1
|
Attia MA, Soliman N, Eladl MA, Bilasy SE, El-Abaseri TB, Ali HS, Abbas F, Ibrahim D, Osman NMS, Hashish AA, Alshahrani A, Mohamed AS, Zaitone SA. Topiramate affords neuroprotection in diabetic neuropathy model via downregulating spinal GFAP/inflammatory burden and improving neurofilament production. Toxicol Mech Methods 2023; 33:563-577. [PMID: 36978280 DOI: 10.1080/15376516.2023.2196687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
The current study aimed to test the neuroprotective action of topiramate in mouse peripheral diabetic neuropathy (DN) and explored some mechanisms underlying this action. Mice were assigned as vehicle group, DN group, DN + topiramate 10-mg/kg and DN + topiramate 30-mg/kg. Mice were tested for allodynia and hyperalgesia and then spinal cord and sciatic nerves specimens were examined microscopically and neurofilament heavy chain (NEFH) immunostaining was performed. Results indicated that DN mice had lower the hotplate latency time (0.46-fold of latency to licking) and lower von-Frey test pain threshold (0.6-fold of filament size) while treatment with topiramate increased these values significantly. Sciatic nerves from DN control mice showed axonal degeneration while spinal cords showed elevated GFAP (5.6-fold) and inflammatory cytokines (∼3- to 4-fold) but lower plasticity as indicated by GAP-43 (0.25-fold). Topiramate produced neuroprotection and suppressed spinal cord GFAP/inflammation but enhanced GAP-43. This study reinforces topiramate as neuroprotection and explained some mechanisms included in alleviating neuropathy.
Collapse
Affiliation(s)
- Mohammed A Attia
- Department of Pharmacology, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nema Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shymaa E Bilasy
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- College of Dental Medicine, California Northstate University, Elk Grove, CA, USA
| | - Taghrid B El-Abaseri
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Faten Abbas
- Physiology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dalia Ibrahim
- Physiology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noura M S Osman
- Department of Human Anatomy and Embryology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Abdullah A Hashish
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha, Saudi Arabia
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asma Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, KSA
| | - Abir S Mohamed
- Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Sawsan A Zaitone
- Deparment of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Yang L, Jian Y, Zhang ZY, Qi BW, Li YB, Long P, Yang Y, Wang X, Huang S, Huang J, Zhou LF, Ma J, Jiang CQ, Hu YH, Xiao WJ. Network-pharmacology-based research on protective effects and underlying mechanism of Shuxin decoction against myocardial ischemia/reperfusion injury with diabetes. World J Diabetes 2023; 14:1057-1076. [PMID: 37547579 PMCID: PMC10401449 DOI: 10.4239/wjd.v14.i7.1057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Patients with diabetes mellitus are at higher risk of myocardial ischemia/ reperfusion injury (MI/RI). Shuxin decoction (SXT) is a proven recipe modi-fication from the classic herbal formula "Wu-tou-chi-shi-zhi-wan" according to the traditional Chinese medicine theory. It has been successfully used to alleviate secondary MI/RI in patients with diabetes mellitus in the clinical setting. However, the underlying mechanism is still unclear.
AIM To further determine the mechanism of SXT in attenuating MI/RI associated with diabetes.
METHODS This paper presents an ensemble model combining network pharmacology and biology. The Traditional Chinese Medicine System Pharmacology Database was accessed to select key components and potential targets of the SXT. In parallel, therapeutic targets associated with MI/RI in patients with diabetes were screened from various databases including Gene Expression Omnibus, DisGeNet, Genecards, Drugbank, OMIM, and PharmGKB. The potential targets of SXT and the therapeutic targets related to MI/RI in patients with diabetes were intersected and subjected to bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery. The major results of bioinformatics analysis were subsequently validated by animal experiments.
RESULTS According to the hypothesis derived from bioinformatics analysis, SXT could possibly ameliorate lipid metabolism disorders and exert anti-apoptotic effects in MI/RI associated with diabetes by reducing oxidized low density lipoprotein (LDL) and inhibiting the advanced glycation end products (AGE)-receptor for AGE (RAGE) signaling pathway. Subsequent animal experiments confirmed the hypothesis. The treatment with a dose of SXT (2.8 g/kg/d) resulted in a reduction in oxidized LDL, AGEs, and RAGE, and regulated the level of blood lipids. Besides, the expression of apoptosis-related proteins such as Bax and cleaved caspase 3 was down-regulated, whereas Bcl-2 expression was up-regulated. The findings indicated that SXT could inhibit myocardial apoptosis and improve cardiac function in MI/RI in diabetic rats.
CONCLUSION This study indicated the active components and underlying molecular therapeutic mechanisms of SXT in MI/RI with diabetes. Moreover, animal experiments verified that SXT could regulate the level of blood lipids, alleviate cardiomyocyte apoptosis, and improve cardiac function through the AGE-RAGE signaling pathway.
Collapse
Affiliation(s)
- Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Yang Jian
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Zai-Yuan Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Bao-Wen Qi
- South China Hospital of Shenzhen University, Shenzhen 518116, Guangdong Province, China
| | - Yu-Bo Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
| | - Jing Huang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Long-Fu Zhou
- Department of Biomedical Engineering, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Jie Ma
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Chang-Qing Jiang
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| | - Yong-He Hu
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan Province, China
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China
| | - Wen-Jing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China
| |
Collapse
|
3
|
Amin S, Sheikh KA, Iqubal A, Ahmed Khan M, Shaquiquzzaman M, Tasneem S, Khanna S, Najmi AK, Akhter M, Haque A, Anwer T, Mumtaz Alam M. Synthesis, in-Silico studies and biological evaluation of pyrimidine based thiazolidinedione derivatives as potential anti-diabetic agent. Bioorg Chem 2023; 134:106449. [PMID: 36889200 DOI: 10.1016/j.bioorg.2023.106449] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Despite the advancements in the management of Diabetes mellitus, the design and synthesis of drug molecule which ameliorates the hyperglycemia and associated secondary complications in diabetic patients, still remains a challenge. Herein, we report the synthesis, characterization and anti-diabetic evaluation of pyrimidine-thiazolidinedione derivatives. The synthesized compounds were characterized by 1H NMR, 13C NMR, FTIR and Mass Spectroscopic analytical techniques. The in-silico ADME studies depicted that the compounds were within the permissible limits of the Lipinski's rule of five. The compounds 6e and 6m showing the best results in OGTT were evaluated for in-vivo anti-diabetic evaluation in STZ induced diabetic rats. Administration of 6e and 6m for four weeks decreased the blood glucose levels significantly. Compound 6e (4.5 mg/kg p.o.) was the most potent compound of the series. It reduced the level of blood glucose to 145.2 ± 1.35 compared to the standard Pioglitazone (150.2 ± 1.06). Moreover, the 6e and 6m treated group did not show increase in bodyweight. The biochemical estimations showed that the levels of ALT, ASP, ALP, urea, creatinine, blood urea nitrogen, total protein and LDH restored to normal in 6e and 6m treated groups as compared to STZ control group. The histopathological studies supported the results obtained in biochemical estimations. Both the compounds did not show any toxicity. Moreover, the histopathological studies of pancreas, liver, heart and kidney revealed that the structural integrity of these tissues restored to almost normal in 6e and 6m treated groups as compared to STZ control group. Based upon these findings it can be concluded that the pyrimidine-based thiazolidinedione derivatives represent novel anti-diabetic agents with least side effects.
