1
|
Mai KL, Pan WQ, Lin ZS, Wang Y, Yang ZF. Pathogenesis of influenza and SARS-CoV-2 co-infection at the extremes of age: decipher the ominous tales of immune vulnerability. ADVANCED BIOTECHNOLOGY 2025; 3:5. [PMID: 39883362 DOI: 10.1007/s44307-025-00057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
The co-circulation of influenza and SARS-CoV-2 has led to co-infection events, primarily affecting children and older adults, who are at higher risk for severe disease. Although co-infection prevalence is relatively low, it is associated with worse outcomes compared to mono-infections. Previous studies have shown that the outcomes of co-infection depend on multiple factors, including viral interference, virus-host interaction and host response. Children and the elderly exhibit distinct patterns of antiviral response, which involve airway epithelium, mucociliary clearance, innate and adaptive immune cells, and inflammatory mediators. This review explores the pathogeneses of SARS-CoV-2 and influenza co-infection, focusing on the antiviral responses in children and the elderly. By comparing immature immunity in children and immune senescence in older adults, we aim to provide insights for the clinical management of severe co-infection cases.
Collapse
Affiliation(s)
- Kai-Lin Mai
- Henan University College of Medicine, Kaifeng, 475004, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei-Qi Pan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zheng-Shi Lin
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Wang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Zi-Feng Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
2
|
Thomasmeyer A, Reineking W, Hewicker-Trautwein M. Histological and immunohistochemical characterization of mucosa-associated lymphoid tissue and antigen-presenting cells in trachea and lung of cattle. Anat Histol Embryol 2023; 52:989-1002. [PMID: 37646363 DOI: 10.1111/ahe.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/21/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
The presence of bronchus-associated lymphoid tissue (BALT) and its structural components has been described in different healthy animal species and in animals with diseases of the respiratory tract. In contrast to normal mammals, BALT is absent in healthy human adult lungs, but has been found in the lungs of children. The histological characteristics of organized mucosa-associated lymphoid tissue (MALT), its subsets of immune cells and their in situ distribution in the lung of healthy subadult and adult cattle shows close similarities with BALT in humans and other animal species such as sheep, horses and pigs. This study clearly demonstrates that organized MALT also occurs in the tracheal mucosa of cattle. The absence of tracheal MALT and BALT in calves suggest that these structures are not constitutive. In the mucosa of bovine trachea, bronchi and bronchioli, MHC II+ and CD11c+ dendritic cells (DCs) are located in the epithelium and in the lamina propria mucosae. These DCs are already present in calves soon after birth. Examination of tangential epithelial sheets shows that in the bovine tracheal epithelium, like in man and rat, a dense network of MHC II+ and CD11c+ DCs exists and that their number is considerably higher than in conventional transverse sections. In the bovine tracheal and bronchial epithelium, MHC II+ DCs are extending their dendrites towards the lumen indicating that these DCs possibly are involved in sampling of luminal antigens. The presence of significantly higher numbers of MHC II+ DCs in the tracheal and bronchial/bronchiolar mucosa of older cattle in than in calves possibly results from local stimulation with exogenous antigens during postnatal life. Detection of DCs expressing the costimulatory molecules CD80 and CD86 in calves and cattle suggests maturation of DCs, which is most likely induced by stimulation with exogenous antigens.
