1
|
Liu J, Xu L, Wang L, Wang Q, Yu L, Zhang S. Naringin Alleviates Intestinal Fibrosis by Inhibiting ER Stress-Induced PAR2 Activation. Inflamm Bowel Dis 2024; 30:1946-1956. [PMID: 38557865 DOI: 10.1093/ibd/izae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease (CD), without specific antifibrotic drugs, which usually relies on surgical intervention. The transcription factor XBP1, a key component of endoplasmic reticulum (ER) stress, is required for degranulation of mast cells and linked to PAR2 activation and fibrosis. Many studies have confirmed that naringin (NAR) can inhibit ER stress and reduce organ fibrosis. We hypothesized that ER stress activated the PAR2-induced epithelial-mesenchymal transition process by stimulating mast cell degranulation to release tryptase and led to intestinal fibrosis in CD patients; NAR might play an antifibrotic role by inhibiting ER stress-induced PAR2 activation. We report that the expression levels of XBP1, mast cell tryptase, and PAR2 are upregulated in fibrotic strictures of CD patients. Molecular docking simulates the interaction of NAR and spliced XBP1. ER stress stimulates degranulation of mast cells to secrete tryptase, activates PAR2-induced epithelial-mesenchymal transition process, and promotes intestinal fibrosis in vitro and vivo experiments, which is inhibited by NAR. Moreover, F2rl1 (the coding gene of PAR2) deletion in intestinal epithelial cells decreases the antifibrotic effect of NAR. Hence, the ER stress-mast cell tryptase-PAR2 axis can promote intestinal fibrosis, and NAR administration can alleviate intestinal fibrosis by inhibiting ER stress-induced PAR2 activation.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Wang
- Department of Surgery, Huangshi Traditional Chinese Medicine Hospital, Hubei Chinese Medical University, Huangshi, China
| | - Qianqian Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangliang Yu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
3
|
Hirano A, Sakashita A, Fujii W, Baßler K, Tsuji T, Kadoya M, Omoto A, Hiraoka N, Imabayashi T, Kaneko Y, Sofue H, Maehara Y, Seno T, Wada M, Kohno M, Fukuda W, Yamada K, Takayama K, Kawahito Y. Immunological characteristics of bronchoalveolar lavage fluid and blood across connective tissue disease-associated interstitial lung diseases. Front Immunol 2024; 15:1408880. [PMID: 39524435 PMCID: PMC11543407 DOI: 10.3389/fimmu.2024.1408880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Interstitial lung disease (ILD) is a serious complication of connective tissue diseases (CTDs). The heterogeneity of ILDs reflects differences in pathogenesis among diseases. This study aimed to clarify the characteristics of CTD-ILDs via a detailed analysis of the bronchoalveolar lavage fluid (BALF) and blood immune cells. BALF and blood samples were collected from 39 Japanese patients with newly diagnosed ILD: five patients with Sjögren's syndrome (SS), eight patients with dermatomyositis (DM), six patients with rheumatoid arthritis (RA), six patients with systemic sclerosis, four patients with anti-neutrophil cytoplasmic antibody-associated vasculitis, and 10 patients with idiopathic interstitial pneumonia. We performed single-cell RNA sequencing to analyze the gene expression profiles in these patients' immune cells. In patients with SS, B cells in the BALF were increased and genes associated with the innate and acquired immunity were enriched in both the BALF and blood. In contrast, patients with DM showed an upregulation of genes associated with viral infection in both the BALF and blood. In patients with RA, neutrophils in the BALF tended to increase, and their gene expression patterns changed towards inflammation. These disease-specific characteristics may help us understand the pathogenesis for each disease and discover potential biomarkers.
Collapse
Affiliation(s)
- Aiko Hirano
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aki Sakashita
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Fujii
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Taisuke Tsuji
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Masatoshi Kadoya
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Atsushi Omoto
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Noriya Hiraoka
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Tatsuya Imabayashi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideaki Sofue
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Maehara
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Seno
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Wada
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masataka Kohno
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Fukuda
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
He A, He L, Chen T, Li X, Cao C. Biomechanical Properties and Cellular Responses in Pulmonary Fibrosis. Bioengineering (Basel) 2024; 11:747. [PMID: 39199705 PMCID: PMC11351367 DOI: 10.3390/bioengineering11080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Andong He
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Tianwei Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
| |
Collapse
|
5
|
Gill K, Yoo HS, Chakravarthy H, Granville DJ, Matsubara JA. Exploring the role of granzyme B in subretinal fibrosis of age-related macular degeneration. Front Immunol 2024; 15:1421175. [PMID: 39091492 PMCID: PMC11291352 DOI: 10.3389/fimmu.2024.1421175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.
Collapse
Affiliation(s)
- Karanvir Gill
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Harshini Chakravarthy
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
6
|
Zhang M, Yang J, Yuan Y, Zhou Y, Wang Y, Cui R, Maliu Y, Xu F, Wu X. Recruitment or activation of mast cells in the liver aggravates the accumulation of fibrosis in carbon tetrachloride-induced liver injury. Mol Immunol 2024; 170:60-75. [PMID: 38626622 DOI: 10.1016/j.molimm.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-β1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Mingkang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Jinru Yang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yufan Yuan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yan Zhou
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yazhi Wang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Ruirui Cui
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yimai Maliu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Fen Xu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
7
|
Guan Q, Zhang Z, Zhao P, Huang L, Lu R, Liu C, Zhao Y, Shao X, Tian Y, Li J. Identification of idiopathic pulmonary fibrosis hub genes and exploration of the mechanisms of action of Jinshui Huanxian formula. Int Immunopharmacol 2024; 132:112048. [PMID: 38593509 DOI: 10.1016/j.intimp.2024.112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a common and heterogeneous chronic disease, and the mechanism of Jinshui Huanxian formula (JHF) on IPF remains unclear. For a total of 385 lung normal tissue samples from the Gene Expression Omnibus database, 37,777,639 gene pairs were identified through microarray and RNA-seq platforms. Using the individualized differentially expressed gene (DEG) analysis algorithm RankComp (FDR < 0.01), we identified 344 genes as DEGs in at least 95 % (n = 81) of the IPF samples. Of these genes, IGF1, IFNGR1, GLI2, HMGCR, DNM1, KIF4A, and TNFRSF11A were identified as hub genes. These genes were verified using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in mice with pulmonary fibrosis (PF) and MRC-5 cells, and they were highly effective at classifying IPF samples in the independent dataset GSE134692 (AUC = 0.587-0.788) and mice with PF (AUC = 0.806-1.000). Moreover, JHF ameliorated the pathological changes in mice with PF and significantly reversed the changes in hub gene expression (KIF4A, IFNGR1, and HMGCR). In conclusion, a series of IPF hub genes was identified, and validated in an independent dataset, mice with PF, and MRC-5 cells. Moreover, the abnormal gene expression was normalized by JHF. These findings provide guidance for further exploration of the pathogenesis and treatment of IPF.
Collapse
Affiliation(s)
- Qingzhou Guan
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenzhen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Lidong Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ruilong Lu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chunlei Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yakun Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuejie Shao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yange Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province and Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China; Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
8
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
9
|
Yeo E, Shim J, Oh SJ, Choi Y, Noh H, Kim H, Park JH, Lee KT, Kim SH, Lee D, Lee JH. Revisiting roles of mast cells and neural cells in keloid: exploring their connection to disease activity. Front Immunol 2024; 15:1339336. [PMID: 38524141 PMCID: PMC10957560 DOI: 10.3389/fimmu.2024.1339336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Background Mast cells (MCs) and neural cells (NCs) are important in a keloid microenvironment. They might contribute to fibrosis and pain sensation within the keloid. However, their involvement in pathological excessive scarring has not been adequately explored. Objectives To elucidate roles of MCs and NCs in keloid pathogenesis and their correlation with disease activity. Methods Keloid samples from chest and back regions were analyzed. Single-cell RNA sequencing (scRNA-seq) was conducted for six active keloids (AK) samples, four inactive keloids (IK) samples, and three mature scar (MS) samples from patients with keloids. Results The scRNA-seq analysis demonstrated notable enrichment of MCs, lymphocytes, and macrophages in AKs, which exhibited continuous growth at the excision site when compared to IK and MS samples (P = 0.042). Expression levels of marker genes associated with activated and degranulated MCs, including FCER1G, BTK, and GATA2, were specifically elevated in keloid lesions. Notably, MCs within AK lesions exhibited elevated expression of genes such as NTRK1, S1PR1, and S1PR2 associated with neuropeptide receptors. Neural progenitor cell and non-myelinating Schwann cell (nmSC) genes were highly expressed in keloids, whereas myelinating Schwann cell (mSC) genes were specific to MS samples. Conclusions scRNA-seq analyses of AK, IK, and MS samples unveiled substantial microenvironmental heterogeneity. Such heterogeneity might be linked to disease activity. These findings suggest the potential contribution of MCs and NCs to keloid pathogenesis. Histopathological and molecular features observed in AK and IK samples provide valuable insights into the mechanisms underlying pain and pruritus in keloid lesions.