Collapse
Affiliation(s)
- Shaista Amin
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Khursheed A Sheikh
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sharba Tasneem
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - A K Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Anzarul Haque
- Department of Pharmaceutics, Buraydah College of Pharmacy and Dentistry, PO Box-31717, Buraydah, Al-Qassim, Saudi Arabia
| | - Tarique Anwer
- Department of Pharmacology, College of Pharmacy, Jazan University, Saudi Arabia
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Ahmed MI, Abdelrazek HMA, Moustafa YM, Alshawwa SZ, Mobasher MA, Abdel-Wahab BA, Abdelgawad FE, Khodeer DM. Cardioprotective Effect of Flibanserin against Isoproterenol-Induced Myocardial Infarction in Female Rats: Role of Cardiac 5-HT2A Receptor Gene/5-HT/Ca2+ Pathway. Pharmaceuticals (Basel) 2023; 16:ph16040502. [PMID: 37111259 PMCID: PMC10143970 DOI: 10.3390/ph16040502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Serotonin (5-HT) release during myocardial ischemia plays an important role in the progression of myocardial cellular injury. This study was conducted to investigate the possible cardioprotective effect of flibanserin (FLP) against isoproterenol (ISO)-induced MI in rats. Rats were randomly divided into five groups and were treated orally (p.o.) with FLP (15, 30, and 45 mg/kg) for 28 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 27th and 28th days to induce MI. ISO-induced myocardial infarcted rats exhibited a significant increase in cardiac markers, oxidative stress markers, cardiac and serum 5-HT levels, and total cardiac calcium (Ca2+) concentration. ISO-induced myocardial infarcted rats also revealed a remarkable alteration of electrocardiogram (ECG) pattern and significantly upregulated expression of the 5-Hydroxytryptamine 2A (5-HT2A) receptors gene. Moreover, ISO-induced myocardial infarcted rats showed significant histopathological findings of MI and hypertrophic signs. However, pretreatment with FLP significantly attenuated the ISO-induced MI in a dose-dependent manner, as the effect of FLP (45 mg/kg) was more pronounced than that of the other two doses, FLP (15 and 30 mg/kg). The present study provides evidence for the cardioprotective efficacy of FLP against ISO-induced MI in rats.
Collapse
|
5
|
Khodeer DM, Nasr AM, Swidan SA, Shabayek S, Khinkar RM, Aldurdunji MM, Ramadan MA, Badr JM. Characterization, antibacterial, antioxidant, antidiabetic, and anti-inflammatory activities of green synthesized silver nanoparticles using Phragmanthera austroarabica A. G. Mill and J. A. Nyberg extract. Front Microbiol 2023; 13:1078061. [PMID: 36687608 PMCID: PMC9849905 DOI: 10.3389/fmicb.2022.1078061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Diabetes mellitus is a chronic metabolic disorder that exhibited great expansion all over the world. It is becoming an epidemic disease adding a major burden to the health care system, particularly in developing countries. Methods The plant under investigation in the current study Phragmanthera austroarabica A. G. Mill and J. A. Nyberg is traditionally used in Saudi Arabia for the treatment of diabetes mellitus. The methanolic extract (200 mg/kg) of the plant and pure gallic acid (40 mg/kg), a major metabolite of the plant, as well as their silver nanoparticle formulae (AgNPs) were evaluated for their antidiabetic activity. Results and Discussion The results showed a decrease in body fat, obesity, an improvement in lipid profiles, normalization of hyperglycemia, insulin resistance, and hyperinsulinemia, and an improvement in liver tissue structure and function. However, the results obtained from AgNPs for both extract and the pure gallic acid were better in most measured parameters. Additionally, the activity of both the crude extract of the plant and its AgNPs were evaluated against a number of gram-positive, gram-negative bacteria and fungi. Although the activity of the crude extract ranged from moderate to weak or even non-active, the AgNPs of the plant extract clearly enhanced the antimicrobial activity. AgNPs of the extract demonstrated remarkable activity, especially against the Gram-negative pathogens Proteus vulgaris (MIC 2.5 μg/ml) and Pseudomonas aeruginosa (MIC 5 μg/ml). Furthermore, a promising antimicrobial activity was shown against the Gram-positive pathogen Streptococcus mutants (MIC 1.25 μg/ml).
Collapse
Affiliation(s)
- Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,*Correspondence: Dina M. Khodeer, ✉
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Shady A. Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt,The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Roaa M. Khinkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam A. Ramadan
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,Jihan M. Badr, ✉
| |
Collapse
|
6
|
Ferdinandy P, Andreadou I, Baxter GF, Bøtker HE, Davidson SM, Dobrev D, Gersh BJ, Heusch G, Lecour S, Ruiz-Meana M, Zuurbier CJ, Hausenloy DJ, Schulz R. Interaction of Cardiovascular Nonmodifiable Risk Factors, Comorbidities and Comedications With Ischemia/Reperfusion Injury and Cardioprotection by Pharmacological Treatments and Ischemic Conditioning. Pharmacol Rev 2023; 75:159-216. [PMID: 36753049 PMCID: PMC9832381 DOI: 10.1124/pharmrev.121.000348] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Preconditioning, postconditioning, and remote conditioning of the myocardium enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and the potential to provide novel therapeutic paradigms for cardioprotection. While many signaling pathways leading to endogenous cardioprotection have been elucidated in experimental studies over the past 30 years, no cardioprotective drug is on the market yet for that indication. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic preclinical evaluation of promising cardioprotective therapies prior to their clinical evaluation, since ischemic heart disease in humans is a complex disorder caused by or associated with cardiovascular risk factors and comorbidities. These risk factors and comorbidities induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury and responses to cardioprotective interventions. Moreover, some of the medications used to treat these comorbidities may impact on cardioprotection by again modifying cellular signaling pathways. The aim of this article is to review the recent evidence that cardiovascular risk factors as well as comorbidities and their medications may modify the response to cardioprotective interventions. We emphasize the critical need for taking into account the presence of cardiovascular risk factors as well as comorbidities and their concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple comorbidities. SIGNIFICANCE STATEMENT: Ischemic heart disease is a major cause of mortality; however, there are still no cardioprotective drugs on the market. Most studies on cardioprotection have been undertaken in animal models of ischemia/reperfusion in the absence of comorbidities; however, ischemic heart disease develops with other systemic disorders (e.g., hypertension, hyperlipidemia, diabetes, atherosclerosis). Here we focus on the preclinical and clinical evidence showing how these comorbidities and their routine medications affect ischemia/reperfusion injury and interfere with cardioprotective strategies.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Ioanna Andreadou
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Hans Erik Bøtker
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sean M Davidson
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Dobromir Dobrev
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Bernard J Gersh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Sandrine Lecour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Marisol Ruiz-Meana
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Coert J Zuurbier
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece (I.A.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK (G.F.B.); Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark (H.E.B.); The Hatter Cardiovascular Institute, University College London, London, UK (S.M.D.); Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (D.D.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Québec, Canada (D.D.); Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas (D.D.); Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota (B.J.G.); Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany (G.H.); Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa (S.L.); Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Spain (M.R-M.); Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands (C.J.Z.); Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore (D.J.H.); National Heart Research Institute Singapore, National Heart Centre, Singapore (D.J.H.); Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.); Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan (D.J.H.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
7
|
El-Sayed K, Ali DA, Maher SA, Ghareeb D, Selim S, Albogami S, Fayad E, Kolieb E. Prophylactic and Ameliorative Effects of PPAR-γ Agonist Pioglitazone in Improving Oxidative Stress, Germ Cell Apoptosis and Inflammation in Gentamycin-Induced Testicular Damage in Adult Male Albino Rats. Antioxidants (Basel) 2022; 11:antiox11020191. [PMID: 35204074 PMCID: PMC8868260 DOI: 10.3390/antiox11020191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is ubiquitously expressed in testicular tissue and plays a crucial role in regulating various physiological processes. Pioglitazone (PIO) is one of the PPAR-γ agonists, having anti-oxidant and anti-inflammatory effects. Patients on gentamycin treatment may undergo serious side effects such as testicular damage. To the best of our knowledge, this was the first study to investigate the possible protective anti-inflammatory and anti-apoptotic effects of PIO on gentamycin-induced testicular damage. Fifty adult male Wistar albino rats included in the study as the control group (CTL) received normal saline; a gentamycin-induced testicular damage group (GM) received gentamycin (100 mg/kg); PIO5, PIO10, PIO20 groups received PIO at a dose of 5, 10, and 20 mg/ kg, respectively, for 21 days, and gentamycin was started at day 15 of the experiment for 6 days. The parameters of spermatozoa and histopathological alterations in the testes were significantly improved in the PIO20 group. Moreover, MDA levels, inflammatory mediators, and apoptotic Bax expression were decreased. The activity of glutathione peroxidase, catalase, total antioxidant capacity, and anti-apoptotic Bcl-2 genes expression were increased. It was concluded that PIO20 could protect against gentamycin-induced testicular damage in Wistar rats through its anti-oxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Karima El-Sayed
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Dina A. Ali
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Shymaa Ahmed Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Dalia Ghareeb
- Clinical Pathology Department, Faculty of Medicine, Suez University, Suez 41522, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Sarah Albogami
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia; (S.A.); (E.F.)
