1
|
Rayêe D, Meier UT, Eliscovich C, Cvekl A. Nucleolar ribosomal RNA synthesis continues in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency. RNA Biol 2025; 22:1-16. [PMID: 40126102 PMCID: PMC11959900 DOI: 10.1080/15476286.2025.2483118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Cellular differentiation requires highly coordinated action of all three transcriptional systems to produce rRNAs, mRNAs and various 'short' and 'long' non-coding RNAs by RNA Polymerase I, II and III systems, respectively. RNA Polymerase I catalyzes transcription of about 400 copies of mammalian rDNA genes, generating 18S, 5.8S and 28S rRNA molecules. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei through different mechanisms. In lens, the generation of the organelle-free zone (OFZ) includes the degradation of mitochondria, endoplasmic reticulum, Golgi apparatus and nuclei. Here, using RNA fluorescence in situ hybridization (FISH), we evaluated nascent rRNA transcription, located in the nucleoli, during the process of mouse lens fiber cell differentiation. Lens fiber cell nuclei undergo morphological changes including chromatin condensation prior to their denucleation. Remarkably, nascent rRNA transcription persists in all nuclei that are in direct proximity of the OFZ. Additionally, changes in both nuclei and nucleoli shape were evaluated via immunofluorescence detection of fibrillarin, nucleolin, UBF and other proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support nascent rRNA transcription. Thus, we propose that 'late' production of rRNA molecules and consequently of ribosomes increases crystallin protein synthesis machinery within the mature lens fibers.
Collapse
Affiliation(s)
- Danielle Rayêe
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - U. Thomas Meier
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carolina Eliscovich
- Departments of Medicine (Hepatology) and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleš Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Bogolyubov DS, Chistyakova LV, Travina AO, Sulatsky MI, Goodkov AV. New nucleolin-containing cytoplasmic bodies in an archamoebian protist Pelomyxa belevskii (Amoebozoa, Archamoebae, Pelobiontida). PROTOPLASMA 2025; 262:695-706. [PMID: 39805991 DOI: 10.1007/s00709-024-02017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
The representatives of the archamoebian genus Pelomyxa are amoeboid anaerobic protists that inhabit fresh-water anoxic sediments, and most of them are usually multinucleate. The cytoplasm of these unicellular organisms is highly complicated and contains numerous vacuoles of different types, as well as a wide range of prokaryotic endocytobionts, agglomerations of glycogen, lipids, etc. Among the great variety of cytoplasmic structures in P. belevskii, we identified novel organelles termed Cytoplasmic Nucleolin-Rich Bodies (CNRBs) due to their enrichment in nucleolin, a nuclear/nucleolar protein. The P. belevskii CNRBs differ significantly from known cytoplasmic nucleolin-related organelles encountered in some other eukaryotic cells, but their biological significance remains elusive. The work also provides the first description of the nuclear organization of P. belevskii. The nucleolar apparatus of P. belevskii contains little nucleolin, as determined by quantitative electron microscopic data, suggesting that it is inactive despite its morphological complexity. The presence of CNRBs in Pelomyxa is discussed in the context of the specific habitat conditions and biology of these unicellular eukaryotes.
Collapse
Affiliation(s)
- Dmitry S Bogolyubov
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - Ludmila V Chistyakova
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Alexandra O Travina
- Laboratory of Non-Coding DNA, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Andrew V Goodkov
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
3
|
Lacroix E, Momchilova EA, Chandhok S, Padavu M, Zapf R, Audas TE. PI3K/AKT signaling mediates stress-inducible amyloid formation through c-Myc. Cell Rep 2025; 44:115617. [PMID: 40272983 DOI: 10.1016/j.celrep.2025.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
In response to environmental stress, eukaryotic cells reversibly form functional amyloid aggregates called amyloid bodies (A-bodies). While these solid-like biomolecular condensates share many biophysical characteristics with pathological amyloids, A-bodies are non-toxic, and they induce a protective state of cellular dormancy. As a recently identified structure, the modulators of A-body biogenesis remain uncharacterized, with the seeding noncoding RNA being the only known regulatory factor. Here, we use an image-based high-throughput screening approach to identify candidate pathways regulating A-body biogenesis. Our data demonstrate that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling axis meditates A-body formation during stress exposure, with AKT activation repressing glycogen synthase kinase-3 (GSK3)-mediated degradation of c-Myc. This enhances c-Myc binding to regulatory elements of the seeding noncoding RNA, upregulating the transcripts that nucleate A-body formation. Identifying a link between PI3K/AKT signaling, c-Myc, and physiological amyloid aggregates extends the range of activity for these well-established regulators while providing insight into cellular components whose dysregulation could underly amyloidogenic disorders.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Evgenia A Momchilova
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mythili Padavu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
4
|
Muñoz-Velasco I, Herrera-Escamilla AK, Vázquez-Salazar A. Nucleolar origins: challenging perspectives on evolution and function. Open Biol 2025; 15:240330. [PMID: 40068812 PMCID: PMC11896706 DOI: 10.1098/rsob.240330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
The nucleolus, once considered a mere 'ribosome factory', is now recognized as a dynamic hub influencing nearly every aspect of cellular life, from genome organization to stress response and ageing. Despite being a hallmark of eukaryotic cells, recent discoveries reveal that even prokaryotes exhibit nucleolus-like structures, hinting at ancient origins for nucleolar functions. This review explores the evolutionary journey of the nucleolus, tracing its roots back to early life and examining its structural and functional diversity across domains. We highlight key nucleolar proteins that play vital roles not only in ribosome production but also in regulating cell cycle, DNA repair and cellular stress, linking nucleolar activity directly to health and disease. Dysfunctions in nucleolar processes are implicated in cancer, ribosomopathies and neurodegenerative disorders, positioning the nucleolus as a critical target for innovative therapeutic strategies. As advanced imaging and molecular techniques unlock deeper insights into both canonical and mysterious non-canonical roles, the nucleolus stands as a model for how cellular microenvironments can evolve to meet complex biological demands. By addressing open questions surrounding the evolution of the nucleolus, its organization and diverse functions, the ideas presented here aim to contribute to the ongoing discussion, challenging traditional paradigms and suggesting new avenues for uncovering the fundamental principles that drive cellular life.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Departamento de Biología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Seale C, Barazas M, van Schendel R, Tijsterman M, Gonçalves JP. MUSICiAn: Genome-wide Identification of Genes Involved in DNA Repair via Control-Free Mutational Spectra Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635038. [PMID: 39975194 PMCID: PMC11838396 DOI: 10.1101/2025.01.27.635038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Motivation Understanding the factors involved in DNA double-strand break (DSB) repair is crucial for the development of targeted anti-cancer therapies, yet the roles of many genes remain unclear. Recent studies show that perturbations of certain genes can alter the distribution of sequence-specific mutations left behind after DSB repair. This suggests that genome-wide screening could reveal novel DSB repair factors by identifying genes whose perturbation causes the mutational distribution spectra observed at a given DSB site to deviate significantly from the wild-type. However, designing proper controls for a genome-wide perturbation screen could be challenging. We explore the idea that a genome-wide screen might allow us to forgo the use of traditional non-targeting controls by reframing the analysis as an outlier detection problem, assuming that most genes have minimal influence on DSB repair. Results We propose MUSICiAn (Mutational Signature Catalogue Analysis), a compositional data analysis method that ranks gene perturbation-specific mutational spectra without controls by measuring deviations from the central tendency in the distributions of all spectra. We show that MUSICiAn can effectively estimate pseudo-controls for the existing Repair-seq dataset, screening 476 genes and 60 non-targeting controls. We further apply MUSICiAn to a genome-wide dataset profiling mutational outcomes induced by CRISPR-Cas9 at three target sites across cells with individual perturbations of 18,406 genes. MUSICiAn successfully recovers known genes, highlights the spliceosome as a lesser-appreciated player in DSB repair, and reveals candidates for further investigation. Availability github.com/joanagoncalveslab/MUSICiAn.