Collapse
Affiliation(s)
- Eunhye Yeo
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - YoungHwan Choi
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heeyeon Kim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Hye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong-Tae Lee
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Toker Ç, Kuyucu Y, Şaker D, Kara S, Güzelel B, Mete UÖ. Investigation of miR-26b and miR-27b expressions and the effect of quercetin on fibrosis in experimental pulmonary fibrosis. J Mol Histol 2024; 55:25-35. [PMID: 37857923 DOI: 10.1007/s10735-023-10168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
In this study, investigation of the effects of Quercetin on Bleomycin-induced pulmonary fibrosis and fibrosis-associated molecules miR-26b and miR-27b was aimed. Control group was given 10% saline on the 0th day, and saline was administered for 21 days starting from the 8th day. Group 2 was given 50 mg/kg Quercetin for 21 days starting from the 8th day. Group 3 was given 10 mg/kg Bleomycin Sulfate on day 0, and sacrificed on the 22nd and 29th day. Group 4 was given 10 mg/kg Bleomycin Sulfate on the 0th day, and was given 50 mg/kg Quercetin for 14 days, and 21 days starting from day 8. Lung tissues were examined using light and electron microscopic, immunohistochemical and molecular biological methods. Injury groups revealed impaired alveolar structure, collagen accumulation and increased inflammatory cells in interalveolar septum. Fibrotic response was decreased and the alveolar structure was improved with Quercetin treatment. α-SMA expressions were higher in the injury groups, but lower in the treatment groups compared to the injury groups. E-cadherin expressions were decreased in the injury groups and showed stronger immunoreactivity in the treatment groups compared to the injury groups. miR-26b and miR-27b expressions were lower in the injury groups than the control groups, and higher in the treatment groups than the injury groups. Quercetin can be considered as a new treatment agent in the idiopathic pulmonary fibrosis, since it increases the expression levels of miR-26b and miR-27b which decrease in fibrosis, and has therapeutic effects on the histopathological changes.
Collapse
Affiliation(s)
- Çağrı Toker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Yurdun Kuyucu
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey.
| | - Dilek Şaker
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Samet Kara
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Bilge Güzelel
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Ufuk Özgü Mete
- Department of Histology and Embryology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| |
Collapse
|
11
|
d'Amati A, Ronca R, Maccarinelli F, Turati M, Lorusso L, De Giorgis M, Tamma R, Ribatti D, Annese T. PTX3 shapes profibrotic immune cells and epithelial/fibroblast repair and regeneration in a murine model of pulmonary fibrosis. Pathol Res Pract 2023; 251:154901. [PMID: 37922722 DOI: 10.1016/j.prp.2023.154901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The long pentraxin 3 (PTX3) is protective in different pathologies but was not analyzed in-depth in Idiopathic Pulmonary Fibrosis (IPF). Here, we have explored the influence of PTX3 in the bleomycin (BLM)-induced murine model of IPF by looking at immune cells (macrophages, mast cells, T cells) and stemness/regenerative markers of lung epithelium (SOX2) and fibro-blasts/myofibroblasts (CD44) at different time points that retrace the progression of the disease from onset at day 14, to full-blown disease at day 21, to incomplete regression at day 28. We took advantage of transgenic PTX3 overexpressing mice (Tie2-PTX3) and Ptx3 null ones (PTX3-KO) in which pulmonary fibrosis was induced. Our data have shown that PTX3 overexpression in Tie2-PTX3 compared to WT or PTX3-KO: reduced CD68+ and CD163+ macrophages and the Tryptase+ mast cells during the whole experimental time; on the contrary, CD4+ T cells are consistently present on day 14 and dramatically decreased on day 21; CD8+ T cells do not show significant differences on day 14, but are significantly reduced on day 21; SOX2 is reduced on days 14 and 21; CD44 is reduced on day 21. Therefore, PTX3 could act on the proimmune and fibrogenic microenvironment to prevent fibrosis in BLM-treated mice.
Collapse
Affiliation(s)
- Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy.
| |
Collapse
|
12
|
Liu T, Ge Y, Chen Z, Wu L, Tian T, Yao W, Zhao J. Synergistic Modulation of a Tunable Microenvironment to Fabricate a Liver Fibrosis Chip for Drug Testing. ACS Biomater Sci Eng 2023; 9:4893-4906. [PMID: 37523767 DOI: 10.1021/acsbiomaterials.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Liver fibrosis is a progressive physiological change that occurs after liver injury and seriously endangers human health. The lack of reliable and physiologically relevant pathological models of liver fibrosis leads to a longer drug development period and sizeable economic investment. The fabrication of a biomimetic liver-on-a-chip is significant for liver disease treatment and drug development. Here, a sandwich chip with a microwell array structure in its bottom layer was fabricated to simulate the Disse space structure of hepatic sinusoids in vitro. By synergistic modulation of the cross-linking degree of gelatin-methacryloyl (GelMA) hydrogels and the induction of transforming growth factor-beta (TGF-β), the early and late stages of liver fibrosis were designed in the chip. Owing to its three-dimensional-mixed-culture strategy, it was possible to construct a liver sinusoid model in vitro to allow for faithful physiological emulation. The model was further subjected to drug treatment, and it presented a significant difference in treatment response in early and late fibrosis progression. Our system provides a unique method for emulating liver function through a vitro liver fibrosis-on-a-chip, potentially paving the way for investigating human liver fibrosis and related drug development.
Collapse
Affiliation(s)
- Ting Liu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Xiangfu Laboratory, Jiashan 314102, P. R. China
| | - Yuqing Ge
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, P. R. China
| | - Lei Wu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Tian Tian
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Wei Yao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlong Zhao
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|
13
|
Guo H, Sun J, Zhang S, Nie Y, Zhou S, Zeng Y. Progress in understanding and treating idiopathic pulmonary fibrosis: recent insights and emerging therapies. Front Pharmacol 2023; 14:1205948. [PMID: 37608885 PMCID: PMC10440605 DOI: 10.3389/fphar.2023.1205948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a long-lasting, continuously advancing, and irrevocable interstitial lung disorder with an obscure origin and inadequately comprehended pathological mechanisms. Despite the intricate and uncharted causes and pathways of IPF, the scholarly consensus upholds that the transformation of fibroblasts into myofibroblasts-instigated by injury to the alveolar epithelial cells-and the disproportionate accumulation of extracellular matrix (ECM) components, such as collagen, are integral to IPF's progression. The introduction of two novel anti-fibrotic medications, pirfenidone and nintedanib, have exhibited efficacy in decelerating the ongoing degradation of lung function, lessening hospitalization risk, and postponing exacerbations among IPF patients. Nonetheless, these pharmacological interventions do not present a definitive solution to IPF, positioning lung transplantation as the solitary potential curative measure in contemporary medical practice. A host of innovative therapeutic strategies are presently under rigorous scrutiny. This comprehensive review encapsulates the recent advancements in IPF research, spanning from diagnosis and etiology to pathological mechanisms, and introduces a discussion on nascent therapeutic methodologies currently in the pipeline.
Collapse
Affiliation(s)
| | | | | | | | | | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
15
|
Saha S, Müller D, Clark AG. Mechanosensory feedback loops during chronic inflammation. Front Cell Dev Biol 2023; 11:1225677. [PMID: 37492225 PMCID: PMC10365287 DOI: 10.3389/fcell.2023.1225677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Epithelial tissues are crucial to maintaining healthy organization and compartmentalization in various organs and act as a first line of defense against infection in barrier organs such as the skin, lungs and intestine. Disruption or injury to these barriers can lead to infiltration of resident or foreign microbes, initiating local inflammation. One often overlooked aspect of this response is local changes in tissue mechanics during inflammation. In this mini-review, we summarize known molecular mechanisms linking disruption of epithelial barrier function to mechanical changes in epithelial tissues. We consider direct mechanisms, such as changes in the secretion of extracellular matrix (ECM)-modulating enzymes by immune cells as well as indirect mechanisms including local activation of fibroblasts. We discuss how these mechanical changes can modulate local immune cell activity and inflammation and perturb epithelial homeostasis, further dysregulating epithelial barrier function. We propose that this two-way relationship between loss of barrier function and altered tissue mechanics can lead to a positive feedback loop that further perpetuates inflammation. We discuss this cycle in the context of several chronic inflammatory diseases, including inflammatory bowel disease (IBD), liver disease and cancer, and we present the modulation of tissue mechanics as a new framework for combating chronic inflammation.
Collapse
Affiliation(s)
- Sarbari Saha
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| | - Dafne Müller
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Andrew G. Clark
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| |
Collapse
|
16
|
Sun T, Li H, Zhang Y, Xiong G, Liang Y, Lu F, Zheng R, Zou Q, Hao J. Inhibitory Effects of 3-Cyclopropylmethoxy-4-(difluoromethoxy) Benzoic Acid on TGF-β1-Induced Epithelial-Mesenchymal Transformation of In Vitro and Bleomycin-Induced Pulmonary Fibrosis In Vivo. Int J Mol Sci 2023; 24:ijms24076172. [PMID: 37047142 PMCID: PMC10094315 DOI: 10.3390/ijms24076172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by lung inflammation and excessive deposition of extracellular matrix components. Transforming growth factor-β1 (TGF-β1) induced epithelial-mesenchymal transformation of type 2 lung epithelial cells leads to excessive extracellular matrix deposition, which plays an important role in fibrosis. Our objective was to evaluate the effects of 3-cyclopropylmethoxy-4-(difluoromethoxy) benzoic acid (DGM) on pulmonary fibrosis and aimed to determine whether EMT plays a key role in the pathogenesis of pulmonary fibrosis and whether EMT can be used as a therapeutic target for DGM therapy to reduce IPF. Firstly, stimulation of in vitro cultured A549 cells to construct EMTs with TGF-β1. DGM treatment inhibited the expression of proteins such as α-SMA, vimentin, and collagen Ⅰ and increased the expression of E-cadherin. Accordingly, Smad2/3 phosphorylation levels were significantly reduced by DGM treatment. Secondly, models of tracheal instillation of bleomycin and DGM were used to treat rats to demonstrate their therapeutic effects, such as improving lung function, reducing lung inflammation and fibrosis, reducing collagen deposition, and reducing the expression of E-cadherin. In conclusion, DGM attenuates TGF-β1-induced EMT in A549 cells and bleomycin-induced pulmonary fibrosis in rats.
