1
|
Ewendt F, Drewitz F, Althammer M, Eichler C, Brandsch C, Brey S, Winkler TH, Wilkens MR, St-Arnaud R, Kreutz M, Stangl GI. Vitamin D stimulates Il-15 synthesis in rodent muscle. Biochem Biophys Rep 2025; 41:101925. [PMID: 40134939 PMCID: PMC11935148 DOI: 10.1016/j.bbrep.2025.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/24/2024] [Accepted: 01/19/2025] [Indexed: 03/27/2025] Open
Abstract
Besides its classical skeletal function, vitamin D plays a critical role in both skeletal muscle and the immune system. Interleukin-15 (IL-15), which is highly expressed, and secreted complexed with its receptor, IL-15Rα, by skeletal muscle, stimulates the development of immune cells and affects myogenesis and muscle mass. However, little is known about possible regulators of this myokine. To test whether vitamin D could be a regulator of muscle IL-15 and IL-15Rα expression, C2C12 myotubes were treated with vitamin D3 metabolites and analysis were performed in gastrocnemius muscles of rats treated with a single intraperitoneal dose of 1,25(OH)2D3. The role of VDR was investigated by siRNA technique in C2C12 myotubes and in gastrocnemius muscles of vitamin D receptor knockout (Vdr-KO) mice. Treatment of C2C12 myotubes with 1,25(OH)2D3 or 25(OH)D3 increased Il-15 gene expression in a dose-dependent manner and 1,25(OH)2D3 also moderately increased the relative Il-15 protein amount. Rats treated with a single dose of 1,25(OH)2D3 demonstrated a higher mRNA abundance of muscle Il-15 than controls. The 1,25(OH)2D3 effect on Il-15 was considerably weaker in C2C12 myotubes treated with Vdr-specific siRNA. Vdr-KO mice showed significantly lower muscle Il-15 mRNA than WT mice. Il-15Ra mRNA and Il-15/Il-15Rα protein abundance were unaffected by 1,25(OH)2D3-treatment or VDR functionality, and Cyp27b1 activity is not required for 25(OH)D3-mediated Il-15 gene expression. The results provide evidence for a regulatory role of hydroxyvitamin D3 metabolites on the Il-15 synthesis in skeletal muscle cells, which is largely mediated by the VDR.
Collapse
Affiliation(s)
- Franz Ewendt
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| | - Fabienne Drewitz
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| | - Michael Althammer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Cosima Eichler
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| | - Corinna Brandsch
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| | - Stefanie Brey
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Mirja R. Wilkens
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - René St-Arnaud
- Shriners Hospitals for Children - Canada and McGill University, Montréal, Quebec, Canada
| | - Marina Kreutz
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Gabriele I. Stangl
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, 06120, Halle (Saale), Germany
| |
Collapse
|
2
|
Timofte DV, Tudor RC, Mocanu V, Labusca L. Obesity, Osteoarthritis, and Myokines: Balancing Weight Management Strategies, Myokine Regulation, and Muscle Health. Nutrients 2024; 16:4231. [PMID: 39683624 PMCID: PMC11644804 DOI: 10.3390/nu16234231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity and osteoarthritis (OA) are increasingly prevalent conditions that are intricately linked, with each exacerbating the other's pathogenesis and worsening patient outcomes. This review explores the dual impact of obesity on OA, highlighting the role of excessive weight in aggravating joint degeneration and the limitations OA imposes on physical activity, which further perpetuates obesity. The role of muscle tissue, particularly the release of myokines during physical activity, is examined in the context of OA and obesity. Myokines such as irisin, IL-6, and myostatin are discussed for their roles in metabolic regulation, inflammation, and tissue repair, offering insights into their potential therapeutic targets. This review emphasizes the importance of supervised weight management methods in parallel with muscle rehabilitation in improving joint health and metabolic balance. The potential for myokine modulation through targeted exercise and weight loss interventions to mitigate the adverse effects of obesity and OA is also discussed, suggesting avenues for future research and therapy development to reduce the burden of these chronic conditions.
Collapse
Affiliation(s)
- Daniel Vasile Timofte
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.V.T.); (R.C.T.)
| | - Razvan Cosmin Tudor
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.V.T.); (R.C.T.)
- Dr. Iacob Czihac Military Emergency Hospital Iasi, General Henri Mathias Berthelot Str. 7-9, 700483 Iași, Romania
| | - Veronica Mocanu
- Department of Morpho-Functional Sciences II (Pathophysiology), Center for Obesity BioBehavioral Experimental Research, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Luminita Labusca
- Department of Orthopedics and Traumatology, “Sf. Spiridon” Emergency Clinical Hospital, 700111 Iasi, Romania;
- National Institute of Research and Development in Technical Physics Iasi, 700050 Iasi, Romania
| |
Collapse
|
3
|
Jheng JR, DesJardin JT, Chen YY, Huot JR, Bai Y, Cook T, Hibbard LM, Rupp JM, Fisher A, Zhang Y, Duarte JD, Desai AA, Machado RF, Simon MA, Lai YC. Plasma Proteomics Identifies B2M as a Regulator of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Arterioscler Thromb Vasc Biol 2024; 44:1570-1583. [PMID: 38813697 PMCID: PMC11208054 DOI: 10.1161/atvbaha.123.320270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) represents an important phenotype in heart failure with preserved ejection fraction (HFpEF). However, management of PH-HFpEF is challenging because mechanisms involved in the regulation of PH-HFpEF remain unclear. METHODS We used a mass spectrometry-based comparative plasma proteomics approach as a sensitive and comprehensive hypothesis-generating discovery technique to profile proteins in patients with PH-HFpEF and control subjects. We then validated and investigated the role of one of the identified proteins using in vitro cell cultures, in vivo animal models, and independent cohort of human samples. RESULTS Plasma proteomics identified high protein abundance levels of B2M (β2-microglobulin) in patients with PH-HFpEF. Interestingly, both circulating and skeletal muscle levels of B2M were increased in mice with skeletal muscle SIRT3 (sirtuin-3) deficiency or high-fat diet-induced PH-HFpEF. Plasma and muscle biopsies from a validation cohort of PH-HFpEF patients were found to have increased B2M levels, which positively correlated with disease severity, especially pulmonary capillary wedge pressure and right atrial pressure at rest. Not only did the administration of exogenous B2M promote migration/proliferation in pulmonary arterial vascular endothelial cells but it also increased PCNA (proliferating cell nuclear antigen) expression and cell proliferation in pulmonary arterial vascular smooth muscle cells. Finally, B2m deletion improved glucose intolerance, reduced pulmonary vascular remodeling, lowered PH, and attenuated RV hypertrophy in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS Patients with PH-HFpEF display higher circulating and skeletal muscle expression levels of B2M, the magnitude of which correlates with disease severity. Our findings also reveal a previously unknown pathogenic role of B2M in the regulation of pulmonary vascular proliferative remodeling and PH-HFpEF. These data suggest that circulating and skeletal muscle B2M can be promising targets for the management of PH-HFpEF.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Humans
- Male
- Mice
- Middle Aged
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/blood
- beta 2-Microglobulin/metabolism
- Biomarkers/blood
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/blood
- Heart Failure/genetics
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/blood
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Proteomics/methods
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Sirtuin 3/genetics
- Sirtuin 3/metabolism
- Stroke Volume
- Vascular Remodeling
- Ventricular Function, Left
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | | | - Yi-Yun Chen
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Nankang, Taipei, Taiwan (Y.-Y.C.)
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan (Y.-Y.C.)
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang (Y.B.)
| | - Todd Cook
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Lainey M. Hibbard
- Department of Medical and Molecular Genetics (L.M.H., J.M.R.), Indiana University School of Medicine, Indianapolis
| | - Jennifer M. Rupp
- Department of Medical and Molecular Genetics (L.M.H., J.M.R.), Indiana University School of Medicine, Indianapolis
| | - Amanda Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, PA (Y.Z.)
| | - Julio D. Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville (J.D.D.)
| | - Ankit A. Desai
- Krannert Cardiovascular Research Center (A.A.D.), Indiana University School of Medicine, Indianapolis
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Marc A. Simon
- Division of Cardiology, University of California, San Francisco (J.T.D.J., M.A.S.)
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
4
|
Huang T, Chen X, He J, Zheng P, Luo Y, Wu A, Yan H, Yu B, Chen D, Huang Z. Eugenol mimics exercise to promote skeletal muscle fiber remodeling and myokine IL-15 expression by activating TRPV1 channel. eLife 2024; 12:RP90724. [PMID: 38913071 PMCID: PMC11196110 DOI: 10.7554/elife.90724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.
Collapse
Affiliation(s)
- Tengteng Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Aimin Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural UniversityChengduChina
| |
Collapse
|
5
|
Visuthranukul C, Leelahavanichkul A, Tepaamorndech S, Chamni S, Mekangkul E, Chomtho S. Inulin supplementation exhibits increased muscle mass via gut-muscle axis in children with obesity: double evidence from clinical and in vitro studies. Sci Rep 2024; 14:11181. [PMID: 38755201 PMCID: PMC11099025 DOI: 10.1038/s41598-024-61781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Gut microbiota manipulation may reverse metabolic abnormalities in obesity. Our previous studies demonstrated that inulin supplementation significantly promoted Bifidobacterium and fat-free mass in obese children. We aimed to study gut-muscle axis from inulin supplementation in these children. In clinical phase, the plasma samples from 46 participants aged 7-15 years, were analyzed for muscle biomarkers before and after 6-month inulin supplementation. In parallel, the plausible mechanism of muscle production via gut-muscle axis was examined using macrophage cell line. Bifidobacterium was cultured in semi-refined medium with inulin used in the clinical phase. Cell-free supernatant was collected and used in lipopolysaccharide (LPS)-induced macrophage cell line to determine inflammatory and anti-inflammatory gene expression. In clinical phase, IL-15 and creatinine/cystatin C ratio significantly increased from baseline to the 6th month. In vitro study showed that metabolites derived from Bifidobacterium capable of utilizing inulin contained the abundance of SCFAs. In the presence of LPS, treatment from Bifidobacterium + inulin downregulated TNF-α, IL-6, IL-1β, and iNOS, but upregulated FIZZ-1 and TGF-β expression. Inulin supplementation promoted the muscle biomarkers in agreement with fat-free mass gain, elucidating by Bifidobacterium metabolites derived from inulin digestion showed in vitro anti-inflammatory activity and decreased systemic pro-inflammation, thus promoting muscle production via gut-muscle axis response.Clinical Trial Registry number: NCT03968003.