| | - Eman Kolieb
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Correspondence: ; Tel.: +20-1006738513
| |
Collapse
|
8
|
Cellular mechanisms and recommended drug-based therapeutic options in diabetic cardiomyopathy. Pharmacol Ther 2021; 228:107920. [PMID: 34171330 DOI: 10.1016/j.pharmthera.2021.107920] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) is associated with a specific cardiac phenotype characterized by structural and functional alterations. This so-called diabetic cardiomyopathy (DM CM) is clinically relevant as patients with DM show high incidence of heart failure. Mechanistically, several parameters interact on the cardiomyocyte level leading to increased inflammation, apoptosis, reactive oxygen species and altered calcium signaling. This in turn provokes functional myocardial changes that might inter alia play into the worsened clinical outcome in DM patients. Therefore, efficient therapeutic options are urgently needed. This review focuses on mechanistic effects of currently recommended antidiabetic treatment and heart failure therapy for DM CM.
Collapse
|
9
|
Farag NE, El-Kherbetawy MK, Ismail HM, Abdelrady AM, Toraih EA, Abdelbasset WK, Lashine RM, EL-dosoky M, Abed SY, Ibraheem KM, Fawzy MS, Zaitone SA. Differential Effect of Three Macrolide Antibiotics on Cardiac Pathology and Electrophysiology in a Myocardial Infarction Rat Model: Influence on Sodium Nav1.5 Channel Expression. Pharmaceuticals (Basel) 2021; 14:597. [PMID: 34206182 PMCID: PMC8308720 DOI: 10.3390/ph14070597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Macrolides were reported to have cardiotoxic effects presented mainly by electrocardiogram (ECG) changes with increased risk in cardiac patients. We aimed to determine the impact of three macrolides, azithromycin, clarithromycin and erythromycin, on cardiac electrophysiology, cardiac enzyme activities, histopathological changes, and sodium voltage-gated alpha subunit 5 (Nav1.5) channel expression. We used eight experimental groups of male albino rats: vehicle, azithromycin (100 mg/kg), clarithromycin (100 mg/kg), erythromycin (100 mg/kg), MI + vehicle, MI + azithromycin (100 mg/kg), MI + clarithromycin (100 mg/kg) and MI + erythromycin (100 mg/kg); each group received chronic oral doses of the vehicle/drugs for seven weeks. ECG abnormalities and elevated serum cardiac enzymes were observed particularly in rats with AMI compared to healthy rats. Microscopic examination revealed elevated pathology scores for rats treated with clarithromycin in both experiments following treatment with erythromycin in healthy rats. Although rats with MI did not show further elevations in fibrosis score on treatment with macrolides, they produced significant fibrosis in healthy rats. Downregulation of cardiac Nav1.5 transcript was observed following macrolides treatment in both groups (healthy rats and rats with MI). In conclusion, the current findings suggested the potential cardiotoxic effects of chronic doses of macrolide antibiotics in rats with MI as manifested by abnormal ECG changes and pathological findings in addition to downregulation of Nav1.5 channels. Furthermore, in the current dose ranges, azithromycin produced the least toxicity compared to clarithromycin and erythromycin.
Collapse
Affiliation(s)
- Noha E. Farag
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Physiology, College of Medicine, Taif University, Taif 21974, Saudi Arabia
| | | | - Hussein M. Ismail
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | | | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 16278, Saudi Arabia;
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza 12613, Egypt
| | - Rehab M. Lashine
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohammed EL-dosoky
- Department of Neuroscience Technology, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Sally Yussef Abed
- Department of Respiratory Care, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Khalid M. Ibraheem
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Sawsan A. Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 714, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Telek V, Erlitz L, Caleb I, Nagy T, Vecsernyés M, Balogh B, Sétáló G, Hardi P, Jancsó G, Takács I. Effect of Pioglitazone on endoplasmic reticulum stress regarding in situ perfusion rat model. Clin Hemorheol Microcirc 2021; 79:311-325. [PMID: 33867357 DOI: 10.3233/ch-211163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) can cause insufficient microcirculation of the transplanted organ and results in a diminished and inferior graft survival rate. OBJECTIVE This study aimed to investigate the effect of different doses of an anti-diabetic drug, Pioglitazone (Pio), on endoplasmic reticulum stress and histopathological changes, using an in situ perfusion rat model. METHODS Sixty male Wistar rats were used and were divided into six groups, consisting of the control group, vehicle-treated group and four Pio-treated groups (10, 20, 30 and 40 mg/kg Pio was administered). The rats were perfused through vena cava and an outflow on the abdominal aorta occurred. Following the experiment, kidneys and livers were collected. The level of the endoplasmic reticulum stress markers (XBP1 and Caspase 12) was analyzed using Western blot and histopathological changes were evaluated. RESULTS Histopathological findings were correlated with the Western blot results and depict a protective effect corresponding to the elevated dosage of Pioglitazone regarding in situ perfusion rat model. CONCLUSIONS In our study, Pioglitazone can reduce the endoplasmic reticulum stress, and the most effective dosage proved to be the 40 mg/kg Pio referencing the kidney and liver samples.
