1
|
Danilova TV, Akhunova AR, Cai X. Comparative analysis of Aegilops speltoides and wheat repetitive elements and development of S genome-specific FISH painting. Genome 2025; 68:1-12. [PMID: 39879611 DOI: 10.1139/gen-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Aegilops speltoides (2n = 2x = 14, genome SS) is a wild relative of wheat and a donor of useful traits for wheat improvement. Several whole-genome studies compared genic regions of Aegilops from the Sitopsis section and wheat and found that Ae. speltoides is most closely related to the wheat B subgenome but is not its direct progenitor. The results showed that a B subgenome ancestor diverged from Ae. speltoides more than 4 MYA and either has not yet been discovered, or is extinct. To further explore the evolutionary relationship between wheat and Ae. speltoides and develop Ae. speltoides chromosome paints, we performed comparative analysis of repetitive fractions of the S genome and three subgenomes of hexaploid wheat. The low-coverage sequence data were analyzed with RepeatExplorer pipeline to annotate repeats and estimate their content. The LTR-retrotransposons comprised about 80% of repeats in Ae. speltoides and wheat datasets and about two-third of them were LTR/Ty3-Gypsy. Ae. speltoides had 1.5 times more LTR/Ty-Copia repeats and 1.5 times less DNA transposons than wheat subgenomes. Several S genome-specific dispersed repeats were found and annotated. Their sequences were used to develop S genome-specific paints for detecting Ae. speltoides chromatin in the wheat background using fluorescent in situ hybridization.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Alina R Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Xiwen Cai
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
2
|
Li Z, Sun Z, Ren T. Frequent variations and phylogenetic relationships within the genus Secale identified by ND-FISH according to the genome-wide universal oligonucleotides chromosome probes. FRONTIERS IN PLANT SCIENCE 2024; 15:1501642. [PMID: 39726427 PMCID: PMC11669505 DOI: 10.3389/fpls.2024.1501642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Introduction Rye (Secale cereale L.) played a very important role in wheat genetic improvement and forage production worldwide. However, since rye is a kind of cross-pollinated plant, high levels of genetic heterozygosity and heterogeneity existed in the genome. Genome-wide variation in repeat sequences is one of the most important reasons for chromosome evolution in rye. High-precision cytological identification can effectively identify the heterochromatin or repeat sequence variations in the rye genome, and the relationship between different rye varieties can be identified while obtaining the FISH-karyotype of different rye varieties. The evolution of rye chromosomes can be analyzed by the variation degree of different probes on rye chromosomes. Methods All materials were identified by non-denaturing fluorescence in situ hybridization (ND-FISH). Five probes, (AAC)6, Oligo-pSc119.2-1, Oligo-pTa71A-2, Oligo-pSc200, and Oligo-pSc250 were used to identify rye chromosomes. Results 15 rye varieties including S. cereale (cultivated rye and weedy rye), S. strictum (wild rye), S. sylvestre (wild rye), and S. vavilovii (wild rye) were examined by five oligonucleotides probes. 92 signal sites and 2074 signal patterns were observed, suggesting that high polymorphisms exist in the different rye genomes. The karyotypes of 15 rye varieties were obtained, the frequency of different signal types at each signal site was calculated and the model diagrams of probes (AAC)6, Oligo-pSc119.2-1, Oligo-pTa71A-2, Oligo-pSc200 + Oligo-pSc250 were drawn. The results showed that the rate of variation of different chromosomes of rye was not consistent. 1R, 6R, and 7R have higher variation and genetic diversity, while 2R and 3R have lower variation and are more conserved relative to other chromosomes. The results also indicated that S. sylvestre has a far genetic distance from other rye species, and S. vavilovii might be one of the ancestors of Chinese rye varieties. Discussion Results from this study confirmed rapid chromosome change and high levels of chromosome diversity in rye.
