|
13
|
Wu Y, Gong Y, Zhang Y, Li S, Wang C, Yuan Y, Lv X, Liu Y, Chen F, Chen S, Zhang F, Guo X, Wang X, Ning Y, Zhao H. Comparative Analysis of Gut Microbiota from Rats Induced by Se Deficiency and T-2 Toxin. Nutrients 2023; 15:5027. [PMID: 38140286 PMCID: PMC10745411 DOI: 10.3390/nu15245027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to analyze the differences in gut microbiota between selenium deficiency and T-2 toxin intervention rats. Knee joint and fecal samples of rats were collected. The pathological characteristics of knee cartilage were observed by safranin O/fast green staining. DNA was extracted from fecal samples for PCR amplification, and 16S rDNA sequencing was performed to compare the gut microbiota of rats. At the phylum level, Firmicutes (81.39% vs. 77.06%) and Bacteroidetes (11.11% vs. 14.85%) were dominant in the Se-deficient (SD) group and T-2 exposure (T-2) groups. At the genus level, the relative abundance of Ruminococcus_1 (12.62%) and Ruminococcaceae_UCG-005 (10.31%) in the SD group were higher. In the T-2 group, the relative abundance of Lactobacillus (11.71%) and Ruminococcaceae_UCG-005 (9.26%) were higher. At the species level, the high-quality bacteria in the SD group was Ruminococcus_1_unclassified, and Ruminococcaceae_UCG-005_unclassified in the T-2 group. Lactobacillus_sp__L_YJ and Lactobacillus_crispatus were the most significant biomarkers in the T-2 group. This study analyzed the different compositions of gut microbiota in rats induced by selenium deficiency and T-2 toxin, and revealed the changes in gut microbiota, so as to provide a certain basis for promoting the study of the pathogenesis of Kashin-Beck disease (KBD).
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Yi Gong
- MED-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Yu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Chaowei Wang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Yuequan Yuan
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Xi Lv
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi’an Jiaotong University, No.157 Xi Wu Road, Xi’an 710004, China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Y.W.); (Y.Z.); (Y.L.); (F.C.)
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an 710061, China; (S.L.); (C.W.); (Y.Y.); (X.L.); (S.C.); (F.Z.); (X.G.)
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an 710001, China
| |
Collapse
|
14
|
Morimoto T, Kobayashi T, Kakiuchi T, Esaki M, Tsukamoto M, Yoshihara T, Hirata H, Yabuki S, Mawatari M. Gut-spine axis: a possible correlation between gut microbiota and spinal degenerative diseases. Front Microbiol 2023; 14:1290858. [PMID: 37965563 PMCID: PMC10641865 DOI: 10.3389/fmicb.2023.1290858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
As society ages, the number of patients with spinal degenerative diseases (SDD) is increasing, posing a major socioeconomic problem for patients and their families. SDD refers to a generic term for degenerative diseases of spinal structures, including osteoporosis (bone), facet osteoarthritis (joint), intervertebral disk degeneration (disk), lumbar spinal canal stenosis (yellow ligament), and spinal sarcopenia (muscle). We propose the term "gut-spine axis" for the first time, given the influence of gut microbiota (GM) on the metabolic, immune, and endocrine environment in hosts through various potential mechanisms. A close cross-talk is noted between the aforementioned spinal components and degenerative diseases. This review outlines the nature and role of GM, highlighting GM abnormalities associated with the degeneration of spinal components. It also summarizes the evidence linking GM to various SDD. The gut-spine axis perspective can provide novel insights into the pathogenesis and treatment of SDD.
Collapse
Affiliation(s)
- Tadatsugu Morimoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takaomi Kobayashi
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshihiko Kakiuchi
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Motohiro Esaki
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tomohito Yoshihara
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Shoji Yabuki
- Fukushima Medical University School of Health Sciences, Fukushima, Japan
| | - Masaaki Mawatari
- Department of Orthopedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
15
|
Pulling BW, Braithwaite FA, Butler DS, Vogelzang AR, Moseley GL, Catley MJ, Murray CM, Stanton TR. Item development and pre-testing of an Osteoarthritis Conceptualisation Questionnaire to assess knowledge and beliefs in people with knee pain. PLoS One 2023; 18:e0286114. [PMID: 37773973 PMCID: PMC10540977 DOI: 10.1371/journal.pone.0286114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2023] [Indexed: 10/01/2023] Open
Abstract
Many people with osteoarthritis hold beliefs that physical activity is unhelpful or dangerous for their joints, despite high-level evidence suggesting otherwise. Recent advances in scientific understanding of osteoarthritis have led to new treatments that target an individual's understanding both of their condition and the importance of best-practice management strategies, such as physical activity. Conceptual change has been proposed as an important mechanism by which cognitive interventions, such as pain science education, may reduce pain and improve function. There are currently no specific assessments of osteoarthritis conceptualisation to determine the effectiveness of cognitive interventions in effecting conceptual change in people with knee osteoarthritis. Therefore, we aimed to develop an item bank, as the first phase of developing a questionnaire to assess people's conceptualisations about their knee osteoarthritis and the role of physical activity in managing their osteoarthritis. Using a guideline-informed mixed method design, a panel of experts identified domains relevant to conceptualisation about knee osteoarthritis and physical activity (knowledge, beliefs, understanding) based upon available evidence. The panel created 33 provisional items. Qualitative and quantitative pretesting were used to explore how people with knee osteoarthritis understood the provisional items. Eighteen people with knee osteoarthritis completed cognitive interviews about their comprehension of the wording/grammar of each provisional item. The provisional item bank was field tested with 100 people with knee osteoarthritis. Readability was adequate with a Flesch reading ease score of 57.7. Although 14.7% used the 'Strongly agree' response option, only 3.4% of responses used the 'Strongly disagree' option, suggesting possible response bias. Predictive quality testing identified relevant modifications to the questionnaire instructions. The panel of experts appraised the qualitative data to assess whether and how items should be modified to address the problems identified, resulting in a final item bank of 45 items that can be evaluated for psychometric properties in future research.
Collapse
Affiliation(s)
- Brian W. Pulling
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Felicity A. Braithwaite
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - David S. Butler
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
| | - Anna R. Vogelzang
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
| | - G. Lorimer Moseley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
| | - Mark J. Catley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
| | - Carolyn M. Murray
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
| | - Tasha R. Stanton
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
- Persistent Pain Research Group, Hopwood Centre for Neurobiology, South Australia Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Jiménez-Muro M, Soriano-Romaní L, Mora G, Ricciardelli D, Nieto JA. The microbiota-metabolic syndrome axis as a promoter of metabolic osteoarthritis. Life Sci 2023; 329:121944. [PMID: 37453577 DOI: 10.1016/j.lfs.2023.121944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The relation between obesity and osteoarthritis (OA) development has been traditionally explained as consequence of the excessive joint effort derived of overweight. However, in the last two decades a metabolic OA has been suggested through diverse molecular mechanism implying metabolic syndrome, although more investigation must be conducted to elucidate it. Metabolic syndrome is responsible of the release of diverse inflammatory cytokines, specially the increased adipokine in obesity, causing a chronic low-grade inflammatory status that alters the joint homeostasis. In this scenario, the microbiota dysbiosis contribute by worsening the low-grade chronic inflammation or causing metabolic disorders mediated by endotoxemia generated by an increased lipopolysaccharides intake. This results in joint inflammation and cartilage degradation, which contributes to the development of OA. Also, the insulin resistance provoked by type 2 Diabetes contributes to the OA development. When intake patterns are considered, some coincidences can be pointed between the food patterns associated to the metabolic syndrome and the food patterns associated to OA development. Therefore, these coincidences support the idea of a molecular mechanism of the OA development caused by the molecular mechanism generated under the metabolic syndrome status. This review points the relation between metabolic syndrome and OA, showing the connected molecular mechanisms between both pathologies as well as the shared dietary patterns that promote or prevent both pathologies.