Collapse
Affiliation(s)
- Vivien Telek
- Department of Surgical Research and Techniques, Medical School, University of Pécs, Pécs, Hungary
| | - Luca Erlitz
- Department of Surgical Research and Techniques, Medical School, University of Pécs, Pécs, Hungary
| | - Ibitamuno Caleb
- Department of Surgical Research and Techniques, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Nagy
- Department of Surgical Research and Techniques, Medical School, University of Pécs, Pécs, Hungary
| | - Mónika Vecsernyés
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Bálint Balogh
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - György Sétáló
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary.,Signal Transduction Research Group, János Szentágothai Research Centre, Pécs, Hungary
| | - Péter Hardi
- Department of Surgical Research and Techniques, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Jancsó
- Department of Surgical Research and Techniques, Medical School, University of Pécs, Pécs, Hungary
| | - Ildikó Takács
- Department of Surgical Research and Techniques, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
11
|
Elkazzaz SK, Khodeer DM, El Fayoumi HM, Moustafa YM. Role of sodium glucose cotransporter type 2 inhibitors dapagliflozin on diabetic nephropathy in rats; Inflammation, angiogenesis and apoptosis. Life Sci 2021; 280:119018. [PMID: 33549594 DOI: 10.1016/j.lfs.2021.119018] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
AIMS Diabetic nephropathy is a major cause of chronic kidney disease and end-stage renal failure worldwide. Dapagliflozin Sodium-glucose co-transporter 2 (SGLT2) inhibitor is a new class of diabetic medications prescribed for the treatment of type 2 diabetes. The current study investigates the possible impact of dapagliflozin (DAPA) on inflammations, apoptosis, angiogenesis and fibrosis in early-stage diabetic nephropathy using a rat model of type 2 diabetes. MAIN METHODS Rats were divided into five groups, group1: normal vehicle group, group 2: diabetic group, group 3: diabetic+ DAPA (0.75 mg/kg), group 4: diabetic+DAPA (1.5 mg/kg), group 5: diabetic+DAPA (3 mg/kg). At the end of the study, Blood glucose level was measured. Serum insulin, BUN, and SCr were measured. Insulin resistance was determined using the homeostasis model assessment for insulin resistance (HOMA-IR) index. Renal tissue homogenization was done for assessment of inflammatory markers TNF-α, PEDF, and PTX-3, In addition to apoptosis markers BCL-2 and BAX. Histopathological examinations were done for tubular renal cells and immunohistochemical examination for fibrosis marker α-SMA and angiogenic factor VEGF. KEY FINDINGS Treatments with dapagliflozin showed improvements in histopathological examinations, inflammatory and apoptotic markers compared to diabetic vehicles in a dose-dependent manner. SIGNIFICANCE Thus, dapagliflozin may have renoprotective effects, which be promising in diabetic patients suffered from nephropathy.
Collapse
Affiliation(s)
- Shimaa K Elkazzaz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Hassan M El Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
Fukuoka CY, Vicari HP, Sipert CR, Bhawal UK, Abiko Y, Arana-Chavez VE, Simões A. Early effect of laser irradiation in signaling pathways of diabetic rat submandibular salivary glands. PLoS One 2020; 15:e0236727. [PMID: 32750068 PMCID: PMC7402516 DOI: 10.1371/journal.pone.0236727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/12/2020] [Indexed: 11/19/2022] Open
Abstract
Low-power laser irradiation (LPLI) is clinically used to modulate inflammation, proliferation and apoptosis. However, its molecular mechanisms are still not fully understood. This study aimed to describe the effects of LPLI upon inflammatory, apoptotic and proliferation markers in submandibular salivary glands (SMGs) in an experimental model of chronic disorder, 24h after one time irradiation. Diabetes was induced in rats by the injection of streptozotocin. After 29 days, these animals were treated with LPLI in the SMG area, and euthanized 24h after this irradiation. Treatment with LPLI significantly decreased diabetes-induced high mobility group box 1 (HMGB1) and tumor necrosis factor alpha (TNF-α) expression, while enhancing the activation of the transcriptional factor cAMP response element binding (CREB) protein. LPLI also reduced the expression of bax, a mitochondrial apoptotic marker, favoring the cell survival. These findings suggest that LPLI can hamper the state of chronic inflammation and favor homeostasis in diabetic rats SMGs.
Collapse
Affiliation(s)
- Cíntia Yuki Fukuoka
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Hugo Passos Vicari
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Carla Renata Sipert
- Division of Endodontics, Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ujjal Kumar Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Victor Elias Arana-Chavez
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Alyne Simões
- Laboratory of Oral Biology, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Mohammad HMF, Makary S, Atef H, El-Sherbiny M, Atteia HH, Ibrahim GA, Mohamed AS, Zaitone SA. Clopidogrel or prasugrel reduces mortality and lessens cardiovascular damage from acute myocardial infarction in hypercholesterolemic male rats. Life Sci 2020; 247:117429. [PMID: 32061670 DOI: 10.1016/j.lfs.2020.117429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
AIMS Hypercholesterolemia is a hazard for increasing susceptibility of the heart to myocardial infarction (MI) by inducing platelet hyperaggregability. Clopidogrel and prasugrel have documented cardioprotective effects in clinical studies. Herein, we investigated whether clopidogrel and prasugrel could protect against isoproterenol-induced acute MI (A-MI) under hypercholesterolemic conditions in rats. MAIN METHODS Dietary hypercholesterolemic rats were subjected to acute doses of isoproterenol. Serum lipids, inflammatory markers, aortic endothelin1 and endothelial nitric oxide synthase (eNOS) mRNAs expression and immunexpression of BCL2 were determined. KEY FINDINGS Hypercholesterolemic rats showed infiltration of inflammatory cells and reduction in aortic wall thickness, deposition of fibrous tissue between cardiac muscle fibers. Protective doses of prasugrel or clopidogrel for 28 days before A-MI increased survival, amended the ECG parameters -including ST segment elevation- and improved the histopathological picture in hypercholesterolemic rats. This was coupled with reductions in platelet aggregation, creatine kinase-MB activity, endothelin 1, systemic inflammation and cardiac lipid peroxidation and increment in aortic eNOS expression. Clopidogrel and prasugrel groups showed enhanced BCL2 expression in cardiac fibers and aortic wall. SIGNIFICANCE Prasugrel and clopidogrel protected against A-MI via anti-aggregatory and anti-inflammatory effects. These results add to the value of these drugs in correcting cardiovascular dysfunction in patients vulnerable to A-MI after confirmation by appropriate human studies.
Collapse
Affiliation(s)
- Hala M F Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Central Lab., Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Hoda Atef
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Anatomy department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Anatomy department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Hebatallah H Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, El-Sharkia, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Gehan A Ibrahim
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdelaty Shawky Mohamed
- Pathology department, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Pathology department, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, 41522 Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
14
|
Xu L, Xu K, Wu Z, Chen Z, He Y, Ma C, Moqbel SAA, Ran J, Zhang C, Wu L, Xiong Y. Pioglitazone attenuates advanced glycation end products-induced apoptosis and calcification by modulating autophagy in tendon-derived stem cells. J Cell Mol Med 2020; 24:2240-2251. [PMID: 31957239 PMCID: PMC7011144 DOI: 10.1111/jcmm.14901] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is one of the prominent risk factors for pathological development and progression of tendinopathy. One feature of DM-related changes in tendinopathy is accumulation of advanced glycation end products (AGEs) in affected tendons. Pioglitazone (Pio), a peroxisome proliferator-activated receptor γ agonist, performs a protective effect against AGEs. The present study aimed to investigate the pathogenetic role of AGEs on tendon-derived stem cells (TDSCs) and to determine the effect of Pio on AGEs-induced TDSC dysfunctions. Results indicated that AGEs induced TDSC apoptosis as well as compensatory activation of autophagy. Pharmacologic activation/inhibition of autophagy leaded to alleviate/exacerbate apoptosis induced by AGEs. We further confirmed the effect of Pio on autophagy, which ameliorated apoptosis and abnormal calcification caused by AGEs both in vitro and in vivo. Thus, we suggest that Pio ameliorates the dysfunctions of TDSCs against AGEs by promoting autophagy, and we also reveal that Pio is a potential pharmacological choice for tendinopathy.