Collapse
Affiliation(s)
- Tianxiao Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Haihua Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guixin Xiong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuerun Liang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Fang Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rong Zheng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qi Zou
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
17
|
Liao S, Tang Y, Zhang Y, Cao Q, Xu L, Zhuang Q. Identification of the shared genes and immune signatures between systemic lupus erythematosus and idiopathic pulmonary fibrosis. Hereditas 2023; 160:9. [PMID: 36871016 PMCID: PMC9985223 DOI: 10.1186/s41065-023-00270-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disorder which could lead to inflammation and fibrosis in various organs. Pulmonary fibrosis is a severe complication in patients with SLE. Nonetheless, SLE-derived pulmonary fibrosis has unknown pathogenesis. Of pulmonary fibrosis, Idiopathic pulmonary fibrosis (IPF) is a typicality and deadly form. Aiming to investigate the gene signatures and possible immune mechanisms in SLE-derived pulmonary fibrosis, we explored common characters between SLE and IPF from Gene Expression Omnibus (GEO) database. RESULTS We employed the weighted gene co-expression network analysis (WGCNA) to identify the shared genes. Two modules were significantly identified in both SLE and IPF, respectively. The overlapped 40 genes were selected out for further analysis. The GO enrichment analysis of shared genes between SLE and IPF was performed with ClueGO and indicated that p38MAPK cascade, a key inflammation response pathway, may be a common feature in both SLE and IPF. The validation datasets also illustrated this point. The enrichment analysis of common miRNAs was obtained from the Human microRNA Disease Database (HMDD) and the enrichment analysis with the DIANA tools also indicated that MAPK pathways' role in the pathogenesis of SLE and IPF. The target genes of these common miRNAs were identified by the TargetScan7.2 and a common miRNAs-mRNAs network was constructed with the overlapped genes in target and shared genes to show the regulated target of SLE-derived pulmonary fibrosis. The result of CIBERSORT showed decreased regulatory T cells (Tregs), naïve CD4+ T cells and rest mast cells but increased activated NK cells and activated mast cells in both SLE and IPF. The target genes of cyclophosphamide were also obtained from the Drug Repurposing Hub and had an interaction with the common gene PTGS2 predicted with protein-protein interaction (PPI) and molecular docking, indicating its potential treatment effect. CONCLUSIONS This study originally uncovered the MAPK pathway, and the infiltration of some immune-cell subsets might be pivotal factors for pulmonary fibrosis complication in SLE, which could be used as potentially therapeutic targets. The cyclophosphamide may treat SLE-derived pulmonary fibrosis through interaction with PTGS2, which could be activated by p38MAPK.
Collapse
Affiliation(s)
- Sheng Liao
- Transplantation Center, the 3rd Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Youzhou Tang
- Department of Nephropathy, the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center, the 3rd Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Qingtai Cao
- Transplantation Center, the 3rd Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China
| | - Linyong Xu
- School of Life Science, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, the 3rd Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, 410013, Hunan, China. .,Research Center of National Health Ministry on Transplantation Medicine, 138 Tongzipo Rd, Changsha, 410013, Hunan, China.
| |
Collapse
|
18
|
Nakano T, Kurimoto S, Ishii H, Iwatsuki K, Yamamoto M, Tatebe M, Hirata H. Mast cell presence in tendon sheaths of trigger fingers: implications on pathogenesis and clinical presentation. J Plast Surg Hand Surg 2023; 57:257-262. [PMID: 35400270 DOI: 10.1080/2000656x.2022.2061498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Trigger finger is a common hand disorder; however, its pathogenesis remains unknown. In this study, we aimed to investigate mast cells, fibroblast activators that synthesize collagen, in the tendon sheaths of trigger fingers. We investigated the presence of mast cells and their association with changes in the collagen content of the tendon sheath and clinical data. We performed a multicenter prospective study of 77 adult patients with trigger finger who had undergone resection of the first annular pulley between August 2012 and January 2020. The tendon sheath was immunostained with an anti-tryptase antibody to confirm mast cell presence. The percentage of collagen in the tendon sheath was determined by picrosirius red staining observed through a polarization microscope. The clinical data, including the duration from symptom onset to surgery, severity, pain numerical rating scale, and Hand20 scores, were evaluated. Tryptase-positive mast cells were recognized in 83.5% of all specimens. The mast cell presence group (Group P) had a significantly higher percentage of type-3 collagen in the tendon sheath than the non-mast cell presence group (Group N) (Group P, 15.6%; Group N, 12.7%; p = 0.03). Moreover, Group P had significantly higher pain numerical rating scale (Group P; 5, Group N; 3, p = 0.04) and Hand20 (Group P; 35.5, Group N; 13.0, p = 0.01) scores than Group N. These findings suggest that mast cell presence in the tendon sheath of the trigger finger is related to the pathology and clinical symptoms of trigger finger.
Collapse
Affiliation(s)
- Takahiko Nakano
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeru Kurimoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisao Ishii
- Department of Hand Surgery Center, Chutoen General Medical Center, Kakegawa, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Tatebe
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Doryab A, Heydarian M, Yildirim AÖ, Hilgendorff A, Behr J, Schmid O. Breathing-induced stretch enhances the efficacy of an inhaled and orally delivered anti-fibrosis drug in vitro. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
20
|
Pan L, Meng F, Wang W, Wang XH, Shen H, Bao P, Kang J, Kong D. Nintedanib in an elderly non-small-cell lung cancer patient with severe steroid-refractory checkpoint inhibitor-related pneumonitis: A case report and literature review. Front Immunol 2023; 13:1072612. [PMID: 36703957 PMCID: PMC9872202 DOI: 10.3389/fimmu.2022.1072612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint inhibitors tremendously improve cancer prognosis; however, severe-grade immune-related adverse events may cause premature death. Current recommendations for checkpoint inhibitor-related pneumonitis (CIP) treatment are mainly about immunosuppressive therapy, and anti-fibrotic agents are also needed, especially for patients with poor response to corticosteroids and a longer pneumonitis course. This is because fibrotic changes play an important role in the pathological evolution of CIP. Here, we report a case demonstrating that nintedanib is a promising candidate drug for CIP management or prevention, as it has potent anti-fibrotic efficacy and a safety profile. Moreover, nintedanib could partially inhibit tumor growth in patients with non-small-cell lung cancer, and its efficacy can be improved in combination with other anti-tumor therapies.
Collapse
Affiliation(s)
- Lei Pan
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fanqi Meng
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xu-hao Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Hui Shen
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pengchen Bao
- The First Clinical College, China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Delei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,*Correspondence: Delei Kong,
| |
Collapse
|
21
|
Abstract
Immune responses are governed by signals from the tissue microenvironment, and in addition to biochemical signals, mechanical cues and forces arising from the tissue, its extracellular matrix and its constituent cells shape immune cell function. Indeed, changes in biophysical properties of tissue alter the mechanical signals experienced by cells in many disease conditions, in inflammatory states and in the context of ageing. These mechanical cues are converted into biochemical signals through the process of mechanotransduction, and multiple pathways of mechanotransduction have been identified in immune cells. Such pathways impact important cellular functions including cell activation, cytokine production, metabolism, proliferation and trafficking. Changes in tissue mechanics may also represent a new form of 'danger signal' that alerts the innate and adaptive immune systems to the possibility of injury or infection. Tissue mechanics can change temporally during an infection or inflammatory response, offering a novel layer of dynamic immune regulation. Here, we review the emerging field of mechanoimmunology, focusing on how mechanical cues at the scale of the tissue environment regulate immune cell behaviours to initiate, propagate and resolve the immune response.
Collapse
|
22
|
Wang Y, Singer R, Liu X, Inman SJ, Cao Q, Zhou Q, Noble A, Li L, Arizpe Tafoya AV, Babi M, Ask K, Kolb MR, Ramsay S, Geng F, Zhang B, Shargall Y, Moran-Mirabal JM, Dabaghi M, Hirota JA. The CaT stretcher: An open-source system for delivering uniaxial strain to cells and tissues (CaT). Front Bioeng Biotechnol 2022; 10:959335. [PMID: 36329705 PMCID: PMC9622803 DOI: 10.3389/fbioe.2022.959335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/29/2022] [Indexed: 01/23/2025] Open
Abstract
Integration of mechanical cues in conventional 2D or 3D cell culture platforms is an important consideration for in vivo and ex vivo models of lung health and disease. Available commercial and published custom-made devices are frequently limited in breadth of applications, scalability, and customization. Herein we present a technical report on an open-source, cell and tissue (CaT) stretcher, with modularity for different in vitro and ex vivo systems, that includes the following features: 1) Programmability for modeling different breathing patterns, 2) scalability to support low to high-throughput experimentation, and 3) modularity for submerged cell culture, organ-on-chips, hydrogels, and live tissues. The strategy for connecting the experimental cell or tissue samples to the stretching device were designed to ensure that traditional biomedical outcome measurements including, but not limited to microscopy, soluble mediator measurement, and gene and protein expression remained possible. Lastly, to increase the uptake of the device within the community, the system was built with economically feasible and available components. To accommodate diverse in vitro and ex vivo model systems we developed a variety of chips made of compliant polydimethylsiloxane (PDMS) and optimized coating strategies to increase cell adherence and viability during stretch. The CaT stretcher was validated for studying mechanotransduction pathways in lung cells and tissues, with an increase in alpha smooth muscle actin protein following stretch for 24 h observed in independent submerged monolayer, 3D hydrogel, and live lung tissue experiments. We anticipate that the open-source CaT stretcher design will increase accessibility to studies of the dynamic lung microenvironment through direct implementation by other research groups or custom iterations on our designs.