Collapse
Affiliation(s)
- Chonnikant Visuthranukul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Inflammation and Immunology Research Unit (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surapun Tepaamorndech
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Natural Products and Nanoparticles Research Unit (NP2), Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eakkarin Mekangkul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sirinuch Chomtho
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
6
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
7
|
Khalafi M, Maleki AH, Symonds ME, Sakhaei MH, Rosenkranz SK, Ehsanifar M, Korivi M, Liu Y. Interleukin-15 responses to acute and chronic exercise in adults: a systematic review and meta-analysis. Front Immunol 2024; 14:1288537. [PMID: 38235143 PMCID: PMC10791876 DOI: 10.3389/fimmu.2023.1288537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
PURPOSE Interlukin-15 (IL-15) is an inflammatory cytokine that plays a vital role in immunology and obesity-associated metabolic syndrome. We performed this systematic review and meta-analysis to investigate whether exercise promotes circulating IL-15 concentrations in adults. METHODS We searched PubMed, Web of Science, and Scopus from inception to May, 2023 and identified original studies that investigated the effectiveness of acute and/or chronic exercise on serum/plasma IL-15 levels in adults. Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated using random effect models. Subgroup analyses were performed based on type of exercise, and training status, health status and body mass indexes (BMI) of participants. RESULTS Fifteen studies involving 411 participants and 12 studies involving 899 participants were included in the acute and chronic exercise analyses, respectively. Our findings showed that acute exercise increased circulating IL-15 concentrations immediately after exercise compared with baseline [SMD=0.90 (95% CI: 0.47 to 1.32), p=0.001], regardless of exercise type and participants' training status. Similarly, acute exercise was also associated with increased IL-15 concentrations even one-hour after exercise [SMD=0.50 (95% CI: 0.00 to 0.99), p=0.04]. Nevertheless, chronic exercise did not have a significant effect on IL-15 concentrations [SMD=0.40 (95% CI: -0.08 to 0.88), p=0.10]. CONCLUSION Our results confirm that acute exercise is effective in increasing the IL-15 concentrations immediately and one-hour after exercise intervention, and thereby playing a potential role in improving metabolism in adults. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=445634, identifier CRD42023445634.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Aref Habibi Maleki
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Michael E. Symonds
- Academic Unit of Population and Lifespan Sciences, Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mohammad Hossein Sakhaei
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Guilan, Iran
| | - Sara K. Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Mahsa Ehsanifar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Mallikarjuna Korivi
- Institute of Human Movement and Sports Engineering, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yubo Liu
- Institute of Human Movement and Sports Engineering, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
8
|
Hjortshoej MH, Aagaard P, Storgaard CD, Juneja H, Lundbye‐Jensen J, Magnusson SP, Couppé C. Hormonal, immune, and oxidative stress responses to blood flow-restricted exercise. Acta Physiol (Oxf) 2023; 239:e14030. [PMID: 37732509 PMCID: PMC10909497 DOI: 10.1111/apha.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Heavy-load free-flow resistance exercise (HL-FFRE) is a widely used training modality. Recently, low-load blood-flow restricted resistance exercise (LL-BFRRE) has gained attention in both athletic and clinical settings as an alternative when conventional HL-FFRE is contraindicated or not tolerated. LL-BFRRE has been shown to result in physiological adaptations in muscle and connective tissue that are comparable to those induced by HL-FFRE. The underlying mechanisms remain unclear; however, evidence suggests that LL-BFRRE involves elevated metabolic stress compared to conventional free-flow resistance exercise (FFRE). AIM The aim was to evaluate the initial (<10 min post-exercise), intermediate (10-20 min), and late (>30 min) hormonal, immune, and oxidative stress responses observed following acute sessions of LL-BFRRE compared to FFRE in healthy adults. METHODS A systematic literature search of randomized and non-randomized studies was conducted in PubMed, Embase, Cochrane Central, CINAHL, and SPORTDiscus. The Cochrane Risk of Bias (RoB2, ROBINS-1) and TESTEX were used to evaluate risk of bias and study quality. Data extractions were based on mean change within groups. RESULTS A total of 12525 hits were identified, of which 29 articles were included. LL-BFRRE demonstrated greater acute increases in growth hormone responses when compared to overall FFRE at intermediate (SMD 2.04; 95% CI 0.87, 3.22) and late (SMD 2.64; 95% CI 1.13, 4.16) post-exercise phases. LL-BFRRE also demonstrated greater increase in testosterone responses compared to late LL-FFRE. CONCLUSION These results indicate that LL-BFRRE can induce increased or similar hormone and immune responses compared to LL-FFRE and HL-FFRE along with attenuated oxidative stress responses compared to HL-FFRE.
Collapse
Affiliation(s)
- M. H. Hjortshoej
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
- Centre for Health and RehabilitationUniversity College AbsalonSlagelseDenmark
| | - P. Aagaard
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
| | - C. D. Storgaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - H. Juneja
- Centre for Health and RehabilitationUniversity College AbsalonSlagelseDenmark
| | - J. Lundbye‐Jensen
- Department of Nutrition, Exercise and Sports, Section of Integrative PhysiologyUniversity of CopenhagenCopenhagenDenmark
| | - S. P. Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
| | - C. Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopedic SurgeryCopenhagen University Hospital Bispebjerg and FrederiksbergCopenhagenDenmark
- Center for Healthy Aging, Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
- Department of Physical and Occupational TherapyBispebjerg and Frederiksberg University HospitalCopenhagenDenmark
| |
Collapse
|
9
|
Montgomery MK, De Nardo W, Watt MJ. Exercise training induces depot-specific remodeling of protein secretion in skeletal muscle and adipose tissue of obese male mice. Am J Physiol Endocrinol Metab 2023; 325:E227-E238. [PMID: 37493472 DOI: 10.1152/ajpendo.00178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Acute exercise induces changes in circulating proteins, which are known to alter metabolism and systemic energy balance. Skeletal muscle is a primary contributor to changes in the plasma proteome with acute exercise. An important consideration when assessing the endocrine function of muscle is the presence of different fiber types, which show distinct functional and metabolic properties and likely secrete different proteins. Similarly, adipokines are important regulators of systemic metabolism and have been shown to differ between depots. Given the health-promoting effects of exercise, we proposed that understanding depot-specific remodeling of protein secretion in muscle and adipose tissue would provide new insights into intertissue communication and uncover novel regulators of energy homeostasis. Here, we examined the effect of endurance exercise training on protein secretion from fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscle and visceral and subcutaneous adipose tissue. High-fat diet-fed mice were exercise trained for 6 wk, whereas a Control group remained sedentary. Secreted proteins from excised EDL and soleus muscle, inguinal, and epididymal adipose tissues were detected using mass spectrometry. We detected 575 and 784 secreted proteins from EDL and soleus muscle and 738 and 920 proteins from inguinal and epididymal adipose tissue, respectively. Of these, 331 proteins were secreted from all tissues, whereas secretion of many other proteins was tissue and depot specific. Exercise training led to substantial remodeling of protein secretion from EDL, whereas soleus showed only minor changes. Myokines released exclusively from EDL or soleus were associated with glycogen metabolism and cellular stress response, respectively. Adipokine secretion was completely refractory to exercise regulation in both adipose depots. This study provides an in-depth resource of protein secretion from muscle and adipose tissue, and its regulation following exercise training, and identifies distinct depot-specific secretion patterns that are related to the metabolic properties of the tissue of origin.NEW & NOTEWORTHY The present study examines the effects of exercise training on protein secretion from fast-twitch and slow-twitch muscle as well as visceral and subcutaneous adipose tissue of obese mice. Although exercise training leads to substantial remodeling of protein secretion from fast-twitch muscle, adipose tissue is completely refractory to exercise regulation.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - William De Nardo
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Faculty of Medicine, Dentistry & Health Sciences, Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
11
|
Han X, Ashraf M, Tipparaju SM, Xuan W. Muscle-Brain crosstalk in cognitive impairment. Front Aging Neurosci 2023; 15:1221653. [PMID: 37577356 PMCID: PMC10413125 DOI: 10.3389/fnagi.2023.1221653] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Sarcopenia is an age-related, involuntary loss of skeletal muscle mass and strength. Alzheimer's disease (AD) is the most common cause of dementia in elderly adults. To date, no effective cures for sarcopenia and AD are available. Physical and cognitive impairments are two major causes of disability in the elderly population, which severely decrease their quality of life and increase their economic burden. Clinically, sarcopenia is strongly associated with AD. However, the underlying factors for this association remain unknown. Mechanistic studies on muscle-brain crosstalk during cognitive impairment might shed light on new insights and novel therapeutic approaches for combating cognitive decline and AD. In this review, we summarize the latest studies emphasizing the association between sarcopenia and cognitive impairment. The underlying mechanisms involved in muscle-brain crosstalk and the potential implications of such crosstalk are discussed. Finally, future directions for drug development to improve age-related cognitive impairment and AD-related cognitive dysfunction are also explored.
Collapse
Affiliation(s)
| | | | | | - Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
12
|
Dumond Bourie A, Potier JB, Pinget M, Bouzakri K. Myokines: Crosstalk and Consequences on Liver Physiopathology. Nutrients 2023; 15:nu15071729. [PMID: 37049569 PMCID: PMC10096786 DOI: 10.3390/nu15071729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease mainly characterized by the hepatic accumulation of lipid inducing a deregulation of β-oxidation. Its advanced form is non-alcoholic steatohepatitis (NASH), which, in addition to lipid accumulation, induces hepatocellular damage, oxidative stress and fibrosis that can progress to cirrhosis and to its final stage: hepatocellular carcinoma (HCC). To date, no specific therapeutic treatment exists. The implications of organ crosstalk have been highlighted in many metabolic disorders, such as diabetes, metabolic-associated liver diseases and obesity. Skeletal muscle, in addition to its role as a reservoir and consumer of energy and carbohydrate metabolism, is involved in this inter-organs’ communication through different secreted products: myokines, exosomes and enzymes, for example. Interestingly, resistance exercise has been shown to have a beneficial impact on different metabolic pathways, such as lipid oxidation in different organs through their secreted products. In this review, we will mainly focus on myokines and their effects on non-alcoholic fatty liver disease, and their complication: non-alcoholic steatohepatitis and HCC.