Collapse
Affiliation(s)
- Langhai Xu
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Kai Xu
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhipeng Wu
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhonggai Chen
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuzhe He
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chiyuan Ma
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Safwat A. A. Moqbel
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jisheng Ran
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Caihua Zhang
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lidong Wu
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yan Xiong
- Department of Orthopedics SurgeryThe 2nd Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
15
|
Eltamany EE, Nafie MS, Khodeer DM, El-Tanahy AHH, Abdel-Kader MS, Badr JM, Abdelhameed RFA. Rubia tinctorum root extracts: chemical profile and management of type II diabetes mellitus. RSC Adv 2020; 10:24159-24168. [PMID: 35516188 PMCID: PMC9055131 DOI: 10.1039/d0ra03442h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/24/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
The chemical and biological profiling of the root extracts of Rubia tinctorum was performed. The activities of different extracts were determined considering the antidiabetic effect against type II diabetes mellitus together with anti-obesity and hepatoprotective effects and lipid profile. The methanolic extract of Rubia tinctorum exhibited significant results in decreasing body weight, improving lipid profile, normalizing hyperglycaemia, insulin resistance, hyperinsulinemia. Additionally, it showed enhancement of liver tissue structure and function. The methanolic extract, being the most significant one, was subjected to LC-HRMS analysis to determine its chemical constituents. Finally, the chemical constituents were evaluated by molecular docking study that was carried out to identify the interaction of a panel of 45 compounds in silico and to correlate the structures to their anti-diabetic activity. Among the tested compounds, 1-hydroxy-2-hydroxymethyl anthra-quinone and naringenin-7-O-glucoside showed the most potent activity as α-amylase inhibitors. The chemical and biological profiling of the root extracts of Rubia tinctorum was performed.![]()
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy
- Faculty of Pharmacy
- Suez Canal University
- Ismailia 41522
- Egypt
| | - Mohamed S. Nafie
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia 41522
- Egypt
| | - Dina M. Khodeer
- Department of Pharmacology & Toxicology
- Faculty of Pharmacy
- Suez Canal University
- Ismailia 41522
- Egypt
| | | | - Maged S. Abdel-Kader
- Department of Pharmacognosy
- College of Pharmacy
- Prince Sattam Bin Abdulaziz University
- 173, AlKharj 11942
- Saudi Arabia
| | - Jihan M. Badr
- Department of Pharmacognosy
- Faculty of Pharmacy
- Suez Canal University
- Ismailia 41522
- Egypt
| | | |
Collapse
|
16
|
Das M, Mayilsamy K, Tang X, Han JY, Foran E, Willing AE, Mohapatra SS, Mohapatra S. Pioglitazone treatment prior to transplantation improves the efficacy of human mesenchymal stem cells after traumatic brain injury in rats. Sci Rep 2019; 9:13646. [PMID: 31541141 PMCID: PMC6754424 DOI: 10.1038/s41598-019-49428-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury is a leading cause of death and disability around the world. So far, drugs are not available to repair brain damage. Human mesenchymal stem cell (hMSC) transplantation therapy is a promising approach, although the inflammatory microenvironment of the injured brain affects the efficacy of transplanted hMSCs. We hypothesize that reducing the inflammation in the cerebral microenvironment by reducing pro-inflammatory chemokines prior to hMSC administration will improve the efficacy of hMSC therapy. In a rat model of lateral fluid percussion injury, combined pioglitazone (PG) and hMSC (combination) treatment showed less anxiety-like behavior and improved sensorimotor responses to a noxious cold stimulus. Significant reduction in brain lesion volume, neurodegeneration, microgliosis and astrogliosis were observed after combination treatment. TBI induced expression of inflammatory chemokine CCL20 and IL1-β were significantly decreased in the combination treatment group. Combination treatment significantly increased brain-derived neurotrophic factor (BDNF) level and subventricular zone (SVZ) neurogenesis. Taken together, reducing proinflammatory cytokine expression in the cerebral tissues after TBI by PG administration and prior to hMSC therapy improves the outcome of the therapy in which BDNF could have a role.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Xiaolan Tang
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Jung Yeon Han
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Elspeth Foran
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Alison E Willing
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA
- Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
17
|
Das M, Tang X, Han JY, Mayilsamy K, Foran E, Biswal MR, Tzekov R, Mohapatra SS, Mohapatra S. CCL20-CCR6 axis modulated traumatic brain injury-induced visual pathologies. J Neuroinflammation 2019; 16:115. [PMID: 31151410 PMCID: PMC6544928 DOI: 10.1186/s12974-019-1499-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of death and disability in the USA and the world; it constitutes 30% of injury-related deaths (Taylor et al., MMWR Surveill Summ 66:1-16, 2017). Contact sports athletes often experience repetitive TBI (rTBI), which exerts a cumulative effect later in life. Visual impairment is a common after-effect of TBI. Previously, we have shown that C-C chemokine 20 (CCL20) plays a critical role in neurodegeneration and inflammation following TBI (Das et al., J Neuroinflammation 8:148, 2011). C-C chemokine receptor 6 (CCR6) is the only receptor that CCL20 interacts with. The objective of the present study was to investigate the role of CCL20-CCR6 axis in mediating rTBI-induced visual dysfunction (TVD). METHODS Wild type (WT) or CCR6 knock out (CCR6-/-) mice were subjected to closed head rTBI. Pioglitazone (PG) is a peroxisome proliferator-activated receptor γ (PPARγ) agonist which downregulates CCL20 production. Subsets of WT mice were treated with PG following final rTBI. A subset of mice was also treated with anti-CCL20 antibody to neutralize the CCL20 produced after rTBI. Histopathological assessments were performed to show cerebral pathologies, retinal pathologies, and inflammatory changes induced by rTBI. RESULTS rTBI induced cerebral neurodegeneration, retinal degeneration, microgliosis, astrogliosis, and CCL20 expression. CCR6-/- mice showed reduced retinal degeneration, microgliosis, and inflammation. Treatment with CCL20 neutralization antibody or PG showed reduced CCL20 expression along with reduced retinal degeneration and inflammation. rTBI-induced GFAP-positive glial activation in the optic nerve was not affected by knocking out CCR6. CONCLUSION The present data indicate that rTBI-induced retinal pathology is mediated at least in part by CCL20 in a CCR6-dependent manner.
Collapse
Affiliation(s)
- Mahasweta Das
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Xiaolan Tang
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jung Yeon Han
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Karthick Mayilsamy
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elspeth Foran
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Manas R Biswal
- Graduate Programs at College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Radouil Tzekov
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Graduate Programs at College of Pharmacy, University of South Florida, Tampa, FL, USA.,Department of Medical Engineering, University of South Florida, Tampa, FL, USA.,The Roskamp Institute, Sarasota, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Graduate Programs at College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA. .,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
18
|
Khodeer DM, Bilasy SE, Farag NE, Mehana AE, Elbaz AA. Sitagliptin protects diabetic rats with acute myocardial infarction through induction of angiogenesis: role of IGF-1 and VEGF. Can J Physiol Pharmacol 2019; 97:1053-1063. [PMID: 31116952 DOI: 10.1139/cjpp-2018-0670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is regulated in a tissue-specific manner in all patients, especially those with diabetes. In this study, we describe a novel molecular pathway of angiogenesis regulation in diabetic rats with myocardial infarction (MI) and examine the cardioprotective effects of different doses of sitagliptin. Male rats were divided into 5 groups: normal vehicle group, diabetic group, diabetic + MI, diabetic + MI + 5 mg/kg sitagliptin, and diabetic + MI + 10 mg/kg sitagliptin. Isoproterenol in diabetic rats resulted in significant (p < 0.05) disturbance to the electrocardiogram, cardiac histopathological manifestations, and an increase in inflammatory markers compared with the vehicle and diabetic groups. Treatment with sitagliptin improved the electrocardiogram and histopathological sections, upregulated vascular endothelial growth factor (VEGF) and transmembrane phosphoglycoprotein protein (CD34) in cardiac tissues, and increased serum insulin-like growth factor 1 (IGF-1) and decreased cardiac tissue homogenate for interleukin 6 (IL-6) and cyclooxygenase 2 (COX-2). A relationship was found between serum IGF-1 and cardiac VEGF and CD34 accompanied by an improvement in cardiac function of diabetic rats with MI. Therefore, the observed effects of sitagliptin occurred at least partly through an improvement in angiogenesis and the mitigation of inflammation. Consequently, these data suggest that sitagliptin may contribute, in a dose-dependent manner, to protection against acute MI in diabetic individuals.