Collapse
Affiliation(s)
- Yushi Wang
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Ryan Singer
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Xinyue Liu
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Seth J. Inman
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Quynh Cao
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Quan Zhou
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Alex Noble
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Laura Li
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Aidee Verónica Arizpe Tafoya
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Mouhanad Babi
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Michael G. DeGroote Centre for Learning and Discovery, Hamilton, ON, Canada
| | - Martin R. Kolb
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Scott Ramsay
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON, Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Yaron Shargall
- Division of Thoracic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jose Manuel Moran-Mirabal
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| | - Mohammadhossein Dabaghi
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Jeremy A. Hirota
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Michael G. DeGroote Centre for Learning and Discovery, Hamilton, ON, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
23
|
Chen Y, Song M, Li Z, Hou L, Zhang H, Zhang Z, Hu H, Jiang X, Yang J, Zou X, Pang J, Zhang T, Yang P, Wang J, Wang C. FcεRI deficiency alleviates silica-induced pulmonary inflammation and fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114043. [PMID: 36087468 DOI: 10.1016/j.ecoenv.2022.114043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Silicosis is one of the most important occupational diseases worldwide, caused by inhalation of silica particles or free crystalline silicon dioxide. As a disease with high mortality, it has no effective treatment and new therapeutic targets are urgently needed. Recent studies have identified FCER1A, encoding α-subunit of the immunoglobulin E (IgE) receptor FcεRI, as a candidate gene involved in the biological pathways leading to respiratory symptoms. FcεRI is known to be important in allergic asthma, but its role in silicosis remains unclear. In this study, serum IgE concentrations and FcεRI expression were assessed in pneumoconiosis patients and silica-exposed mice. The role of FcεRI was explored in a silica-induced mouse model using wild-type and FcεRI-deficient mice. The results showed that serum IgE concentrations were significantly elevated in both pneumoconiosis patients and mice exposed to silica compared with controls. The mRNA and protein expression of FcεRI were also significantly increased in the lung tissue of patients and silica-exposed mice. FcεRI deficiency significantly attenuated the changes in lung function caused by silica exposure. Silica-induced elevations of IL-1β, IL-6, and TNF-α were significantly attenuated in the lung tissue and bronchoalveolar lavage fluid (BALF) of FcεRI-deficient mice compared with wild-type controls. Additionally, FcεRI-deficient mice showed a significantly lower score of pulmonary fibrosis than wild-type mice following exposure to silica, with significantly lower hydroxyproline content and expression of fibrotic genes Col1a1 and Fn1. Immunofluorescent staining suggested FcεRI mainly on mast cells. Mast cell degranulation took place after silica exposure, as shown by increased serum histamine levels and β-hexosaminidase activity, which were significantly reduced in FcεRI-deficient mice compared with wild-type controls. Together, these data showed that FcεRI deficiency had a significant protective effect against silica-induced pulmonary inflammation and fibrosis. Our findings provide new insights into the pathophysiological mechanisms of silica-induced pulmonary fibrosis and a potential target for the treatment of silicosis.
Collapse
Affiliation(s)
- Yiling Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Meiyue Song
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhaoguo Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lin Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Hong Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Zhe Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, China; NHC Key Laboratory of Pneumoconiosis, Taiyuan 030001, China
| | - Huiyuan Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xuehan Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Jie Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xuan Zou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tiantian Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| | - Chen Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
24
|
Kletukhina S, Mutallapova G, Titova A, Gomzikova M. Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms231911212. [PMID: 36232511 PMCID: PMC9569825 DOI: 10.3390/ijms231911212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial fibrotic disease that leads to disability and death within 5 years of diagnosis. Pulmonary fibrosis is a disease with a multifactorial etiology. The concept of aberrant regeneration of the pulmonary epithelium reveals the pathogenesis of IPF, according to which repeated damage and death of alveolar epithelial cells is the main mechanism leading to the development of progressive IPF. Cell death provokes the migration, proliferation and activation of fibroblasts, which overproduce extracellular matrix, resulting in fibrotic deformity of the lung tissue. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for pulmonary fibrosis. MSCs, and EVs derived from MSCs, modulate the activity of immune cells, inhibit the expression of profibrotic genes, reduce collagen deposition and promote the repair of damaged lung tissue. This review considers the molecular mechanisms of the development of IPF and the multifaceted role of MSCs in the therapy of IPF. Currently, EVs-MSCs are regarded as a promising cell-free therapy tool, so in this review we discuss the results available to date of the use of EVs-MSCs for lung tissue repair.
Collapse
Affiliation(s)
- Sevindzh Kletukhina
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
| | - Guzel Mutallapova
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
| | - Angelina Titova
- Morphology and General Pathology Department, Kazan Federal University, 420008 Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-917-8572269
| |
Collapse
|
25
|
Shimbori C, De Palma G, Baerg L, Lu J, Verdu EF, Reed DE, Vanner S, Collins SM, Bercik P. Gut bacteria interact directly with colonic mast cells in a humanized mouse model of IBS. Gut Microbes 2022; 14:2105095. [PMID: 35905313 PMCID: PMC9341375 DOI: 10.1080/19490976.2022.2105095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Both mast cells and microbiota play important roles in the pathogenesis of Irritable Bowel Syndrome (IBS), however the precise mechanisms are unknown. Using microbiota-humanized IBS mouse model, we show that colonic mast cells and mast cells co-localized with neurons were higher in mice colonized with IBS microbiota compared with those with healthy control (HC) microbiota. In situ hybridization showed presence of IBS, but not control microbiota, in the lamina propria and RNAscope demonstrated frequent co-localization of IBS bacteria and mast cells. TLR4 and H4 receptor expression was higher in mice with IBS microbiota, and in peritoneal-derived and bone marrow-derived mast cells (BMMCs) stimulated with IBS bacterial supernatant, which also increased BMMCs degranulation, chemotaxis, adherence and histamine release. While both TLR4 and H4 receptor inhibitors prevented BMMCs degranulation, only the latter attenuated their chemotaxis. We provide novel insights into the mechanisms, which contribute to gut dysfunction and visceral hypersensitivity in IBS.
Collapse
Affiliation(s)
- Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Lauren Baerg
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | | | - Stephen M. Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada,CONTACT Premysl Bercik Farncombe Family Digestive Health Research Institute McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
Siddhuraj P, Jönsson J, Alyamani M, Prabhala P, Magnusson M, Lindstedt S, Erjefält JS. Dynamically upregulated mast cell CPA3 patterns in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Front Immunol 2022; 13:924244. [PMID: 35983043 PMCID: PMC9378779 DOI: 10.3389/fimmu.2022.924244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe mast cell-specific metalloprotease CPA3 has been given important roles in lung tissue homeostasis and disease pathogenesis. However, the dynamics and spatial distribution of mast cell CPA3 expression in lung diseases remain unknown.MethodsUsing a histology-based approach for quantitative spatial decoding of mRNA and protein single cell, this study investigates the dynamics of CPA3 expression across mast cells residing in lungs from control subjects and patients with severe chronic obstructive pulmonary disease (COPD) or idiopathic lung fibrosis (IPF).ResultsMast cells in COPD lungs had an anatomically widespread increase of CPA3 mRNA (bronchioles p < 0.001, pulmonary vessels p < 0.01, and alveolar parenchyma p < 0.01) compared to controls, while granule-stored CPA3 protein was unaltered. IPF lungs had a significant upregulation of both mast cell density, CPA3 mRNA (p < 0.001) and protein (p < 0.05), in the fibrotic alveolar tissue. Spatial expression maps revealed altered mast cell mRNA/protein quotients in lung areas subjected to disease-relevant histopathological alterations. Elevated CPA3 mRNA also correlated to lung tissue eosinophils, CD3 T cells, and declined lung function. Single-cell RNA sequencing of bronchial mast cells confirmed CPA3 as a top expressed gene with potential links to both inflammatory and protective markers.ConclusionThis study shows that lung tissue mast cell populations in COPD and IPF lungs have spatially complex and markedly upregulated CPA3 expression profiles that correlate with immunopathological alterations and lung function. Given the proposed roles of CPA3 in tissue homeostasis, remodeling, and inflammation, these alterations are likely to have clinical consequences.
Collapse
Affiliation(s)
- Premkumar Siddhuraj
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | | | - Manar Alyamani
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Pavan Prabhala
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mattias Magnusson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Department of Thoracic Surgery, Lund University Skane University Hospital, Lund, Sweden
| | - Jonas S. Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Allergology and Respiratory Medicine, Lund University, Skane University Hospital, Lund, Sweden
- *Correspondence: Jonas S. Erjefält,
| |
Collapse
|
27
|
Li X, Li Y, Lv S, Xu H, Ma R, Sun Z, Li Y, Guo C. Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model. CHEMOSPHERE 2022; 300:134633. [PMID: 35439488 DOI: 10.1016/j.chemosphere.2022.134633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Exposure to amorphous silica nanoparticles (SiNPs) has increased dramatically, and concerns are growing about their potential health effects. However, their long-term systemic toxicity profile and underlying mechanisms following respiratory exposure still remains unexplored. It is well documented that the inhalation of ultrafine particles is firmly associated with adverse effects in humans. Environmental pollutants may contribute to diverse adverse effect or comorbidity in susceptible individuals. Thereby, we examined the long-term systemic effects of inhaled SiNPs using a sensitive mouse model (ApoE-/-) fed by a western diet. Male ApoE-/- mice were intratracheally instilled with SiNPs suspension at a dose of 1.5, 3.0 and 6.0 mg/kg·bw, respectively, once per week, 12 times in total. The histological analysis was conducted. The serum cytokine levels were quantified by RayBiotech antibody array. As a result, systemic histopathological alterations were noticed, mainly characterized by inflammation and fibrosis. More importantly, cytokine array analysis indicated the key role of mast cells accumulation in systemic inflammation and fibrosis progression induced by inhaled SiNPs. Collectively, our study firstly demonstrated that long-term exposure to inhaled SiNPs promoted the mast cell-dominated activation of inflammatory response, not only in the lung but also in heart, liver and kidney, etc., eventually leading to the progression of tissue fibrosis in ApoE-/- mice.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
28
|
Wang C, Yang J. Mechanical forces: The missing link between idiopathic pulmonary fibrosis and lung cancer. Eur J Cell Biol 2022; 101:151234. [DOI: 10.1016/j.ejcb.2022.151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
|
29
|
De Palma G, Shimbori C, Reed DE, Yu Y, Rabbia V, Lu J, Jimenez-Vargas N, Sessenwein J, Lopez-Lopez C, Pigrau M, Jaramillo-Polanco J, Zhang Y, Baerg L, Manzar A, Pujo J, Bai X, Pinto-Sanchez MI, Caminero A, Madsen K, Surette MG, Beyak M, Lomax AE, Verdu EF, Collins SM, Vanner SJ, Bercik P. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. Sci Transl Med 2022; 14:eabj1895. [PMID: 35895832 DOI: 10.1126/scitranslmed.abj1895] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The gut microbiota has been implicated in chronic pain disorders, including irritable bowel syndrome (IBS), yet specific pathophysiological mechanisms remain unclear. We showed that decreasing intake of fermentable carbohydrates improved abdominal pain in patients with IBS, and this was accompanied by changes in the gut microbiota and decreased urinary histamine concentrations. Here, we used germ-free mice colonized with fecal microbiota from patients with IBS to investigate the role of gut bacteria and the neuroactive mediator histamine in visceral hypersensitivity. Germ-free mice colonized with the fecal microbiota of patients with IBS who had high but not low urinary histamine developed visceral hyperalgesia and mast cell activation. When these mice were fed a diet with reduced fermentable carbohydrates, the animals showed a decrease in visceral hypersensitivity and mast cell accumulation in the colon. We observed that the fecal microbiota from patients with IBS with high but not low urinary histamine produced large amounts of histamine in vitro. We identified Klebsiella aerogenes, carrying a histidine decarboxylase gene variant, as a major producer of this histamine. This bacterial strain was highly abundant in the fecal microbiota of three independent cohorts of patients with IBS compared with healthy individuals. Pharmacological blockade of the histamine 4 receptor in vivo inhibited visceral hypersensitivity and decreased mast cell accumulation in the colon of germ-free mice colonized with the high histamine-producing IBS fecal microbiota. These results suggest that therapeutic strategies directed against bacterial histamine could help treat visceral hyperalgesia in a subset of patients with IBS with chronic abdominal pain.