Collapse
Affiliation(s)
- Marta Jiménez-Muro
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Laura Soriano-Romaní
- ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980 Paterna, Valencia, Spain
| | - Gonzalo Mora
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Diego Ricciardelli
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Juan Antonio Nieto
- ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980 Paterna, Valencia, Spain; Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain.
| |
Collapse
|
17
|
Oh DK, Na HS, Jhun JY, Lee JS, Um IG, Lee SY, Park MS, Cho ML, Park SH. Bifidobacterium longum BORI inhibits pain behavior and chondrocyte death, and attenuates osteoarthritis progression. PLoS One 2023; 18:e0286456. [PMID: 37352198 PMCID: PMC10289443 DOI: 10.1371/journal.pone.0286456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 06/25/2023] Open
Abstract
Osteoarthritis (OA), the most common form of arthritis, is characterized by pain and cartilage damage; it usually exhibits gradual development. However, the pathogenesis of OA remains unclear. This study was undertaken to improve the understanding and treatment of OA. OA was induced in 7-week-old Wistar rats by intra-articular injection of monosodium iodoacetate (MIA); subsequently, the rats underwent oral administration of Bifidobacterium longum BORI (B. BORI). The effects of B. BORI were examined in chondrocytes and an MIA-induced OA rat model. In the rats, B. BORI-mediated effects on pain severity, cartilage destruction, and inflammation were recorded. Additional effects on mRNA and cytokine secretion were analyzed by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Paw withdrawal threshold, paw withdrawal latency, and weight-bearing assessments revealed that pain severity in MIA-induced OA rats was decreased after B. BORI treatment. Histopathology analyses and three-dimensional surface renderings of rat femurs from micro-computed tomography images revealed cartilage protection and cartilage loss inhibition effects in B. BORI-treated OA rats. Immunohistochemical analyses of inflammatory cytokines and catabolic markers (e.g., matrix metalloproteinases) showed that the expression levels of both were reduced in tissue from B. BORI-treated OA rats. Furthermore, B. BORI treatment decreased the expression levels of the inflammatory cytokine monocyte chemoattractant protein-1 and inflammatory gene factors (e.g., inflammatory cell death markers) in chondrocytes. The findings indicate that oral administration of B. BORI has therapeutic potential in terms of reducing pain, progression, and inflammation in OA.
Collapse
Affiliation(s)
- Dong Keon Oh
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sik Na
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Joo Yeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Jeong Su Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - In Gyu Um
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Seung Yoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | | | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Sandhu A, Rockel JS, Lively S, Kapoor M. Emerging molecular biomarkers in osteoarthritis pathology. Ther Adv Musculoskelet Dis 2023; 15:1759720X231177116. [PMID: 37359177 PMCID: PMC10288416 DOI: 10.1177/1759720x231177116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/24/2023] [Indexed: 06/28/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis resulting in joint discomfort and disability, culminating in decline in life quality. Attention has been drawn in recent years to disease-associated molecular biomarkers found in readily accessible biofluids due to low invasiveness of acquisition and their potential to detect early pathological molecular changes not observed with traditional imaging methodology. These biochemical markers of OA have been found in synovial fluid, blood, and urine. They include emerging molecular classes, such as metabolites and noncoding RNAs, as well as classical biomarkers, like inflammatory mediators and by-products of degradative processes involving articular cartilage. Although blood-based biomarkers tend to be most studied, the use of synovial fluid, a more isolated biofluid in the synovial joint, and urine as an excreted fluid containing OA biomarkers can offer valuable information on local and overall disease activity, respectively. Furthermore, larger clinical studies are required to determine relationships between biomarkers in different biofluids, and their impacts on patient measures of OA. This narrative review provides a concise overview of recent studies of OA using these four classes of biomarkers as potential biomarker for measuring disease incidence, staging, prognosis, and therapeutic intervention efficacy.
Collapse
Affiliation(s)
- Amit Sandhu
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jason S. Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, 60 Leonard Avenue, 5th Floor Krembil Discovery Tower, Toronto, ON M5G 2C4, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Wang X, Wu Y, Liu Y, Chen F, Chen S, Zhang F, Li S, Wang C, Gong Y, Huang R, Hu M, Ning Y, Zhao H, Guo X. Altered gut microbiome profile in patients with knee osteoarthritis. Front Microbiol 2023; 14:1153424. [PMID: 37250055 PMCID: PMC10213253 DOI: 10.3389/fmicb.2023.1153424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a kind of chronic, degenerative disorder with unknown causes. In this study, we aimed to improve our understanding of the gut microbiota profile in patients with knee OA. Methods 16S rDNA gene sequencing was performed to detect the gut microbiota in fecal samples collected from the patients with OA (n = 32) and normal control (NC, n = 57). Then the metagenomic sequencing was used to identify the genes or functions linked with gut microbial changes at the species level in the fecal samples from patients with OA and NC groups. Results The Proteobacteria was identified as dominant bacteria in OA group. We identified 81 genera resulted significantly different in abundance between OA and NC. The abundance of Agathobacter, Ruminococcus, Roseburia, Subdoligranulum, and Lactobacillus showed significant decrease in the OA compared to the NC. The abundance of genera Prevotella_7, Clostridium, Flavonifractor and Klebsiella were increasing in the OA group, and the families Lactobacillaceae, Christensenellaceae, Clostridiaceae_1 and Acidaminococcaceae were increasing in the NC. The metagenomic sequencing showed that the abundance of Bacteroides stercoris, Bacteroides vulgatus and Bacteroides uniformis at the species level were significantly decreasing in the OA, and the abundance of Escherichia coli, Klebsiella pneumoniae, Shigella flexneri and Streptococcus salivarius were significantly increased in OA. Discussion The results of our study interpret a comprehensive profile of the gut microbiota in patients with knee OA and offer the evidence that the cartilage-gut-microbiome axis could play a crucial role in underlying the mechanisms and pathogenesis of OA.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Chaowei Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Fernández-Rodríguez D, Baker CM, Tarabichi S, Johnson EE, Ciccotti MG, Parvizi J. Human Knee Has A Distinct Microbiome: Implications for Periprosthetic Joint Infection. J Arthroplasty 2023; 38:S2-S6. [PMID: 37003456 DOI: 10.1016/j.arth.2023.03.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
INTRODUCTION Pathogens causing prosthetic joint infection are thought to gain access to the knee during surgery or from a remote site in the body. Recent studies have shown that there is a distinct microbiome in various sites of the body. This prospective study, and first of its kind, was set up to investigate the presence of possible microbiome in human knee and compare the profile in different knee conditions. METHODS This transversal study prospectively obtained synovial fluid from 65 knees (55 patients) with various conditions that included normal knee, osteoarthritis, aseptic revision, and those undergoing revision for periprosthetic joint infection (PJI). The contralateral knee of patients who had a PJI were also aspirated to compare the composition of the PJI knee with uninfected contralateral knee. A minimum of 3 milliliters (ml) of synovial fluid was collected per joint. Then, the samples were aliquoted for culture and next generation sequencing (NGS) analysis. RESULTS The highest number of species was found in native osteoarthritic knees (P≤0.035). Cutibacterium, Staphylococcus, and Paracoccus species were dominant in native non-osteoarthritic knees, and meanwhile a markedly high abundance of Proteobacteria was observed in the osteoarthritic joints. Moreover, the contralateral and aseptic revision knees showed a similar trend in bacterial composition (P=0.75). The NGS analysis of patients who had PJI diagnosis, confirmed the culture results. DISCUSSION/CONCLUSION Distinct knee microbiome profiles can be detected in patients who have osteoarthritis and other knee conditions. The distinct microbiome in the knee joint and the close host-microbe relationships within the knee joint may play a decisive role in the development of osteoarthritis and periprosthetic joint infection.