Collapse
Affiliation(s)
- Anne Thomasmeyer
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | |
Collapse
|
3
|
Qu D, Engelmann TA, Preuss V, Hagemeier L, Radomsky L, Beushausen K, Keil J, Vennemann B, Falk CS, Klintschar M. Pulmonary immune profiling of SIDS: impaired immune maturation and age-related cytokine imbalance. Pediatr Res 2023; 93:1239-1249. [PMID: 35986144 PMCID: PMC10132963 DOI: 10.1038/s41390-022-02203-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/05/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND For sudden infant death syndrome (SIDS), an impaired immunocompetence has been discussed for a long time. Cytokines and chemokines are soluble immune mediators (SIM) whose balance is essential for the immune status. We hypothesized that an imbalanced immune response might contribute to the etiology of SIDS. METHODS We investigated 27 cytokines, chemokines, and growth factors in protein lysates of lungs derived from 29 SIDS cases and 15 control children deceased for other reasons. RESULTS Except for the CCL5, no significant differences were detected in the lungs between SIDS cases with and without mild upper respiratory tract infections. In contrast, IL-1RA, IL-7, IL-13, and G-CSF were decreased in the merged SIDS cases compared to control cases without evidence of infection. Plotting SIM concentrations against infant age resulted in increasing concentrations in control but not in SIDS lungs, indicating a disturbed immune maturation. Moreover, an age-dependent shift towards a Th2-related pattern was observed in SIDS. CONCLUSIONS Our findings suggest that an impaired maturation of the immune system, an insufficient response to respiratory pathogens, and an immune response modulated by Th1/Th2 imbalance might play a possible role in triggering SIDS. These findings might in part be explained by chronic stress. IMPACT Maturation of the cytokine and chemokine network may be impaired in SIDS. An imbalance between Th1- and Th2-related cytokines, which may reflect a state of chronic stress causing a more Th2 shift. An impaired immune maturation, an insufficient response to respiratory pathogens, and an immune response modulated by Th1/Th2 imbalance might play a possible role in SIDS.
Collapse
Affiliation(s)
- Dong Qu
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany
| | | | - Vanessa Preuss
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany
| | - Lars Hagemeier
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany
| | - Lena Radomsky
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, DZIF, TTU-IICH, Hannover-Braunschweig site, Hannover, Germany
| | - Kerstin Beushausen
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Jana Keil
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Christine S Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, DZIF, TTU-IICH, Hannover-Braunschweig site, Hannover, Germany
| | - Michael Klintschar
- Institute of Legal Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Tahaghoghi-Hajghorbani S, Zafari P, Masoumi E, Rajabinejad M, Jafari-Shakib R, Hasani B, Rafiei A. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Res 2020; 290:198197. [PMID: 33069815 PMCID: PMC7561578 DOI: 10.1016/j.virusres.2020.198197] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-2019 (COVID-19) which caused by severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), is a pandemic threat to global public health. It has a wide spectrum of clinical manifestations from mild to critical illness, the most serious of which is the complications of acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection appears mild in infants and children, however, in adults, it can lead to serious consequences. In this review, we highlighted the differences between the immune responses of the lung in children and adults, immune dysregulation and their possible role in clinical manifestations in COVID-19. There is a reduction in population of immunocompetent cells during aging and subsequently induced ineffective inflammation in the faces of some infections. Dysregulation in the immune system can lead to an unappropriated local and systemic immune responses and subsequently the rapid spread of the virus, leading to severe COVID-19 disease. Therefore, recognizing the differences in the immune responses of various hosts as well as to improve the immune system disorder should always be part of research and treatment protocols.
Collapse
Affiliation(s)
- S Tahaghoghi-Hajghorbani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - P Zafari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - E Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - M Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - R Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - B Hasani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - A Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Patel VI, Metcalf JP. Airway Macrophage and Dendritic Cell Subsets in the Resting Human Lung. Crit Rev Immunol 2019; 38:303-331. [PMID: 30806245 DOI: 10.1615/critrevimmunol.2018026459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dendritic cells (DCs) and macrophages (MΦs) are antigen-presenting phagocytic cells found in many peripheral tissues of the human body, including the blood, lymph nodes, skin, and lung. They are vital to maintaining steady-state respiration in the human lung based on their ability to clear airways while also directing tolerogenic or inflammatory responses based on specific stimuli. Over the past three decades, studies have determined that there are multiple subsets of these two general cell types that exist in the airways and interstitium. Identifying these numerous subsets has proven challenging, especially with the unique microenvironments present in the lung. Cells found in the vasculature are not the same subsets found in the skin or the lung, as demonstrated by surface marker expression. By transcriptional profiling, these subsets show similarities but also major differences. Primary human lung cells and/ or tissues are difficult to acquire, particularly in a healthy condition. Additionally, surface marker screening and transcriptional profiling are continually identifying new DC and MΦ subsets. While the overall field is moving forward, we emphasize that more attention needs to focus on replicating the steady-state microenvironment of the lung to reveal the physiological functions of these subsets.