Collapse
Affiliation(s)
- Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Chiko Shimbori
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Canada
| | - Yang Yu
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Canada
| | - Virginia Rabbia
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Jun Lu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | | | - Jessica Sessenwein
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Canada
| | - Cintya Lopez-Lopez
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Canada
| | - Marc Pigrau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | | | - Yong Zhang
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Canada
| | - Lauren Baerg
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Ahmad Manzar
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Xiaopeng Bai
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | | | | | | | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Michael Beyak
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Canada
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queens University, Kingston, Canada
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
30
|
Huang T, He WY. Construction and Validation of a Novel Prognostic Signature of Idiopathic Pulmonary Fibrosis by Identifying Subtypes Based on Genes Related to 7-Methylguanosine Modification. Front Genet 2022; 13:890530. [PMID: 35754799 PMCID: PMC9218869 DOI: 10.3389/fgene.2022.890530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is the interstitial lung disease with the highest incidence and mortality. The lack of specific markers results in limited treatment methods for IPF patients. Numerous prognostic signatures represented effective indexes in predicting the survival of patients in various diseases; however, little is investigated on their application in IPF. Methods: This study attempted to explore the clinical markers suitable for IPF by constructing a prognostic signature from the perspective of 7-methylguanosine (m7G). An m7G-related prognostic signature (m7GPS) was established based on the discovery cohort with the LASSO algorithm and was verified by internal and external validation cohorts. The area under the curve (AUC) values were utilized to assess the accuracy of m7GPS in predicting the prognosis of IPF patients and the ability of m7GPS in screening IPF patients. Kaplan-Meier curves and Cox regression analyses were used to identify the relationship of m7GPS with the prognosis of IPF individuals. Enrichment analyses, CIBERSORT algorithm, and weighted gene co-expression network analysis were applied to explore the underlying mechanisms and correlation of m7GPS in IPF. Results: The two m7G regulatory genes can divide IPF into subtypes 1 and 2, and subtype 2 demonstrated a poor prognosis for IPF patients (p < 0.05). For the first time in this field, the m7GPS was constructed. m7GPS made it feasible to predict the 1–5 years survival status of IPF patients (AUC = 0.730–0.971), and it was an independent prognostic risk factor for IPF patients (hazard ratio > 1, p < 0.05). The conspicuous ability of m7GPS to screen IPF patients from the healthy was also revealed by an AUC value of 0.960. The roles of m7GPS in IPF may link to inflammation, immune response, and immune cell levels. Seven genes (CYR61, etc.) were identified as hub genes of m7GPS in IPF. Three drugs (ZM447439-1050, AZD1332-1463, and Ribociclib-1632) were considered sensitive to patients with high m7GPS risk scores. Conclusion: This study developed a novel m7GPS, which is a reliable indicator for predicting the survival status of IPF patients and is identified as an effective marker for prognosis and screening of IPF patients.
Collapse
Affiliation(s)
- Tao Huang
- Department of Cardiothoracic Vascular Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wei-Ying He
- The First Clinical Medical College, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
31
|
Zheng J, Dong H, Zhang T, Ning J, Xu Y, Cai C. Development and Validation of a Novel Gene Signature for Predicting the Prognosis of Idiopathic Pulmonary Fibrosis Based on Three Epithelial-Mesenchymal Transition and Immune-Related Genes. Front Genet 2022; 13:865052. [PMID: 35559024 PMCID: PMC9086533 DOI: 10.3389/fgene.2022.865052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Increasing evidence has revealed that epithelial–mesenchymal transition (EMT) and immunity play key roles in idiopathic pulmonary fibrosis (IPF). However, correlation between EMT and immune response and the prognostic significance of EMT in IPF remains unclear. Methods: Two microarray expression profiling datasets (GSE70866 and GSE28221) were downloaded from the Gene Expression Omnibus (GEO) database. EMT- and immune-related genes were identified by gene set variation analysis (GSVA) and the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to investigate the functions of these EMT- and immune-related genes. Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were used to screen prognostic genes and establish a gene signature. Gene Set Enrichment Analysis (GSEA) and Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) were used to investigate the function of the EMT- and immune-related signatures and correlation between the EMT- and immune-related signatures and immune cell infiltration. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to investigate the mRNA expression of genes in the EMT- and immune-related signatures. Results: Functional enrichment analysis suggested that these genes were mainly involved in immune response. Moreover, the EMT- and immune-related signatures were constructed based on three EMT- and immune-related genes (IL1R2, S100A12, and CCL8), and the K–M and ROC curves presented that the signature could affect the prognosis of IPF patients and could predict the 1-, 2-, and 3-year survival well. Furthermore, a nomogram was developed based on the expression of IL1R2, S100A12, and CCL8, and the calibration curve showed that the nomogram could visually and accurately predict the 1-, 2-, 3-year survival of IPF patients. Finally, we further found that immune-related pathways were activated in the high-risk group of patients, and the EMT- and immune-related signatures were associated with NK cells activated, macrophages M0, dendritic cells resting, mast cells resting, and mast cells activated. qRT-PCR suggested that the mRNA expression of IL1R2, S100A12, and CCL8 was upregulated in whole blood of IPF patients compared with normal samples. Conclusion: IL1R2, S100A12, and CCL8 might play key roles in IPF by regulating immune response and could be used as prognostic biomarkers of IPF.
Collapse
Affiliation(s)
- Jiafeng Zheng
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Hanquan Dong
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Tongqiang Zhang
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jing Ning
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yongsheng Xu
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Institute of Pediatrics(Tianjin Key Laboratory of Birth Defects for Prevention and Treatment), Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
32
|
Royer SP, Han SJ. Mechanobiology in the Comorbidities of Ehlers Danlos Syndrome. Front Cell Dev Biol 2022; 10:874840. [PMID: 35547807 PMCID: PMC9081723 DOI: 10.3389/fcell.2022.874840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ehlers-Danlos Syndromes (EDSs) are a group of connective tissue disorders, characterized by skin stretchability, joint hypermobility and instability. Mechanically, various tissues from EDS patients exhibit lowered elastic modulus and lowered ultimate strength. This change in mechanics has been associated with EDS symptoms. However, recent evidence points toward a possibility that the comorbidities of EDS could be also associated with reduced tissue stiffness. In this review, we focus on mast cell activation syndrome and impaired wound healing, comorbidities associated with the classical type (cEDS) and the hypermobile type (hEDS), respectively, and discuss potential mechanobiological pathways involved in the comorbidities.
Collapse
Affiliation(s)
- Shaina P. Royer
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
- Department of Mechanical Engineering, Michigan Technological University, Houghton, MI, United States
- Health Research Institute, Michigan Technological University, Houghton, MI, United States
- *Correspondence: Sangyoon J. Han,
| |
Collapse
|
33
|
Kou L, Kou P, Luo G, Wei S. Progress of Statin Therapy in the Treatment of Idiopathic Pulmonary Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6197219. [PMID: 35345828 PMCID: PMC8957418 DOI: 10.1155/2022/6197219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease (ILD) characterized by the proliferation of fibroblasts and aberrant accumulation of extracellular matrix. These changes are accompanied by structural destruction of the lung tissue and the progressive decline of pulmonary function. In the past few decades, researchers have investigated the pathogenesis of IPF and sought a therapeutic approach for its treatment. Some studies have shown that the occurrence of IPF is related to pulmonary inflammatory injury; however, its specific etiology and pathogenesis remain unknown, and no effective treatment, with the exception of lung transplantation, has been identified yet. Several basic science and clinical studies in recent years have shown that statins, the traditional lipid-lowering drugs, exert significant antifibrotic effects, which can delay the progression of IPF and impairment of pulmonary function. This article is aimed at summarizing the current understanding of the pathogenesis of IPF, the progress of research on the use of statins in IPF models and clinical trials, and its main molecular targets.