Collapse
Affiliation(s)
- Zhi Li
- State key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu, China
| | - Zixin Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu, China
| | - Tianheng Ren
- State key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Fradkin M, Greizerstein EJ, Grassi E, Ferreira V, Ferrari MR, Poggio L. Cytogenetic analysis of meiotic behaviour and stability in a trigeneric hybrid (triticale x trigopiro). PROTOPLASMA 2024; 261:1221-1231. [PMID: 38954027 DOI: 10.1007/s00709-024-01964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Trigeneric hybrids in Triticeae may help to establish evolutionary relationships among different genomes present in the same cellular genetic background and to transfer different alien characters into cultivated wheat. In the present study, a trigeneric hybrid involving species of Triticum, Secale, and Thinopyrum was synthesized by crossing hexaploid triticale with hexaploid trigopiro. The meiotic behaviour of chromosomes belonging to different genomes was analyzed, using routine and in situ hybridization techniques in F1, F2, and F3 generations of the trigeneric hybrid. The purpose of this study was to determine the chromosome number and genomic constitution and to discuss the mechanisms involved in the stabilization of the artificial tricepiro hybrids. The chromosome number of the trigeneric F1 hybrid was 2n = 42. Between 12 and 16 bivalents were observed in the central zone of the equatorial meiotic plate and between 9 and 18 univalents were found in the periphery of the MI equatorial plate. Seven of these univalents showed hybridization signals with rye DNA. Lagging rye and non-rye chromosomes and separation of sister chromatids were found in anaphase I. Tetrads with a maximum of six micronuclei, with and without hybridization signals of rye DNA, were observed. After three generations, meiotic cells revealed the presence of 42 chromosomes and 21 bivalents in diakinesis cells. The presence of 14 rye (Secale cereale) chromosomes and the complete pairing of chromosomes in F3 hybrids suggest that rye chromosomes would be preferentially transmitted to the progeny and that an elimination mechanism would act on chromosomes of Thinopyrum and wheat D genome.
Collapse
Affiliation(s)
- M Fradkin
- Cátedra de Mejoramiento Genético, Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora (UNLZ), IIPAAS (Instituto de Investigación en Producción Agropecuaria, Ambiente y Salud (FCA-UNLZ-CIC), Juan XXIII y Ruta Prov. N°4, Lavallol, Lomas de Zamora, Prov. Bs As, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - E J Greizerstein
- Cátedra de Mejoramiento Genético, Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora (UNLZ), IIPAAS (Instituto de Investigación en Producción Agropecuaria, Ambiente y Salud (FCA-UNLZ-CIC), Juan XXIII y Ruta Prov. N°4, Lavallol, Lomas de Zamora, Prov. Bs As, Argentina
| | - E Grassi
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - V Ferreira
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - M R Ferrari
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L Poggio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Citogenética y Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Szőke-Pázsi K, Kruppa K, Tulpová Z, Kalapos B, Türkösi E, Gaál E, Darkó É, Said M, Farkas A, Kovács P, Ivanizs L, Doležel J, Rabanus-Wallace MT, Molnár I, Szakács É. DArTseq genotyping facilitates the transfer of "exotic" chromatin from a Secale cereale × S. strictum hybrid into wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1407840. [PMID: 39309182 PMCID: PMC11412823 DOI: 10.3389/fpls.2024.1407840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024]
Abstract
Cultivated and wild species of the genus rye (Secale) are important but underexploited gene sources for increasing the genetic diversity of bread wheat. Gene transfer is possible via bridge genetic materials derived from intergeneric hybrids. During this process, it is essential to precisely identify the rye chromatin in the wheat genetic background. In the present study, backcross generation BC2F8 from a cross between Triticum aestivum (Mv9kr1) and S. cereanum ('Kriszta,' a cultivar from the artificial hybrid of S. cereale and S. strictum) was screened using in-situ hybridization (GISH and FISH) and analyzed by DArTseq genotyping in order to select potentially agronomically useful genotypes for prebreeding purposes. Of the 329,267 high-quality short sequence reads generated, 27,822 SilicoDArT and 8,842 SNP markers specific to S. cereanum 1R-7R chromosomes were identified. Heatmaps of the marker densities along the 'Lo7' rye reference pseudomolecules revealed subtle differences between the FISH- and DArTseq-based results. This study demonstrates that the "exotic" rye chromatin of S. cereanum introgressed into wheat can be reliably identified by high-throughput DArTseq genotyping. The Mv9kr1-'Kriszta' addition and translocation lines presented here may serve as valuable prebreeding genetic materials for the development of stress-tolerant or disease-resistant wheat varieties.