Collapse
Affiliation(s)
- Diana Fernández-Rodríguez
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA; Plan de Estudios Combinados en Medicina (PECEM) MD/PhD, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Colin M Baker
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | - Saad Tarabichi
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | - Emma E Johnson
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA
| | | | - Javad Parvizi
- Rothman Orthopaedic Institute, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13:1092118. [PMID: 36779190 PMCID: PMC9911673 DOI: 10.3389/fcimb.2023.1092118] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of immune tolerance and chronic inflammation. It is pathogenesis complex and includes interaction between genetic and environmental factors. Current evidence supports the hypothesis that gut dysbiosis may play the role of environmental triggers of arthritis in animals and humans. Progress in the understanding of the gut microbiome and RA. has been remarkable in the last decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the immune system and cause persistent immune inflammatory responses. Furthermore, gut dysbiosis could induce alterations in intestinal permeability, which have been found to predate arthritis onset. In contrast, metabolites derived from the intestinal microbiota have an immunomodulatory and anti-inflammatory effect. However, the precise underlying mechanisms by which gut dysbiosis induces the development of arthritis remain elusive. This review aimed to highlight the mechanisms by which gut dysbiosis could contribute to the pathogenesis of RA. The overall data showed that gut dysbiosis could contribute to RA pathogenesis by multiple pathways, including alterations in gut barrier function, molecular mimicry, gut dysbiosis influences the activation and the differentiation of innate and acquired immune cells, cross-talk between gut microbiota-derived metabolites and immune cells, and alterations in the microenvironment. The relative weight of each of these mechanisms in RA pathogenesis remains uncertain. Recent studies showed a substantial role for gut microbiota-derived metabolites pathway, especially butyrate, in the RA pathogenesis.
Collapse
Affiliation(s)
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, Department of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Alvaro José Montiel-Jarquín
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades de Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriel Horta-Baas
- Rheumatology Service, Internal Medicine Department, Instituto Mexicano del Seguro Social, Merida, Mexico
| |
Collapse
|
22
|
王 欣, 杜 信, 周 学. [New Developments in Research on the Relationship Between Osteoarthritis and Oral-Gut Microbes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:49-53. [PMID: 36647642 PMCID: PMC10409032 DOI: 10.12182/20230160508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Osteoarthritis (OA) is the most common type of arthritis. The prevalence and the incidence of OA have been continuously growing along with increased life expectancy and the emerging problem of an aging population around the global. Reported findings have confirmed that osteoarthritis is a chronic inflammatory disease and its major risk factors included genetic susceptibility, aging, and environmental factors. However, the pathogenic mechanisms of osteoarthritis remain unclear. Recent studies have shown that oral-gut microbes are associated with the onset and development of osteoarthritis and may provide new targets for osteoarthritis treatment. Herein, we reviewed the latest developments in research on the relationship between oral-gut microbes and the onset and development of osteoarthritis, with a view to creating new perspectives for further elucidation of the pathogenesis of osteoarthritis and exploration of effective treatments in the future.
Collapse
Affiliation(s)
- 欣妍 王
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 信眉 杜
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
罗 媚, 杜 信, 周 学. [Developments in Research on the Relationship Between Matrix Metalloproteinases and Osteoarthritis]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:77-82. [PMID: 36647647 PMCID: PMC10409029 DOI: 10.12182/20230160110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 01/18/2023]
Abstract
Matrix metalloproteinases (MMPs) acquired their names because they depend on metal ions such as Ca 2+ and Zn 2+ as their cofactors. Members of this family of proteins share a similar structure consisting of five functionally distinct structural domains. MMPs, including MMP-1, MMP-3, MMP-9, and MMP-13, are key substances that promote cartilage matrix degradation and play an important role in the occurrence and progression of osteoarthritis (OA). MMPs boost the development of OA through the degradation of extracellular matrix proteins of chondrocytes, the promotion of inflammation, and other mechanisms, and are hence attracting extensive and increasing attention from the medical community. OA is a common degenerative disease that occurs in the joints and is associated with aging, metabolism, infections, genetics, exercise, and other predisposing factors. The pathological changes it causes can lead to a series of clinical symptoms such as joint pain, morning stiffness, and restricted joint movement, severely affecting patients' quality of life. The pathogenic mechanism of this highly prevalent disease is still unclear. At present, there is no effective treatment available for disease improvement. In the future, selective inhibition of MMPs, the key enzymes, may become an effective therapeutic approach. Focusing on the pathogenic effects of MMPs in OA, we herein reviewed the latest findings on the role of MMPs in the occurrence and progression of OA.
Collapse
Affiliation(s)
- 媚 罗
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 信眉 杜
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Yang J, Liu W. The Role of AIM2 Inflammasome in Knee Osteoarthritis. J Inflamm Res 2022; 15:6453-6461. [PMID: 36467990 PMCID: PMC9717587 DOI: 10.2147/jir.s392652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Knee osteoarthritis (KOA), whose prevalence keeps rising, is still unsolved pathobiological/therapeutical problem. Historically, knee osteoarthritis was thought to be a "wear and tear" disease, while recent etiology hypotheses stressed it as a chronic, low-grade inflammatory disease. Inflammasomes mediated by the innate immunity systems have an important role in inflammatory diseases including KOA. A deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder degeneration. However, known inflammasomes are numerous and can also trigger IL-1β/IL-18 production and cells' pyroptotic death. Among them, AIM2 inflammasome is involved in key aspects of various acute and chronic inflammatory diseases. Therefore, while presently leaving out little-studied inflammasomes in KOA, this review focuses on the AIM2 inflammasomes that participate in KOA's complex mechanisms in conjunction with the activation of AIM2 inflammasomes in other diseases combined with the current studies on KOA mechanisms. Although human-specific data about it are relatively scant, we stress that only a holistic view including several inflammasomes including AIM2 inflammasome and other potential pathogenetic drivers will lead to successful therapy for knee osteoarthritis.
Collapse
Affiliation(s)
- Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510095, People’s Republic of China
| | - Wengang Liu
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, People’s Republic of China
- Correspondence: Wengang Liu, Orthopedics Department, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, People’s Republic of China, Email
| |
Collapse
|
25
|
Golovach I, Rekalov D. Osteoarthritis and intestinal microbiota: pathogenetic significance of the joint — gut — microbiome axis. PAIN, JOINTS, SPINE 2022; 12:72-80. [DOI: 10.22141/pjs.12.2.2022.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Introduction. Osteoarthritis (ОА) is a disease leading to joint degeneration, accompanied by constant pain, inflammation, and functional failure of the joints. Although many factors contribute to the development of ОА, the gut microbiome has recently emerged as an important pathogenic factor in ОА initiation and progression. The purpose of the study was to analyze modern literature data regarding the link between the gut microbiome and ОА. Materials and methods. The available data of clinical studies and scientific reviews were analyzed, and modern meta-analyses on the influence of gut microbiota on the development and progression of ОА were evaluated. Results. Gut microbiota is responsible for a number of metabolic, immunological, and structural and neurological functions, potentially elucidating the heterogeneity of OA phenotypes and formation of individual features of the course of the disease. Numerous studies support the hypothesis of the existence of a gut – joint axis and the interaction between gut microbiota and OA-relevant risk factors. The proposed concept begins with intestinal disruption and dysbacteriosis, disruption of microbiota homeostasis, continuous changes in microbial composition and genomic plasticity for optimal adaptation of bacteria to the host environment, accompanied by both adaptive and innate immune responses due to translocation of bacteria and bacterial products into the bloodstream to the joint. This cascade ultimately leads to inflammation in the joint and contributes to the development and progression of OA. Interpretion of the potential mechanisms of OA pathogenesis is essential for the development of new preventive and disease-modifying therapeutic interventions. In addition, gut microbiota is also a potential biomarker related to inflammation and gut dysbiosis to predict the progression of ОА and monitor the effectiveness of therapeutic interventions. Conclusions. In this review, we summarized research data that are supporting the hypothesis of a “joint – gut – microbiota axis” and the interaction between gut microbiota and the OA-relevant factors, including age, gender, metabolism, obesity.