Collapse
Affiliation(s)
- Leiya Kou
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
- Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Pei Kou
- Department of Medical Record, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Guangwei Luo
- Department of Respiratory Medicine, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
34
|
Karamalakova Y, Stefanov I, Georgieva E, Nikolova G. Pulmonary Protein Oxidation and Oxidative Stress Modulation by Lemna minor L. in Progressive Bleomycin-Induced Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:523. [PMID: 35326173 PMCID: PMC8944767 DOI: 10.3390/antiox11030523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bleomycin (BLM) administration is associated with multifunctional proteins inflammations and induction of idiopathic pulmonary fibrosis (IPF). Lemna minor L. extract, a free-floating monocot macrophyte possesses antioxidant and anti-inflammatory potential. The aim of the study was to examine the protective effect of L. minor extract on lung protein oxidation and oxidative stress modulation by BLM-induced pulmonary fibrosis in Balb/c mice. For this purpose, the protein carbonyl content, advanced glycation end product, nitroxide protein oxidation (5-MSL), and lipid peroxidation (as MDA and ROS), in lung cells were examined. The histological examinations, collagen deposition, and quantitative measurements of IL-1β, IL-6, and TNF in lung tissues and blood were investigated. Intraperitoneal, BLM administration (0.069 U/mL; 0.29 U/kg b.w.) for 33 days, caused IPF induction in Balb/c mice. Pulmonary combining therapy was administered with L. minor at dose 120 mg/mL (0.187 mg/kg b.w.). L. minor histologically ameliorated BLM induced IPF in lung tissues. L. minor significantly modulated (p < 0.05) BLM-alterations induced in lung hydroxyproline, carbonylated proteins, 5-MSL-protein oxidation. Oxidative stress decreased levels in antioxidant enzymatic and non-enzymatic systems in the lung were significantly regulated (p < 0.05) by L. minor. L. minor decreased the IL-1β, IL-6, and TNF-α expression in lung tissues and plasma. The L. minor improves the preventive effect/defense response in specific pulmonary protein oxidation, lipid peroxidation, ROS identifications, and cytokine modulation by BLM-induced chronic inflammations, and could be a good antioxidant, anti-inflammatory, and anti-fibrotic alternative or IPF prevention involved in their pathogenesis.
Collapse
Affiliation(s)
- Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| | - Ivaylo Stefanov
- Department of Anatomy, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Ekaterina Georgieva
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| |
Collapse
|
35
|
Mast Cells and Acupuncture Analgesia. Cells 2022; 11:cells11050860. [PMID: 35269483 PMCID: PMC8909752 DOI: 10.3390/cells11050860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Mast cells are widely distributed in various parts of the human body and play a vital role in the progression of many diseases. Recently, the close relationship between mast cells and acupoints was elucidated, and the role of mast cells in acupuncture analgesia has attracted the attention of researchers worldwide. Using mast cells, acupuncture analgesia and acupoint as key words to search CNKI, PubMed, Web of Science and other databases, combining the representative articles in these databases with the published research papers of our group, we summarized: The enrichment of mast cells and the dense arrangement of collagen fibers, microvessels, and nerves form the basis for acupoints as the reaction sites of acupuncture; acupuncture can cause the deformation of collagen fibers and activate TRPV channels on mast cells membrane, so as to stimulate mast cells to release bioactive substances and activate nerve receptors to generate analgesic effect; system biology models are set up to explain the quantitative process of information initiation and transmission at acupuncture points, and indicate that the acupuncture effect depends on the local mast cells density. In a conclusion, this review will give a scientific explanation of acupuncture analgesia from the material basis of acupoints, the local initiation, and afferent biological mechanism.
Collapse
|
36
|
The Alleviating Effect of Lagerstroemia indica Flower Extract on Stretch Marks through Regulation of Mast Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041274. [PMID: 35209065 PMCID: PMC8877584 DOI: 10.3390/molecules27041274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022]
Abstract
Striae distensae (SD) or stretch marks are common linear scars of atrophic skin with disintegrating extracellular matrix (ECM) structures. Although fibroblasts contribute to the construction of ECM structure in SD, some studies have reported that mast cell degranulation causes the disruption of ECM in early SD lesions. Lagerstroemia indica flower (LIF) has traditionally been used in India as a diuretic. However, little is known about the effect and molecular action of Lagerstroemia indica flower extract (LIFE) on alleviating SD. This study evaluated the effects of LIFE on mast cell degranulation and the synthesis of ECM components in fibroblasts. LIFE inhibits the adhesion of rat basophilic leukemia (RBL) cells, RBL-2H3 on fibronectin (FN) and the expression of integrin, a receptor for FN, thereby reducing focal adhesion kinase (FAK) phosphorylation. In addition, LIFE attenuated the allergen-induced granules and cytokine interleukin 3 (IL-3) through the adhesion with FN. Moreover, the conditioned medium (CM) of activated mast cells decreases the synthesis of ECM components, and LIFE restores the abnormal expressions induced by activated mast cells. These results demonstrate that LIFE suppresses FN-induced mast cell activation and promotes the synthesis of ECM components in fibroblast, which indicates that LIFE may be a useful cosmetic agent for SD treatment.
Collapse
|
37
|
Martinez FJ, Wijsenbeek MS, Raghu G, Flaherty KR, Maher TM, Wuyts WA, Kreuter M, Kolb M, Chambers DC, Fogarty C, Mogulkoc N, Tutuncu AS, Richeldi L. Phase 2b Study of Inhaled RVT-1601 for Chronic Cough in Idiopathic Pulmonary Fibrosis: SCENIC Trial: Multi-Center, Randomized, Placebo-Controlled Study. Am J Respir Crit Care Med 2022; 205:1084-1092. [PMID: 35050837 DOI: 10.1164/rccm.202106-1485oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Chronic cough remains a major and often debilitating symptom for patients with idiopathic pulmonary fibrosis (IPF). In a phase 2a study, inhaled RVT-1601 reduced daytime cough and 24-hour average cough counts in patients with IPF. OBJECTIVES To determine the efficacy, safety and optimal dose of inhaled RVT-1601 for the treatment of chronic cough in patients with IPF. METHODS In this multicenter, randomized, placebo-controlled phase 2b study, patients with IPF and chronic cough for ≥8 weeks were randomized (1:1:1:1) to receive 10, 40, and 80 mg RVT-1601 three times daily or placebo for 12 weeks. The primary endpoint was change from baseline to end of treatment in log-transformed 24-hour cough count. Key secondary endpoints were change from baseline in cough severity and cough specific quality of life. Safety was monitored throughout the study. MEASUREMENTS AND MAIN RESULTS The study was prematurely terminated due to the impact of COVID-19 pandemic. Overall, 108 patients (mean age 71.0 years, 62.9% males) received RVT-1601 10 mg (n = 29), 40 mg (n = 25), 80 mg (n = 27), or matching placebo (n = 27); 61.1% (n = 66) completed double-blind treatment. No statistically significant difference was observed in the least-squares mean change from baseline in log-transformed 24-hour average cough count, cough severity, and cough-specific quality of life score between the RVT-1601 groups and placebo. The mean percentage change from baseline in 24-hour average cough count was 27.7% in the placebo group. Treatment was generally well tolerated. CONCLUSIONS Treatment with inhaled RVT-1601 (10, 40 and 80 mg TID) did not provide benefit over placebo for the treatment of chronic cough in patients with IPF. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT03864328.
Collapse
Affiliation(s)
| | | | - Ganesh Raghu
- University of Washington Medical Center, 21617, Division of Pulmonary and Critical Care Medicine, Seattle, Washington, United States
| | | | - Toby M Maher
- University of Southern California Keck School of Medicine, 12223, Los Angeles, California, United States
| | - Wim A Wuyts
- K U Leuven, respiratory medicine, Leuven, Belgium
| | - Michael Kreuter
- Center for interstitial and rare lung diseases, Pneumology, Thoraxklinik, University of Heidelberg, Member of the German Center for Lung Research Germany, Heidelberg, Germany
| | - Martin Kolb
- McMaster University, Hamilton, Ontario, Canada
| | - Daniel C Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, Brisbane, Queensland, Australia.,Queensland Lung Transplant Program, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Charles Fogarty
- Spartanburg Medical Research, Spartanburg, South Carolina, United States
| | - Nesrin Mogulkoc
- Ege University Hospital, Department of Pulmonology, Bornova, Turkey
| | | | - Luca Richeldi
- Universita Cattolica del Sacro Cuore Sede di Roma, 96983, Pulmonary Medicine, Roma, Italy
| |
Collapse
|
38
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1241-1250. [DOI: 10.1093/jpp/rgac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022]
|
39
|
Olutoye Ii OO, Short WD, Gilley J, Hammond Ii JD, Belfort MA, Lee TC, King A, Espinoza J, Joyeux L, Lingappan K, Gleghorn JP, Keswani SG. The Cellular and Molecular Effects of Fetoscopic Endoluminal Tracheal Occlusion in Congenital Diaphragmatic Hernia. Front Pediatr 2022; 10:925106. [PMID: 35865706 PMCID: PMC9294219 DOI: 10.3389/fped.2022.925106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a complex disease associated with pulmonary hypoplasia and pulmonary hypertension. Great strides have been made in our ability to care for CDH patients, specifically in the prenatal improvement of lung volume and morphology with fetoscopic endoluminal tracheal occlusion (FETO). While the anatomic effects of FETO have been described in-depth, the changes it induces at the cellular and molecular level remain a budding area of CDH research. This review will delve into the cellular and molecular effects of FETO in the developing lung, emphasize areas in which further research may improve our understanding of CDH, and highlight opportunities to optimize the FETO procedure for improved postnatal outcomes.