Collapse
Affiliation(s)
- Vineet Indrajit Patel
- Pulmonary and Critical Care Division of the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jordan Patrick Metcalf
- Pulmonary and Critical Care Division of the Department of Medicine and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
6
|
Bhide Y, Tomar J, Dong W, de Vries-Idema J, Frijlink HW, Huckriede A, Hinrichs WLJ. Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus. Drug Deliv 2018; 25:533-545. [PMID: 29451040 PMCID: PMC6058687 DOI: 10.1080/10717544.2018.1435748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and protective efficacy. In vivo deposition studies in cotton rats revealed that, the powder formulation was mainly deposited in the trachea ( ∼ 65%) whereas the liquid was homogenously distributed throughout the lungs ( ∼ 96%). In addition, only 60% of the antigen in the powder formulation was deposited in the respiratory tract with respect to the liquid formulation. Immunogenicity studies showed that pulmonary delivered liquid and powder influenza formulations induced robust systemic and mucosal immune responses (significantly higher by liquids than by powders). When challenged with a clinical isolate of homologous H1N1pdm virus, all animals pulmonary administered with placebo had detectable virus in their lungs one day post challenge. In contrast, none of the vaccinated animals had detectable lung virus titers, except for two out of eight animals from the powder immunized group. Also, pulmonary vaccinated animals showed no or little signs of infection like increase in breathing frequency or weight loss upon challenge as compared to animals from the negative control group. In conclusion, immune responses induced by liquid formulation were significantly higher than responses induced by powder formulation, but the overall protective efficacy of both formulations was comparable. Thus, pulmonary immunization is capable of inducing protective immunity and the site of antigen deposition seems to be of minor relevance in inducing protection.
Collapse
Affiliation(s)
- Yoshita Bhide
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jasmine Tomar
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - Wei Dong
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jacqueline de Vries-Idema
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Henderik W Frijlink
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - Anke Huckriede
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wouter L J Hinrichs
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| |
Collapse
|
7
|
Georgountzou A, Papadopoulos NG. Postnatal Innate Immune Development: From Birth to Adulthood. Front Immunol 2017; 8:957. [PMID: 28848557 PMCID: PMC5554489 DOI: 10.3389/fimmu.2017.00957] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.
Collapse
Affiliation(s)
- Anastasia Georgountzou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. Immunity 2016; 45:1285-1298. [DOI: 10.1016/j.immuni.2016.10.031] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/03/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
|
9
|
Guzman-Bautista ER, Ramirez-Estudillo MC, Rojas-Gomez OI, Vega-Lopez MA. Tracheal and bronchial polymeric immunoglobulin secretory immune system (PISIS) development in a porcine model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:271-282. [PMID: 26188097 DOI: 10.1016/j.dci.2015.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
Polymeric immunoglobulins (pIgs) mucosal secretion is mediated by the pIg secretory immune system (PISIS), which is composed of J-chain (JC) and antibody (IgM/IgA) producing cells (JC-AbPC), pIg receptor (pIgR) epithelial cell expression and the efficient release of secretory Igs (SIgs) to the mucosal lumen. A poor development or disturbances in this system may cause higher infection susceptibility, as observed in young and elderly people. In spite of this system's importance, few detailed studies regarding its development have been described in the lower respiratory tract of humans. Because the porcine model has been reported as an option for translational medicine to humans, we studied the tracheal and bronchial PISIS development in healthy, non-vaccinated, SPF, miniature Vietnamese pigs from birth to adulthood using immunohistochemistry and ELISAs. Our results demonstrated that pIgR was present at birth, and its expression increased with age. In contrast, JC-AbPC were low in neonatal pigs; however, colostrum was a source of IgM, SIgA, total IgA and IgG in respiratory secretions (trachea and bronchoalveolar lavages, nasal secretion and saliva) in piglets. JC-AbPC steadily increased in post-weaned, young and adult pigs, correlating with considerable increases in secretory and total Igs in the trachea and bronchi. These data suggest a compensatory role of maternal Igs at the respiratory mucosa in the absence of a structured PISIS before weaning. Furthermore, monomeric Igs (IgG and IgA) may also play an important role in respiratory protection and deserves a more thorough study.