Collapse
Affiliation(s)
- Aurore Dumond Bourie
- European Center for the Study of Diabetes (CeeD), Research Unit of Strasbourg University “Diabetes and Therapeutics”, UR7294, 67200 Strasbourg, France
| | | | - Michel Pinget
- European Center for the Study of Diabetes (CeeD), Research Unit of Strasbourg University “Diabetes and Therapeutics”, UR7294, 67200 Strasbourg, France
| | - Karim Bouzakri
- European Center for the Study of Diabetes (CeeD), Research Unit of Strasbourg University “Diabetes and Therapeutics”, UR7294, 67200 Strasbourg, France
- ILONOV, 67200 Strasbourg, France
| |
Collapse
|
13
|
Farley MJ, Bartlett DB, Skinner TL, Schaumberg MA, Jenkins DG. Immunomodulatory Function of Interleukin-15 and Its Role in Exercise, Immunotherapy, and Cancer Outcomes. Med Sci Sports Exerc 2023; 55:558-568. [PMID: 36730979 DOI: 10.1249/mss.0000000000003067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Exercise has been shown to improve physical and psychosocial outcomes for people across the cancer care continuum. A proposed mechanism underpinning the relationship between exercise and cancer outcomes is exercise-induced immunomodulation via secretion of anti-inflammatory myokines from skeletal muscle tissue. Myokines have the potential to impair cancer growth through modulation of natural killer (NK) cells and CD8+ T cells while improving the effectiveness of cancer therapies. Interleukin-15 (IL-15), one of the most abundant myokines found in skeletal muscle, has a key immunoregulatory role in supporting the proliferation and maturation of T cells and NK cells, which have a key role in the host's immune response to cancer. Furthermore, IL-15 is being explored clinically as an immunotherapy agent with doses similar to the IL-15 concentrations released by skeletal muscle during exercise. Here we review the role of IL-15 within the immune system, examine how IL-15 is produced as a myokine during exercise, and how it may improve outcomes for people with cancer, specifically as an adjuvant or neoadjuvant to immunotherapy. We summarize the available evidence showing changes in IL-15 in response to both acute exercise and training, and the results are inconsistent; higher quality research is needed to advance the understanding of how exercise-mediated increases in IL-15 potentially benefit those who are being treated for, or who have had, cancer.
Collapse
Affiliation(s)
- Morgan J Farley
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | - David B Bartlett
- School of Biosciences and Medicine, University of Surrey, Surrey, UNITED KINGDOM
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, AUSTRALIA
| | | | | |
Collapse
|
14
|
Wang Y, Tan S, Yan Q, Gao Y. Sarcopenia and COVID-19 Outcomes. Clin Interv Aging 2023; 18:359-373. [PMID: 36923269 PMCID: PMC10010141 DOI: 10.2147/cia.s398386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) spread rapidly and became a severe global public health threat. Older adults have a high risk of COVID-19 and its associated mortality. Sarcopenia has emerged as a predictor of poor outcomes in COVID-19 patients, including lengthy hospital stays, mortality, intensive care unit admission, need for invasive mechanical ventilation, and poor rehabilitation outcomes. Chronic inflammation, immune dysfunction, respiratory muscle dysfunction, and swallowing dysfunction may underlie the association between sarcopenia and the poor outcomes of COVID-19 patients. Interleukin 6 receptor blockers (tocilizumab or sarilumab) are recommended for treating patients with severe COVID-19, and their therapeutic effects on sarcopenia are of great interest. This review aimed to analyze the current reports on the association between sarcopenia and COVID-19 and provide an update on the contribution of sarcopenia to the severity and adverse outcomes of COVID-19 and its underlying mechanisms. We also aimed to explore the different screening tools for sarcopenia concurrent with COVID-19, and advocate for early diagnosis and treatment of sarcopenia. Given that the fight against the COVID-19 pandemic may be long-term, further research into understanding the effects of sarcopenia in patients infected with the Omicron variant is necessary.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Shuwen Tan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Qihui Yan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ying Gao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
15
|
Takada S, Fumoto Y, Kinugawa S. Ergogenic effects of caffeine are mediated by myokines. Front Sports Act Living 2022; 4:969623. [PMID: 36570495 PMCID: PMC9774489 DOI: 10.3389/fspor.2022.969623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Exercise has long been known to effectively improve and enhance skeletal muscle function and performance. The favorable effects of exercise on remote organs other than skeletal muscle are well known, but the underlying mechanism has remained elusive. Recent studies have indicated that skeletal muscle not only enables body movement, but also contributes to body homeostasis and the systemic stress response via the expression and/or secretion of cytokines (so-called myokines). Not only the induction of muscle contraction itself, but also changes in intracellular calcium concentration ([Ca2+]i) have been suggested to be involved in myokine production and secretion. Caffeine is widely known as a Ca2+ ionophore, which improves skeletal muscle function and exercise performance (i.e., an "ergogenic aid"). Interestingly, some studies reported that caffeine or an increase in [Ca2+]i enhances the expression and/or secretion of myokines. In this review, we discuss the association between caffeine as an ergogenic aid and myokine regulation.
Collapse
Affiliation(s)
- Shingo Takada
- Department of Lifelong Sport, School of Sports Education, Hokusho University, Ebetsu, Japan,Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan,*Correspondence: Shingo Takada ;
| | - Yoshizuki Fumoto
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan,Division of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan,Shintaro Kinugawa
| |
Collapse
|
16
|
Li Y, Kong M, Wang J, Han P, Zhang N, Yang X, Wang J, Hu Y, Duo Y, Liu D. Exercise-induced circulating exosomes potentially prevent pelvic organ prolapse in clinical practice via inhibition of smooth muscle apoptosis. Heliyon 2022; 9:e12583. [PMID: 37077375 PMCID: PMC10106923 DOI: 10.1016/j.heliyon.2022.e12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background This study aimed to explore the potential mechanisms of exercise to prevent pelvic organ prolapse (POP) and search for diagnostic indictors for POP. Methods We used two clinical POP datasets with patients' information (GSE12852 and GSE53868), a dataset consisting of altered microRNA expression in circulating blood after exercise (GSE69717) for bioinformatic analysis and clinical diagnostic analysis, while a series of cellular experiments were conducted for preliminary mechanical validation. Results Our results show that AXUD1 is highly expressed in the smooth muscle of the ovary and is a key pathogenic gene in POP, while miR-133b is a key molecule in the regulation of POP by exercise-induced serum exosomes. The AUCs of AXUD1 for POP diagnosis were 0.842 and 0.840 in GSE12852 and GSE53868 respectively. At cut-off value = 9.627, the sensitivity and specificity of AXUD1 for predicating POP is 1.000 and 0.833 respectively for GSE53868, while at cut-off value = 3324.640, the sensitivity and specificity of AXUD1 for predicating POP is 0.941 and 0.812 separately for GSE12852. Analysis and experiments confirmed that miR-133b can directly regulate AXUD1. miR-133b mediated C2C12 myoblasts proliferation and inhibited hydrogen peroxide-induced apoptosis. Conclusions Our study proved that AXUD1 is a good clinical diagnostic indicator for POP and provided a theoretical basis for future prevention of POP through exercise and a potential target for intervention in muscle dysfunction.
Collapse
|
17
|
Ahsan M, Garneau L, Aguer C. The bidirectional relationship between AMPK pathway activation and myokine secretion in skeletal muscle: How it affects energy metabolism. Front Physiol 2022; 13:1040809. [PMID: 36479347 PMCID: PMC9721351 DOI: 10.3389/fphys.2022.1040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2023] Open
Abstract
Myokines are peptides and proteins secreted by skeletal muscle cells, into the interstitium, or in the blood. Their regulation may be dependent or independent of muscle contraction to induce a variety of metabolic effects. Numerous myokines have been implicated in influencing energy metabolism via AMP-activated protein kinase (AMPK) signalling. As AMPK is centrally involved in glucose and lipid metabolism, it is important to understand how myokines influence its signalling, and vice versa. Such insight will better elucidate the mechanism of metabolic regulation during exercise and at rest. This review encompasses the latest research conducted on the relationship between AMPK signalling and myokines within skeletal muscles via autocrine or paracrine signalling.