Collapse
Affiliation(s)
- Kitti Szőke-Pázsi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Zuzana Tulpová
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Balázs Kalapos
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Darkó
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Giza, Cairo, Egypt
| | - András Farkas
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Péter Kovács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - László Ivanizs
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - M. Timothy Rabanus-Wallace
- School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - István Molnár
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czechia
| | - Éva Szakács
- Department of Biological Resources, Agricultural Institute, HUN-REN Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
5
|
Fan W, Sun M, Zheng Y, Song S, Zhang Z, Bian Y. Karyotypic and phenotypic condensation in allotetraploid wheats accompanied with reproductive strategy transformation: from natural evolution to domestication. PLANTA 2024; 260:83. [PMID: 39212743 DOI: 10.1007/s00425-024-04514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
MAIN CONCLUSION Allotetraploid wheat reflects evolutionary divergence and domestication convergence in the karyotypic and phenotypic evolution, accompanied with the transformation from r- strategy to K- strategy in reproductive fitness. Allotetraploid wheat, the progenitor of hexaploidy bread wheat, has undergone 300,000 years of natural evolution and 10,000 years of domestication. The variations in karyotype and phenotype as well as fertility fitness have not been systematically linked. Here, by combining fluorescent in situ hybridization with the quantification of phenotypic and reproductive traits, we compared the karyotype, vegetative growth phenotype and reproductive fitness among synthesized, wild and domesticated accessions of allotetraploid wheat. We detected that the wild accessions showed dramatically high frequencies of homologous recombination and copy number variations of simple sequence repeats (SSR) comparing with synthetic and domesticated accessions. The phenotypic traits reflected significant differences among the populations shaped by distinct evolutionary processes. The diversity observed in wild accessions was significantly greater than that in domesticated ones, particularly in traits associated with vegetative growth and spike morphology. We found that the active pollen of domesticated accessions exhibited greater potential of germination, despite a lower rate of active pollen compared with the wild accessions, indicating a transformation in reproductive fitness strategy for pollen development in domesticated accessions compared to the wild accessions, from r-strategy to K-strategy. Our results demonstrate the condensation of karyotype and phenotype from natural wild accessions to domesticated accessions in allotetraploid wheats. Ecological strategy transformation should be seriously considered from evolution to domestication in polyploid plants, especially crops, which may provide a perspective on the adaptive evolution of polyploid plants.
Collapse
Affiliation(s)
- Wei Fan
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Meiqi Sun
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Yongbao Zheng
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
- Key Laboratory of Plant Biotechnology in Liaoning Province, Dalian, 116000, People's Republic of China
| | - Siwen Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Zeyao Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China
| | - Yao Bian
- College of Life Sciences, Liaoning Normal University, Dalian, 116000, People's Republic of China.
- Key Laboratory of Plant Biotechnology in Liaoning Province, Dalian, 116000, People's Republic of China.