Collapse
Affiliation(s)
- E R Guzman-Bautista
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, México 07360, D.F., Mexico
| | - M C Ramirez-Estudillo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, México 07360, D.F., Mexico
| | - O I Rojas-Gomez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, México 07360, D.F., Mexico
| | - M A Vega-Lopez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Avenida Instituto Politécnico Nacional # 2508, Colonia San Pedro Zacatenco, México 07360, D.F., Mexico.
| |
Collapse
|
10
|
Shaoul R, Tiosano D, Hochberg Z. Evo-devo of Child Growth: The Role of Weaning in the Transition from Infancy to Childhood. Crit Rev Food Sci Nutr 2015; 56:887-95. [DOI: 10.1080/10408398.2012.732623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Steger V, Hampel M, Trick I, Müller M, Walles T. Clinical tracheal replacement: transplantation, bioprostheses and artificial grafts. Expert Rev Med Devices 2014; 5:605-12. [DOI: 10.1586/17434440.5.5.605] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Lung dendritic cell developmental programming, environmental stimuli, and asthma in early periods of life. J Allergy (Cairo) 2012; 2012:176468. [PMID: 23209481 PMCID: PMC3503332 DOI: 10.1155/2012/176468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) are important cells of our innate immune system. Their role is critical in inducing adaptive immunity, tolerance, or allergic response in peripheral organs—lung and skin. The lung DCs are not developed prenatally before birth. The DCs develop after birth presumably during the first year of life; exposures to any foreign antigen or infectious organisms during this period can significantly affect DC developmental programming and generation of distinct DC phenotypes and functions. These changes can have both short-term and long-term health effects which may be very relevant in childhood asthma and predisposition for a persistent response in adulthood. An understanding of DC development at molecular and cellular levels can help in protecting neonates and infants against problematic environmental exposures and developmental immunotoxicity. This knowledge can eventually help in designing novel pharmacological modulators to skew the DC characteristics and immune responses to benefit the host across a lifetime.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The major target groups for an HIV vaccine include breastfeeding infants and adolescents. Differential immune maturity in these age groups may significantly impact vaccine efficacy, and should be taken into account when developing vaccines. Here we review these differences, with an emphasis on the immune response to vaccines for HIV and other pathogens. Recommendations for potential adaptation of current HIV vaccines are also made. RECENT FINDINGS An effective neonatal vaccine needs to be immunogenic in the presence of maternal antibody, and must induce cytotoxic T-lymphocyte responses, neutralizing antibody responses, both systemic and mucosal. There is renewed hope in the possibility of stimulating neutralizing antibodies with HIV vaccination. DNA vaccines are promising for neonates, but will need appropriate boosting. Certain adjuvants and vector delivery systems are more suitable for neonates. Adolescents may have stronger immune responses to HIV vaccines than adults, and will also require induction of mucosal neutralizing humoral and cellular immunity. SUMMARY Some current HIV vaccine strategies may need adaptation for neonates and suitable product development should be accelerated. Vaccines could induce better responses in adolescents and therefore should not be discarded prematurely. Development of vaccines that have potential for these age groups is an urgent global priority.
Collapse
|
14
|
De Paepe ME, Hanley LC, Lacourse Z, Pasquariello T, Mao Q. Pulmonary dendritic cells in lungs of preterm infants: neglected participants in bronchopulmonary dysplasia? Pediatr Dev Pathol 2011; 14:20-7. [PMID: 20050784 DOI: 10.2350/09-09-0709-oa.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preterm infants are at risk for bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted alveolar remodeling and microvascular dysangiogenesis. The pathogenesis of BPD is multifactorial, with contributions from antenatal and/or postnatal infection and inflammation. The potential role of dendritic cells, critical immune regulatory cells with potent angiogenic activities, remains undetermined. We studied the prevalence and topography of dendritic cells in postmortem lungs of short- and long-term ventilated preterm infants born between 23 and 29 weeks in gestation. Controls were age-matched infants who had lived less than 12 hours. Dendritic cells were identified by anti-DC-SIGN immunohistochemistry and were co-localized with endothelial and smooth muscle cells by double immunofluorescence. Lungs of early and late control infants without evidence of antenatal infection contained scattered DC-SIGN-positive dendritic cells in the peripheral lung parenchyma. Lungs of early control infants with a history of chorioamnionitis/antenatal infection and lungs of short- or long-term ventilated preterm infants showed a dramatic (more than 3-fold) increase in dendritic cells. Double labeling highlighted a close association between dendritic cells and small- or medium-sized pulmonary vessels. In conclusion, we demonstrated that dendritic cells are an integral component of normal postcanalicular lung development. Antenatal infection and ventilation/BPD are associated with significant pulmonary recruitment of dendritic cells. The recently described angiogenic effects of dendritic cells and their intimate association with the pulmonary microvasculature indicate that dendritic cells may participate in BPD-associated dysangiogenesis. Elucidation of the role of this immunovascular axis may lead to novel therapeutic approaches to BPD.