Collapse
Affiliation(s)
- Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa E Bilasy
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noha E Farag
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amir E Mehana
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amani A Elbaz
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
19
|
Elsherbiny NM, Ahmed E, Kader GA, Abdel-Mottaleb Y, ElSayed MH, Youssef AM, Zaitone SA. Inhibitory effect of valproate sodium on pain behavior in diabetic mice involves suppression of spinal histone deacetylase 1 and inflammatory mediators. Int Immunopharmacol 2019; 70:16-27. [PMID: 30785087 DOI: 10.1016/j.intimp.2019.01.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Abstract
Anti-epileptic medications are included in the international guidelines for managing neuropathic pain. Valproate sodium (VPS) was recently described as "the forgotten analgesic" and has been reported to relief pain in various models of neuropathic pain. Some studies reported anti-inflammatory and histone deacetylase 1 (HDA1) inhibitory properties for sodium valproate. The aim of the current study was to investigate the modulatory effect of VPS on pain behavior and inflammatory reactions in alloxan-induced diabetic neuropathy focusing on HDA1 inhibition and glia reactivity. 28 Male Swiss albino mice were allocated into four groups, (1) vehicle group, (2) alloxan-diabetic group, (3 & 4) alloxan+VPS (25 or 50 mg/kg) groups. VPS was given daily for 5 weeks by oral gavage. Pain behavior demonstrated increased allodynia (von-Frey filaments) and hyperalgesia (hot-plate test) in alloxan-diabetic mice that was reduced significantly by at least one of VPS doses. Sciatic nerves in diabetic mice showed increased histopathology score, increased silver staining for the nerves-indicating myelopathy- and a decrease in immunostaining for nerve growth factor. Spinal cord of diabetic mice showed greater histopathologic score, increased CD11b and glia fibrillary acidic protein (GFAP) immunostaining than vehicle treated mice. Molecular investigations highlighted greater content of spinal histone deacetylases, tumor necrosis factor-α (TNF-α) and interlukin-1β (IL1β) that were favorably modified by VPS. Overall, the current data confirmed that the pain killing and anti-inflammatory activity of VPS is at least partly mediated through inhibition of spinal HDA1 and glia reactivity. These findings support the view of inviting antiepileptics for treating neuropathies.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Ahmed
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghada Abdel Kader
- Department of Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Yousra Abdel-Mottaleb
- Department of Pharmacology, Toxicology & Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Mohamed H ElSayed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amal M Youssef
- Department of Physiology, College of Medicine, Taibah University, Medinah, Saudi Arabia; Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
20
|
Garg S, Malhotra RK, Khan SI, Sarkar S, Susrutha PN, Singh V, Goyal S, Nag TC, Ray R, Bhatia J, Arya DS. Fisetin attenuates isoproterenol-induced cardiac ischemic injury in vivo by suppressing RAGE/NF-κB mediated oxidative stress, apoptosis and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:147-155. [PMID: 30668335 DOI: 10.1016/j.phymed.2018.09.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND The therapeutic options for the reducing the damage caused by myocardial ischemia are limited and not devoid of adverse effects. The role of the flavanoid, fisetin, predominantly found in strawberry and apple, is yet to be explored in the heart. STUDY DESIGN Male Wistar rats (n = 48) were administered fisetin (10, 20 & 40 mg/kg/day, orally) or vehicle for 28 days while ISO, 85 mg/kg, subcutaneously, was also administered at 24 h interval on the 27th and 28th day. On the 29th day, rats were anaesthetized and right carotid artery was cannulated to record hemodynamic parameters. Subsequently, blood sample was collected and heart was removed to evaluate various parameters. RESULTS Fisetin at doses of 10 and 20 mg/kg reversed ISO induced detrimental alterations in blood pressure and left ventricular pressures and reduced the myocardial injury markers CK-MB and LDH in the serum. These findings were supported by amelioration of ISO induced histological and ultrastructural damage by fisetin. The disequilibrium in the levels of pro and anti oxidants in the myocardial tissue caused by ISO was also normalized Furthermore, apoptosis was evident from enhanced DNA fragmentation and raised pro-apoptotic proteins (bax, caspase-3, cytochrome-c) as well as suppressed anti-apoptotic protein (Bcl-2) in case of ISO treatment which again was reversed by fisetin. A molecular mechanism for this protection was elucidated as downregulation of RAGE and NF-κB However fisetin at 40 mg/kg revealed a deteriorating effect which was similar to ISO group of rats. CONCLUSION Hence, through our study, the role of fisetin in cardioprotection has been uncovered via a molecular pathway.
Collapse
Affiliation(s)
- Shanky Garg
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Rajiv Kumar Malhotra
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Satyaki Sarkar
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - P N Susrutha
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Vishwajeet Singh
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Goyal
- Department of Pharmacology, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Ruma Ray
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
21
|
Nicotinamide Improves Functional Recovery via Regulation of the RAGE/JNK/NF-κB Signaling Pathway after Brain Injury. J Clin Med 2019; 8:jcm8020271. [PMID: 30813383 PMCID: PMC6406790 DOI: 10.3390/jcm8020271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Brain injuries are a serious global health issue and are the leading cause of neurodegeneration. To date, there is no proper cure and treatment for brain-injury-induced neuropathological conditions because of a lack of sufficient knowledge and the failure to develop a drug due to the multi-pathological conditions in the brain. Herein, we explored the neurotherapeutic effects of Nicotinamide (NAM), against brain injury-induced neurodegeneration and behavioral problems. Treating injured mouse brains with NAM, for 7 days, significantly ameliorated several pathological events. Interestingly, NAM treatment significantly inhibited the injury-induced activation of receptor for advanced glycation end-products (RAGE), c-Jun N-terminal kinases (JNK), and neuroinflammatory mediators, such as NF-κB, TNF-α, IL-1β, and NOS2 in the brain, and it also regulated the levels of apoptotic markers, including Bax, caspase-3, and Bcl-2. Furthermore, treatment using NAM in TBI mice, significantly reversed synaptic protein loss and improved memory impairments and behavioral outcomes. Our findings suggested that NAM treatment reduced injury-induced secondary neurodegenerative pathology by modulating RAGE/JNK/NF-κB signaling in mice. Therefore, we recommend that NAM would be a safe and efficient therapeutic agent against brain-injury-induced neurodegeneration.