Collapse
Affiliation(s)
- Mahdi Ahsan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Institut du Savoir Montfort –Recherche, Ottawa, ON, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University—Campus Outaouais, Gatineau, QC, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Luo Z, He Z, Qin H, Chen Y, Qi B, Lin J, Sun Y, Sun J, Su X, Long Z, Chen S. Exercise-induced IL-15 acted as a positive prognostic implication and tumor-suppressed role in pan-cancer. Front Pharmacol 2022; 13:1053137. [PMID: 36467072 PMCID: PMC9712805 DOI: 10.3389/fphar.2022.1053137] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/07/2022] [Indexed: 09/12/2023] Open
Abstract
Objective: Exercise can produce a large number of cytokines that may benefit cancer patients, including Interleukin 15 (IL-15). IL-15 is a cytokine that has multiple functions in regulating the adaptive and innate immune systems and tumorigenesis of lung and breast cancers. However, the roles of IL-15 in other types of cancer remain unknown. In this article, we try to systematically analyze if IL-15 is a potential molecular biomarker for predicting patient prognosis in pan-cancer and its connection with anti-cancer effects of exercise. Methods: The expression of IL-15 was detected by The Cancer Genome Atlas (TCGA) database, Human protein Atlas (HPA), and Genotype Tissue-Expression (GTEX) database. Analysis of IL-15 genomic alterations and protein expression in human organic tissues was analyzed by the cBioPortal database and HPA. The correlations between IL-15 expression and survival outcomes, clinical features, immune-associated cell infiltration, and ferroptosis/cuproptosis were analyzed using the TCGA, ESTIMATE algorithm, and TIMER databases. Gene Set Enrichment Analysis (GSEA) was performed to evaluate the biological functions of IL-15 in pan-cancer. Results: The differential analysis suggested that the level of IL-15 mRNA expression was significantly downregulated in 12 tumor types compared with normal tissues, which is similar to the protein expression in most cancer types. The high expression of IL-15 could predict the positive survival outcome of patients with LUAD (lung adenocarcinoma), COAD (colon adenocarcinoma), COADREAD (colon and rectum adenocarcinoma), ESCA (esophageal carcinoma), SKCM (skin cutaneous melanoma), UCS (uterine carcinosarcoma), and READ (rectum adenocarcinoma). Moreover, amplification was found to be the most frequent mutation type of IL-15 genomic. Furthermore, the expression of IL-15 was correlated to the infiltration levels of various immune-associated cells in pan-cancer assessed by the ESTIMATE algorithm and TIMER database. In addition, IL-15 is positively correlated with ferroptosis/cuproptosis-related genes (ACSL4 and LIPT1) in pan-cancer. Levels of IL-15 were reported to be elevated in humans for 10-120 min following an acute exercise. Therefore, we hypothesized that the better prognosis of pan-cancer patients with regular exercise may be achieved by regulating level of IL-15. Conclusion: Our results demonstrated that IL-15 is a potential molecular biomarker for predicting patient prognosis, immunoreaction, and ferroptosis/cuproptosis in pan-cancer and partly explained the anti-cancer effects of exercise.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhong He
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Haocheng Qin
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beijie Qi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Ziwen Long
- Department of Gastric Cancer Sugery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Prado GHJD, Sardeli AV, Lord JM, Cavaglieri CR. The effects of ageing, BMI and physical activity on blood IL-15 levels: A systematic review and meta-analyses. Exp Gerontol 2022; 168:111933. [PMID: 36007720 DOI: 10.1016/j.exger.2022.111933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
AIM The purpose of the study was to test the effect of ageing, BMI, physical activity and chronic exercise on IL-15 blood concentration by meta-analyses of the literature. METHODS The search was performed on PubMed/MEDLINE, Web of Science, ProQuest, Embase and Cochrane databases. First meta-analysis compared blood IL-15 of healthy adults across three age groups (<35 years, 35-65 years, and >65 years), considering BMI as confounding factor; the second compared IL-15 levels between physically active and non-physically active individuals (cross-sectional studies); and the third tested the effect of chronic exercise interventions on blood IL-15 levels on participants of any age, sex, and health condition. RESULTS From 2582 studies retrieved, 67 were selected for the three meta-analyses (age effect: 59; physical activity cross-sectional effect: 5; chronic exercise effect: 14). Older adults had lower blood IL-15 than young and middle-aged adults (5.30 pg/ml [4.76; 5.83]; 7.11 pg/ml [6.33; 7.88]; 7.10 pg/ml [5.55; 8.65], respectively). However, the subgroup of overweight older adults had higher IL-15 than young and middle aged overweight adults; Habitual physical activity did not affect blood IL-15 (standardized mean difference [SMD] 0.61 [-0.65; 1.88], p = 0.34); Chronic exercise reduced blood IL-15 in short-term interventions (<16 weeks) (SMD -0.14 [-0.27; -0.01], p = 0.04), but not studies of >16 weeks of intervention (SMD 0.44 [-0.26; 1.15], p = 0.22). CONCLUSION The present meta-analyses highlight the complex interaction of age, BMI and physical activity on blood IL-15 and emphasize the need to take these factors into account when considering the role of this myokine in health throughout life.
Collapse
Affiliation(s)
| | - Amanda Veiga Sardeli
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil; Gerontology Program, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK.
| | - Janet Mary Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil; Gerontology Program, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
20
|
Supporting tumor therapy by exercise: boosting T cell immunity by myokines. Signal Transduct Target Ther 2022; 7:292. [PMID: 35995771 PMCID: PMC9395336 DOI: 10.1038/s41392-022-01116-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
|
21
|
Renzini A, D’Onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022; 13:706003. [PMID: 35250605 PMCID: PMC8895239 DOI: 10.3389/fphys.2022.706003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco D’Onghia
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council, Rome, Italy
| |
Collapse
|
22
|
Williams RA, Cooper SB, Dring KJ, Hatch L, Morris JG, Sun FH, Nevill ME. Physical fitness, physical activity and adiposity: associations with risk factors for cardiometabolic disease and cognitive function across adolescence. BMC Pediatr 2022; 22:75. [PMID: 35109814 PMCID: PMC8809029 DOI: 10.1186/s12887-022-03118-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The cross-sectional associations between physical activity, physical fitness and adiposity with risk factors for cardiometabolic disease (particularly novel ones such as inflammatory cytokines) and cognitive function across the period of adolescence are not well understood. Additionally, novel physical activity metrics that summarise activity volume and intensity in a continuous manner have not been investigated in this context. Therefore, this study investigated the cross-sectional associations between physical activity, physical fitness and adiposity with risk factors for cardiometabolic disease and cognitive function. These associations were compared between younger and older adolescents. METHODS Seventy younger (11-12y, 35 girls) and 43 older (14-15y, 27 girls) adolescents volunteered to take part in the study. Physical fitness (multi-stage fitness test, MSFT) and adiposity (waist circumference) were determined, followed 7d later by resting blood pressure, a fasted blood sample (glucose, plasma insulin, IL6, IL10, IL15 and IL-1β concentrations) and a cognitive function test battery. Habitual physical activity was monitored via hip-worn accelerometers over this 7-d period and the average acceleration (activity volume), and intensity gradient (intensity distribution of activity) were determined. RESULTS Average acceleration and intensity gradient were negatively associated with mean arterial blood pressure (β = -0.75 mmHg, p = 0.021; β = -10 mmHg, p = 0.006, respectively), and waist circumference was positively associated with IL-6 concentration (β = 0.03%, p = 0.026), with stronger associations observed in older adolescents. Higher physical fitness (MSFT distance) was positively associated with anti-inflammatory IL-15 concentration (β = 0.03%, p = 0.038) and faster response times on the incongruent Stroop task (β = -1.43 ms, p = 0.025), the one-item level of the Sternberg paradigm (β = -0.66 ms, p = 0.026) and the simple (β = 0.43 ms, p = 0.032) and complex (β = -2.43 ms, p = 0.020) levels of the visual search test, but these were not moderated by age group. CONCLUSIONS The present study highlights the important role of physical activity (both the volume and intensity distribution) and physical fitness for cardio-metabolic health. Furthermore, the present study highlights the importance of physical fitness for a variety of cognitive function domains in adolescents, irrespective of age.
Collapse
Affiliation(s)
- Ryan A Williams
- Exercise and Health Research Group Sport Health and Performance Enhancement (SHAPE) Research Centre Department of Sport Science, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Simon B Cooper
- Exercise and Health Research Group Sport Health and Performance Enhancement (SHAPE) Research Centre Department of Sport Science, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Karah J Dring
- Exercise and Health Research Group Sport Health and Performance Enhancement (SHAPE) Research Centre Department of Sport Science, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Lorna Hatch
- Exercise and Health Research Group Sport Health and Performance Enhancement (SHAPE) Research Centre Department of Sport Science, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - John G Morris
- Exercise and Health Research Group Sport Health and Performance Enhancement (SHAPE) Research Centre Department of Sport Science, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Feng-Hua Sun
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong SAR, China
| | - Mary E Nevill
- Exercise and Health Research Group Sport Health and Performance Enhancement (SHAPE) Research Centre Department of Sport Science, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
23
|
Kistner TM, Pedersen BK, Lieberman DE. Interleukin 6 as an energy allocator in muscle tissue. Nat Metab 2022; 4:170-179. [PMID: 35210610 DOI: 10.1038/s42255-022-00538-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
Abstract
Extensive research has shown that interleukin 6 (IL-6) is a multifunctional molecule that is both proinflammatory and anti-inflammatory, depending on the context. Here, we combine an evolutionary perspective with physiological data to propose that IL-6's context-dependent effects on metabolism reflect its adaptive role for short-term energy allocation. This energy-allocation role is especially salient during physical activity, when skeletal muscle releases large amounts of IL-6. We predict that during bouts of physical activity, myokine IL-6 fulfills the three main characteristics of a short-term energy allocator: it is secreted from muscle in response to an energy deficit, it liberates somatic energy through lipolysis and it enhances muscular energy uptake and transiently downregulates immune function. We then extend this model of energy allocation beyond myokine IL-6 to reinterpret the roles that IL-6 plays in chronic inflammation, as well as during COVID-19-associated hyperinflammation and multiorgan failure.