Collapse
Affiliation(s)
- Colm Seale
- Pattern Recognition & Bioinformatics, Department of Intelligent Systems, EEMCS Faculty, Delft University of Technology, Delft, The Netherlands
- Holland Proton Therapy Center, Delft, The Netherlands
| | - Marco Barazas
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robin van Schendel
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcel Tijsterman
- Human Genetics Department, EEMCS Faculty, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joana P. Gonçalves
- Pattern Recognition & Bioinformatics, Department of Intelligent Systems, EEMCS Faculty, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
6
|
Vangoor VR, Giuliani G, de Wit M, Rangel CK, Venø MT, Schulte JT, Gomes-Duarte A, Senthilkumar K, Puhakka N, Kjems J, de Graan PNE, Pasterkamp RJ. Compartment-specific small non-coding RNA changes and nucleolar defects in human mesial temporal lobe epilepsy. Acta Neuropathol 2024; 148:61. [PMID: 39509000 PMCID: PMC11543739 DOI: 10.1007/s00401-024-02817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024]
Abstract
Mesial temporal lobe epilepsy (mTLE) is a debilitating disease characterized by recurrent seizures originating from temporal lobe structures such as the hippocampus. The pathogenic mechanisms underlying mTLE are incompletely understood but include changes in the expression of non-coding RNAs in affected brain regions. Previous work indicates that some of these changes may be selective to specific sub-cellular compartments, but the full extent of these changes and how these sub-cellular compartments themselves are affected remains largely unknown. Here, we performed small RNA sequencing (RNA-seq) of sub-cellular fractions of hippocampal tissue from mTLE patients and controls to determine nuclear and cytoplasmic expression levels of microRNAs (miRNAs). This showed differential expression of miRNAs and isomiRs, several of which displayed enriched nuclear expression in mTLE. Subsequent analysis of miR-92b, the most strongly deregulated miRNA in the nucleus, showed accumulation of this miRNA in the nucleolus in mTLE and association with snoRNAs. This prompted us to further study the nucleolus in human mTLE which uncovered several defects, such as altered nucleolar size or shape, mis-localization of nucleolar proteins, and deregulation of snoRNAs, indicative of nucleolar stress. In a rat model of epilepsy, nucleolar phenotypes were detected in the latency period before the onset of spontaneous seizures, suggesting that nucleolar changes may contribute to the development of seizures and mTLE. Overall, these data for the first time implicate nucleolar defects in the pathogenesis of mTLE and provide a valuable framework for further defining the functional consequences of altered sub-cellular RNA profiles in this disease.
Collapse
Affiliation(s)
- Vamshidhar R Vangoor
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Giuliano Giuliani
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Carolina K Rangel
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
- Omiics ApS, 8200, Aarhus N, Denmark
| | - Joran T Schulte
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Andreia Gomes-Duarte
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- VectorY Therapeutics, Matrix Innovation Center VI, Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Ketharini Senthilkumar
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Noora Puhakka
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Pierre N E de Graan
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Rayêe D, Meier UT, Eliscovich C, Cvekl A. Continuous nucleolar ribosomal RNA synthesis in differentiating lens fiber cells until abrupt nuclear degradation required for ocular lens transparency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619434. [PMID: 39484610 PMCID: PMC11526875 DOI: 10.1101/2024.10.21.619434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cellular differentiation requires highly coordinate action of all three transcriptional systems to produce rRNAs, mRNAs, and various "short" and "long" non-coding RNAs by RNA Polymerase I, II, and III systems, respectively. The RNA Polymerase I catalyzes transcription of about 400 copies of rDNA genes generating 18S, 5.8S, and 28S rRNA molecules from the individual primary transcript. Lens fiber cell differentiation is a unique process to study transcriptional mechanisms of individual crystallin genes as their very high transcriptional outputs are directly comparable only to globin genes in erythrocytes. Importantly, both terminally differentiated lens fiber cells and mammalian erythrocytes degrade their nuclei though by different mechanisms. In lens, generation of organelle-free zone (OFZ) includes degradation of mitochondria, endoplasmic reticulum, Golgi apparatus, and nuclei; nevertheless, very little is known about their nucleoli and rRNA transcription. Here, using RNA fluorescence in situ hybridization (FISH) we evaluated nascent rRNA transcription during the entire process of lens fiber cell differentiation. The lens fiber cell nuclei undergo morphological changes prior their denucleation, including chromatin condensation; remarkably, the nascent rRNA transcription persists in all nuclei next to the OFZ. The changes in both nuclei and nucleoli shape and microarchitecture were evaluated by immunofluorescence to detect fibrillarin, nucleolin, UBF, and other nuclear proteins. These studies demonstrate for the first time that highly condensed lens fiber cell nuclei have the capacity to support rRNA transcription. Thus, "late" production of rRNA molecules and consequently the ribosomes contribute to the terminal translational mechanisms to produce maximal quantities of the crystallin proteins.
Collapse
|
8
|
Papadopoulou V, Schiavini G, Stalder G, Basset V, Schoumans J, Nabergoj M, Schaller M. Characteristics and Prognosis of "Acute Promyelocytic Leukemia-like" Nucleophosmin-1-Mutated Acute Myeloid Leukemia in a Retrospective Patient Cohort. Biomedicines 2024; 12:2282. [PMID: 39457595 PMCID: PMC11505509 DOI: 10.3390/biomedicines12102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background: AML with NPM1 mutation is the largest subcategory of AML, representing about 35% of AML cases. It is characterized by CD34 negativity, which suggests a relatively differentiated state of the bulk of leukemic blasts. Notably, a significant subset of NPM1-mutated AML cases also exhibit HLA-DR negativity, classifying them as "double-negative", and mimicking, therefore, the CD34- HLA-DR- immunophenotype of acute promyelocytic leukemia (APL). Objectives: This study focuses on the "acute promyelocytic leukemia-like" ("APL-like") subset of NPM1-mutated AML, which can be challenging to distinguish from APL at presentation, prior to confirming RARa translocations. We aim to investigate the hematologic and immunophenotypic parameters that may aid to its distinction from APL. Additionally, we explore differences in genetic profile and prognosis between "APL-like" and "non-APL-like" NPM1-mutated AML cases. Methods: We conducted a retrospective evaluation of 77 NPM1-mutated AML cases and 28 APL cases. Results: Morphological characteristics, hematologic parameters (such as DD/WBC and PT/WBC), and specific immunophenotypic markers (including SSC, CD64, and CD4) can assist in the early distinction of "APL-like" NPM1-mutated AML from APL. Regarding differences in genetic profiles and outcomes between "APL-like" and non-"APL-like" NPM1-mutated AML cases, we observed a significantly higher incidence of IDH1/2 /TET2 mutations, along with a significantly lower incidence of DNMT3A mutations in the "APL-like" subset compared to the non-"APL-like" subset. The frequency of Ras-pathway and FLT3 mutations did not differ between these last two groups, nor did their prognoses. Conclusions: Our findings contribute to a comprehensive characterization of NPM1-mutated AML, enhancing diagnostic accuracy and aiding in the detailed classification of the disease. This information may potentially guide targeted therapies or differentiation-based treatment strategies.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Giulia Schiavini
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Gregoire Stalder
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Hematology Service, Department of Oncology, Cantonal Hospital of Valais, 1951 Sion, Switzerland
| | - Valentin Basset
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Jacqueline Schoumans
- Oncogenetics Unit, Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Mitja Nabergoj
- Hematology Service, Department of Oncology, Cantonal Hospital of Valais, 1951 Sion, Switzerland
| | - Muriel Schaller
- Hematology Service and Laboratory, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| |
Collapse
|
9
|
Chahat, Nainwal N, Murti Y, Yadav S, Rawat P, Dhiman S, Kumar B. Advancements in targeting tumor suppressor genes (p53 and BRCA 1/2) in breast cancer therapy. Mol Divers 2024:10.1007/s11030-024-10964-z. [PMID: 39152355 DOI: 10.1007/s11030-024-10964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Globally, among numerous cancer subtypes, breast cancer (BC) is one of the most prevalent forms of cancer affecting the female population. A female's family history significantly increases her risk of developing breast cancer. BC is caused by aberrant breast cells that proliferate and develop into tumors. It is estimated that 5-10% of breast carcinomas are inherited and involve genetic mutations that ensure the survival and prognosis of breast cancer cells. The most common genetic variations are responsible for hereditary breast cancer but are not limited to p53, BRCA1, and BRCA2. BRCA1 and BRCA2 are involved in genomic recombination, cell cycle monitoring, programmed cell death, and transcriptional regulation. When BRCA1 and 2 genetic variations are present in breast carcinoma, p53 irregularities become more prevalent. Both BRCA1/2 and p53 genes are involved in cell cycle monitoring. The present article discusses the current status of breast cancer research, spotlighting the tumor suppressor genes (BRCA1/2 and p53) along with structural activity relationship studies, FDA-approved drugs, and several therapy modalities for treating BC. Breast cancer drugs, accessible today in the market, have different side effects including anemia, pneumonitis, nausea, lethargy, and vomiting. Thus, the development of novel p53 and BRCA1/2 inhibitors with minimal possible side effects is crucial. We have covered compounds that have been examined subsequently (2020 onwards) in this overview which may be utilized as lead compounds. Further, we have covered mechanistic pathways to showcase the critical druggable targets and clinical and post-clinical drugs targeting them for their utility in BC.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun, 248007, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Savita Yadav
- IES Institute of Technology and Management, IES University, Bhopal, 462044, Madhya Pradesh, India
| | - Pramod Rawat
- Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University Clement Town, Dehradun, 248002, India
| | - Sonia Dhiman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India.