Collapse
Affiliation(s)
- Oluyinka O Olutoye Ii
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Walker D Short
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jamie Gilley
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - J D Hammond Ii
- Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | - Michael A Belfort
- Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Timothy C Lee
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Alice King
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Jimmy Espinoza
- Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - Luc Joyeux
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| | - Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, United States.,Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States.,Texas Children's Fetal Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
40
|
Salonen J, Kreus M, Lehtonen S, Vähänikkilä H, Purokivi M, Kaarteenaho R. Decline in Mast Cell Density During Diffuse Alveolar Damage in Idiopathic Pulmonary Fibrosis. Inflammation 2021; 45:768-779. [PMID: 34686945 PMCID: PMC8956519 DOI: 10.1007/s10753-021-01582-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Mast cells (MCs) are known to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), although their role in acute exacerbations of IPF has not been investigated. The aims of the study were to evaluate the numbers of MCs in fibrotic and non-fibrotic areas of lung tissue specimens of idiopathic pulmonary fibrosis (IPF) patients with or without an acute exacerbation of IPF, and to correlate the MC density with clinical parameters. MCs of IPF patients were quantified from surgical lung biopsy (SLB) specimens (n = 47) and lung tissue specimens taken at autopsy (n = 7). MC density was higher in the fibrotic areas of lung tissue compared with spared alveolar areas or in controls. Female gender, low diffusion capacity for carbon monoxide, diffuse alveolar damage, and smoking were associated with a low MC density. MC densities of fibrotic areas had declined significantly in five subjects in whom both SLB in the stable phase and autopsy after an acute exacerbation of IPF had been performed. There were no correlations of MC densities with survival time or future acute exacerbations. The MC density in fibrotic areas was associated with several clinical parameters. An acute exacerbation of IPF was associated with a significant decline in MC counts. Further investigations will be needed to clarify the role of these cells in IPF and in the pathogenesis of acute exacerbation as this may help to identify some potential targets for medical treatment for this serious disease.
Collapse
Affiliation(s)
- Johanna Salonen
- Respiratory Medicine, Research Unit of Internal Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
- Medical Research Center (MRC) Oulu, Oulu University Hospital, P.O. Box 20, 90029 OYS Oulu, Finland
| | - Mervi Kreus
- Respiratory Medicine, Research Unit of Internal Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
- Medical Research Center (MRC) Oulu, Oulu University Hospital, P.O. Box 20, 90029 OYS Oulu, Finland
| | - Siri Lehtonen
- Medical Research Center (MRC) Oulu, Oulu University Hospital, P.O. Box 20, 90029 OYS Oulu, Finland
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Oulu University Hospital, University Hospital of Oulu, P.O. Box 23, 90029 OYS Oulu, Finland
| | - Hannu Vähänikkilä
- Infrastructure for Population Studies, Faculty of Medicine, Northern Finland Birth Cohorts, University of Oulu, Arctic Biobank, P.O. Box 8000, 90014 Oulu, Finland
| | - Minna Purokivi
- The Center of Medicine and Clinical Research, Division of Respiratory Medicine, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| | - Riitta Kaarteenaho
- Respiratory Medicine, Research Unit of Internal Medicine, University of Oulu, P.O. Box 8000, 90014 Oulu, Finland
- Medical Research Center (MRC) Oulu, Oulu University Hospital, P.O. Box 20, 90029 OYS Oulu, Finland
| |
Collapse
|
41
|
Kaieda S, Fujimoto K, Todoroki K, Abe Y, Kusukawa J, Hoshino T, Ida H. Mast cells can produce transforming growth factor β1 and promote tissue fibrosis during the development of Sjögren's syndrome-related sialadenitis. Mod Rheumatol 2021; 32:761-769. [PMID: 34915577 DOI: 10.1093/mr/roab051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES This study investigated the associations of mast cells with immune-mediated inflammation and fibrosis in patients with primary Sjögren's syndrome (pSS); it also explored the underlying pathophysiology of pSS-related sialadenitis. METHODS Twenty-two patients with pSS and 10 patients with sicca (control individuals) underwent labial salivary gland biopsies. Sections were subjected to staining and immunofluorescence analyses. HMC-1 human mast cells were cocultured with fibroblasts in vitro; fibroblasts were also grown in HMC-1 conditioned medium. mRNA levels of collagen Type I (Col1a) and transforming growth factor (TGF)β1 were analysed in cultured cells. RESULTS Mast cell numbers in labial salivary glands were significantly greater in patients with pSS than in control individuals. In salivary glands from patients with pSS, mast cell number was significantly correlated with fibrosis extent; moreover, mast cells were located near fibrous tissue and expressed TGFβ1. Col1a and TGFβ1 mRNAs were upregulated in cocultured fibroblasts and HMC-1 cells, respectively. Fibroblasts cultured in HMC-1 conditioned medium exhibited upregulation of Col1a mRNA; this was abrogated by TGFβ1 neutralizing antibodies. CONCLUSIONS Mast cell numbers were elevated in patients with pSS-related sialadenitis; these cells were located near fibroblasts and expressed TGFβ1. TGFβ1 could induce collagen synthesis in fibroblasts, which might contribute to fibrosis.
Collapse
Affiliation(s)
- Shinjiro Kaieda
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Kyoko Fujimoto
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Keita Todoroki
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Yushi Abe
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan
| | - Tomoaki Hoshino
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| | - Hiroaki Ida
- Department of Medicine, Division of Respirology, Neurology and Rheumatology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
42
|
Proteomics and metabonomics analyses of Covid-19 complications in patients with pulmonary fibrosis. Sci Rep 2021; 11:14601. [PMID: 34272434 PMCID: PMC8285535 DOI: 10.1038/s41598-021-94256-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary fibrosis is a devastating disease, and the pathogenesis of this disease is not completely clear. Here, the medical records of 85 Covid-19 cases were collected, among which fibrosis and progression of fibrosis were analyzed in detail. Next, data independent acquisition (DIA) quantification proteomics and untargeted metabolomics were used to screen disease-related signaling pathways through clustering and enrichment analysis of the differential expression of proteins and metabolites. The main imaging features were lesions located in the bilateral lower lobes and involvement in five lobes. The closed association pathways were FcγR-mediated phagocytosis, PPAR signaling, TRP-inflammatory pathways, and the urea cycle. Our results provide evidence for the detection of serum biomarkers and targeted therapy in patients with Covid-19.
Collapse
|
43
|
Zhang Z, Kurashima Y. Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation. Cells 2021; 10:cells10071615. [PMID: 34203383 PMCID: PMC8308013 DOI: 10.3390/cells10071615] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- CU-UCSD Center for Mucosal Immunology, Department of Pathology/Medicine, Allergy and Vaccines, University of California, San Diego, CA 92093-0063, USA
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2848; Fax: +81-43-226-2183
| |
Collapse
|
44
|
Müller C, Rosmark O, Åhrman E, Brunnström H, Wassilew K, Nybom A, Michaliková B, Larsson H, Eriksson LT, Schultz HH, Perch M, Malmström J, Wigén J, Iversen M, Westergren-Thorsson G. Protein Signatures of Remodeled Airways in Transplanted Lungs with Bronchiolitis Obliterans Syndrome Obtained Using Laser-Capture Microdissection. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1398-1411. [PMID: 34111430 DOI: 10.1016/j.ajpath.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 10/25/2022]
Abstract
Bronchiolitis obliterans syndrome, a common form of chronic lung allograft dysfunction, is the major limitation to long-term survival after lung transplantation. The histologic correlate is progressive, fibrotic occlusion of small airways, obliterative bronchiolitis lesions, which ultimately lead to organ failure. The molecular composition of these lesions is unknown. In this sutdy, the protein composition of the lesions in explanted lungs from four end-stage bronchiolitis obliterans syndrome patients was analyzed using laser-capture microdissection and optimized sample preparation protocols for mass spectrometry. Immunohistochemistry and immunofluorescence were used to determine the spatial distribution of commonly identified proteins on the tissue level, and protein signatures for 14 obliterative bronchiolitis lesions were established. A set of 39 proteins, identified in >75% of lesions, included distinct structural proteins (collagen types IV and VI) and cellular components (actins, vimentin, and tryptase). Each respective lesion exhibited a unique composition of proteins (on average, n = 66 proteins), thereby mirroring the morphologic variation of the lesions. Antibody-based staining confirmed these mass spectrometry-based findings. The 14 analyzed obliterative bronchiolitis lesions showed variations in their protein content, but also common features. This study provides molecular and morphologic insights into the development of chronic rejection after lung transplantation. The protein patterns in the lesions were correlated to pathways of extracellular matrix organization, tissue development, and wound healing processes.