Collapse
|
22
|
Jin ZH, Gao P, Liu ZT, Jin B, Song GY, Xiang TY. Composition of Ophiopogon Polysaccharide, Notoginseng Total Saponins and Rhizoma Coptidis Alkaloids Inhibits the Myocardial Apoptosis on Diabetic Atherosclerosis Rabbit. Chin J Integr Med 2018; 26:353-360. [PMID: 30328567 DOI: 10.1007/s11655-018-3014-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the effects of Composition of Ophiopogon polysaccharide, Notoginseng total saponins and Rhizoma Coptidis alkaloids (CONR) on myocardial apoptosis of diabetic atherosclerosis (DA) rabbits METHODS: Sixty male New Zealand white rabbits were randomly divided into 6 groups [control group, model group, CONR high-dose group (450 mg/kg), CONR medium-dose group (150 mg/kg), CONR low-dose group (50 mg/kg), and simvastatin group] by using a completely random method, 10 in each group. DA model was established by intravenously injected alloxan combined with high-fat diet and abdominal aortic balloon injury. After mediation for 10 weeks, fasting blood glucose (FBG), glycosylated hemoglobin (GHB), glycosylated serum protein (GSP), fructoseamine (FRA), aldose reductase (AR), advanced glycation end products (AGEs) in serum were measured by enzyme linked immunosorbent assay (ELISA) method; the expression of receptor of AGEs (RAGE) in myocardial tissue were observed by immunohistochemical method; and p-Jun N-terminal kinase (p-JNK), caspase-3, B-cell lymphoma-2 (bcl-2) protein expression in myocardial tissue were measured by Western blotting. The myocardial apoptosis was detected by TdT-mediated dUTPnick-end labeling (TUNEL) method, and apoptosis index (AI) was calculated. RESULTS Compared with the control group, serum FBG, GHB, GSP, FRA, AR, AGEs and the expression of myocardium RAGE, p-JNK, caspase-3 proteins, as well as apoptosis index (AI) were significantly increased and bcl-2 protein was significantly decreased in the model group (P<0.01). Compared with the model group, the levels of serum FBG, GHB, GSP, FRA and AR showed a significant decline in CONR high- and medium-dose groups (P<0.01). FBG and GHB showed a significant decline in CONR low-dose group (P<0.01). Compared with the model group, the expression of serum AGEs and myocardium RAGE, p-JNK and caspase-3 protein as well as AI were significantly decreased and bcl-2 protein was significantly up-regulated in all treatment groups (P<0.01); high-dose CONR had the most significant effect on abovementioned indices compared with other treatment groups (P<0.01). Middle-dose CONR had better effect on serum AGEs compared with the low-dose group (P<0.01); middle-dose CONR and simvastatin groups had better effect on the expression of caspase-3, bcl-2 protein, myocardium apoptosis compared with the CONR low-dose group (P<0.01). CONCLUSION CONR may effectively inhibit myocardial apoptosis on DA rabbits by intervening AGEs-RAGE and JNK, caspase-3, and bcl-2 protein expressions.
Collapse
Affiliation(s)
- Zhao-Hui Jin
- Geriatric Research Center, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100091, China
| | - Pu Gao
- Geriatric Research Center, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100091, China.
| | - Zheng-Tang Liu
- Geriatric Research Center, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100091, China
| | - Bing Jin
- Geriatric Research Center, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100091, China
| | - Guang-Yi Song
- Liaoning Basic Medical Research Institute, Shenyang, 110005, China
| | - Tian-Yuan Xiang
- Geriatric Research Center, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100091, China
| |
Collapse
|
23
|
Affiliation(s)
- Marcos Ferreira Minicucci
- Departamento de Clínica Médica - Faculdade de Medicina
de Botucatu - Universidade Estadual Paulista Júlio de Mesquista
Filho-UNESP, Botucatu, SP – Brazil
| | - Leonardo Antonio Mamede Zornoff
- Departamento de Clínica Médica - Faculdade de Medicina
de Botucatu - Universidade Estadual Paulista Júlio de Mesquista
Filho-UNESP, Botucatu, SP – Brazil
| |
Collapse
|
24
|
Tanaka A, Komukai S, Shibata Y, Yokoi H, Iwasaki Y, Kawasaki T, Horiuchi K, Nakao K, Ueno T, Nakashima H, Tamashiro M, Hikichi Y, Shimomura M, Tago M, Toyoda S, Inoue T, Kawaguchi A, Node K. Effect of pioglitazone on cardiometabolic profiles and safety in patients with type 2 diabetes undergoing percutaneous coronary artery intervention: a prospective, multicenter, randomized trial. Heart Vessels 2018; 33:965-977. [PMID: 29487991 DOI: 10.1007/s00380-018-1143-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
Pioglitazone has superior antiatherosclerotic effects compared with other classes of antidiabetic agents, and there is substantial evidence that pioglitazone improves cardiovascular (CV) outcomes. However, there is also a potential risk of worsening heart failure (HF). Therefore, it is clinically important to determine whether pioglitazone is safe in patients with type 2 diabetes mellitus (T2DM) who require treatment for secondary prevention of CV disease, since they have an intrinsically higher risk of HF. This prospective, multicenter, open-label, randomized study investigated the effects of pioglitazone on cardiometabolic profiles and CV safety in T2DM patients undergoing elective percutaneous coronary intervention (PCI) using bare-metal stents or first-generation drug-eluting stents. A total of 94 eligible patients were randomly assigned to either a pioglitazone or conventional (control) group, and pioglitazone was started the day before PCI. Cardiometabolic profiles were evaluated before PCI and at primary follow-up coronary angiography (5-8 months). Pioglitazone treatment reduced HbA1c levels to a similar degree as conventional treatment (pioglitazone group 6.5 to 6.0%, P < 0.01; control group 6.5 to 5.9%, P < 0.001), without body weight gain. Levels of high-molecular weight adiponectin increased more in the pioglitazone group than the control group (P < 0.001), and the changes were irrespective of baseline glycemic control. Furthermore, pioglitazone significantly reduced plasma levels of natriuretic peptides and preserved cardiac systolic and diastolic function (assessed by echocardiography) without incident hospitalization for worsening HF. The incidence of clinical adverse events was also comparable between the groups. These results indicate that pioglitazone treatment before and after elective PCI may be tolerable and clinically safe and may improve cardiometabolic profiles in T2DM patients.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan.
| | - Sho Komukai
- Clinical Research Center, Saga University Hospital, Saga, Japan
| | - Yoshisato Shibata
- Miyazaki Medical Association Hospital, Cardiovascular Center, Miyazaki, Japan
| | - Hiroyoshi Yokoi
- Department of Cardiology, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Yoshihiro Iwasaki
- Department of Cardiology, Nagasaki Kouseikai Hospital, Nagasaki, Japan
| | - Tomohiro Kawasaki
- Department of Cardiology, Cardiovascular Center, Shin-Koga Hospital, Kurume, Japan
| | - Kenji Horiuchi
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, Kumamoto, Japan
| | - Koichi Nakao
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, Kumamoto, Japan
| | - Takafumi Ueno
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hitoshi Nakashima
- Department of Cardiology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | | | - Yutaka Hikichi
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan
| | - Mitsuhiro Shimomura
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan
| | - Motoko Tago
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | - Teruo Inoue
- Department of Cardiovascular Medicine, Dokkyo Medical University, Mibu, Japan
| | | | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-5-1 Nabeshima, Saga, Japan.
| | | |
Collapse
|
25
|
Neri C, Di Cesare C, Labianca A, Viggiano M, Caruso A, Paradisi G. Obesity in pregnancy as a model to identify women at risk for later metabolic syndrome. Gynecol Endocrinol 2018; 34:28-31. [PMID: 28675713 DOI: 10.1080/09513590.2017.1342792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The aim of our study is to identify - in a cohort of obese women - cardiovascular and clinical risk factors in women with previous complicated pregnancies and protective factors in women with previous physiological pregnancies. A total of 135 nonpregnant obese women referring to Policlinico Gemelli in Rome were prospectively collected in 2009-2010. Thirty-two women matched inclusion criteria: 16 reported a previous physiological pregnancy and 16 reported previous obstetric complications. A clinical, instrumental and laboratory evaluation has been performed for each patient. Statistical analysis was performed using StatView Software. Values are expressed as mean ± standard error (SEM). All tests were two-tailed with a confidence level of 95% (p < .05). Statistically significant reduced flow-mediated dilatation (p = .0338), increased serum values of vascular cell adhesion molecule (p = .0154) and higher systolic blood pressure values (p = .0427) have been detected in obese women with previous complicated pregnancies due to gestational diabetes and/or hypertension. In conclusion, obese patients with previous complicated pregnancies develop signs of endothelial dysfunction in the postpartum period. Future research should focus on the early identification of possible molecular mechanisms implicated in the development of glyco-metabolic and cardiovascular diseases in obese patients, since they are at higher risk of metabolic syndrome.