| |
Collapse
|
10
|
González-Arzola K. The nucleolus: Coordinating stress response and genomic stability. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195029. [PMID: 38642633 DOI: 10.1016/j.bbagrm.2024.195029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The perception that the nucleoli are merely the organelles where ribosome biogenesis occurs is challenged. Only around 30 % of nucleolar proteins are solely involved in producing ribosomes. Instead, the nucleolus plays a critical role in controlling protein trafficking during stress and, according to its dynamic nature, undergoes continuous protein exchange with nucleoplasm under various cellular stressors. Hence, the concept of nucleolar stress has evolved as cellular insults that disrupt the structure and function of the nucleolus. Considering the emerging role of this organelle in DNA repair and the fact that rDNAs are the most fragile genomic loci, therapies targeting the nucleoli are increasingly being developed. Besides, drugs that target ribosome synthesis and induce nucleolar stress can be used in cancer therapy. In contrast, agents that regulate nucleolar activity may be a potential treatment for neurodegeneration caused by abnormal protein accumulation in the nucleolus. Here, I explore the roles of nucleoli beyond their ribosomal functions, highlighting the factors triggering nucleolar stress and their impact on genomic stability.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, 41092 Seville, Spain; Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
11
|
Cao X, Zheng J, Zhang R, Sun Y, Zhao M. Live-cell imaging of human apurinic/apyrimidinic endonuclease 1 in the nucleus and nucleolus using a chaperone@DNA probe. Nucleic Acids Res 2024; 52:e41. [PMID: 38554110 PMCID: PMC11077052 DOI: 10.1093/nar/gkae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) plays crucial roles in repairing DNA damage and regulating RNA in the nucleus. However, direct visualization of nuclear APE1 in live cells remains challenging. Here, we report a chaperone@DNA probe for live-cell imaging of APE1 in the nucleus and nucleolus in real time. The probe is based on an assembly of phenylboronic acid modified avidin and biotin-labeled DNA containing an abasic site (named PB-ACP), which cleverly protects DNA from being nonspecifically destroyed while enabling targeted delivery of the probe to the nucleus. The PB-ACP construct specifically detects APE1 due to the high binding affinity of APE1 for both avidin and the abasic site in DNA. It is easy to prepare, biocompatible and allowing for long-term observation of APE1 activity. This molecular tool offers a powerful means to investigate the behavior of APE1 in the nuclei of various types of live cells, particularly for the development of improved cancer therapies targeting this protein.
Collapse
Affiliation(s)
- Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinghui Zheng
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruilan Zhang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Lavogina D, Krõlov MK, Vellama H, Modhukur V, Di Nisio V, Lust H, Eskla KL, Salumets A, Jaal J. Inhibition of epigenetic and cell cycle-related targets in glioblastoma cell lines reveals that onametostat reduces proliferation and viability in both normoxic and hypoxic conditions. Sci Rep 2024; 14:4303. [PMID: 38383756 PMCID: PMC10881536 DOI: 10.1038/s41598-024-54707-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The choice of targeted therapies for treatment of glioblastoma patients is currently limited, and most glioblastoma patients die from the disease recurrence. Thus, systematic studies in simplified model systems are required to pinpoint the choice of targets for further exploration in clinical settings. Here, we report screening of 5 compounds targeting epigenetic writers or erasers and 6 compounds targeting cell cycle-regulating protein kinases against 3 glioblastoma cell lines following incubation under normoxic or hypoxic conditions. The viability/proliferation assay indicated that PRMT5 inhibitor onametostat was endowed with high potency under both normoxic and hypoxic conditions in cell lines that are strongly MGMT-positive (T98-G), weakly MGMT-positive (U-251 MG), or MGMT-negative (U-87 MG). In U-251 MG and U-87 MG cells, onametostat also affected the spheroid formation at concentrations lower than the currently used chemotherapeutic drug lomustine. In T98-G cell line, treatment with onametostat led to dramatic changes in the transcriptome profile by inducing the cell cycle arrest, suppressing RNA splicing, and down-regulating several major glioblastoma cell survival pathways. Further validation by immunostaining in three cell lines confirmed that onametostat affects cell cycle and causes reduction in nucleolar protein levels. In this way, inhibition of epigenetic targets might represent a viable strategy for glioblastoma treatment even in the case of decreased chemo- and radiation sensitivity, although further studies in clinically more relevant models are required.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia.
- Competence Centre on Health Technologies, Tartu, Estonia.
| | - Mattias Kaspar Krõlov
- Chair of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406, Tartu, Estonia.
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia.
| |
Collapse
|
13
|
Wolfová K, Otevřelová P, Holoubek A, Brodská B. Nucleolar phosphoprotein modifications as a marker of apoptosis induced by RITA treatment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119501. [PMID: 37276927 DOI: 10.1016/j.bbamcr.2023.119501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Reactivating p53 and Inducing Tumor Apoptosis (RITA) has been reported to increase the p53 activity and to trigger p53-dependent apoptosis in cancer cells with wild-type p53. Tumor suppressor p53 interacts with nucleolar phosphoproteins nucleophosmin (NPM) and nucleolin (NCL), which have crucial role in many cellular processes. Specific NPM mutations associated with acute myeloid leukemia (AML) cause aberrant localization of NPM and p53 in the cytoplasm with possible impact on the p53 function. We tested an effect of RITA on primary cells, and we found significant RITA-induced changes in NPM and NCL phosphorylation associated with apoptosis in cells of AML patients, but not that of healthy donors. Subsequent screening of several AML cell lines revealed heterogeneous response to RITA, and confirmed an association of the specific phosphorylation with apoptosis. While decreased NCL phosphorylation at Threonines T76 and T84 could be attributed to RITA-induced cell cycle arrest, enhanced NPM phosphorylation at Threonine T199 was not accompanied by the cell cycle changes and it correlated with sensitivity to RITA. Simultaneously, inverse changes occurred at Serine S4 of the NPM. These new findings of RITA mechanism of action could establish the NPM pT199/pS4 ratio as a marker for suitability of RITA treatment of AML cells.
Collapse
Affiliation(s)
- Kateřina Wolfová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic.
| |
Collapse
|
14
|
Chen S, Cao R, Xiang L, Li Z, Chen H, Zhang J, Feng X. Research progress in nucleus-targeted tumor therapy. Biomater Sci 2023; 11:6436-6456. [PMID: 37609783 DOI: 10.1039/d3bm01116j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nucleus is considered the most important organelle in the cell as it plays a central role in controlling cell reproduction, metabolism, and the cell cycle. The successful delivery of drugs into the nucleus can achieve excellent therapeutic effects, which reveals the potential of nucleus-targeted therapy in precision medicine. However, the transportation of therapeutics into the nucleus remains a significant challenge due to various biological barriers. Herein, we summarize the recent progress in the nucleus-targeted drug delivery system (NDDS). The structures of the nucleus and nuclear envelope are first described in order to understand the mechanisms by which drugs cross the nuclear envelope. Then, various drug delivery strategies based on the mechanisms and their applications are discussed. Finally, the challenges and solutions in the field of nucleus-targeted drug delivery are raised for developing a more efficient NDDS and promoting its clinical transformation.
Collapse
Affiliation(s)
- Shaofeng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Rumeng Cao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ling Xiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ziyi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Jiumeng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
15
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
16
|
Xu S, Suttapitugsakul S, Tong M, Wu R. Systematic analysis of the impact of phosphorylation and O-GlcNAcylation on protein subcellular localization. Cell Rep 2023; 42:112796. [PMID: 37453062 PMCID: PMC10530397 DOI: 10.1016/j.celrep.2023.112796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
The subcellular localization of proteins is critical for their functions in eukaryotic cells and is tightly correlated with protein modifications. Here, we comprehensively investigate the nuclear-cytoplasmic distributions of the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins to dissect the correlation between protein distribution and modifications. Phosphorylated and O-GlcNAcylated proteins have overall higher nuclear distributions than non-modified ones. Different distributions among the phosphorylated, O-GlcNAcylated, and non-modified forms of proteins are associated with protein size, structure, and function, as well as local environment and adjacent residues around modification sites. Moreover, we perform site-mutagenesis experiments using phosphomimetic and phospho-null mutants of two proteins to validate the proteomic results. Additionally, the effects of the OGT/OGA inhibition on glycoprotein distribution are systematically investigated, and the distribution changes of glycoproteins are related to their abundance changes under the inhibitions. Systematic investigation of the relationship between protein modification and localization advances our understanding of protein functions.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
17
|
Mahony CB, Copper L, Vrljicak P, Noyvert B, Constantinidou C, Browne S, Pan Y, Palles C, Ott S, Higgs MR, Monteiro R. Lineage skewing and genome instability underlie marrow failure in a zebrafish model of GATA2 deficiency. Cell Rep 2023; 42:112571. [PMID: 37256751 DOI: 10.1016/j.celrep.2023.112571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Inherited bone marrow failure associated with heterozygous mutations in GATA2 predisposes toward hematological malignancies, but the mechanisms remain poorly understood. Here, we investigate the mechanistic basis of marrow failure in a zebrafish model of GATA2 deficiency. Single-cell transcriptomics and chromatin accessibility assays reveal that loss of gata2a leads to skewing toward the erythroid lineage at the expense of myeloid cells, associated with loss of cebpa expression and decreased PU.1 and CEBPA transcription factor accessibility in hematopoietic stem and progenitor cells (HSPCs). Furthermore, gata2a mutants show impaired expression of npm1a, the zebrafish NPM1 ortholog. Progressive loss of npm1a in HSPCs is associated with elevated levels of DNA damage in gata2a mutants. Thus, Gata2a maintains myeloid lineage priming through cebpa and protects against genome instability and marrow failure by maintaining expression of npm1a. Our results establish a potential mechanism underlying bone marrow failure in GATA2 deficiency.