Collapse
Affiliation(s)
- Catharina Müller
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oskar Rosmark
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma Åhrman
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden; Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Division of Laboratory Medicine, Department of Genetics and Pathology, Region Skåne, Lund, Sweden
| | - Katharina Wassilew
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annika Nybom
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Barbora Michaliková
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hillevi Larsson
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Leif T Eriksson
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Hans H Schultz
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jenny Wigén
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin Iversen
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
45
|
Peng L, Wen L, Shi Q, Gao F, Huang B, Wang C. Chelerythrine Ameliorates Pulmonary Fibrosis via Activating the Nrf2/ARE Signaling Pathway. Cell Biochem Biophys 2021; 79:337-347. [PMID: 33580396 DOI: 10.1007/s12013-021-00967-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Chelerythrine (CHE) is a natural benzophenanthridine alkaloid, which has shown its anti-fibrosis activity in kidney and liver, while the impact of CHE in pulmonary fibrosis is still unclear. This study is developed to explore the impact and mechanism of CHE in pulmonary fibrosis. Pulmonary fibrosis mouse models were established through intratracheal injection of bleomycin (BLM), after which the mice were intraperitoneally injected with CHE (0.375 or 0.75 mg/kg/d) every other day. The mice were sacrificed at the 28th day to collect blood serum, bronchoalveolar lavage fluid (BALF), and pulmonary tissues. Then, the severity of pulmonary fibrosis and the expression of nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2) in the pulmonary tissues were detected. Western blot analysis quantified the expressions of fibronectin and alpha-smooth muscle actin (α-SMA). The levels of 4-hydroxynonenal (4-HNE), glutathione (GSH), superoxide dismutase (SOD), TGF-β and hydroxyproline (HP) in the BALF, and pulmonary tissues were measured. The expression levels of Nrf2 and its downstream genes, hemeoxygenase-1 (HO-1) and NAD (P) H: quinone oxidoreductase (NQO1) were examined. CHE at the concentration of 0.375 or 0.75 mg/kg/d could attenuate pulmonary fibrosis. CHE injection reduced the expression levels of fibronectin, α-SMA, and TGF-β, upregulated the levels of SOD and GSH and decreased the levels of 4-HNE and HP. Also, CHE increased the expressions of Nrf2, HO-1, and NQO1. Treatment of Nrf2/antioxidant response element (ARE) inhibitor could block the Nrf2/ARE signaling pathway, thus perturbing the inhibition of CHE on BLM-stimulated pulmonary fibrosis in mice. CHE alleviates BLM-induced pulmonary fibrosis in mice through activating the Nrf2/ARE pathway to increase the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Ling Peng
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Li Wen
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Qingfeng Shi
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Feng Gao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Bin Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China
| | - Changming Wang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guilin Medical University, Guilin People's Hospital, Guilin, 541000, Guangxi, China.
| |
Collapse
|
46
|
Szegeczki V, Perényi H, Horváth G, Hinnah B, Tamás A, Radák Z, Ábrahám D, Zákány R, Reglodi D, Juhász T. Physical Training Inhibits the Fibrosis Formation in Alzheimer's Disease Kidney Influencing the TGFβ Signaling Pathways. J Alzheimers Dis 2021; 81:1195-1209. [PMID: 33896841 PMCID: PMC8293655 DOI: 10.3233/jad-201206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative illness, with several peripheral pathological signs such as accumulation of amyloid-β (Aβ) plaques in the kidney. Alterations of transforming growth factor β (TGFβ) signaling in the kidney can induce fibrosis, thus disturbing the elimination of Aβ. Objective: A protective role of increased physical activity has been proven in AD and in kidney fibrosis, but it is not clear whether TGFβ signalization is involved in this effect. Methods: The effects of long-term training on fibrosis were investigated in the kidneys of mice representing a model of AD (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) by comparing wild type and AD organs. Alterations of canonical and non-canonical TGFβ signaling pathways were followed with PCR, western blot, and immunohistochemistry. Results: Accumulation of collagen type I and interstitial fibrosis were reduced in kidneys of AD mice after long-term training. AD induced the activation of canonical and non-canonical TGFβ pathways in non-trained mice, while expression levels of signal molecules of both TGFβ pathways became normalized in trained AD mice. Decreased amounts of phosphoproteins with molecular weight corresponding to that of tau and the cleaved C-terminal of AβPP were detected upon exercising, along with a significant increase of PP2A catalytic subunit expression. Conclusion: Our data suggest that physical training has beneficial effects on fibrosis formation in kidneys of AD mice and TGFβ signaling plays a role in this phenomenon.
Collapse
Affiliation(s)
- Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Helga Perényi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Horváth
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Barbara Hinnah
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Dóra Ábrahám
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Pulmonary fibrosis is a chronic and progressive lung disease involving unclear pathological mechanisms. The present review presents and discusses the major and recent advances in our knowledge of the pathogenesis of lung fibrosis. RECENT FINDINGS The past months have deepened our understanding on the cellular actors of fibrosis with a better characterization of the abnormal lung epithelial cells observed during lung fibrosis. Better insight has been gained into fibroblast biology and the role of immune cells during fibrosis. Mechanistically, senescence appears as a key driver of the fibrotic process. Extracellular vesicles have been discovered as participating in the impaired cellular cross-talk during fibrosis and deeper understanding has been made on developmental signaling in lung fibrosis. SUMMARY This review emphasizes the contribution of different cell types and mechanisms during pulmonary fibrosis, highlights new insights for identification of potential therapeutic strategies, and underlines where future research is needed to answer remaining open questions.
Collapse
|
48
|
She YX, Yu QY, Tang XX. Role of interleukins in the pathogenesis of pulmonary fibrosis. Cell Death Discov 2021; 7:52. [PMID: 33723241 PMCID: PMC7960958 DOI: 10.1038/s41420-021-00437-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.
Collapse
Affiliation(s)
- Yi Xin She
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Yang Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
49
|
Liu B, Yang MQ, Yu TY, Yin YY, Liu Y, Wang XD, He ZG, Yin L, Chen CQ, Li JY. Mast Cell Tryptase Promotes Inflammatory Bowel Disease-Induced Intestinal Fibrosis. Inflamm Bowel Dis 2021; 27:242-255. [PMID: 32507895 DOI: 10.1093/ibd/izaa125] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal fibrosis is the final pathological outcome of chronic intestinal inflammation without specific therapeutic drugs, which leads to ileus and surgical intervention. Intestinal fibrosis is characterized by excessive deposition of extracellular matrix (ECM). The role of mast cells (MCs), which are members of the sentinel immune cell population, is unknown in intestinal fibrosis. METHODS In this study, we analyzed changes in MCs, tryptase proteins, and ECM components in human fibrotic and control patient intestines. We constructed dextran sodium sulfate-induced intestinal fibrosis models using wild-type mice, MC-reconstituted mice, and MC-deficient mice to explore the role of MCs and tryptase in intestinal fibrosis. The roles and mechanisms of MCs and tryptase on fibroblasts were evaluated using human MCs (HMC-1 and LAD-2), commercial tryptase proteins, human colon fibroblasts (CCD-18Co fibroblasts), the tryptase inhibitor APC366, and the protease-activated receptor-2 (PAR-2) antagonist ENMD-1068. RESULTS Regardless of whether the colon was a human colon or a mouse colon, the fibrotic intestinal tissue had increased MC infiltration and a higher expression of ECM proteins or genes than that of the control group. The dextran sodium sulfate-induced intestinal fibrosis in MC-deficient mice was alleviated compared with that in wild-type mice. After MC reconstruction in MC-deficient mice, the alleviating effect disappeared. Tryptase, as a content stored in MC granules, was released into fibrotic intestinal tissues in the form of degranulation, resulting in an increased expression of tryptase. Compared with the control group, the tryptase inhibition group (the APC366 group) had reduced intestinal fibrosis. The CCD-18Co fibroblasts, when cocultured with MCs or treated with tryptase proteins, were activated to differentiate into myofibroblasts and secrete more ECM proteins (such as collagen and fibronectin). The underlying mechanism of fibroblast activation by tryptase was the activation of the PAR-2/Akt/mTOR pathway. CONCLUSIONS We found that MC tryptase promotes inflammatory bowel disease-induced intestinal fibrosis. The underlying mechanism is that tryptase promotes the differentiation of fibroblasts into fibrotic-phenotype myofibroblasts by activating the PAR-2/Akt/ mTOR pathway of fibroblasts.
Collapse
Affiliation(s)
- Bin Liu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| | - Mu-Qing Yang
- Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| | - Tian-Yu Yu
- Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| | - Yang-Yang Yin
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Ying Liu
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Xiao-Dong Wang
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| | - Zhi-Gang He
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Lu Yin
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Chun-Qiu Chen
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China
| | - Ji-Yu Li
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.,Department of General Surgery, Shanghai Clinical Medical College, Anhui Medical University, Anhui, China
| |
Collapse
|
50
|
Chong WH, Saha BK, Austin A, Chopra A. The Significance of Subpleural Sparing in CT Chest: A State-of-the-Art Review. Am J Med Sci 2021; 361:427-435. [PMID: 33487401 DOI: 10.1016/j.amjms.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/03/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
The subpleural sparing pattern is a common finding on computed tomography (CT) of the lungs. It comprises of pulmonary opacities sparing the lung peripheries, typically 1cm and less from the pleural surface. This finding has a variety of causes, including idiopathic, inflammatory, infectious, inhalational, cardiac, traumatic, and bleeding disorders. Specific disorders that can cause subpleural sparing patterns include nonspecific interstitial pneumonia (NSIP), organizing pneumonia (OP), pulmonary alveolar proteinosis (PAP), diffuse alveolar hemorrhage (DAH), vaping-associated lung injury (VALI), cracked lung, pulmonary edema, pneumocystis jirovecii pneumonia (PJP), pulmonary contusion, and more recently, Coronavirus disease 2019 (COVID-19) pneumonia. Knowledge of the many etiologies of this pattern can be useful in preventing diagnostic errors. In addition, although the etiology of subpleural sparing pattern is frequently indistinguishable during an initial radiologic evaluation, the differences in location of opacities in the lungs, as well as the presence of additional radiologic findings, patient history, and clinical presentation, can often be useful to suggest the appropriate diagnosis. We did a comprehensive search on Pubmed and Google Scholar database using keywords of "subpleural sparing," "peripheral sparing," "sparing of peripheries," "CT chest," "chest imaging," and "pulmonary disease." This review aims to describe the primary differential diagnosis of subpleural sparing pattern seen on chest imaging with a strong emphasis on clinical and radiographic findings. We also discuss the pathogenesis and essential clues that are crucial to narrow the differential diagnosis.
Collapse
Affiliation(s)
- Woon H Chong
- Department of Pulmonary and Critical Care, Albany Medical Center, Albany, New York.
| | - Biplab K Saha
- Department of Pulmonary and Critical Care, Ozarks Medical Center, West Plains, Missouri
| | - Adam Austin
- Department of Pulmonary and Critical Care, University of Florida, Gainesville, Florida
| | - Amit Chopra
- Department of Pulmonary and Critical Care, Albany Medical Center, Albany, New York
| |
Collapse
|