Collapse
|
26
|
Ning Y, Hu M, Gong Y, Huang R, Xu K, Chen S, Zhang F, Liu Y, Chen F, Chang Y, Zhao G, Li C, Zhou R, Lammi MJ, Guo X, Wang X. Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Res Ther 2022; 24:129. [PMID: 35637503 PMCID: PMC9150333 DOI: 10.1186/s13075-022-02819-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. Methods Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. Results The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. Conclusion Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02819-5.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Cheng Li
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Rong Zhou
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China. .,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
27
|
Xu T, Yang D, Liu K, Gao Q, Liu Z, Li G. Miya Improves Osteoarthritis Characteristics via the Gut-Muscle-Joint Axis According to Multi-Omics Analyses. Front Pharmacol 2022; 13:816891. [PMID: 35668932 PMCID: PMC9163738 DOI: 10.3389/fphar.2022.816891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The gut microbiota is associated with osteoarthritis (OA) progression. Miya (MY) is a product made from Clostridium butyricum, a member of gut microbiota. This study was conducted to investigate the effects of MY on OA and its underlying mechanisms. Methods: An OA rat model was established, and MY was used to treat the rats for 4 weeks. Knee joint samples from the rats were stained with hematoxylin-eosin, and fecal samples from the OA and OA+MY groups were subjected to 16S rDNA sequencing and metabolomic analysis. The contents of succinate dehydrogenase and muscle glycogen in the tibia muscle were determined, and related genes and proteins were detected using quantitative reverse transcription polymerase chain reaction and western blotting. Results: Hematoxylin and eosin staining showed that treatment with MY alleviated the symptoms of OA. According to the sequencing results, MY significantly increased the Chao1, Shannon, and Pielou evenness values compared to those in the untreated group. At the genus level, the abundances of Prevotella, Ruminococcus, Desulfovibrio, Shigella, Helicobacter, and Streptococcus were higher in the OA group, whereas Lactobacillus, Oscillospira, Clostridium, and Coprococcus were enriched after MY treatment. Metabolomic analysis revealed 395 differentially expressed metabolites. Additionally, MY treatment significantly increased the succinate dehydrogenase and muscle glycogen contents in the muscle caused by OA (p > 0.05). Finally, AMPK, Tfam, Myod, Ldh, Chrna1, Chrnd, Rapsyn, and Agrin were significantly downregulated in the muscles of OA mice, whereas Lcad, Mcad, and IL-1β were upregulated; MY significantly reversed these trends induced by OA. Conclusions: MY may promote the repair of joint damage and protect against OA via the gut-muscle-joint axis.
Collapse
Affiliation(s)
- Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Yang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaiyuan Liu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiuming Gao
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongchen Liu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhongchen Liu, ; Guodong Li,
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhongchen Liu, ; Guodong Li,
| |
Collapse
|
28
|
Uchida-Fukuhara Y, Hattori T, Fu S, Kondo S, Kuwahara M, Fukuhara D, Islam MM, Kataoka K, Ekuni D, Kubota S, Morita M, Iikegame M, Okamura H. Maternal Gut Microbiome Decelerates Fetal Endochondral Bone Formation by Inducing Inflammatory Reaction. Microorganisms 2022; 10:microorganisms10051000. [PMID: 35630443 PMCID: PMC9147398 DOI: 10.3390/microorganisms10051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the effect of the maternal gut microbiome on fetal endochondral bone formation, fetuses at embryonic day 18 were obtained from germ-free (GF) and specific-pathogen-free (SPF) pregnant mothers. Skeletal preparation of the fetuses’ whole bodies did not show significant morphological alterations; however, micro-CT analysis of the tibiae showed a lower bone volume fraction in the SPF tibia. Primary cultured chondrocytes from fetal SPF rib cages showed a lower cell proliferation and lower accumulation of the extracellular matrix. RNA-sequencing analysis showed the induction of inflammation-associated genes such as the interleukin (IL) 17 receptor, IL 6, and immune-response genes in SPF chondrocytes. These data indicate that the maternal gut microbiome in SPF mice affects fetal embryonic endochondral ossification, possibly by changing the expression of genes related to inflammation and the immune response in fetal cartilage. The gut microbiome may modify endochondral ossification in the fetal chondrocytes passing through the placenta.
Collapse
Affiliation(s)
- Yoko Uchida-Fukuhara
- Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (M.I.); (H.O.)
- Correspondence: ; Tel.: +81-86-235-6632; Fax: +81-86-235-6634
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (T.H.); (S.F.); (S.K.); (M.K.); (S.K.)
| | - Shanqi Fu
- Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (T.H.); (S.F.); (S.K.); (M.K.); (S.K.)
| | - Sei Kondo
- Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (T.H.); (S.F.); (S.K.); (M.K.); (S.K.)
| | - Miho Kuwahara
- Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (T.H.); (S.F.); (S.K.); (M.K.); (S.K.)
| | - Daiki Fukuhara
- Department of Preventive Dentistry, Okayama University Hospital, Okayama 700-0914, Japan;
| | - Md Monirul Islam
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.M.I.); (K.K.); (D.E.); (M.M.)
| | - Kota Kataoka
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.M.I.); (K.K.); (D.E.); (M.M.)
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.M.I.); (K.K.); (D.E.); (M.M.)
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (T.H.); (S.F.); (S.K.); (M.K.); (S.K.)
| | - Manabu Morita
- Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (M.M.I.); (K.K.); (D.E.); (M.M.)
| | - Mika Iikegame
- Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (M.I.); (H.O.)
| | - Hirohiko Okamura
- Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (M.I.); (H.O.)
| |
Collapse
|
29
|
Lian WS, Wang FS, Chen YS, Tsai MH, Chao HR, Jahr H, Wu RW, Ko JY. Gut Microbiota Ecosystem Governance of Host Inflammation, Mitochondrial Respiration and Skeletal Homeostasis. Biomedicines 2022; 10:biomedicines10040860. [PMID: 35453611 PMCID: PMC9030723 DOI: 10.3390/biomedicines10040860] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis and osteoarthritis account for the leading causes of musculoskeletal dysfunction in older adults. Senescent chondrocyte overburden, inflammation, oxidative stress, subcellular organelle dysfunction, and genomic instability are prominent features of these age-mediated skeletal diseases. Age-related intestinal disorders and gut dysbiosis contribute to host tissue inflammation and oxidative stress by affecting host immune responses and cell metabolism. Dysregulation of gut microflora correlates with development of osteoarthritis and osteoporosis in humans and rodents. Intestinal microorganisms produce metabolites, including short-chain fatty acids, bile acids, trimethylamine N-oxide, and liposaccharides, affecting mitochondrial function, metabolism, biogenesis, autophagy, and redox reactions in chondrocytes and bone cells to regulate joint and bone tissue homeostasis. Modulating the abundance of Lactobacillus and Bifidobacterium, or the ratio of Firmicutes and Bacteroidetes, in the gut microenvironment by probiotics or fecal microbiota transplantation is advantageous to suppress age-induced chronic inflammation and oxidative damage in musculoskeletal tissue. Supplementation with gut microbiota-derived metabolites potentially slows down development of osteoarthritis and osteoporosis. This review provides latest molecular and cellular insights into the biological significance of gut microorganisms and primary and secondary metabolites important to cartilage and bone integrity. It further highlights treatment options with probiotics or metabolites for modulating the progression of these two common skeletal disorders.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research and Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.); (Y.-S.C.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
| | - How-Ran Chao
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan;
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, No.1, Shuefu Road, Pingtung 91201, Taiwan
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Correspondence: ; Tel.: +88-67-731-7123
| |
Collapse
|
30
|
Zhang H, Qi L, Shen Q, Wang R, Guo Y, Zhang C, Richel A. Comparative Analysis of the Bioactive Compounds in Chicken Cartilage: Protective Effects of Chondroitin Sulfate and Type II Collagen Peptides Against Osteoarthritis Involve Gut Microbiota. Front Nutr 2022; 9:843360. [PMID: 35433786 PMCID: PMC9005812 DOI: 10.3389/fnut.2022.843360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
This study was designed to explore osteoarthritis (OA) treatment from bioactive compounds of chicken cartilage food supplements. The OA rat model induced by sodium iodoacetate was used to evaluate the treatment effect in vivo. In this study, we used animal experiments to show that oral chondroitin sulfate (CS), cartilage powder, and type II collagen peptides could increase the athletic ability of rats and reduce inflammatory cytokine levels in serum or synovial fluid, including prostaglandin E2, tumor necrosis factor-α, interleukin (IL) 1β, IL-6, and IL-17. CS displayed the best treatment effect against OA. The morphological structure of articular cartilage indicated that CS could significantly improve cartilage tissue morphology and reduce OA score. Oral CS slowed down the development of OA by modulating gut microbiota. These results provided a useful scientific basis for the high-value utilization of chicken cartilage.