Collapse
Affiliation(s)
- Christopher B Mahony
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy Copper
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Cancer Research UK Birmingham Centre, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Boris Noyvert
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Chrystala Constantinidou
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Sofia Browne
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yi Pan
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK; Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
18
|
Kiliszek A, Rypniewski W, Błaszczyk L. Exploring structural determinants and the role of nucleolin in formation of the long-range interactions between untranslated regions of p53 mRNA. RNA (NEW YORK, N.Y.) 2023; 29:630-643. [PMID: 36653114 PMCID: PMC10158990 DOI: 10.1261/rna.079378.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 05/06/2023]
Abstract
p53 protein is a key regulator of cellular homeostasis by coordinating the framework of antiproliferative pathways as a response to various stress factors. Although the main mechanism of stress-dependent induction of p53 protein relies on post-translational modifications influencing its stability and activity, a growing amount of evidence suggests that complex regulation of p53 expression occurs also at the mRNA level. This study explores structural determinants of long-range RNA-RNA interactions in p53 mRNA, crucial for stress-dependent regulation of p53 protein translation. We demonstrate that the 8-nt bulge motif plays a key structural role in base-pairing of complementary sequences from the 5' and 3' untranslated regions of p53 mRNA. We also show that one of the p53 translation regulators, nucleolin, displays an RNA chaperone activity and facilitates the association of sequences involved in the formation of long-range interactions in p53 mRNA. Nucleolin promotes base-pairing of complementary sequences through the bulge motif, because mutations of this region reduce or inhibit pairing while compensatory mutations restore this interaction. Mutational analysis of nucleolin reveals that all four RNA recognition motifs are indispensable for optimal RNA chaperone activity of nucleolin. These observations help to decipher the unique mechanism of p53 protein translation regulation pointing to bulge motif and nucleolin as the critical factors during intramolecular RNA-RNA recognition in p53 mRNA.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| |
Collapse
|
19
|
Buneeva O, Kopylov A, Gnedenko O, Medvedeva M, Veselovsky A, Ivanov A, Zgoda V, Medvedev A. Proteomic Profiling of Mouse Brain Pyruvate Kinase Binding Proteins: A Hint for Moonlighting Functions of PKM1? Int J Mol Sci 2023; 24:ijms24087634. [PMID: 37108803 PMCID: PMC10143413 DOI: 10.3390/ijms24087634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Affinity-based proteomic profiling is widely used for the identification of proteins involved in the formation of various interactomes. Since protein-protein interactions (PPIs) reflect the role of particular proteins in the cell, identification of interaction partners for a protein of interest can reveal its function. The latter is especially important for the characterization of multifunctional proteins, which can play different roles in the cell. Pyruvate kinase (PK), a classical glycolytic enzyme catalyzing the last step of glycolysis, exists in four isoforms: PKM1, PKM2, PKL, and PKR. The enzyme isoform expressed in actively dividing cells, PKM2, exhibits many moonlighting (noncanonical) functions. In contrast to PKM2, PKM1, predominantly expressed in adult differentiated tissues, lacks well-documented moonlighting functions. However, certain evidence exists that it can also perform some functions unrelated to glycolysis. In order to evaluate protein partners, bound to PKM1, in this study we have combined affinity-based separation of mouse brain proteins with mass spectrometry identification. The highly purified PKM1 and a 32-mer synthetic peptide (PK peptide), sharing high sequence homology with the interface contact region of all PK isoforms, were used as the affinity ligands. This proteomic profiling resulted in the identification of specific and common proteins bound to both affinity ligands. Quantitative affinity binding to the affinity ligands of selected identified proteins was validated using a surface plasmon resonance (SPR) biosensor. Bioinformatic analysis has shown that the identified proteins, bound to both full-length PKM1 and the PK peptide, form a protein network (interactome). Some of these interactions are relevant for the moonlighting functions of PKM1. The proteomic dataset is available via ProteomeXchange with the identifier PXD041321.
Collapse
Affiliation(s)
- Olga Buneeva
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Arthur Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Oksana Gnedenko
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Marina Medvedeva
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russia
| | - Alexander Veselovsky
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Alexei Medvedev
- Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia
| |
Collapse
|
20
|
Liu Z, Larocque É, Xie Y, Xiao Y, Lemay G, Peloponese JM, Mesnard JM, Rassart É, Lin R, Zhou S, Zeng Y, Gao H, Cen S, Barbeau B. A newly identified interaction between nucleolar NPM1/B23 and the HTLV-I basic leucine zipper factor in HTLV-1 infected cells. Front Microbiol 2022; 13:988944. [PMID: 36532440 PMCID: PMC9753777 DOI: 10.3389/fmicb.2022.988944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 08/05/2023] Open
Abstract
Human T-cell leukemia virus type 1 is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia-lymphoma (ATL). The HTLV-1 basic leucine zipper factor (HBZ) has been associated to the cancer-inducing properties of this virus, although the exact mechanism is unknown. In this study, we identified nucleophosmin (NPM1/B23) as a new interaction partner of HBZ. We show that sHBZ and the less abundant uHBZ isoform interact with nucleolar NPM1/B23 in infected cells and HTLV-1 positive patient cells, unlike equivalent antisense proteins of related non-leukemogenic HTLV-2, -3 and-4 viruses. We further demonstrate that sHBZ association to NPM1/B23 is sensitive to RNase. Interestingly, sHBZ was shown to interact with its own RNA. Through siRNA and overexpression experiments, we further provide evidence that NPM1/B23 acts negatively on viral gene expression with potential impact on cell transformation. Our results hence provide a new insight over HBZ-binding partners in relation to cellular localization and potential function on cell proliferation and should lead to a better understanding of the link between HBZ and ATL development.
Collapse
Affiliation(s)
- Zhenlong Liu
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital & Department of Medicine, McGill University, Montreal, QC, Canada
| | - Émilie Larocque
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Xiao
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
| | - Guy Lemay
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université Montpellier, Montpellier, France
| | - Éric Rassart
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital & Department of Medicine, McGill University, Montreal, QC, Canada
| | - Shuang Zhou
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yiming Zeng
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hongzhi Gao
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Benoit Barbeau
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
21
|
Yan D, Hua L. Nucleolar stress: Friend or foe in cardiac function? Front Cardiovasc Med 2022; 9:1045455. [PMID: 36386352 PMCID: PMC9659567 DOI: 10.3389/fcvm.2022.1045455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 03/14/2024] Open
Abstract
Studies in the past decades have uncovered an emerging role of the nucleolus in stress response and human disease progression. The disruption of ribosome biogenesis in the nucleolus causes aberrant nucleolar architecture and function, termed nucleolar stress, to initiate stress-responsive pathways via nucleolar release sequestration of various proteins. While data obtained from both clinical and basic investigations have faithfully demonstrated an involvement of nucleolar stress in the pathogenesis of cardiomyopathy, much remains unclear regarding its precise role in the progression of cardiac diseases. On the one hand, the initiation of nucleolar stress following acute myocardial damage leads to the upregulation of various cardioprotective nucleolar proteins, including nucleostemin (NS), nucleophosmin (NPM) and nucleolin (NCL). As a result, nucleolar stress plays an important role in facilitating the survival and repair of cardiomyocytes. On the other hand, abnormalities in nucleolar architecture and function are correlated with the deterioration of cardiac diseases. Notably, the cardiomyocytes of advanced ischemic and dilated cardiomyopathy display impaired silver-stained nucleolar organiser regions (AgNORs) and enlarged nucleoli, resembling the characteristics of tissue aging. Collectively, nucleolar abnormalities are critically involved in the development of cardiac diseases.
Collapse
Affiliation(s)
- Daliang Yan
- Department of Cardiovascular Surgery, Taizhou People’s Hospital, Taizhou, China
| | - Lu Hua
- Department of Oncology, Taizhou People’s Hospital, Taizhou, China
| |
Collapse
|
22
|
Saini N, Bheeshmachar G, Sarin A. Sirtuin1 meditated modification of Notch1 intracellular domain regulates nucleolar localization and activation of distinct signaling cascades. Front Cell Dev Biol 2022; 10:988816. [PMID: 36211456 PMCID: PMC9539544 DOI: 10.3389/fcell.2022.988816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Notch signaling is involved in cell fate decisions in the development and maintenance of tissue homeostasis. Spatial regulation of the Notch1 intracellular domain (NIC1), has been shown to underpin signaling outcomes mediated by this receptor. We recently reported a putative Nucleolar Localization Sequence (NoLS) in NIC1. Here we investigate if the putative NoLS identified in NIC1 regulates localization in the nucleolus and anti-apoptotic activity. Confocal imaging of live cells expressing NIC1 or forms modified by deletion or site-directed mutagenesis established that the putative NoLS in NIC1 is required for nucleolar localization and regulated by the deacetylase Sirtuin1. Subsequent analysis of anti-apoptotic activity revealed signaling cascades linked to nucleolar localization. For this, etoposide and 4-Nitroquinoline 1-oxide, an inhibitor of topoisomerase-II and a UV mimetic drug respectively, were used as prototypic triggers of genomic damage in a mammalian cell line. While NIC1 blocked apoptosis regardless of its localization to the nucleoplasm or nucleolus, modifications of NIC1 which promoted localization to the nucleolus triggered a dependence on the nucleolar proteins fibrillarin and nucleolin for anti-apoptotic activity. Further, cells co-expressing NIC1 and Sirtuin1 (but not its catalytically inactive form), confirmed both spatial regulation and the switch to dependence on the nucleolar proteins. Finally, site-directed mutagenesis showed that the NoLS lysine residues are targets of Sirtuin1 activity. NIC1 mediated transcription is not similarly regulated. Thus, NIC1 localization to the nucleolus is regulated by Sirtuin1 modification of the lysine residues in NoLS and triggers a distinct signaling cascade involving nucleolar intermediates for anti-apoptotic activity.