Collapse
Affiliation(s)
- C Neri
- a Catholic University of Sacred Heart , Department of Obstetrics and Gynecology , Fondazione Policlinico Universitario Agostino Gemelli , Rome , Italy
| | - C Di Cesare
- a Catholic University of Sacred Heart , Department of Obstetrics and Gynecology , Fondazione Policlinico Universitario Agostino Gemelli , Rome , Italy
| | - A Labianca
- a Catholic University of Sacred Heart , Department of Obstetrics and Gynecology , Fondazione Policlinico Universitario Agostino Gemelli , Rome , Italy
| | - M Viggiano
- a Catholic University of Sacred Heart , Department of Obstetrics and Gynecology , Fondazione Policlinico Universitario Agostino Gemelli , Rome , Italy
| | - A Caruso
- a Catholic University of Sacred Heart , Department of Obstetrics and Gynecology , Fondazione Policlinico Universitario Agostino Gemelli , Rome , Italy
| | - G Paradisi
- a Catholic University of Sacred Heart , Department of Obstetrics and Gynecology , Fondazione Policlinico Universitario Agostino Gemelli , Rome , Italy
| |
Collapse
|
26
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
27
|
Sengupta P, Chatterjee B, Pal TK. Assessment of preclinical pharmacokinetics and acute toxicity of pioglitazone and telmisartan combination. Regul Toxicol Pharmacol 2017; 91:151-158. [DOI: 10.1016/j.yrtph.2017.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/21/2023]
|
28
|
Zhang L, Mao Y, Pan J, Wang S, Chen L, Xiang J. Bamboo leaf extract ameliorates cardiac fibrosis possibly via alleviating inflammation, oxidative stress and apoptosis. Biomed Pharmacother 2017; 95:808-817. [PMID: 28892792 DOI: 10.1016/j.biopha.2017.08.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/16/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022] Open
|
29
|
Abdelrady AM, Zaitone SA, Farag NE, Fawzy MS, Moustafa YM. Cardiotoxic effect of levofloxacin and ciprofloxacin in rats with/without acute myocardial infarction: Impact on cardiac rhythm and cardiac expression of Kv4.3, Kv1.2 and Nav1.5 channels. Biomed Pharmacother 2017; 92:196-206. [PMID: 28544933 DOI: 10.1016/j.biopha.2017.05.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/06/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022] Open
Abstract
Prolongation of QT interval is possible with fluoroquinolones, yet the underlying contributing factors have not been elucidated. Two widely used fluoroquinolone drugs were at the focus of this study in rats with/without acute myocardial dysfunction (AMI) induced by isoproterenol. The effects of levofloxacin and ciprofloxacin on the cardiac mRNA expression of rat Kv4.3, Kv1.2 and Nav1.5 mRNAs were determined. Administration of the two antibiotics produced dose-dependent changes in ECG parameters that were more prominent in rats with AMI than healthy rats; this was accompanied by elevations in serum lactate dehydrogenase and creatine kinase-MB. Histopathological examination indicated some loss of striations, edema and fibrotic changes in rats with AMI; however the two antibiotics did not further exacerbate the cardiac histopathology. mRNA expression of the ion channels was altered in rats with AMI and healthy rats. In conclusion, long-term administration of levofloxacin and ciprofloxacin produced deleterious effects on the ECG pattern of rats with/without AMI. The effect was generally baseline-dependent and therefore, rats with AMI showed greater ECG disturbances and increases in cardiac enzymes. Taken together, these data make it advisable to monitor patients with a history of acute AMI requiring treatment with these antibiotics until data from human studies are available.
Collapse
Affiliation(s)
| | - Sawsan A Zaitone
- Deparment of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, 41522, Ismailia, Egypt; Deparment of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Saudi Arabia.
| | - Noha E Farag
- Deparment of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Deparment of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Yasser M Moustafa
- Deparment of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
30
|
Plausible Roles for RAGE in Conditions Exacerbated by Direct and Indirect (Secondhand) Smoke Exposure. Int J Mol Sci 2017; 18:ijms18030652. [PMID: 28304347 PMCID: PMC5372664 DOI: 10.3390/ijms18030652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Approximately 1 billion people smoke worldwide, and the burden placed on society by primary and secondhand smokers is expected to increase. Smoking is the leading risk factor for myriad health complications stemming from diverse pathogenic programs. First- and second-hand cigarette smoke contains thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic inflammatory responses and destructive remodeling events. In the current review, we outline details related to compromised pulmonary and systemic conditions related to smoke exposure. Specifically, data are discussed relative to impaired lung physiology, cancer mechanisms, maternal-fetal complications, cardiometabolic, and joint disorders in the context of smoke exposure exacerbations. As a general unifying mechanism, the receptor for advanced glycation end-products (RAGE) and its signaling axis is increasingly considered central to smoke-related pathogenesis. RAGE is a multi-ligand cell surface receptor whose expression increases following cigarette smoke exposure. RAGE signaling participates in the underpinning of inflammatory mechanisms mediated by requisite cytokines, chemokines, and remodeling enzymes. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of lung disease and systemic complications that combine during the demise of those exposed.
Collapse
|
31
|
Li W, Li Y, Zhang Z, Xia K, Shang X, Yang X, Wang L, Zhang Q. Predictive Nomogram of RAGE Genetic Polymorphisms and Metabolic Risk Factors for Myocardial Infarction Risk in a Han Chinese Population. Angiology 2017; 68:877-883. [PMID: 28956473 DOI: 10.1177/0003319717696622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We investigated the association of 4 well-characterized polymorphisms in receptor for the advanced glycation end-product ( RAGE) gene with myocardial infarction (MI) risk and the changes in metabolic risk factors among 717/612 patients/controls, with the aim of constructing a predictive nomogram. The genotype/allele distributions differed significantly between the 2 groups for T-429C ( Pgenotype/allele = .004/.001) and G1704T ( P < .001/.001). T-429C was significantly associated with MI risk, especially under a recessive model (adjusted odds ratio: 2.24, 95% confidence interval: 1.33-3.79, P = .003). For G1704T, significance was detected under additive (1.37; 1.12-1.67; P = .002) and recessive (3.86; 2.27-6.57; P < .001) models. There were significant differences in blood pressure and low-density lipoprotein cholesterol (LDL-C) across T-429C genotypes and in total cholesterol and LDL-C across G1704T genotypes. The overall best multifactor dimensionality reduction model included dyslipidemia, G1704T, and T-429C. Further predictive nomogram on 2 significant polymorphisms, blood pressure and lipids, showed a better predictive capability (concordance index = 0.716, P < .001). Altogether, we identified 2 polymorphisms of RAGE, T-429C and G1704T, which interacted with metabolic risk factors associated with the occurrence of MI. We also constructed a genetic–metabolic nomogram that can better predict MI risk.
Collapse
Affiliation(s)
- Weiming Li
- Heart Center, Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
- The first two authors (Weiming Li and Yingxue Li) contributed equally to this work
| | - Yingxue Li
- Department of Internal Medicine, The Second Hospital of Tangshan, Tangshan, Hebei, China
- The first two authors (Weiming Li and Yingxue Li) contributed equally to this work
| | - Zhiyong Zhang
- Heart Center, Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Kun Xia
- Heart Center, Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Shang
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xinchun Yang
- Heart Center, Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Lefeng Wang
- Heart Center, Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Qi Zhang
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| |
Collapse
|