Collapse
Affiliation(s)
- Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Ruiqi Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Chunhui Zhang
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
31
|
Butyrate Inhibits Osteoclast Activity In Vitro and Regulates Systemic Inflammation and Bone Healing in a Murine Osteotomy Model Compared to Antibiotic-Treated Mice. Mediators Inflamm 2021; 2021:8817421. [PMID: 34924815 PMCID: PMC8683197 DOI: 10.1155/2021/8817421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
Short-chain fatty acids (SCFAs) produced by the gut microbiota have previously been demonstrated to play a role in numerous chronic inflammatory diseases and to be key mediators in the gut-bone signaling axis. However, the role of SCFAs in bone fracture healing and its impact on systemic inflammation during the regeneration process has not been extensively investigated yet. The aim of this study was to first determine the effects of the SCFA butyrate on key cells involved in fracture healing in vitro, namely, osteoclasts and mesenchymal stromal cells (MSCs), and second, to assess if butyrate supplementation or antibiotic therapy impacts bone healing, systemic immune status, and inflammation levels in a murine osteotomy model. Butyrate significantly reduced osteoclast formation and resorption activity in a dose-dependent manner and displayed a trend for increased calcium deposits in MSC cultures. Numerous genes associated with osteoclast differentiation were differentially expressed in osteoclast precursor cells upon butyrate exposure. In vivo, antibiotic-treated mice showed reduced SCFA levels in the cecum, as well as a distinct gut microbiome composition. Furthermore, circulating proinflammatory TNFα, IL-17a, and IL-17f levels, and bone preserving osteoprotegerin (OPG), were increased in antibiotic-treated mice compared to controls. Antibiotic-treated mice also displayed a trend towards delayed bone healing as revealed by reduced mineral apposition at the defect site and higher circulating levels of the bone turnover marker PINP. Butyrate supplementation resulted in a lower abundance of monocyte/macrophages in the bone marrow, as well as reduced circulating proinflammatory IL-6 levels compared to antibiotic- and control-treated mice. In conclusion, this study supports our hypothesis that SCFAs, in particular butyrate, are important contributors to successful bone healing by modulating key cells involved in fracture healing as well as systemic inflammation and immune responses.
Collapse
|
32
|
Lan H, Hong W, Qian D, Peng F, Li H, Liang C, Du M, Gu J, Mai J, Bai B, Peng G. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis. Bioengineered 2021; 12:6240-6250. [PMID: 34486477 PMCID: PMC8806632 DOI: 10.1080/21655979.2021.1969194] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although the mechanism of osteoarthritis (OA) has been widely studied and the use of quercetin for OA therapy is well documented, the relevant characteristics of the microbiome and metabolism remain unclear. This study reports changes in the gut microbiota and metabolism during quercetin therapy for OA in a rat model and provides an integrative analysis of the biomechanism. In this study, the rats were categorized into 3 different groups: the OA model, quercetin treatment, and control groups. The OA rats was conducted using a monoiodoacetate (MIA) injection protocol. The rats in the quercetin group received daily intragastric administration of quercetin from day 1 to day 28. Stool samples were collected, and DNA was extracted. We used an integrated approach that combined the sequencing of whole 16S rRNA, short-chain fatty acid (SCFA) measurements and metabolomics analysis by mass spectrometry (MS) to characterize the functional impact of quercetin on the gut microbiota and metabolism in a rat model of OA. The use of quercetin partially abrogated intestinal flora disorder and reversed fecal metabolite abnormalities. Compared with the control rats, the OA rats showed differences at both the class level (Clostridia, Bacteroidia, and Bacilli) and the genus level (Lactobacillus and unidentified Ruminococcaceae). Acetic acid, propionic acid and 24 metabolites were significantly altered among the three groups. However, the changes were significantly abrogated in quercetin-treated OA rats. Consequently, this study provided important evidence regarding perturbations of the gut microbiome and the function of these changes in a potential new mechanism of quercetin treatment.
Collapse
Affiliation(s)
- Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| | - Haiqing Li
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Min Du
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinlan Gu
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junxuan Mai
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bo Bai
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Gongyong Peng
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Collins KH, Schwartz DJ, Lenz KL, Harris CA, Guilak F. Taxonomic changes in the gut microbiota are associated with cartilage damage independent of adiposity, high fat diet, and joint injury. Sci Rep 2021; 11:14560. [PMID: 34267289 PMCID: PMC8282619 DOI: 10.1038/s41598-021-94125-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Drew J Schwartz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO, USA
- Early Clinical Development & Experimental Sciences, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA.
- Shriners Hospitals for Children, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.
| |
Collapse
|
34
|
Shirinsky I, Shirinsky V, Filatova K, Yu Z, Chi Y, Thompson JY, Bleakley C. Curcuma longa (turmeric) or its active ingredients for osteoarthritis. Hippokratia 2021. [DOI: 10.1002/14651858.cd014683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ivan Shirinsky
- Laboratory of Clinical Immunopharmacology; Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology; Novosibirsk Russian Federation
| | - Valery Shirinsky
- Laboratory of Clinical Immunopharmacology; Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology; Novosibirsk Russian Federation
| | - Katerina Filatova
- Laboratory of Clinical Immunopharmacology; Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology; Novosibirsk Russian Federation
| | - Zeyu Yu
- Centre for Evidence-Based Chinese Medicine; Beijing University of Chinese Medicine; Beijing China
| | - Yuan Chi
- Yealth Network; Beijing Yealth Technology Co., Ltd; Beijing China
| | - Jacqueline Y Thompson
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing; University of Birmingham; Birmingham UK
| | | |
Collapse
|
35
|
Kim JW, Ju JH. Gut Microbiome Bridges Over Troubled Joints. JOURNAL OF RHEUMATIC DISEASES 2021; 28:111-112. [PMID: 37475991 PMCID: PMC10324901 DOI: 10.4078/jrd.2021.28.3.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 07/22/2023]
Affiliation(s)
- Ji Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
36
|
Oral Administration of Lactobacillus rhamnosus Ameliorates the Progression of Osteoarthritis by Inhibiting Joint Pain and Inflammation. Cells 2021; 10:cells10051057. [PMID: 33946919 PMCID: PMC8146916 DOI: 10.3390/cells10051057] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and age-related degenerative joint disorder, which adversely affects quality of life and causes disability. However, the pathogenesis of OA remains unclear. This study was performed to examine the effects of Lactobacillus rhamnosus in OA progression. OA was induced in 6-week-old male Wistar rats by monosodium iodoacetate (MIA) injection, and the effects of oral administration of L. rhamnosus were examined in this OA rat model. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. The small intestines were isolated from OA rats, and the intestinal structure and inflammation were measured. Protein expression in the dorsal root ganglion was analyzed by immunohistochemistry. The effects of L. rhamnosus on mRNA and protein expression in chondrocytes stimulated with interleukin (IL)-1β and lipopolysaccharide (LPS) were analyzed by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Pain severity was decreased in L. rhamnosus-treated MIA-induced OA rats. The levels of expression of MCP-1, a potential inflammatory cytokine, and its receptor, CCR2, were decreased, and GABA and PPAR-γ expression were increased in L. rhamnosus-treated OA rats. The inflammation, as determined by IL-1β, and cartilage destruction, as determined by MMP3, were also significantly decreased by L. rhamnosus in OA rats. Additionally, intestinal damage and inflammation were improved by L. rhamnosus. In human OA chondrocytes, TIMP1, TIMP3, SOX9, and COL2A1 which are tissue inhibitors of MMP, and IL-10, an anti-inflammatory cytokine, were increased by L. rhamnosus. L. rhamnosus treatment led to decreased pain severity and cartilage destruction in a rat model of OA. Intestinal damage and inflammation were also decreased by L. rhamnosus treatment. Our findings suggested the therapeutic potential of L. rhamnosus in OA.