Collapse
Affiliation(s)
- Timothy M Kistner
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
24
|
Yoshida S, Fujimoto T, Takahashi T, Sugimoto K, Akasaka H, Tanaka M, Huang Y, Yasunobe Y, Xie K, Ohnishi Y, Minami T, Takami Y, Yamamoto K, Rakugi H. IL-15RA regulates IL-15 localization and protein expression in skeletal muscle cells. Exp Physiol 2022; 107:222-232. [PMID: 35100657 DOI: 10.1113/ep090205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How are the dynamics of IL-15 and its receptors altered during the differentiation of myoblasts into myotubes, and how is IL-15 regulated? What is the main finding and its importance? ABSTRACT Interleukin-15 (IL-15) is a myokine in the Interleukin-2 (IL-2) family that is generated in the skeletal muscle during exercise. The functional effect of IL-15 involves muscle regeneration and metabolic regulation in skeletal muscle. Reports have indicated that the mechanism of Interleukin-15 receptor subunit alpha (IL-15RA) regulates IL-15 localization in immune cells. However, the dynamic of IL-15 and its receptors, which regulate the IL-15 pathway in skeletal muscle differentiation, have not yet been clarified. This study investigated the mechanism of IL-15 regulation using a mouse skeletal muscle cell line, C2C12 cells. We found that the mRNA expression of IL-15, Interleukin 2 Receptor Subunit Beta (IL-2RB) (CD122), and Interleukin 2 Receptor Subunit Gamma (IL-2RG) (CD132) increased, but that IL-15RA exhibits different kinetics as differentiation progresses. We also found that IL-15, mainly localized in the cytosol, preassembled with IL-15RA in the cytosol and fused to the plasma membrane. Moreover, IL-15RA increased IL-15 protein levels. Our findings suggest that genes comprising the IL-15 signaling complex are enhanced with the differentiation of myotubes and that IL-15RA regulates the protein kinetics of IL-15 signaling in skeletal muscle. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Institute for Biogenesis Research, Department of Anatomy Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, 96813, USA
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ken Sugimoto
- Department of General and Geriatric Medicine, Kawasaki Medical University, Okayama, 700-8505, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, 654-0142, Japan.,Department of Rehabilitation Science, Osaka Health Science University, Osaka, 530-0043, Japan
| | - Yibin Huang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yukiko Yasunobe
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuri Ohnishi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Tomohiro Minami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
25
|
Zakharova AN, Kironenko TA, Milovanova KG, Orlova AA, Dyakova EY, Kalinnikova Yu G, Kabachkova AV, Chibalin AV, Kapilevich LV. Treadmill Training Effect on the Myokines Content in Skeletal Muscles of Mice With a Metabolic Disorder Model. Front Physiol 2021; 12:709039. [PMID: 34858197 PMCID: PMC8631430 DOI: 10.3389/fphys.2021.709039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023] Open
Abstract
The effect of treadmill training loads on the content of cytokines in mice skeletal muscles with metabolic disorders induced by a 16 week high fat diet (HFD) was studied. The study included accounting the age and biorhythmological aspects. In the experiment, mice were used at the age of 4 and 32 weeks, by the end of the experiment—respectively 20 and 48 weeks. HFD feeding lasted 16 weeks. Treadmill training were carried out for last 4 weeks six times a week, the duration 60 min and the speed from 15 to 18 m/min. Three modes of loading were applied. The first subgroup was subjected to stress in the morning hours (light phase); the second subgroup was subjected to stress in the evening hours (dark phase); the third subgroup was subjected to loads in the shift mode (the first- and third-weeks treadmill training was used in the morning hours, the second and fourth treadmill training was used in the evening hours). In 20-week-old animals, the exercise effect does not depend on the training regime, however, in 48-week-old animals, the decrease in body weight in mice with the shift training regime was more profound. HFD affected muscle myokine levels. The content of all myokines, except for LIF, decreased, while the concentration of CLCX1 decreased only in young animals in response to HFD. The treadmill training caused multidirectional changes in the concentration of myokines in muscle tissue. The IL-6 content changed most profoundly. These changes were observed in all groups of animals. The changes depended to the greatest extent on the training time scheme. The effect of physical activity on the content of IL-15 in the skeletal muscle tissue was observed mostly in 48-week-old mice. In 20-week-old animals, physical activity led to an increase in the concentration of LIF in muscle tissue when applied under the training during the dark phase or shift training scheme. In the HFD group, this effect was significantly more pronounced. The content of CXCL1 did not change with the use of treadmill training in almost all groups of animals. Physical activity, introduced considering circadian rhythms, is a promising way of influencing metabolic processes both at the cellular and systemic levels, which is important for the search for new ways of correcting metabolic disorders.
Collapse
Affiliation(s)
- Anna Nikolaevna Zakharova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | | | - Kseniia G Milovanova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - A A Orlova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - E Yu Dyakova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - G Kalinnikova Yu
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Anastasia V Kabachkova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Alexander V Chibalin
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Leonid V Kapilevich
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
26
|
Innate-Immunity Genes in Obesity. J Pers Med 2021; 11:jpm11111201. [PMID: 34834553 PMCID: PMC8623883 DOI: 10.3390/jpm11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
The main functions of adipose tissue are thought to be storage and mobilization of the body’s energy reserves, active and passive thermoregulation, participation in the spatial organization of internal organs, protection of the body from lipotoxicity, and ectopic lipid deposition. After the discovery of adipokines, the endocrine function was added to the above list, and after the identification of crosstalk between adipocytes and immune cells, an immune function was suggested. Nonetheless, it turned out that the mechanisms underlying mutual regulatory relations of adipocytes, preadipocytes, immune cells, and their microenvironment are complex and redundant at many levels. One possible way to elucidate the picture of adipose-tissue regulation is to determine genetic variants correlating with obesity. In this review, we examine various aspects of adipose-tissue involvement in innate immune responses as well as variants of immune-response genes associated with obesity.
Collapse
|
27
|
Della Guardia L, Codella R. Exercise tolls the bell for key mediators of low-grade inflammation in dysmetabolic conditions. Cytokine Growth Factor Rev 2021; 62:83-93. [PMID: 34620559 DOI: 10.1016/j.cytogfr.2021.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022]
Abstract
Metabolic conditions share a common low-grade inflammatory milieu, which represents a key-factor for their ignition and maintenance. Exercise is instrumental for warranting systemic cardio-metabolic balance, owing to its regulatory effect on inflammation. This review explores the effect of physical activity in the modulation of sub-inflammatory framework characterizing dysmetabolic conditions. Regular exercise suppresses plasma levels of TNFα, IL-1β, FFAs and MCP-1, in dysmetabolic subjects. In addition, a single session of training increases the anti-inflammatory IL-10, IL-1 receptor antagonist (IL-1ra), and muscle-derived IL-6, mitigating low-grade inflammation. Resting IL-6 levels are decreased in trained-dysmetabolic subjects, compared to sedentary. On the other hand, the acute release of muscle-IL-6, after exercise, seems to exert a regulatory effect on the metabolic and inflammatory balance. In fact, muscle-released IL-6 is presumably implicated in fat loss and boosts plasma levels of IL-10 and IL-1ra. The improvement of adipose tissue functionality, following regular exercise, is also critical for the mitigation of sub-inflammation. This effect is likely mediated by muscle-released IL-15 and IL-6 and partly relies on the brown-shifting of white adipocytes, induced by exercise. In obese-dysmetabolic subjects, moderate training is shown to restore gut-microbiota health, and this mitigates the translocation of bacterial-LPS into bloodstream. Finally, regular exercise can lower plasma advanced glycated endproducts. The articulated physiology of circulating mediators and the modulating effect of the pathophysiological background, render the comprehension of the exercise-regulatory effect on sub-inflammation a key issue, in dysmetabolism.
Collapse
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy
| | - Roberto Codella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Fratelli Cervi 93, Segrate, 20090 Milano, Italy; Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milano, Italy.
| |
Collapse
|
28
|
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Front Physiol 2021; 12:709807. [PMID: 34456749 PMCID: PMC8387622 DOI: 10.3389/fphys.2021.709807] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Collapse
|
29
|
De Carvalho FG, Brandao CFC, Muñoz VR, Batitucci G, Tavares MEDA, Teixeira GR, Pauli JR, De Moura LP, Ropelle ER, Cintra DE, da Silva ASR, Junqueira-Franco MVM, Marchini JS, De Freitas EC. Taurine supplementation in conjunction with exercise modulated cytokines and improved subcutaneous white adipose tissue plasticity in obese women. Amino Acids 2021; 53:1391-1403. [PMID: 34255136 DOI: 10.1007/s00726-021-03041-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Interventions that can modulate subcutaneous white adipose tissue (scWAT) function, such as exercise training and nutritional components, like taurine, modulate the inflammatory process, therefore, may represent strategies for obesity treatment. We investigated the effects of taurine supplementation in conjunction with exercise on inflammatory and oxidative stress markers in plasma and scWAT of obese women. Sixteen obese women were randomized into two groups: Taurine supplementation group (Tau, n = 8) and Taurine supplementation + exercise group (Tau + Exe, n = 8). The intervention was composed of daily taurine supplementation (3 g) and exercise training for 8 weeks. Anthropometry, body fat composition, and markers of inflammatory and oxidative stress were determined in plasma and scWAT biopsy samples before and after the intervention. We found that, although taurine supplementation increased taurine plasma levels, no changes were observed for the anthropometric characteristics. However, Tau alone decreased interleukin-6 (IL-6), and in conjunction with exercise (Tau + Exe), increased anti-inflammatory interleukins (IL-15 and IL10), followed by reduced IL1β gene expression in the scWAT of obese women. Tau and Tau + Exe groups presented reduced adipocyte size and increased connective tissue and multilocular droplets. In conclusion, taurine supplementation in conjunction with exercise modulated levels of inflammatory markers in plasma and scWAT, and improved scWAT plasticity in obese women, promoting protection against obesity-induced inflammation. TRN NCT04279600 retrospectively registered on August 18, 2019.
Collapse
Affiliation(s)
- Flavia Giolo De Carvalho
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo-EEFERP USP, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
| | - Camila Fernanda Cunha Brandao
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo-FMRP USP, Ribeirão Preto, São Paulo, Brazil.,State University of Minas Gerais - UEMG, Divinopolis unit, Minas Gerais, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise, University of Campinas-FCA UNICAMP, Limeira, São Paulo, Brazil
| | - Gabriela Batitucci
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, São Paulo State University-FCFAR UNESP, Araraquara, São Paulo, Brazil
| | - Maria Eduarda de Almeida Tavares
- Department of Physical Education, School of Technology and Science, São Paulo State University-UNESP, Presidente Prudente, São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, School of Technology and Science, São Paulo State University-UNESP, Presidente Prudente, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, University of Campinas-FCA UNICAMP, Limeira, São Paulo, Brazil
| | - Leandro Pereira De Moura
- Laboratory of Molecular Biology of Exercise, University of Campinas-FCA UNICAMP, Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas-FCA UNICAMP, Limeira, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics, University of Campinas-FCA UNICAMP, Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo-EEFERP USP, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil
| | | | - Julio Sergio Marchini
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo-FMRP USP, Ribeirão Preto, São Paulo, Brazil
| | - Ellen Cristini De Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo-EEFERP USP, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil. .,Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, São Paulo State University-FCFAR UNESP, Araraquara, São Paulo, Brazil.
| |
Collapse
|
30
|
Atakan MM, Koşar ŞN, Güzel Y, Tin HT, Yan X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021; 13:nu13051459. [PMID: 33922998 PMCID: PMC8145589 DOI: 10.3390/nu13051459] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity continues to rise worldwide despite evidence-based public health recommendations. The promise to adopt a healthy lifestyle is increasingly important for tackling this global epidemic. Calorie restriction or regular exercise or a combination of the two is accepted as an effective strategy in preventing or treating obesity. Furthermore, the benefits conferred by regular exercise to overcome obesity are attributed not only to reduced adiposity or reduced levels of circulating lipids but also to the proteins, peptides, enzymes, and metabolites that are released from contracting skeletal muscle or other organs. The secretion of these molecules called cytokines in response to exercise induces browning of white adipose tissue by increasing the expression of brown adipocyte-specific genes within the white adipose tissue, suggesting that exercise-induced cytokines may play a significant role in preventing obesity. In this review, we present research-based evidence supporting the effects of exercise and various diet interventions on preventing obesity and adipose tissue health. We also discuss the interplay between adipose tissue and the cytokines secreted from skeletal muscle and other organs that are known to affect adipose tissue and metabolism.