Collapse
Affiliation(s)
- Monique E De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, USA.
| | | | | | | | | |
Collapse
|
15
|
Niven RW. Toward managing chronic rejection after lung transplant: the fate and effects of inhaled cyclosporine in a complex environment. Adv Drug Deliv Rev 2011; 63:88-109. [PMID: 20950661 DOI: 10.1016/j.addr.2010.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/09/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
The fate and effects of inhaled cyclosporine A (CsA) are considered after deposition on the lung surface. Special emphasis is given to a post-lung transplant environment and to the potential effects of the drug on the various cell types it is expected to encounter. The known stability, metabolism, pharmacokinetics and pharmacodynamics of the drug have been reviewed and discussed in the context of the lung microenvironment. Arguments support the contention that the immuno-inhibitory and anti-inflammatory effects of CsA are not restricted to T-cells. It is likely that pharmacologically effective concentrations of CsA can be sustained in the lungs but due to the complexity of uptake and action, the elucidation of effective posology must ultimately rely on clinical evidence.
Collapse
|
16
|
Rohmann K, Tschernig T, Pabst R, Goldmann T, Drömann D. Innate immunity in the human lung: pathogen recognition and lung disease. Cell Tissue Res 2010; 343:167-74. [PMID: 20936302 PMCID: PMC7087881 DOI: 10.1007/s00441-010-1048-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/01/2010] [Indexed: 11/27/2022]
Abstract
As the human lung is exposed to a variety of microbial pathogens in the environment, a first line of defense is built up by pulmonary cells like bronchial/alveolar epithelial cells and alveolar macrophages. These cells express several pattern recognition receptors (PRRs) recognizing highly conserved microbial motifs and initiating the production of chemokines and pro- and anti-inflammatory cytokines acting as transmembrane or intracellular receptors. This might not only lead to acute but also to chronic inflammation which is discussed as an underlying mechanism in the pathogenesis of different lung diseases.
Collapse
Affiliation(s)
- Kristina Rohmann
- Medical Clinic III, University of Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Abstract
Prospective studies tracking birth cohorts over periods of years indicate that the seeds for atopic asthma in adulthood are sewn during early life. The key events involve programming of functional phenotypes within the immune and respiratory systems which determine long-term responsiveness to ubiquitous environmental stimuli, particularly respiratory viruses and aeroallergens. A crucial component of asthma pathogenesis is early sensitization to aeroallergens stemming from a failure of mucosal tolerance mechanisms during the preschool years, which is associated with delayed postnatal maturation of a range of adaptive and innate immune functions. These maturational defects also increase risk for severe respiratory infections, and the combination of sensitization and infections maximizes risk for early development of the persistent asthma phenotype. Interactions between immunoinflammatory pathways stimulated by these agents also sustain the disease in later life as major triggers of asthma exacerbations. Recent studies on the nature of these interactions suggest the operation of an infection-associated lung:bone marrow axis involving upregulation of FcERlalpha on myeloid precursor populations prior to their migration to the airways, thus amplifying local inflammation via IgE-mediated recruitment of bystander atopic effector mechanisms. The key participants in the disease process are airway mucosal dendritic cells and adjacent epithelial cells, and transiting CD4(+) effector and regulatory T-cell populations, and increasingly detailed characterization of their roles at different stages of pathogenesis is opening up novel possibilities for therapeutic control of asthma. Of particular interest is the application of genomics-based approaches to drug target identification in cell populations of interest, exemplified by recent findings discussed below relating to the gene network(s) triggered by activation of Th2-memory cells from atopics.