Collapse
|
37
|
Wallimann A, Magrath W, Thompson K, Moriarty TF, Richards RG, Akdis CA, O’Mahony L, Hernandez CJ. Gut microbial-derived short-chain fatty acids and bone: a potential role in fracture healing. Eur Cell Mater 2021; 41:454-470. [PMID: 33881768 PMCID: PMC9100835 DOI: 10.22203/ecm.v041a29] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bone healing complications such as delayed healing or non-union affect 5-10 % of patients with a long-bone fracture and lead to reduced quality of life and increased health-care costs. The gut microbiota and the metabolites they produce, mainly short-chain fatty acids (SCFAs), have been shown to impact nearly all organs of the human body including bone. SCFAs show broad activity in positively influencing bone healing outcomes either by acting directly on cell types involved in fracture healing, such as osteoblasts, osteoclasts, chondrocytes and fibroblasts, or indirectly, by shaping an appropriate anti-inflammatory and immune regulatory response. Due to the ability of SCFAs to influence osteoblast and osteoclast differentiation, SCFAs may also affect the integration of orthopaedic implants in bone. In addition, SCFA-derivatives have already been used in a variety of tissue engineering constructs to reduce inflammation and induce bone tissue production. The present review summarises the current knowledge on the role of the gut microbiota, in particular through the action of SCFAs, in the individual stages of bone healing and provides insights into how SCFAs may be utilised in a manner beneficial for fracture healing and surgical reconstruction.
Collapse
Affiliation(s)
- Alexandra Wallimann
- AO Research Institute Davos, Davos, Switzerland,Swiss Institute for Allergy and Asthma Research Davos (SIAF), University of Zurich, Switzerland
| | | | | | | | | | - Cezmi A. Akdis
- Swiss Institute for Allergy and Asthma Research Davos (SIAF), University of Zurich, Switzerland
| | - Liam O’Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, College Road, Cork, Ireland
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA,Corresponding author: Christopher J. Hernandez (355 Upson Hall, Cornell University, Ithaca, NY 14853 Phone: (607) 255-5129, Fax: (607) 255-1222,
| |
Collapse
|
38
|
Zhou H, Li G, Wang Y, Jiang R, Li Y, Wang H, Wang F, Ma H, Cao L. Microbial Metabolite Sodium Butyrate Attenuates Cartilage Degradation by Restoring Impaired Autophagy and Autophagic Flux in Osteoarthritis Development. Front Pharmacol 2021; 12:659597. [PMID: 33897442 PMCID: PMC8062861 DOI: 10.3389/fphar.2021.659597] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with multiple etiologies that affects individuals worldwide. No effective interventions are currently available to reverse the pathological process of OA. Sodium butyrate (NaB), a component of short-chain fatty acids (SCFAs), has multiple biological activities, including the attenuation of inflammation and anti-tumor activities in various diseases. However, whether the protective effects of NaB in OA are associated with the promotion of autophagy had not been investigated. Here, we explored the chondroprotective properties of NaB in an interleukin (IL)-1β-induced inflammatory chondrocyte model and an anterior cruciate ligament transection (ACLT) mouse model. Hematoxylin and eosin (HE), Safranin O, and immunohistochemical staining were performed to evaluate the effects of NaB treatment on articular cartilage. An optimal NaB dose for chondrocyte treatment was determined via cell counting kit-8 assays. Immunofluorescence and transmission electron microscopy were used to detect autophagy in chondrocytes. Flow cytometry was utilized to detect reactive oxygen species (ROS), cell cycle activity, and apoptosis in chondrocytes. Western blot and immunostaining were performed to evaluate the protein expression levels of relevant indicators. We found that the administration of NaB by oral gavage could attenuate cartilage degradation. In parallel, NaB treatment could enhance the activation of autophagy, increase autophagic flux, decrease extracellular matrix degradation, and reduce apoptosis by restraining inflammation, ROS production, and cell cycle arrest in IL-1β-treated chondrocytes. The protective effects of NaB could be partially abolished by the autophagy inhibitor 3-methyladenine (3-MA), which indicated that the protective effects of NaB against OA were partially governed by the enhancement of autophagy to restrain the formation of inflammatory mediators and ROS and regulate cell cycle progression and apoptosis in chondrocytes. In conclusion, NaB could attenuate OA progression by restoring impaired autophagy and autophagic flux via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, both in vitro and in vivo, implying that NaB could represent a novel therapeutic approach for OA.
Collapse
Affiliation(s)
- Haikang Zhou
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guoqing Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yang Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rendong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huhu Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Wang
- Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Ma
- Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
39
|
Lee YH, Song GG. The Gut Microbiome and Osteoarthritis: A Two-Sample Mendelian Randomization Study. JOURNAL OF RHEUMATIC DISEASES 2021; 28:94-100. [PMID: 37476017 PMCID: PMC10324885 DOI: 10.4078/jrd.2021.28.2.94] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 07/22/2023]
Abstract
Objective The aim of this study was to examine if the intestinal microbiome is causally correlated with osteoarthritis (OA) incidence. Methods A two-sample Mendelian randomization (MR) study was conducted using inverse variance weighting (IVW), weighted median, and MR-Egger regression techniques Publicly accessible summary statistics dataset of intestinal microbiomes of European descent from genome-wide association studies (GWASs) (a total with 3,326 individuals) was used as an exposure As an outcome, summary data from the GWAS include 3,498 patients with OA of the knee and hip from the arcOGEN sample and 11,009 controls of European descent. Results We identified 29 single-nucleotide polymorphisms from GWAS of intestinal microbiomes as instrumental variables The IVW approach found no evidence to suggest a causal relationship between the intestinal microbiota and OA (beta=-0001, standard error [SE]=0004, p=0748) The regression test of MR-Egger showed that the directional pleiotropy was unlikely to be a bias (intercept=0002, SE=0007, p=0697) and the MR-Egger study showed no causal relation between the intestinal microbiota and the OA (beta=-0002, SE=0005, p=0630) The weighted median analysis also did not have indications of a causal relationship between the intestinal microbiota and OA (beta=-0002, SE=0005, p=0630) The MR results calculated using IVW, the median weighted and the MR-Egger regression approaches were consistent. Conclusion The findings of the MR analysis did not support a causal relationship between intestinal microbiome and OA risk.
Collapse
Affiliation(s)
- Young Ho Lee
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| | - Gwan Gyu Song
- Department of Rheumatology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Pulik L, Grabowska N, Olbrys M, Gorecka K, Legosz P. Letter to the Editor: Disruption of the Gut Microbiome Increases the Risk of Periprosthetic Joint Infection in Mice. Clin Orthop Relat Res 2021; 479:855-857. [PMID: 33605632 PMCID: PMC8083926 DOI: 10.1097/corr.0000000000001680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Affiliation(s)
- Lukasz Pulik
- L. Pulik, N. Grabowska, M. Olbrys, K. Gorecka, P. Legosz, Department of Orthopaedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
- N. Grabowska, M. Olbrys, K. Gorecka, Department of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Nina Grabowska
- L. Pulik, N. Grabowska, M. Olbrys, K. Gorecka, P. Legosz, Department of Orthopaedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
- N. Grabowska, M. Olbrys, K. Gorecka, Department of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Olbrys
- L. Pulik, N. Grabowska, M. Olbrys, K. Gorecka, P. Legosz, Department of Orthopaedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
- N. Grabowska, M. Olbrys, K. Gorecka, Department of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Gorecka
- L. Pulik, N. Grabowska, M. Olbrys, K. Gorecka, P. Legosz, Department of Orthopaedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
- N. Grabowska, M. Olbrys, K. Gorecka, Department of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Pawel Legosz
- L. Pulik, N. Grabowska, M. Olbrys, K. Gorecka, P. Legosz, Department of Orthopaedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
- N. Grabowska, M. Olbrys, K. Gorecka, Department of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
41
|
Probiotic Composition and Chondroitin Sulfate Regulate TLR-2/4-Mediated NF-κB Inflammatory Pathway and Cartilage Metabolism in Experimental Osteoarthritis. Probiotics Antimicrob Proteins 2021; 13:1018-1032. [PMID: 33459997 DOI: 10.1007/s12602-020-09735-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic potential of using probiotics to treat osteoarthritis (OA) has only recently been recognized, with a small number of animal and human studies having been undertaken. The aim of this study was to describe the effect of a probiotic composition (PB) and chondroitin sulfate (CS), administered separately or in combination, on Tlr2, Tlr4, Nfkb1, and Comp gene expression in cartilage and levels of cytokines (IL-6, IL-8, TGF-β1, IGF-1) and COMP, ACAN, CHI3L1, CTSK, and TLR-2 in serum during monoiodoacetate (MIA)-induced OA in rats. Expression of Tlr2, Tlr4, Nfkb1, and Comp in cartilage was analyzed using one-step SYBR Green real-time RT-PCR. The levels of IL-6, IL-8, TGF-β1, IGF-1, COMP, ACAN, CHI3L1, CTSK, and TLR-2 were measured in serum by enzyme-linked immunosorbent assay. Experimental OA caused an upregulation in Tlr2, Tlr4, Nfkb1, and downregulation of Comp expression in the cartilage. MIA-OA caused a significant increase of TLR-2 soluble form and IL-6, IL-8, TGF-β1, COMP, ACAN, CHI3L1, and CTSK levels in the blood serum; the level of IGF-1, on contrary, decreased. Separate administration of PB and CS raised expression of Comp and reduced Tlr2, Tlr4, and Nfkb1 expressions in cartilage. The levels of the studied markers of cartilage metabolism in serum were decreased or increased (IGF-1). The combined use of PB and CS was more effective than separate application approaching above-mentioned parameters to control. The outcomes of our research prove that multistrain live probiotic composition amplifies the positive action of CS in osteoarthritis attenuation and necessitates further investigation with large-scale randomized controlled trial.