Collapse
Affiliation(s)
- Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Şükran Nazan Koşar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Yasemin Güzel
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey; (M.M.A.); (Ş.N.K.); (Y.G.)
| | - Hiu Tung Tin
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
| | - Xu Yan
- Institute for Health and Sport (iHeS), Victoria University, P.O. Box 14428, Melbourne 8001, Australia;
- Sarcopenia Research Program, Australia Institute for Musculoskeletal Sciences (AIMSS), Melbourne 3021, Australia
- Correspondence: ; Tel.: +61-3-9919-4024; Fax: +61-3-9919-5615
| |
Collapse
|
31
|
Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021; 10:antiox10020179. [PMID: 33513795 PMCID: PMC7911667 DOI: 10.3390/antiox10020179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are the cellular powerhouses that generate adenosine triphosphate (ATP) to substantiate various biochemical activities. Instead of being a static intracellular structure, they are dynamic organelles that perform constant structural and functional remodeling in response to different metabolic stresses. In situations that require a high ATP supply, new mitochondria are assembled (mitochondrial biogenesis) or formed by fusing the existing mitochondria (mitochondrial fusion) to maximize the oxidative capacity. On the other hand, nutrient overload may produce detrimental metabolites such as reactive oxidative species (ROS) that wreck the organelle, leading to the split of damaged mitochondria (mitofission) for clearance (mitophagy). These vital processes are tightly regulated by a sophisticated quality control system involving energy sensing, intracellular membrane interaction, autophagy, and proteasomal degradation to optimize the number of healthy mitochondria. The effective mitochondrial surveillance is particularly important to skeletal muscle fitness because of its large tissue mass as well as its high metabolic activities for supporting the intensive myofiber contractility. Indeed, the failure of the mitochondrial quality control system in skeletal muscle is associated with diseases such as insulin resistance, aging, and muscle wasting. While the mitochondrial dynamics in cells are believed to be intrinsically controlled by the energy content and nutrient availability, other upstream regulators such as hormonal signals from distal organs or factors generated by the muscle itself may also play a critical role. It is now clear that skeletal muscle actively participates in systemic energy homeostasis via producing hundreds of myokines. Acting either as autocrine/paracrine or circulating hormones to crosstalk with other organs, these secretory myokines regulate a large number of physiological activities including insulin sensitivity, fuel utilization, cell differentiation, and appetite behavior. In this article, we will review the mechanism of myokines in mitochondrial quality control and ROS balance, and discuss their translational potential.
Collapse
|
32
|
Minuzzi LG, da Conceição LR, Muñoz VR, Vieira RFL, Gaspar RC, da Silva ASR, Cintra DE, Pereira de Moura L, Ropelle ER, Teixeira AM, Pauli JR. Effects of short-term physical training on the interleukin-15 signalling pathway and glucose tolerance in aged rats. Cytokine 2021; 137:155306. [PMID: 33010727 DOI: 10.1016/j.cyto.2020.155306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Interleukin-15 (IL-15) is a myokine that has been proposed to modulate skeletal muscle and adipose tissue mass, as well as insulin sensitivity. However, the evidence suggesting a role for IL-15 in improving whole-body insulin sensitivity and decreasing adiposity comes mainly from studies using supraphysiological levels of this cytokine. This study examined the effect of a short-term exercise training protocol on the protein content of IL-15, it's signaling pathway, and glucose tolerance in aged rats. METHODS Fourteen Wistar rats were divided into Young Sedentary (Young, n = 4); Old Sedentary (Old, n = 5); Old Exercise (Old.Exe, n = 5) groups. The animals from the exercised group were submitted to a short-term physical exercise protocol for five days. At the end of physical training and after 16 h of the last exercise session, the animals were euthanized, and tissue collection was done. RESULTS Physical exercise decreased epididymal and mesenteric fat mass and promoted positive effects on glucose tolerance and insulin sensitivity. Muscle IL-15 protein levels were not changed following the short-term physical exercise training with no alterations in the post-exercise IL-15-JAK/STAT signaling pathway. We found a tendency to increased HIF1α and a significant increase in its regulator, PHD2, in the skeletal muscle after exercise. CONCLUSION The elderly rats submitted to short-term aerobic physical training did not present skeletal muscle alteration in the protein content of the IL-15 and IL-15-JAK/STAT signaling pathway. However, short-term aerobic physical training was able to modulate the expression of HIF1α and its regulator PHD2, suggesting an essential role of these proteins in improving post-exercise glucose tolerance and insulin sensitivity in elderly rats.
Collapse
Affiliation(s)
- Luciele Guerra Minuzzi
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; University of Coimbra Research, Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal; Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| | - Luciana Renata da Conceição
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Post-graduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana Maria Teixeira
- University of Coimbra Research, Center for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil; Laboratory of Cell Signalling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; CEPECE - Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
33
|
Gauze-Gnagne C, Raynaud F, Djohan YF, Lauret C, Feillet-Coudray C, Coudray C, Monde A, Koffi G, Morena M, Camara-Cisse M, Cristol JP, Badia E. Impact of diets rich in olive oil, palm oil or lard on myokine expression in rats. Food Funct 2020; 11:9114-9128. [PMID: 33025998 DOI: 10.1039/d0fo01269f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has recently emerged that myokines may be an important skeletal muscle adaptive response to obesogenic diets in sedentary subjects (who do not exercise). This study aimed to assess the influence of various high fat (HF) diets rich in either crude palm oil (cPO), refined palm oil (rPO), olive oil (OO) or lard on the modulation of myokine gene expression in the gastrocnemius. Five groups of 8 rats were each fed HF or control diet for 12 weeks. Systemic parameters concerning glucose, insulin, inflammation, cholesterol, triglycerides (TG) and transaminases were assessed by routine methods or ELISA. Akt and ACC phosphorylation were analyzed by WB in the soleus. Mitochondrial density, inflammation, and the gene expression of 17 myokines and the apelin receptor (Apj) were assessed by qPCR in the gastrocnemius. We found that HF diet-fed rats were insulin resistant and Akt phosphorylation decreased in the soleus muscle, but without any change in Glut4 gene expression. Systemic (IL-6) and muscle inflammation (NFκB and IκB) were not affected by the HF diets as well as TBARS, and ASAT level was enhanced with OO diet. Soleus pACC phosphorylation and gastrocnemius mitochondrial density were not significantly altered. The gene expression of some myokines was respectively increased (myostatin and Il-15) and decreased (Fndc5 and apelin) with the HF diets, whatever the type of fat used. The gene expression of two myokines with anti-inflammatory properties, Il-10 and myonectin, was dependent on the type of fat used and was most increased respectively with cPO or both rPO and OO diets. In conclusion, high-fat diets can differentially modulate the expression of some myokines, either in a dependent manner or independently of their composition.
Collapse
Affiliation(s)
- Chantal Gauze-Gnagne
- Laboratoire de Biochimie, CHU, Univ. Félix Houphouët-Boigny, Cocody, Abidjan, Côte d'Ivoire. and Institut National d'Hygiène Publique, INHP, Treichville, Abidjan, Côte d'Ivoire and PhyMedExp, Univ. Montpellier, INSERM, CNRS, Montpellier, France
| | - Fabrice Raynaud
- PhyMedExp, Univ. Montpellier, INSERM, CNRS, Montpellier, France
| | - Youzan Ferdinand Djohan
- Laboratoire de Biochimie, CHU, Univ. Félix Houphouët-Boigny, Cocody, Abidjan, Côte d'Ivoire.
| | - Céline Lauret
- PhyMedExp, Univ. Montpellier, INSERM, CNRS, Montpellier, France
| | | | | | - Absalome Monde
- Laboratoire de Biochimie, CHU, Univ. Félix Houphouët-Boigny, Cocody, Abidjan, Côte d'Ivoire.
| | - Gervais Koffi
- Laboratoire de Biochimie, CHU, Univ. Félix Houphouët-Boigny, Cocody, Abidjan, Côte d'Ivoire. and PhyMedExp, Univ. Montpellier, INSERM, CNRS, Montpellier, France
| | - Marion Morena
- PhyMedExp, Univ Montpellier, INSERM, CNRS, Département de Biochimie et Hormonologie, CHU Montpellier, Montpellier, France
| | - Massara Camara-Cisse
- Laboratoire de Biochimie, CHU, Univ. Félix Houphouët-Boigny, Cocody, Abidjan, Côte d'Ivoire.
| | - Jean Paul Cristol
- PhyMedExp, Univ Montpellier, INSERM, CNRS, Département de Biochimie et Hormonologie, CHU Montpellier, Montpellier, France
| | - Eric Badia
- PhyMedExp, Univ. Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
34
|
Lazure F, Blackburn DM, Corchado AH, Sahinyan K, Karam N, Sharanek A, Nguyen D, Lepper C, Najafabadi HS, Perkins TJ, Jahani-Asl A, Soleimani VD. Myf6/MRF4 is a myogenic niche regulator required for the maintenance of the muscle stem cell pool. EMBO Rep 2020; 21:e49499. [PMID: 33047485 PMCID: PMC7726801 DOI: 10.15252/embr.201949499] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
The function and maintenance of muscle stem cells (MuSCs) are tightly regulated by signals originating from their niche environment. Skeletal myofibers are a principle component of the MuSC niche and are in direct contact with the muscle stem cells. Here, we show that Myf6 establishes a ligand/receptor interaction between muscle stem cells and their associated muscle fibers. Our data show that Myf6 transcriptionally regulates a broad spectrum of myokines and muscle‐secreted proteins in skeletal myofibers, including EGF. EGFR signaling blocks p38 MAP kinase‐induced differentiation of muscle stem cells. Homozygous deletion of Myf6 causes a significant reduction in the ability of muscle to produce EGF, leading to a deregulation in EGFR signaling. Consequently, although Myf6‐knockout mice are born with a normal muscle stem cell compartment, they undergo a progressive reduction in their stem cell pool during postnatal life due to spontaneous exit from quiescence. Taken together, our data uncover a novel role for Myf6 in promoting the expression of key myokines, such as EGF, in the muscle fiber which prevents muscle stem cell exhaustion by blocking their premature differentiation.