Collapse
|
23
|
Sadi KS, Mahmoudi A, Jaafari MR, Moosavian SA, Malaekeh-Nikouei B. The effect of AS1411 aptamer on anti-tumor effects of dendrimers containing SN38. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Komaniecka N, Porras M, Cairn L, Santas JA, Ferreiro N, Penedo JC, Bañuelos S. Conformational Rearrangements Regulating the DNA Repair Protein APE1. Int J Mol Sci 2022; 23:ijms23148015. [PMID: 35887361 PMCID: PMC9324194 DOI: 10.3390/ijms23148015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Apurinic apyrimidinic endonuclease 1 (APE1) is a key enzyme of the Base Excision Repair (BER) pathway, which primarily manages oxidative lesions of DNA. Once the damaged base is removed, APE1 recognises the resulting abasic site and cleaves the phosphodiester backbone to allow for the correction by subsequent enzymes of the BER machinery. In spite of a wealth of information on APE1 structure and activity, its regulation mechanism still remains to be understood. Human APE1 consists of a globular catalytic domain preceded by a flexible N-terminal extension, which might be involved in the interaction with DNA. Moreover, the binding of the nuclear chaperone nucleophosmin (NPM1) to this region has been reported to impact APE1 catalysis. To evaluate intra- and inter-molecular conformational rearrangements upon DNA binding, incision, and interaction with NPM1, we used Förster resonance energy transfer (FRET), a fluorescence spectroscopy technique sensitive to molecular distances. Our results suggest that the N-terminus approaches the DNA at the downstream side of the abasic site and enables the building of a predictive model of the full-length APE1/DNA complex. Furthermore, the spatial configuration of the N-terminal tail is sensitive to NPM1, which could be related to the regulation of APE1.
Collapse
Affiliation(s)
- Nina Komaniecka
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
| | - Marta Porras
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Louis Cairn
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
| | - Jon Ander Santas
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nerea Ferreiro
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Juan Carlos Penedo
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Scottish Universities Physics Alliance (SUPA) School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK;
- Centre of Biophotonics, Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, St. Andrews KY16 9ST, UK
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; (N.K.); (M.P.); (L.C.); (J.A.S.); (N.F.)
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: ; Tel.: +34-94-601-3347
| |
Collapse
|
25
|
Shen J, Yuan Z, Sheng J, Feng X, Wang H, Wang Y, Zhou Y. Long non-coding RNA NNT-AS1 positively regulates NPM1 expression to affect the proliferation of estrogen-mediated endometrial carcinoma by interacting. J Cancer 2022; 13:112-123. [PMID: 34976175 PMCID: PMC8692688 DOI: 10.7150/jca.62630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/23/2021] [Indexed: 11/05/2022] Open
Abstract
Objective: This study aims to investigate the mechanism of long non-coding RNA NNT-AS1 in the proliferation of estrogen-mediated endometrial carcinoma (EC). Materials and methods: NNT-AS1, miR-30c, and Nucleophosmin 1 (NPM1) expressions were measured by quantitative real-time PCR and Western blotting. Cell Counting Kit-8 assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay were used to detect the viability and proliferation of Ishikawa and HEC-1-A cells, respectively. RNA immunoprecipitation assay was used to confirm the interaction between NNT-AS1 and miR-30c. Luciferase reporter assay was performed to confirm the interaction between miR-30c and NPM1. Results: NNT-AS1 and NPM1 expressions in EC tissues and cell lines were higher than in benign endometrium and normal endometrial epithelial cells (EECs). miR-30c expression in EC tissues and cell lines was lower than in benign endometrium and normal EECs. NNT-AS1 interacted with miR-30c, and miR-30c negatively regulated NPM1 expression. Overexpression of NNT-AS1 increased NPM1 expression in EC cells, while overexpression of miR-30c reversed the effect. NNT-AS1 interference inhibited the mRNA level of NPM1, while the miR-30c inhibitor reversed the result. Estradiol (E2) promoted the proliferation of EC cells, small interfering RNA (siRNA) against NNT-AS1 inhibited EC cell proliferation, miR-30c inhibitor promoted cell proliferation, and NPM1 siRNA inhibited cell proliferation. E2 increased tumor volume, and NNT-AS1 interference reduced tumor volume in vivo. Conclusion: NNT-AS1 promoted the proliferation of estrogen-mediated EC by regulating miR-30c/NPM1.
Collapse
Affiliation(s)
- Jie Shen
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhilin Yuan
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Sheng
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoping Feng
- Department of Gynecology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Hao Wang
- Department of Gynecology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Yanli Wang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunxiao Zhou
- Department of Gynecology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Wu M, Lu L, Chen S, Li Y, Zhang Q, Fu S, Deng X. Natural products inducing nucleolar stress: implications in cancer therapy. Anticancer Drugs 2022; 33:e21-e27. [PMID: 34561998 DOI: 10.1097/cad.0000000000001146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.
Collapse
Affiliation(s)
- Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, Hunan, China
| |
Collapse
|
27
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
28
|
Xu R, Yang Y, Zheng X. Unique structural features of the adenylate kinase hCINAP/AK6 and its multifaceted functions in carcinogenesis and tumor progression. FEBS Lett 2021; 595:2071-2084. [PMID: 34245011 DOI: 10.1002/1873-3468.14158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022]
Abstract
Human coilin-interacting nuclear ATPase protein (hCINAP), also known as adenylate kinase 6 (AK6), is an atypical adenylate kinase with critical roles in many biological processes, including gene transcription, ribosome synthesis, cell metabolism, cell proliferation and apoptosis, DNA damage responses, and genome stability. Furthermore, hCINAP/AK6 dysfunction is associated with cancer and various inflammatory diseases. In this review, we summarize the structural features and biological roles of hCINAP in several important signaling pathways, as well as its connection with tumor onset and progression.
Collapse
Affiliation(s)
- Ruidan Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yongfeng Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
29
|
Zhao S, Huang D, Peng J. Nucleolus-localized Def-CAPN3 protein degradation pathway and its role in cell cycle control and ribosome biogenesis. J Genet Genomics 2021; 48:955-960. [PMID: 34452850 DOI: 10.1016/j.jgg.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022]
Abstract
The nucleolus, as the 'nucleus of the nucleus', is a prominent subcellular organelle in a eukaryocyte. The nucleolus serves as the centre for ribosome biogenesis, as well as an important site for cell-cycle regulation, cellular senescence, and stress response. The protein composition of the nucleolus changes dynamically through protein turnover to meet the needs of cellular activities or stress responses. Recent studies have identified a nucleolus-localized protein degradation pathway in zebrafish and humans, namely the Def-CAPN3 pathway, which is essential to ribosome production and cell-cycle progression, by controlling the turnover of multiple substrates (e.g., ribosomal small-subunit [SSU] processome component Mpp10, transcription factor p53, check-point proteins Chk1 and Wee1). This pathway relies on the Ca2+-dependent cysteine proteinase CAPN3 and is independent of the ubiquitin-mediated proteasome pathway. CAPN3 is recruited by nucleolar protein Def from cytoplasm to nucleolus, where it proteolyzes its substrates which harbor a CAPN3 recognition-motif. Def depletion leads to the exclusion of CAPN3 and accumulation of p53, Wee1, Chk1, and Mpp10 in the nucleolus that result in cell-cycle arrest and rRNA processing abnormality. Here, we summarize the discovery of the Def-CAPN3 pathway and propose its biological role in cell-cycle control and ribosome biogenesis.