Collapse
|
42
|
Huet A, Dvorshchenko K, Taburets O, Grebinyk D, Beregova T, Ostapchenko L. Tlr2 and Tjp1 Genes’ Expression during Restoration of Skin Integrity. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452720060122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Erdrich S, Hawrelak JA, Myers SP, Harnett JE. A systematic review of the association between fibromyalgia and functional gastrointestinal disorders. Therap Adv Gastroenterol 2020; 13:1756284820977402. [PMID: 33343707 PMCID: PMC7727037 DOI: 10.1177/1756284820977402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Fibromyalgia and functional gastrointestinal disorders (FGID) including irritable bowel syndrome (IBS) are common conditions presenting in clinical settings and are more prevalent in women. While the relationship between IBS and fibromyalgia has been demonstrated, a review of the prevalence of the broader group of FGID in adults with fibromyalgia has not been undertaken. The aim of this review was to systematically review the published literature, identifying the comorbidity of FGID in people with fibromyalgia, and to discuss the clinical implications, limitations of current research and areas of interest for future research. METHODS Medline, Embase, CINAHL and Web of Science were searched during June 2019. Results were screened for original research articles meeting established criteria for identification of FGID in adults diagnosed with fibromyalgia. RESULTS A total of 14 studies involving 1340 adults with fibromyalgia, 363 healthy controls and 441 adults with other pathologies were included in this review. Only 1 of the 14 studies included surveyed the full range of FGID . Functional gut disorders were matched to Rome II criteria for reporting and comparison. In addition to increased abdominal pain and functional bloating or gas, IBS of mixed-pattern and constipation-types appear to be more prevalent than diarrhoea-predominant IBS in adults with fibromyalgia. CONCLUSION This review confirms previous reports that IBS is common in people living with fibromyalgia and suggests that IBS-mixed and constipation types predominate. An association with a range of FGID other than IBS is suggested, but data are limited. Research exploring the association between fibromyalgia and functional gastrointestinal dysfunction beyond IBS are warranted.
Collapse
Affiliation(s)
- Sharon Erdrich
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Science Road, Camperdown, Sydney, New South Wales 2006, Australia
| | - Jason A. Hawrelak
- College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Stephen P. Myers
- NatMed Research Unit, Office of the Deputy Vice Chancellor (Research), Southern Cross University, Lismore, New South Wales, Australia
| | - Joanna E. Harnett
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Identification and Characterization of the Intra-Articular Microbiome in the Osteoarthritic Knee. Int J Mol Sci 2020; 21:ijms21228618. [PMID: 33207573 PMCID: PMC7697780 DOI: 10.3390/ijms21228618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder in the United States, and the gut microbiome has recently emerged as a potential etiologic factor in OA development. Recent studies have shown that a microbiome is present at joint synovia. Therefore, we aimed to characterize the intra-articular microbiome within osteoarthritic synovia and to illustrate its role in OA disease progression. RNA-sequencing data from OA patient synovial tissue was aligned to a library of microbial reference genomes to identify microbial reads indicative of microbial abundance. Microbial abundance data of OA and normal samples was compared to identify differentially abundant microbes. We computationally explored the correlation of differentially abundant microbes to immunological gene signatures, immune signaling pathways, and immune cell infiltration. We found that microbes correlated to OA are related to dysregulation of two main functional pathways: increased inflammation-induced extracellular matrix remodeling and decreased cell signaling pathways crucial for joint and immune function. We also confirmed that the differentially abundant and biologically relevant microbes we had identified were not contaminants. Collectively, our findings contribute to the understanding of the human microbiome, well-known OA risk factors, and the role microbes play in OA pathogenesis. In conclusion, we present previously undiscovered microbes implicated in the OA disease progression that may be useful for future treatment purposes.
Collapse
|
45
|
Probiotics for pain of osteoarthritis; An N-of-1 trial of individual effects. Complement Ther Med 2020; 54:102548. [PMID: 33183666 DOI: 10.1016/j.ctim.2020.102548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the safety and effectiveness of probiotics in osteoarthritic pain for one individual. METHODS The study was an N-of-1 trial design, divided into 3 blocks of 10 weeks. Each block included one pair of randomized interventions (AB), separated by a washout period. The trial took place in a private naturopathic practice in Sydney, Australia. The participant was a 67 year old female with osteoarthritis in her lower back and right ankle. The active intervention was two daily capsules that contained Lactobacillus rhamnosus (LGG®), Saccharomyces cerevisiae (boulardii) and Bifidobacterium animalis ssp lactis. The placebo was an identical capsule that did not contain probiotics. The primary outcome was daily pain scores, measured by the participant on a Visual Analogue Scale (VAS). Secondary outcome measures included patient preference (of intervention), General Health Questionnaire (GHQ-12), Patient Specific Functional Scale (PSFS), Comprehensive Digestive Stool Analysis (CDSA) and rescue medication usage. A dependent t-test analysed mean pain scores for the last week of each intervention across the three blocks of the study. RESULTS The probiotic intervention was associated with lower pain scores and was the preferred intervention chosen by the participant. The mean pain score on the VAS was 4.9 ± 2.2 in the placebo condition compared to 4.0 ± 1.7 in the probiotic condition (t(20) = 2.2, p = 0.04, difference = 0.9, 95 % CI [0.04, 1.77]). CONCLUSIONS The reduction in pain scores associated with the probiotic intervention was small but clinically significant for this patient. A holistic view of the patient focusing on digestive integrity and function may be crucial for clinical applications of interventions such as probiotics. N-of-1 trial designs allow for the measurement of a holistic approach to an individual, which is aligned with naturopathic practice. Further trials are required to generate data to enable reliable estimation of population effects.