Collapse
Affiliation(s)
- Felicia Lazure
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Aldo H Corchado
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Korin Sahinyan
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Nabila Karam
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Ahmad Sharanek
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Duy Nguyen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Christoph Lepper
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Arezu Jahani-Asl
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada.,Faculty of Medicine, Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
35
|
dos Santos T, Lira FS, Antunes BM. Interleukin-15 and creatine kinase response to high-intensity intermittent exercise training. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol 2020; 139:111022. [PMID: 32707318 DOI: 10.1016/j.exger.2020.111022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenic obesity (SO) is a condition characterized by the occurrence of both sarcopenia and obesity and imposes a heavy burden on the health of the elderly. Controversies and challenges regarding the definition, diagnosis and treatment of SO still remain because of its complex pathogenesis and limitations. Over the past few decades, numerous studies have revealed that myokines secreted from skeletal muscle play significant roles in the regulation of muscle mass and function as well as metabolic homeostasis. Abnormalities in myokines may trigger and promote the pathogenesis underlying age-related and metabolic diseases, including obesity, sarcopenia, type 2 diabetes (T2D), and SO. This review mainly focuses on the role of myokines as potential biomarkers for the early diagnosis and therapeutic targets in SO.
Collapse
Affiliation(s)
- Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
37
|
Gonzalez-Gil AM, Elizondo-Montemayor L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 2020; 12:E1899. [PMID: 32604889 PMCID: PMC7353393 DOI: 10.3390/nu12061899] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Exercise is an effective strategy for preventing and treating obesity and its related cardiometabolic disorders, resulting in significant loss of body fat mass, white adipose tissue browning, redistribution of energy substrates, optimization of global energy expenditure, enhancement of hypothalamic circuits that control appetite-satiety and energy expenditure, and decreased systemic inflammation and insulin resistance. Novel exercise-inducible soluble factors, including myokines, hepatokines, and osteokines, and immune cytokines and adipokines are hypothesized to play an important role in the body's response to exercise. To our knowledge, no review has provided a comprehensive integrative overview of these novel molecular players and the mechanisms involved in the redistribution of metabolic fuel during and after exercise, the loss of weight and fat mass, and reduced inflammation. In this review, we explain the potential role of these exercise-inducible factors, namely myokines, such as irisin, IL-6, IL-15, METRNL, BAIBA, and myostatin, and hepatokines, in particular selenoprotein P, fetuin A, FGF21, ANGPTL4, and follistatin. We also describe the function of osteokines, specifically osteocalcin, and of adipokines such as leptin, adiponectin, and resistin. We also emphasize an integrative overview of the pleiotropic mechanisms, the metabolic pathways, and the inter-organ crosstalk involved in energy expenditure, fat mass loss, reduced inflammation, and healthy weight induced by exercise.
Collapse
Affiliation(s)
- Adrian M. Gonzalez-Gil
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
| | - Leticia Elizondo-Montemayor
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey N.L. 64710, Mexico;
- Tecnologico de Monterrey, Center for Research in Clinical Nutrition and Obesity, Ave. Morones Prieto 300, Monterrey N.L. 64710, Mexico
- Tecnologico de Monterrey, Cardiovascular and Metabolomics Research Group, Hospital Zambrano Hellion, San Pedro Garza Garcia P.C. 66278, Mexico
| |
Collapse
|
38
|
Bartlett DB, Slentz CA, Willis LH, Hoselton A, Huebner JL, Kraus VB, Moss J, Muehlbauer MJ, Spielmann G, Muoio DM, Koves TR, Wu H, Huffman KM, Lord JM, Kraus WE. Rejuvenation of Neutrophil Functions in Association With Reduced Diabetes Risk Following Ten Weeks of Low-Volume High Intensity Interval Walking in Older Adults With Prediabetes - A Pilot Study. Front Immunol 2020; 11:729. [PMID: 32431698 PMCID: PMC7214668 DOI: 10.3389/fimmu.2020.00729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Neutrophil dysfunction is a common feature of aging, and is associated with the pathogenesis of many age-related diseases, including type 2 diabetes mellitus (T2DM). Although exercise training improves metabolic health, decreases risk of T2DM, and is associated with improving neutrophil functions, involvement in regular physical activity declines with age. The aim of this study was to determine if neutrophil functions could be improved in association with changes in fitness and metabolic parameters in older adults at risk for T2DM using 10-weeks of low volume high-intensity interval exercise training (HIIT). Ten older (71 ± 5 years) sedentary adults with prediabetes (HbA1c: 6.1 ± 0.3%) completed 10 weeks of a supervised HIIT program. Three 30 min sessions/week consisted of ten 60 s intervals of low intensity [50-60% heart rate reserve (HRR)] separated with similar durations of high intensity intervals (80-90% HRR). Before and after training, glucose and insulin sensitivity, neutrophil chemotaxis, bacterial phagocytosis, reactive oxygen species (ROS) production, and mitochondrial functions were assessed. Exercise-mediated changes in cardiorespiratory fitness (VO2peak) and neutrophil functions were compared to six young (23 ± 1 years) healthy adults. Following training, significant reductions in fasting glucose and insulin were accompanied by improved glucose control and insulin sensitivity (all p < 0.05). Before exercise training, VO2peak in the old participants was significantly less than that of the young controls (p < 0.001), but increased by 16 ± 11% following training (p = 0.002) resulting in a 6% improvement of the deficit. Neutrophil chemotaxis, phagocytosis and stimulated ROS production were significantly less than that of the young controls, while basal ROS were higher before training (all p < 0.05). Following training, chemotaxis, phagocytosis and stimulated ROS increased while basal ROS decreased, similar to levels observed in the young controls (all p < 0.05) and reducing the deficit of the young controls between 2 and 154%. In five of the adults with prediabetes, neutrophil mitochondrial functions were significantly poorer than the six young controls before training. Following training, mitochondrial functions improved toward those observed in young controls (all p < 0.05), reducing the deficit of the young controls between 14.3 and 451%. Ten weeks of HIIT in older adults at risk for T2DM reduced disease risk accompanied by improved primary and bioenergetic neutrophil functions. Our results are consistent with a reduced risk of infections mediated by relationships in exercise induced systemic and cellular metabolic features. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02441205, registered on May 12th, 2015.
Collapse
Affiliation(s)
- David B. Bartlett
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
- Division of Medical Oncology, School of Medicine, Duke University, Durham, NC, United States
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Cris A. Slentz
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Leslie H. Willis
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Andrew Hoselton
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Janet L. Huebner
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Jennifer Moss
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Guillaume Spielmann
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA, United States
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Timothy R. Koves
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Helena Wu
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Kim M. Huffman
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| | - Janet M. Lord
- MRC-ARUK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Birmingham BRC in Inflammation, University Hospitals Birmingham, Birmingham, United Kingdom
| | - William E. Kraus
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
39
|
Roh HT, Cho SY, So WY. Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072505. [PMID: 32268592 PMCID: PMC7177505 DOI: 10.3390/ijerph17072505] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Purpose: Regular exercise can alleviate oxidative stress related to obesity and can induce secretion of myokines that are involved in the regulation of metabolic homeostasis. There are no studies examining changes in these variables as a result of Taekwondo training intervention. We aimed to investigate the effect of Taekwondo training on oxidative stress and myokine levels in overweight and obese adolescents. Methods: We randomly assigned 20 overweight and obese adolescents to control (control group; CG, n = 10) and experimental (experimental group; EG, n = 10) groups. The EG performed Taekwondo training five times a week for 16 weeks. Physical parameters (height, weight, body mass index (BMI)), physical fitness (maximal oxygen uptake (VO2max) (cardiorespiratory endurance), grip and leg strength (muscular strength), sit-and-reach (flexibility), Sargent jump (power), and stork stand test (balance)) were measured before and after intervention. We measured levels of serum oxidative stress markers (plasma malondialdehyde (MDA) and superoxide dismutase (SOD)) and myokines (serum interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), irisin, and myostatin). Results: The weight and BMI in the EG after intervention were significantly lower and leg strength (muscular strength), sit-and-reach (flexibility), and Sargent jump (power) were significantly improved compared to those of the CG (p < 0.05). There were no significant interaction effects in terms of height, VO2 max, grip strength, or stork stand test (p > 0.05). The SOD and BDNF level after intervention were significantly higher in the EG after the intervention, whereas MDA and irisin levels were significantly lower than those of the CG (p < 0.05). There were no significant interaction effects in terms of serum IL-15 and myostatin levels (p > 0.05). Conclusions: Taekwondo training can reduce obesity and increase physical fitness with respect to muscular strength, flexibility, and power as well as alleviate oxidative stress and modulate myokine secretion in adolescents.