Collapse
|
19
|
What is the clinical relevance of different lung compartments? BMC Pulm Med 2009; 9:39. [PMID: 19671154 PMCID: PMC2737670 DOI: 10.1186/1471-2466-9-39] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/11/2009] [Indexed: 11/29/2022] Open
Abstract
The lung consists of at least seven compartments with relevance to immune reactions. Compartment 1 - the bronchoalveolar lavage (BAL), which represents the cells of the bronchoalveolar space: From a diagnostic point of view the bronchoalveolar space is the most important because it is easily accessible in laboratory animals, as well as in patients, using BAL. Although this technique has been used for several decades it is still unclear to what extent the BAL represents changes in other lung compartments. Compartment 2 - bronchus-associated lymphoid tissue (BALT): In the healthy, BALT can be found only in childhood. The role of BALT in the development of the mucosal immunity of the pulmonary surfaces has not yet been resolved. However, it might be an important tool for inhalative vaccination strategies. Compartment 3 - conducting airway mucosa: A third compartment is the bronchial epithelium and the submucosa, which both contain a distinct pool of leukocytes (e.g. intraepithelial lymphocytes, IEL). This again is also accessible via bronchoscopy. Compartment 4 - draining lymph nodes/Compartment 5 - lung parenchyma: Transbronchial biopsies are more difficult to perform but provide access to two additional compartments - lymph nodes with the draining lymphatics and lung parenchyma, which roughly means "interstitial" lung tissue. Compartment 6 - the intravascular leukocyte pool: The intravascular compartment lies between the systemic circulation and inflamed lung compartments. Compartment 7 - periarterial space: Finally, there is a unique, lung-specific space around the pulmonary arteries which contains blood and lymph capillaries. There are indications that this "periarterial space" may be involved in the pulmonary host defense. All these compartments are connected but the functional network is not yet fully understood. A better knowledge of the complex interactions could improve diagnosis and therapy, or enable preventive approaches of local immunization.
Collapse
|
20
|
Veres TZ, Rochlitzer S, Shevchenko M, Fuchs B, Prenzler F, Nassenstein C, Fischer A, Welker L, Holz O, Müller M, Krug N, Braun A. Spatial interactions between dendritic cells and sensory nerves in allergic airway inflammation. Am J Respir Cell Mol Biol 2007; 37:553-61. [PMID: 17600312 DOI: 10.1165/rcmb.2007-0087oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuroimmune interactions play a critical role in the pathogenesis of asthma. Symptoms like wheezing and cough have been attributed to neural dysregulation, whereas sensitization and the induction of allergic inflammation have been linked with the activity of dendritic cells. Neuropeptides were previously shown to control dendritic cell function in vitro, suggesting interactions between dendritic cells and sensory nerves. Here we characterized the anatomical basis of the interactions between dendritic cells and nerves in the airways of mice and monitored the changes during allergic inflammation. Airway microdissection, whole-mount immunohistology, and confocal microscopy were used for the three-dimensional quantitative mapping of airway nerves and dendritic cells along the main axial pathway of nonsensitized versus ovalbumin-sensitized and -challenged CD11c-enhanced yellow fluorescent protein (CD11c-EYFP) transgenic mice. CD11c-EYFP-positive airway mucosal dendritic cells were contacted by calcitonin gene-related peptide-immunoreactive sensory fibers and their co-localization increased in allergic inflammation. Moreover, protein gene product 9.5-positive neuroepithelial bodies and airway ganglia were associated with dendritic cells. In human airways, human leukocyte antigen DR-positive mucosal dendritic cells were found in the close proximity of sensory nerves and neuroepithelial cells. These results provide morphologic evidence of the interactions between dendritic cells and the neural network of the airways at multiple anatomical sites.
Collapse
Affiliation(s)
- Tibor Z Veres
- Department of Immunology, Allergology and Immunotoxicology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|