Collapse
|
46
|
Doster E, Thomas KM, Weinroth MD, Parker JK, Crone KK, Arthur TM, Schmidt JW, Wheeler TL, Belk KE, Morley PS. Metagenomic Characterization of the Microbiome and Resistome of Retail Ground Beef Products. Front Microbiol 2020; 11:541972. [PMID: 33240224 PMCID: PMC7677504 DOI: 10.3389/fmicb.2020.541972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Ground beef can be a reservoir for a variety of bacteria, including spoilage organisms, and pathogenic foodborne bacteria. These bacteria can exhibit antimicrobial resistance (AMR) which is a public health concern if resistance in pathogens leads to treatment failure in humans. Culture-dependent techniques are commonly used to study individual bacterial species, but these techniques are unable to describe the whole community of microbial species (microbiome) and the profile of AMR genes they carry (resistome), which is critical for getting a holistic perspective of AMR. The objective of this study was to characterize the microbiome and resistome of retail ground beef products labeled as coming from conventional or raised without antibiotics (RWA) production systems. Sixteen ground beef products were purchased from 6 retail grocery outlets in Fort Collins, CO, half of which were labeled as produced from cattle raised conventionally and half of products were from RWA production. Total DNA was extracted and isolated from each sample and subjected to 16S rRNA amplicon sequencing for microbiome characterization and target-enriched shotgun sequencing to characterize the resistome. Differences in the microbiome and resistome of RWA and conventional ground beef were analyzed using the R programming software. Our results suggest that the resistome and microbiome of retail ground beef products with RWA packaging labels do not differ from products that do not carry claims regarding antimicrobial drug exposures during cattle production. The resistome predominantly consisted of tetracycline resistance making up more than 90% of reads mapped to resistance gene accessions in our samples. Firmicutes and Proteobacteria predominated in the microbiome of all samples (69.6% and 29.0%, respectively), but Proteobacteria composed a higher proportion in ground beef from conventionally raised cattle. In addition, our results suggest that product management, such as packaging type, could exert a stronger influence on the microbiome than the resistome in consumer-ready products. Metagenomic analyses of ground beef is a promising tool to investigate community-wide shifts in retail ground beef. Importantly, however, results from metagenomic sequencing must be carefully considered in parallel with traditional methods to better characterize the risk of AMR in retail products.
Collapse
Affiliation(s)
- Enrique Doster
- Texas A&M University, VERO Program, Canyon, TX, United States.,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Kevin M Thomas
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Maggie D Weinroth
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jennifer K Parker
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kathryn K Crone
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Terrance M Arthur
- U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - John W Schmidt
- U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Tommy L Wheeler
- U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Keith E Belk
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Paul S Morley
- Texas A&M University, VERO Program, Canyon, TX, United States.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
47
|
Assirelli E, Pulsatelli L, Dolzani P, Mariani E, Lisignoli G, Addimanda O, Meliconi R. Complement Expression and Activation in Osteoarthritis Joint Compartments. Front Immunol 2020; 11:535010. [PMID: 33193305 PMCID: PMC7658426 DOI: 10.3389/fimmu.2020.535010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023] Open
Abstract
Objective To investigate complement(C) factors(F) and their activation fragments expression in OA joint tissues. Design Immunohistochemistry and quantitative imaging were performed to analyze C3, C4, and CF (factor) B expression on osteochondral biopsies (43 patients) collected during arthroplasty. Isolated chondrocytes and synoviocytes, cartilage and synovial tissues obtained from surgical specimens of OA patients (15 patients) were cultured with or without IL-1β. Real time PCR for CFB, C3, and C4 was performed. Culture supernatants were analyzed for C3a, C5a, CFBa, and terminal complement complex (TCC) production. Results In osteochondral biopsies, C factor expression was located in bone marrow, in a few subchondral bone cells and chondrocytes. C3 was the most expressed while factor C4 was the least expressed factor. Gene expression showed that all C factors analyzed were expressed both in chondrocytes and synoviocytes. In chondrocyte cultures and cartilage explants, CFB expression was significantly higher than C3 and C4. Furthermore, CFB, but not C3 and C4 expression was significantly induced by IL-1β. As to C activation factors, C3a was the most produced and CFBa was induced by IL-1β in synovial tissue. TCC production was undetectable in isolated chondrocytes and synoviocytes cell culture supernatants, whereas it was significantly augmented in cartilage explants. Conclusion C factors were locally produced and activated in OA joint with the contribution of all tissues (cartilage, bone, and synovium). Our results support the involvement of innate immunity in OA and suggest an association between some C alternative pathway component and joint inflammation.
Collapse
Affiliation(s)
- Elisa Assirelli
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Gina Lisignoli
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Olga Addimanda
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Riccardo Meliconi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Impacts of Green Tea on Joint and Skeletal Muscle Health: Prospects of Translational Nutrition. Antioxidants (Basel) 2020; 9:antiox9111050. [PMID: 33126483 PMCID: PMC7692648 DOI: 10.3390/antiox9111050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis and sarcopenia are two major joint and skeletal muscle diseases prevalent during aging. Osteoarthritis is a multifactorial progressive degenerative and inflammatory disorder of articular cartilage. Cartilage protection and pain management are the two most important strategies in the management of osteoarthritis. Sarcopenia, a condition of loss of muscle mass and strength, is associated with impaired neuromuscular innervation, the transition of skeletal muscle fiber type, and reduced muscle regenerative capacity. Management of sarcopenia requires addressing both skeletal muscle quantity and quality. Emerging evidence suggests that green tea catechins play an important role in maintaining healthy joints and skeletal muscle. This review covers (i) the prevalence and etiology of osteoarthritis and sarcopenia, such as excessive inflammation and oxidative stress, mitochondrial dysfunction, and reduced autophagy; (ii) the effects of green tea catechins on joint health by downregulating inflammatory signaling mediators, upregulating anabolic mediators, and modulating miRNAs expression, resulting in reduced chondrocyte death, collagen degradation, and cartilage protection; (iii) the effects of green tea catechins on skeletal muscle health via maintaining a dynamic balance between protein synthesis and degradation and boosting the synthesis of mitochondrial energy metabolism, resulting in favorable muscle homeostasis and mitigation of muscle atrophy with aging; and (iv) the current study limitations and future research directions.
Collapse
|
49
|
Biological strategies for osteoarthritis: from early diagnosis to treatment. INTERNATIONAL ORTHOPAEDICS 2020; 45:335-344. [PMID: 33078204 DOI: 10.1007/s00264-020-04838-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To provide an updated review of the literature on the use of orthobiologics as a potential treatment option to alleviate symptoms associated with osteoarthritis (OA), slow the progression of the disease, and aid in cartilage regeneration. METHODS A comprehensive review of the literature was performed to identify basic science and clinical studies examining the role of orthobiologics in the diagnosis and management of osteoarthritis. RESULTS Certain molecules (such as interleukin-6 (IL-6), interleukin-8 (IL-8), matrix metalloproteinase (MMPs), cartilage oligomeric matrix protein (COMP), and tumor necrosis factor (TNF), microRNAs, growth differentiation factor 11 (GDF-11)) have been recognized as biomarkers that are implicated in the pathogenesis and progression of degenerative joint disease (DJD). These biomarkers have been used to develop newer diagnostic applications and targeted biologic therapies for DJD. Local injection therapy with biologic agents such as platelet-rich plasma or stem cell-based preparations has been associated with significant improvement in joint pain and function in patients with OA and has increased in popularity during the last decade. The combination of PRP with kartogenin or TGF-b3 may also enhance its biologic effect. The mesenchymal stem cell secretome has been recognized as a potential target for the development of OA therapies due to its role in mediating the chondroprotective effects of these cells. Recent experiments have also suggested the modification of gut microbiome as a newer method to prevent OA or alter the progression of the disease. CONCLUSIONS The application of orthobiologics for the diagnosis and treatment of DJD is a rapidly evolving field that will continue to expand. The identification of OA-specific and joint-specific biomarker molecules for early diagnosis of OA would be extremely useful for the development of preventive and therapeutic protocols. Local injection therapies with HA, PRP, BMAC, and other stem cell-based preparations are currently being used to improve pain and function in patients with early OA or those with progressed disease who are not surgical candidates. Although the clinical outcomes of these therapies seem to be promising in clinical studies, future research will determine the true role of orthobiologic applications in the field of DJS.
Collapse
|
50
|
Hashimoto A, Sonohata M, Miyamoto H, Honke H, Higuchi K, Mawatari M. Implants in the distal radius unlikely to induce a new niche for microbiomes. APMIS 2020; 128:603-604. [PMID: 32926484 DOI: 10.1111/apm.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Akira Hashimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Motoki Sonohata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidefumi Honke
- Department of Orthopaedic Surgery, Fukuoka Kinen Hospital, Fukuoka, Japan
| | - Kengo Higuchi
- Department of Orthopaedic Surgery, Fukuoka Kinen Hospital, Fukuoka, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|