Collapse
Affiliation(s)
- Hee-Tae Roh
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Busan 49315, Korea;
| | - Su-Youn Cho
- Department of Taekwondo, Youngsan University, Yangsan-si 50510, Korea
- Correspondence: (S.-Y.C.); (W.-Y.S.)
| | - Wi-Young So
- Sports and Health Care Major, College of Humanities and Arts, Korea National University of Transportation, Chungju-si 27469, Korea
- Correspondence: (S.-Y.C.); (W.-Y.S.)
| |
Collapse
|
40
|
A focused review of myokines as a potential contributor to muscle hypertrophy from resistance-based exercise. Eur J Appl Physiol 2020; 120:941-959. [PMID: 32144492 DOI: 10.1007/s00421-020-04337-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Resistance exercise induces muscle growth and is an important treatment for age-related losses in muscle mass and strength. Myokines are hypothesized as a signal conveying physiological information to skeletal muscle, possibly to "fine-tune" other regulatory pathways. While myokines are released from skeletal muscle following contraction, their role in increasing muscle mass and strength in response to resistance exercise or training is not established. Recent research identified both local and systemic release of myokines after an acute bout of resistance exercise. However, it is not known whether myokines with putative anabolic function are mechanistically involved in producing muscle hypertrophy after resistance exercise. Further, nitric oxide (NO), an important mediator of muscle stem cell activation, upregulates the expression of certain myokine genes in skeletal muscle. METHOD In the systemic context of complex hypertrophic signaling, this review: (1) summarizes literature on several well-recognized, representative myokines with anabolic potential; (2) explores the potential mechanistic role of myokines in skeletal muscle hypertrophy; and (3) identifies future research required to advance our understanding of myokine anabolism specifically in skeletal muscle. RESULT This review establishes a link between myokines and NO production, and emphasizes the importance of considering systemic release of potential anabolic myokines during resistance exercise as complementary to other signals that promote hypertrophy. CONCLUSION Investigating adaptations to resistance exercise in aging opens a novel avenue of interdisciplinary research into myokines and NO metabolites during resistance exercise, with the longer-term goal to improve muscle health in daily living, aging, and rehabilitation.
Collapse
|
41
|
Garneau L, Parsons SA, Smith SR, Mulvihill EE, Sparks LM, Aguer C. Plasma Myokine Concentrations After Acute Exercise in Non-obese and Obese Sedentary Women. Front Physiol 2020; 11:18. [PMID: 32132925 PMCID: PMC7040180 DOI: 10.3389/fphys.2020.00018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Exercise and physical activity levels influence myokine release from skeletal muscle and contribute to circulating concentrations. Indeed, many myokines, including interleukin (IL)-6, IL-15, secreted protein acidic rich in cysteine (SPARC), and fibroblast growth factor (FGF) 21 are higher in the circulation after an exercise bout. Since these peptides modulate muscle metabolism and can also be targeted toward other tissues to induce adaptations to energy demand, they are of great interest regarding metabolic diseases. Therefore, we set out to compare, in six women with obesity (BMI ≥30 kg/m2) and five healthy women (BMI 22–29.9 kg/m2), the effect of an acute bout of moderate-intensity, continuous cycling exercise (60 min, 60% VO2peak) on the release of myokines (IL-6, IL-8, IL-10, IL-13, IL-15, SPARC, and FGF21) in plasma for a 24-h time course. We found that plasma IL-8 and SPARC levels were reduced in the group of women with obesity, whereas plasma IL-13 concentrations were elevated in comparison to non-obese women both before and after the exercise bout. We also found that plasma FGF21 concentration during the 24 h following the bout of exercise was regulated differently in the non-obese in comparison to obese women. Plasma concentrations of FGF21, IL-6, IL-8, IL-15, and IL-18 were regulated by acute exercise. Our results confirm the results of others concerning exercise regulation of circulating myokines while providing insight into the time course of myokine release in circulation after an acute exercise bout and the differences in circulating myokines after exercise in women with or without obesity.
Collapse
Affiliation(s)
- Léa Garneau
- Institut du Savoir Montfort, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Stephanie A Parsons
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL, United States
| | - Céline Aguer
- Institut du Savoir Montfort, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
42
|
Micielska K, Gmiat A, Zychowska M, Kozlowska M, Walentukiewicz A, Lysak-Radomska A, Jaworska J, Rodziewicz E, Duda-Biernacka B, Ziemann E. The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. Diabetes Res Clin Pract 2019; 152:156-165. [PMID: 31102684 DOI: 10.1016/j.diabres.2019.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 01/07/2023]
Abstract
AIM To investigate the effect of a single and 15 units of high-intensity circuit training (HICT) programme on glucose metabolism, myokines' response and selected genes' expression in women. METHODS Thirty-three, non-active women (mean age: 38 ± 12) were split into a HICT (n = 20) or a control group (CON, n = 13). The training protocol included three circuits of nine exercises with own body weight as a workload performed 3 times a week for five weeks. The CON group performed HICT twice. Blood samples were taken before, 1 h and 24 h after the first and last unit to determine IGF-1, myostatin, irisin, decorin, HSP27, interleukin-15 concentrations using the ELISA immunoenzymatic method. To evaluate HSPB1, TNF-α and DCN mRNA, real-time PCR was used. Pre- and post-intervention, the oral glucose test and body composition assessment were completed. RESULTS The following parameters tended to decrease after the 5-week HICT program: insulin and HOMA-IR Training diminished insulin/IGF-1 ratio (51% CI: -63% to -34%) and induced the drop of myostatin concentration but significantly only among middle-aged women and at baseline insulin resistance. CONCLUSION Obtained data revealed that HICT improved an insulin sensitivity and diminished myostatin concentration among older, insulin-resistant women with lower baseline physical capacity.
Collapse
Affiliation(s)
- Katarzyna Micielska
- Gdansk University of Physical Education and Sport, Faculty of Physical Education, Department of Anatomy and Anthropology, Poland
| | - Anna Gmiat
- Gdansk University of Physical Education and Sport, Faculty of Rehabilitation and Kinesiology, Department of Physiology and Pharmacology, Poland
| | - Malgorzata Zychowska
- Gdansk University of Physical Education and Sport, Faculty of Physical Education, Department of Life Sciences, Poland
| | - Marta Kozlowska
- Gdansk University of Physical Education and Sport, Faculty of Rehabilitation and Kinesiology, Department of Physiology and Pharmacology, Poland
| | - Anna Walentukiewicz
- Gdansk University of Physical Education and Sport, Faculty of Rehabilitation and Kinesiology, Department of Health Promotion and Posturology, Poland
| | - Anna Lysak-Radomska
- Gdansk University of Physical Education and Sport, Faculty of Rehabilitation and Kinesiology, Department of Physiotherapy, Poland
| | - Joanna Jaworska
- Gdansk University of Physical Education and Sport, Faculty of Rehabilitation and Kinesiology, Department of Physiology and Pharmacology, Poland
| | - Ewa Rodziewicz
- Gdansk University of Physical Education and Sport, Faculty of Rehabilitation and Kinesiology, Department of Physiology and Pharmacology, Poland
| | - Barbara Duda-Biernacka
- Gdansk University of Physical Education and Sport, Faculty of Physical Education, Department of Anatomy and Anthropology, Poland
| | - Ewa Ziemann
- Gdansk University of Physical Education and Sport, Faculty of Rehabilitation and Kinesiology, Department of Physiology and Pharmacology, Poland.
| |
Collapse
|
43
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
44
|
Nadeau L, Aguer C. Reply to “Discussion of ‘Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism’ – Interleukin-15 and interleukin-15Rα-dependent/-independent functions in human skeletal muscle are largely unknown”. Appl Physiol Nutr Metab 2019; 44:338-339. [DOI: 10.1139/apnm-2018-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lucien Nadeau
- Institut du Savoir Montfort - Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Céline Aguer
- Institut du Savoir Montfort - Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
45
|
Pérez-López A, Calbet JAL. Discussion of "Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism" - Interleukin-15 and interleukin-15Rα-dependent/-independent functions in human skeletal muscle are largely unknown. Appl Physiol Nutr Metab 2019; 44:336-337. [PMID: 30789310 DOI: 10.1139/apnm-2018-0769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Alberto Pérez-López
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid 28871, Spain
| | - Jose A L Calbet
- b Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain.,c Department of Physical Education, Faculty of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
46
|
Nadeau L, Patten DA, Caron A, Garneau L, Pinault-Masson E, Foretz M, Haddad P, Anderson BG, Quinn LS, Jardine K, McBurney MW, Pistilli EE, Harper ME, Aguer C. IL-15 improves skeletal muscle oxidative metabolism and glucose uptake in association with increased respiratory chain supercomplex formation and AMPK pathway activation. Biochim Biophys Acta Gen Subj 2018; 1863:395-407. [PMID: 30448294 DOI: 10.1016/j.bbagen.2018.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND IL-15 is believed to play a role in the beneficial impact of exercise on muscle energy metabolism. However, previous studies have generally used supraphysiological levels of IL-15 that do not represent contraction-induced IL-15 secretion. METHODS L6 myotubes were treated acutely (3 h) and chronically (48 h) with concentrations of IL-15 mimicking circulating (1-10 pg/ml) and muscle interstitial (100 pg/ml -20 ng/ml) IL-15 levels with the aim to better understand its autocrine/paracrine role on muscle glucose uptake and mitochondrial function. RESULTS Acute exposure to IL-15 levels representing muscle interstitial IL-15 increased basal glucose uptake without affecting insulin sensitivity. This was accompanied by increased mitochondrial oxidative functions in association with increased AMPK pathway and formation of complex III-containing supercomplexes. Conversely, chronic IL-15 exposure resulted in a biphasic effect on mitochondrial oxidative functions and ETC supercomplex formation was increased with low IL-15 levels but decreased with higher IL-15 concentrations. The AMPK pathway was activated only by high levels of chronic IL-15 treatment. Similar results were obtained in skeletal muscle from muscle-specific IL-15 overexpressing mice that show very high circulating IL-15 levels. CONCLUSIONS Acute IL-15 treatment that mimics local IL-15 concentrations enhances muscle glucose uptake and mitochondrial oxidative functions. That mitochondria respond differently to different levels of IL-15 during chronic treatments indicates that IL-15 might activate two different pathways in muscle depending on IL-15 concentrations. GENERAL SIGNIFICANCE Our results suggest that IL-15 may act in an autocrine/paracrine fashion and be, at least in part, involved in the positive effect of exercise on muscle energy metabolism.
Collapse
Affiliation(s)
- L Nadeau
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - D A Patten
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - A Caron
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - L Garneau
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - E Pinault-Masson
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - M Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - P Haddad
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Science, Ottawa, ON, Canada
| | - B G Anderson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - L S Quinn
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - K Jardine
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - M W McBurney
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - E E Pistilli
- West Virginia University School of Medicine, Morgantown, WV, United States
| | - M E Harper
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada
| | - C Aguer
- Institut du Savoir Montfort - Recherche, Ottawa, ON, Canada; University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, Ottawa, ON, Canada.
| |
Collapse
|