Collapse
Affiliation(s)
- Shuyi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Delai Huang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
30
|
Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mol Cell Proteomics 2021; 20:100102. [PMID: 34048982 PMCID: PMC8255942 DOI: 10.1016/j.mcpro.2021.100102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphosphoinositides (PPIns) play essential roles as lipid signaling molecules, and many of their functions have been elucidated in the cytoplasm. However, PPIns are also intranuclear where they contribute to chromatin remodeling, transcription, and mRNA splicing. The PPIn, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), has been mapped to the nucleus and nucleoli, but its role remains unclear in this subcellular compartment. To gain further insights into the nuclear functions of PtdIns(3,4,5)P3, we applied a previously developed quantitative MS-based approach to identify the targets of PtdIns(3,4,5)P3 from isolated nuclei. We identified 179 potential PtdIns(3,4,5)P3-interacting partners, and gene ontology analysis for the biological functions of this dataset revealed an enrichment in RNA processing/splicing, cytokinesis, protein folding, and DNA repair. Interestingly, about half of these interactors were common to nucleolar protein datasets, some of which had dual functions in rRNA processes and DNA repair, including poly(ADP-ribose) polymerase 1 (PARP1, now referred as ADP-ribosyltransferase 1). PARP1 was found to interact directly with PPIn via three polybasic regions in the DNA-binding domain and the linker located N-terminal of the catalytic region. PARP1 was shown to bind to PtdIns(3,4,5)P3 as well as phosphatidylinositol 3,4-bisphosphate in vitro and to colocalize with PtdIns(3,4,5)P3 in the nucleolus and with phosphatidylinositol 3,4-bisphosphate in nucleoplasmic foci. In conclusion, the PtdIns(3,4,5)P3 interactome reported here will serve as a resource to further investigate the molecular mechanisms underlying PtdIns(3,4,5)P3-mediated interactions in the nucleus and nucleolus. Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) localizes to nucleoli. PtdIns(3,4,5)P3 interactomics from isolated nuclei identifies nucleolar proteins. PARP1 interacts directly with polyphosphoinositides via several polybasic regions. PARP1 colocalizes with PtdIns(3,4,5)P3 in the nucleolus.
Collapse
|
31
|
Antagonising Chromatin Remodelling Activities in the Regulation of Mammalian Ribosomal Transcription. Genes (Basel) 2021; 12:genes12070961. [PMID: 34202617 PMCID: PMC8303148 DOI: 10.3390/genes12070961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/29/2022] Open
Abstract
Ribosomal transcription constitutes the major energy consuming process in cells and is regulated in response to proliferation, differentiation and metabolic conditions by several signalling pathways. These act on the transcription machinery but also on chromatin factors and ncRNA. The many ribosomal gene repeats are organised in a number of different chromatin states; active, poised, pseudosilent and repressed gene repeats. Some of these chromatin states are unique to the 47rRNA gene repeat and do not occur at other locations in the genome, such as the active state organised with the HMG protein UBF whereas other chromatin state are nucleosomal, harbouring both active and inactive histone marks. The number of repeats in a certain state varies on developmental stage and cell type; embryonic cells have more rRNA gene repeats organised in an open chromatin state, which is replaced by heterochromatin during differentiation, establishing different states depending on cell type. The 47S rRNA gene transcription is regulated in different ways depending on stimulus and chromatin state of individual gene repeats. This review will discuss the present knowledge about factors involved, such as chromatin remodelling factors NuRD, NoRC, CSB, B-WICH, histone modifying enzymes and histone chaperones, in altering gene expression and switching chromatin states in proliferation, differentiation, metabolic changes and stress responses.
Collapse
|
32
|
NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 2021; 136:1707-1721. [PMID: 32609823 DOI: 10.1182/blood.2019004226] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional protein with prominent nucleolar localization that shuttles between nucleus and cytoplasm. NPM1 mutations represent the most common genetic lesion in adult acute myeloid leukemia (AML; about one third of cases), and they act deterministically to cause the aberrant cytoplasmic delocalization of NPM1 mutants. Because of its unique features, NPM1-mutated AML is recognized as a distinct entity in the 2017 World Health Organization (WHO) classification of hematopoietic neoplasms. Here, we focus on recently identified functions of wild-type NPM1 in the nucleolus and address new biological and clinical issues related to NPM1-mutated AML. The relevance of the cooperation between NPM1 and other mutations in driving AML with different outcomes is presented. We also discuss the importance of eradicating NPM1-mutated clones to achieve AML cure and the impact of preleukemic clonal hematopoiesis persistence in predisposing to second AML. The contribution of HOX genes' expression to the development of NPM1-mutated AML is also highlighted. Clinically, yet unsolved diagnostic issues in the 2017 WHO classification of myeloid neoplasms and the importance of NPM1 mutations in defining the framework of European LeukemiaNet genetic-based risk stratification are discussed. Finally, we address the value and limits of NPM1-based measurable residual disease assessment for treatment guidance and present the results of promising preclinical studies with XPO1 and menin-MLL inhibitors.
Collapse
|
33
|
Molecular Mechanisms Regulating the DNA Repair Protein APE1: A Focus on Its Flexible N-Terminal Tail Domain. Int J Mol Sci 2021; 22:ijms22126308. [PMID: 34208390 PMCID: PMC8231204 DOI: 10.3390/ijms22126308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
APE1 (DNA (apurinic/apyrimidinic site) endonuclease 1) is a key enzyme of one of the major DNA repair routes, the BER (base excision repair) pathway. APE1 fulfils additional functions, acting as a redox regulator of transcription factors and taking part in RNA metabolism. The mechanisms regulating APE1 are still being deciphered. Structurally, human APE1 consists of a well-characterized globular catalytic domain responsible for its endonuclease activity, preceded by a conformationally flexible N-terminal extension, acquired along evolution. This N-terminal tail appears to play a prominent role in the modulation of APE1 and probably in BER coordination. Thus, it is primarily involved in mediating APE1 localization, post-translational modifications, and protein–protein interactions, with all three factors jointly contributing to regulate the enzyme. In this review, recent insights on the regulatory role of the N-terminal region in several aspects of APE1 function are covered. In particular, interaction of this region with nucleophosmin (NPM1) might modulate certain APE1 activities, representing a paradigmatic example of the interconnection between various regulatory factors.
Collapse
|
34
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
35
|
Peggion C, Massimino ML, Stella R, Bortolotto R, Agostini J, Maldi A, Sartori G, Tonello F, Bertoli A, Lopreiato R. Nucleolin Rescues TDP-43 Toxicity in Yeast and Human Cell Models. Front Cell Neurosci 2021; 15:625665. [PMID: 33912014 PMCID: PMC8072491 DOI: 10.3389/fncel.2021.625665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Roberto Stella
- Food Safety Division, Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Raissa Bortolotto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jessica Agostini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Arianna Maldi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR - Neuroscience Institute, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|
36
|
Sutton EC, DeRose VJ. Early nucleolar responses differentiate mechanisms of cell death induced by oxaliplatin and cisplatin. J Biol Chem 2021; 296:100633. [PMID: 33819479 PMCID: PMC8131322 DOI: 10.1016/j.jbc.2021.100633] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Recent reports provide evidence that the platinum chemotherapeutic oxaliplatin causes cell death via ribosome biogenesis stress, while cisplatin causes cell death via the DNA damage response (DDR). Underlying differences in mechanisms that might initiate disparate routes to cell death by these two broadly used platinum compounds have not yet been carefully explored. Additionally, prior studies had demonstrated that cisplatin can also inhibit ribosome biogenesis. Therefore, we sought to directly compare the initial influences of oxaliplatin and cisplatin on nucleolar processes and on the DDR. Using pulse-chase experiments, we found that at equivalent doses, oxaliplatin but not cisplatin significantly inhibited ribosomal RNA (rRNA) synthesis by Pol I, but neither compound affected rRNA processing. Inhibition of rRNA synthesis occurred as early as 90 min after oxaliplatin treatment in A549 cells, concurrent with the initial redistribution of the nucleolar protein nucleophosmin (NPM1). We observed that the nucleolar protein fibrillarin began to redistribute by 6 h after oxaliplatin treatment and formed canonical nucleolar caps by 24 h. In cisplatin-treated cells, DNA damage, as measured by γH2AX immunofluorescence, was more extensive, whereas nucleolar organization was unaffected. Taken together, our results demonstrate that oxaliplatin causes early nucleolar disruption via inhibition of rRNA synthesis accompanied by NPM1 relocalization and subsequently causes extensive nucleolar reorganization, while cisplatin causes early DNA damage without significant nucleolar disruption. These data support a model in which, at clinically relevant doses, cisplatin kills cells via the canonical DDR, and oxaliplatin kills cells via ribosome biogenesis stress, specifically via rapid inhibition of rRNA synthesis.
Collapse
Affiliation(s)
- Emily C Sutton
- Department of Biology, University of Oregon, Eugene, Oregon, USA; Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Victoria J DeRose
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA; Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
37
|
Song D, Liu H, Wu J, Gao X, Hao J, Fan D. Insights into the role of ERp57 in cancer. J Cancer 2021; 12:2456-2464. [PMID: 33758622 PMCID: PMC7974888 DOI: 10.7150/jca.48707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Danyang Song
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hao Liu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jian Wu
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Xiaoliang Gao
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Daiming Fan
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
- State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
38
|
Gueiderikh A, Maczkowiak-Chartois F, Rouvet G, Souquère-Besse S, Apcher S, Diaz JJ, Rosselli F. Fanconi anemia A protein participates in nucleolar homeostasis maintenance and ribosome biogenesis. SCIENCE ADVANCES 2021; 7:7/1/eabb5414. [PMID: 33523834 PMCID: PMC7775781 DOI: 10.1126/sciadv.abb5414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/28/2020] [Indexed: 05/22/2023]
Abstract
Fanconi anemia (FA), the most common inherited bone marrow failure and leukemia predisposition syndrome, is generally attributed to alterations in DNA damage responses due to the loss of function of the DNA repair and replication rescue activities of the FANC pathway. Here, we report that FANCA deficiency, whose inactivation has been identified in two-thirds of FA patients, is associated with nucleolar homeostasis loss, mislocalization of key nucleolar proteins, including nucleolin (NCL) and nucleophosmin 1 (NPM1), as well as alterations in ribosome biogenesis and protein synthesis. FANCA coimmunoprecipitates with NCL and NPM1 in a FANCcore complex-independent manner and, unique among the FANCcore complex proteins, associates with ribosomal subunits, influencing the stoichiometry of the translational machineries. In conclusion, we have identified unexpected nucleolar and translational consequences specifically associated with FANCA deficiency that appears to be involved in both DNA damage and nucleolar stress responses, challenging current hypothesis on FA physiopathology.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Frédérique Maczkowiak-Chartois
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Guillaume Rouvet
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Sylvie Souquère-Besse
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
- CNRS-UMS3655, 94805 Villejuif, France
| | - Sébastien Apcher
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
- INSERM-UMR1015, 94805 Villejuif, France
| | - Jean-Jacques Diaz
- Université Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, 69373 Lyon cedex 08, France
| | - Filippo Rosselli
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France.
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| |
Collapse
|
39
|
Korsholm LM, Gál Z, Nieto B, Quevedo O, Boukoura S, Lund CC, Larsen DH. Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Res 2020; 48:9449-9461. [PMID: 32857853 PMCID: PMC7515731 DOI: 10.1093/nar/gkaa713] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage poses a serious threat to human health and cells therefore continuously monitor and repair DNA lesions across the genome. Ribosomal DNA is a genomic domain that represents a particular challenge due to repetitive sequences, high transcriptional activity and its localization in the nucleolus, where the accessibility of DNA repair factors is limited. Recent discoveries have significantly extended our understanding of how cells respond to DNA double-strand breaks (DSBs) in the nucleolus, and new kinases and multiple down-stream targets have been identified. Restructuring of the nucleolus can occur as a consequence of DSBs and new data point to an active regulation of this process, challenging previous views. Furthermore, new insights into coordination of cell cycle phases and ribosomal DNA repair argue against existing concepts. In addition, the importance of nucleolar-DNA damage response (n-DDR) mechanisms for maintenance of genome stability and the potential of such factors as anti-cancer targets is becoming apparent. This review will provide a detailed discussion of recent findings and their implications for our understanding of the n-DDR. The n-DDR shares features with the DNA damage response (DDR) elsewhere in the genome but is also emerging as an independent response unique to ribosomal DNA and the nucleolus.
Collapse
Affiliation(s)
| | | | - Blanca Nieto
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Oliver Quevedo
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Stavroula Boukoura
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Casper Carstens Lund
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | |
Collapse
|
40
|
Identification of DHX9 as a cell cycle regulated nucleolar recruitment factor for CIZ1. Sci Rep 2020; 10:18103. [PMID: 33093612 PMCID: PMC7582970 DOI: 10.1038/s41598-020-75160-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022] Open
Abstract
CIP1-interacting zinc finger protein 1 (CIZ1) is a nuclear matrix associated protein that facilitates a number of nuclear functions including initiation of DNA replication, epigenetic maintenance and associates with the inactive X-chromosome. Here, to gain more insight into the protein networks that underpin this diverse functionality, molecular panning and mass spectrometry are used to identify protein interaction partners of CIZ1, and CIZ1 replication domain (CIZ1-RD). STRING analysis of CIZ1 interaction partners identified 2 functional clusters: ribosomal subunits and nucleolar proteins including the DEAD box helicases, DHX9, DDX5 and DDX17. DHX9 shares common functions with CIZ1, including interaction with XIST long-non-coding RNA, epigenetic maintenance and regulation of DNA replication. Functional characterisation of the CIZ1-DHX9 complex showed that CIZ1-DHX9 interact in vitro and dynamically colocalise within the nucleolus from early to mid S-phase. CIZ1-DHX9 nucleolar colocalisation is dependent upon RNA polymerase I activity and is abolished by depletion of DHX9. In addition, depletion of DHX9 reduced cell cycle progression from G1 to S-phase in mouse fibroblasts. The data suggest that DHX9-CIZ1 are required for efficient cell cycle progression at the G1/S transition and that nucleolar recruitment is integral to their mechanism of action.
Collapse
|
41
|
Di Natale C, Florio D, Di Somma S, Di Matteo A, Federici L, Netti PA, Morelli G, Malfitano AM, Marasco D. Proteostasis unbalance of nucleophosmin 1 in Acute Myeloid Leukemia: An aggregomic perspective. Int J Biol Macromol 2020; 164:3501-3507. [PMID: 32890557 DOI: 10.1016/j.ijbiomac.2020.08.248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/22/2023]
Abstract
The role exerted by the nucleus in the regulation of proteostasis in both health and disease is recognized of outmost importance, even though not fully understood. Many recent investigations are focused on its ability to modulate and coordinate protein quality control machineries in mammalian cells. Nucleophosmin 1 (NPM1) is one of the most abundant nucleolar proteins and its gene is mutated in ~30% of Acute Myeloid Leukemia (AML) patients. Mutations are localized in the C-terminal domain of the protein and cause cytoplasmatically delocalized and possibly aggregated forms of NPM1 (NPM1c+). Therapeutic interventions targeted on NPM1c+ are in demand and, to this end, deeper knowledge of NPM1c+ behavior in the blasts' cytosol is required. Here by means of complementary biophysical techniques we compared the conformational and aggregative behavior of the entire C-terminal domains of NPM1wt and type A NPM1c+ (bearing the most common mutation). Overall data show that only Cterm_mutA is able to form amyloid-like assemblies with fibrillar morphology and that the oligomers are toxic in human neuroblastoma SHSY cells. This study adds a novel piece of knowledge to the comprehension of the molecular roles exerted by cytoplasmatic NPM1c+ and suggests the exploitation of the amyloidogenic propensity of NPM1c+ as a new strategy for targeting AML with NPM1 mutations.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Federici
- Center of Advanced Studies and Technology (CAST) and Department of Clinical, Oral and Biotechnological Sciences, University of Chieti "G. d'Annunzio", 66100 Chieti, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy; Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy.
| |
Collapse
|
42
|
Masiuk M, Waloszczyk P, Lewandowska M, Dobak E, Urasinska E. Nucleolin and nucleophosmin expression patterns in pulmonary adenocarcinoma invading the pleura and in pleural malignant mesothelioma. Thorac Cancer 2020; 11:2529-2535. [PMID: 32671956 PMCID: PMC7471022 DOI: 10.1111/1759-7714.13564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Visceral pleural invasion (VPI) in adenocarcinoma of the lung is considered a poor prognostic factor. The purpose of this study was to analyze nucleolin and nucleophosmin expression in pulmonary adenocarcinoma (PA) with VPI and in pleural malignant mesothelioma. METHODS The study was conducted on the basis of 19 pathologically-confirmed cases of adenocarcinoma of the lung and 29 cases of epithelioid malignant mesothelioma. The nucleolin and nucleophosmin expression was assessed immunohistochemically and analyzed with image analysis software. RESULTS Nucleolin expression was lower while nucleophosmin was higher in pleural invasion of pulmonary adenocarcinoma than in the central part of the tumor. Differences in subpopulations of cells with different expression of proteins studied were also found. Malignant mesothelioma showed lower nucleolin expression than adenocarcinoma of the lung but no differences in nucleophosmin expression were found. CONCLUSIONS The results of our study suggested that lower nucleolin and higher nucleophosmin expression may be related to higher invasiveness of adenocarcinoma of the lung. Differences in nucleolin expression between pulmonary adenocarcinoma and malignant mesothelioma indicate another aspect of biology of these pleura-invading cancers that requires further study. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: Differences in nucleolin and nucleophosmin expression in pleura invading pulmonary adenocarcinoma indicate the involvement of these proteins in its locoregional spread while differences in nucleolin expression between pulmonary adenocarcinoma and malignant mesothelioma suggest another aspect of biology of these cancers. WHAT THIS STUDY ADDS This is the first study on nucleolin and nucleophosmin expression in pleural malignant mesothelioma and pleura-invading pulmonary adenocarcinoma. Our findings may assist in understanding the mechanisms of locoregional spread of adenocarcinoma and differences between these two pleura-invading cancers.
Collapse
Affiliation(s)
- Marek Masiuk
- Department of PathologyPomeranian Medical UniversitySzczecinPoland
| | - Piotr Waloszczyk
- Independent Laboratory of Pathology “Zdunomed” LLCSzczecinPoland
| | | | - Ewa Dobak
- Department of PathologyPomeranian Medical UniversitySzczecinPoland
| | | |
Collapse
|
43
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
44
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
45
|
Engbrecht M, Mangerich A. The Nucleolus and PARP1 in Cancer Biology. Cancers (Basel) 2020; 12:cancers12071813. [PMID: 32640701 PMCID: PMC7408768 DOI: 10.3390/cancers12071813] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
The nucleolus has been known for a long time to fulfill crucial functions in ribosome biogenesis, of which cancer cells can become addicted to in order to produce sufficient amounts of proteins for cell proliferation. Recently, the nucleolus has emerged as a central regulatory hub in many other cancer-relevant processes, including stress sensing, DNA damage response, cell cycle control, and proteostasis. This fostered the idea that nucleolar processes can be exploited in cancer therapy. Interestingly, a significant proportion of poly(ADP-ribose) polymerase 1 (PARP1) molecules are localized in the nucleolus and PARP1 also plays crucial roles in many processes that are important in cancer biology, including genome maintenance, replication, transcription, and chromatin remodeling. Furthermore, during the last years, PARP1 came into focus in oncology since it represents a promising target of pharmacological PARP inhibitors in various types of cancers. Here, we provide an overview of our current understanding on the role of PARP1 in nucleolar functions and discuss potential implications in cancer biology and therapy.
Collapse
|
46
|
Zhou Q, Guan Y, Hou R, Wang J, Gao H, Li H, Zhao Y, Liu N, Wang Y, Li N, Yao S. PolyG mitigates silica-induced pulmonary fibrosis by inhibiting nucleolin and regulating DNA damage repair pathway. Biomed Pharmacother 2020; 125:109953. [PMID: 32036217 DOI: 10.1016/j.biopha.2020.109953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/02/2023] Open
Abstract
Polyguanylic acid potassium salt (PolyG) has an anti-fibrotic G-quadruplex (G4) structure. It could inhibit the expression of nucleolin, a protein involved in cell proliferation and apoptosis. However, its role in regulating nucleolin in silicosis is still unknown. After instillation of 50 μl of crystalline silica suspension (50 mg/ml) into the trachea of C57BL/6 mice, we show that nucleolin expression is upregulated in mouse pulmonary tissue following the treatment with silica and that PolyG, which were injected 2.5 mg/kg body weight into mice by abdomen, could alleviate pulmonary fibrosis through inhibiting the expression of nucleolin. Further, we demonstrated that the expression of the DNA double-strand break (DSB) marker, γ-H2AX, increased in response to silica treatment. PolyG could efficiently reduce the protein expression of γ-H2AX and decreased the level of fibrosis-related genes, such as Col1a1 and Col3a1, as well as the levels of fibrosis-associated proteins α-SMA and vimentin in the lungs of silica-treated mice. These findings show that PolyG could regulate nucleolin and DNA damage repair to control fibrotic response in experimental silicosis and provide a new target for preventive intervention.
Collapse
Affiliation(s)
- Qiang Zhou
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan China
| | - Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei China
| | - Ruiyan Hou
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan China
| | - Junnan Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan China
| | - Hongsheng Gao
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, China
| | - Haibin Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan China
| | - Nan Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei China
| | - Yongheng Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan China.
| |
Collapse
|
47
|
López DJ, de Blas A, Hurtado M, García-Alija M, Mentxaka J, de la Arada I, Urbaneja MA, Alonso-Mariño M, Bañuelos S. Nucleophosmin interaction with APE1: Insights into DNA repair regulation. DNA Repair (Amst) 2020; 88:102809. [PMID: 32092641 DOI: 10.1016/j.dnarep.2020.102809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1), an abundant, nucleolar protein with multiple functions affecting cell homeostasis, has also been recently involved in DNA damage repair. The roles of NPM1 in different repair pathways remain however to be elucidated. NPM1 has been described to interact with APE1 (apurinic apyrimidinic endonuclease 1), a key enzyme of the base excision repair (BER) pathway, which could reflect a direct participation of NPM1 in this route. To gain insight into the possible role(s) of NPM1 in BER, we have explored the interplay between the subnuclear localization of both APE1 and NPM1, the in vitro interaction they establish, the effect of binding to abasic DNA on APE1 conformation, and the modulation by NPM1 of APE1 binding and catalysis on DNA. We have found that, upon oxidative damage, NPM1 is released from nucleoli and locates on patches throughout the chromatin, perhaps co-localizing with APE1, and that this traffic could be mediated by phosphorylation of NPM1 on T199. NPM1 and APE1 form a complex in vitro, involving, apart from the core domain, at least part of the linker region of NPM1, whereas the C-terminal domain is dispensable for binding, which explains that an AML leukemia-related NPM1 mutant with an unfolded C-terminal domain can bind APE1. APE1 interaction with abasic DNA stabilizes APE1 structure, as based on thermal unfolding. Moreover, our data suggest that NPM1, maybe by keeping APE1 in an "open" conformation, favours specific recognition of abasic sites on DNA, competing with off-target associations. Therefore, NPM1 might participate in BER favouring APE1 target selection as well as turnover from incised abasic DNA.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ander de Blas
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel Hurtado
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mikel García-Alija
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Mentxaka
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Igor de la Arada
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María A Urbaneja
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marián Alonso-Mariño
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
48
|
Velichko AK, Petrova NV, Luzhin AV, Strelkova OS, Ovsyannikova N, Kireev II, Petrova NV, Razin SV, Kantidze OL. Hypoosmotic stress induces R loop formation in nucleoli and ATR/ATM-dependent silencing of nucleolar transcription. Nucleic Acids Res 2020; 47:6811-6825. [PMID: 31114877 PMCID: PMC6648358 DOI: 10.1093/nar/gkz436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
The contribution of nucleoli to the cellular stress response has been discussed for over a decade. Stress-induced inhibition of RNA polymerase I-dependent transcription is hypothesized as a possible effector program in such a response. In this study, we report a new mechanism by which ribosomal DNA transcription can be inhibited in response to cellular stress. Specifically, we demonstrate that mild hypoosmotic stress induces stabilization of R loops in ribosomal genes and thus provokes the nucleoli-specific DNA damage response, which is governed by the ATM- and Rad3-related (ATR) kinase. Activation of ATR in nucleoli strongly depends on Treacle, which is needed for efficient recruitment/retention of TopBP1 in nucleoli. Subsequent ATR-mediated activation of ATM results in repression of nucleolar transcription.
Collapse
Affiliation(s)
- Artem K Velichko
- Laboratory of Genome Stability, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Nadezhda V Petrova
- Laboratory of Genome Stability, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Artem V Luzhin
- Laboratory of Genome Stability, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Olga S Strelkova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Natalia Ovsyannikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia.,V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, 117997 Moscow, Russia
| | - Natalia V Petrova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.,Department of Molecular Biology, Moscow State University, 119234 Moscow, Russia.,LFR2O, Institute Gustave Roussy, F-94805 Villejuif, France
| | - Omar L Kantidze
- Laboratory of Genome Stability, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.,LFR2O, Institute Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
49
|
González‐Arzola K, Velázquez‐Cruz A, Guerra‐Castellano A, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MÁ. New moonlighting functions of mitochondrial cytochromecin the cytoplasm and nucleus. FEBS Lett 2019; 593:3101-3119. [DOI: 10.1002/1873-3468.13655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. De la Rosa
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| |
Collapse
|
50
|
He JS, Soo P, Evers M, Parsons KM, Hein N, Hannan KM, Hannan RD, George AJ. High-Content Imaging Approaches to Quantitate Stress-Induced Changes in Nucleolar Morphology. Assay Drug Dev Technol 2019; 16:320-332. [PMID: 30148664 DOI: 10.1089/adt.2018.861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nucleolus is a dynamic subnuclear compartment that has a number of different functions, but its primary role is to coordinate the production and assembly of ribosomes. For well over 100 years, pathologists have used changes in nucleolar number and size to stage diseases such as cancer. New information about the nucleolus' broader role within the cell is leading to the development of drugs which directly target its structure as therapies for disease. Traditionally, it has been difficult to develop high-throughput image analysis pipelines to measure nucleolar changes due to the broad range of morphologies observed. In this study, we describe a simple high-content image analysis algorithm using Harmony software (PerkinElmer), with a PhenoLOGIC™ machine-learning component, that can measure and classify three different nucleolar morphologies based on nucleolin and fibrillarin staining ("normal," "peri-nucleolar rings" and "dispersed"). We have utilized this algorithm to determine the changes in these classes of nucleolar morphologies over time with drugs known to alter nucleolar structure. This approach could be further adapted to include other parameters required for the identification of new therapies that directly target the nucleolus.
Collapse
Affiliation(s)
- Jin-Shu He
- 1 ANU Centre for Therapeutic Discovery, The Australian National University , Acton, Australia
| | - Priscilla Soo
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia
| | - Maurits Evers
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia
| | - Kate M Parsons
- 1 ANU Centre for Therapeutic Discovery, The Australian National University , Acton, Australia
| | - Nadine Hein
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia
| | - Katherine M Hannan
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia .,3 Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Australia
| | - Ross D Hannan
- 2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia .,3 Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Australia .,4 Sir Peter MacCallum Department of Oncology, University of Melbourne , Parkville, Australia .,5 Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Australia .,6 Department of Biochemistry and Molecular Biology, Monash University , Clayton, Australia .,7 School of Biomedical Sciences, University of Queensland , St Lucia, Australia
| | - Amee J George
- 1 ANU Centre for Therapeutic Discovery, The Australian National University , Acton, Australia .,2 ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University , Acton, Australia .,7 School of Biomedical Sciences, University of Queensland , St Lucia, Australia .,8 Department of Clinical Pathology, University of Melbourne , Parkville, Australia
| |
Collapse
|