| |
Collapse
|
6
|
Yang G, Zhang N, Boshoff WHP, Li H, Li B, Li Z, Zheng Q. Identification and introgression of a novel leaf rust resistance gene from Thinopyrum intermedium chromosome 7J s into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:231. [PMID: 37875643 DOI: 10.1007/s00122-023-04474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE A novel leaf rust resistance locus located on a terminal segment (0-69.29 Mb) of Thinopyrum intermedium chromosome arm 7JsS has been introduced into wheat genome for disease resistance breeding. Xiaoyan 78829, a wheat-Thinopyrum intermedium partial amphiploid, exhibits excellent resistance to fungal diseases in wheat. To transfer its disease resistance to common wheat (Triticum aestivum), we previously developed a translocation line WTT26 using chromosome engineering. Disease evaluation showed that WTT26 was nearly immune to 14 common races of leaf rust pathogen (Puccinia triticina) and highly resistant to Ug99 race PTKST of stem rust pathogen (P. graminis f. sp. tritici) at the seedling stage. It also displayed high adult plant resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici). Cytogenetic and molecular marker analysis revealed that WTT26 carried a T4BS·7JsS chromosome translocation. Once transferred into the susceptible wheat genetic background, chromosome 7JsS exhibited its resistance to leaf rust, indicating that the resistance locus was located on this alien chromosome. To enhance the usefulness of this locus in wheat breeding, we further developed several new translocation lines with small Th. intermedium segments using irradiation and developed 124 specific markers using specific-locus amplified fragment sequencing, which increased the marker density of chromosome 7JsS. Furthermore, a refined physical map of chromosome 7JsS was constructed with 74 specific markers, and six bins were thus arranged according to the co-occurrence of markers and alien chromosome segments. Combining data from specific marker amplification and resistance evaluation, we mapped a new leaf rust resistance locus in the 0-69.29 Mb region on chromosome 7JsS. The translocation lines carrying the new leaf rust resistance locus and its linked markers will contribute to wheat disease-resistance breeding.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Zhang
- Department of Plant Pathology, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Lv R, Gou X, Li N, Zhang Z, Wang C, Wang R, Wang B, Yang C, Gong L, Zhang H, Liu B. Chromosome translocation affects multiple phenotypes, causes genome-wide dysregulation of gene expression, and remodels metabolome in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1564-1582. [PMID: 37265000 DOI: 10.1111/tpj.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Chromosomal rearrangements (CRs) may occur in newly formed polyploids due to compromised meiotic fidelity. Moreover, CRs can be more readily tolerated in polyploids allowing their longer-term retention and hence potential spreading/fixation within a lineage. The direct functional consequences of CRs in plant polyploids remain unexplored. Here, we identified a heterozygous individual from a synthetic allohexaploid wheat in which the terminal parts of the long-arms of chromosomes 2D (approximately 193 Mb) and 4A (approximately 167 Mb) were reciprocally translocated. Five homogeneous translocation lines including both unbalanced and balanced types were developed by selfing fertilization of the founder mutant (RT [2DL; 4AL]-ter/1, reciprocal translocation). We investigated impacts of these translocations on phenotype, genome-wide gene expression and metabolome. We find that, compared with sibling wild-type, CRs in the form of both unbalanced and balanced translocations induced substantial changes of gene expression primarily via trans-regulation in the nascent allopolyploid wheat. The CRs also manifested clear phenotypic and metabolic consequences. In particular, the genetically balanced, stable reciprocal translocations lines showed immediate enhanced reproductive fitness relative to wild type. Our results underscore the profound impact of CRs on gene expression in nascent allopolyploids with wide-ranging phenotypic and metabolic consequences, suggesting CRs are an important source of genetic variation that can be exploited for crop breeding.
Collapse
Affiliation(s)
- Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
8
|
Kroupin PY, Ulyanov DS, Karlov GI, Divashuk MG. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma 2023:10.1007/s00412-023-00789-4. [PMID: 36905415 DOI: 10.1007/s00412-023-00789-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for "classical" wheat probes (pSc119.2 and Afa family) and "universal" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia.
| | - Daniil S Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| |
Collapse
|
9
|
Yang G, Deng P, Ji W, Fu S, Li H, Li B, Li Z, Zheng Q. Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. FRONTIERS IN PLANT SCIENCE 2023; 14:1131205. [PMID: 36909389 PMCID: PMC9995812 DOI: 10.3389/fpls.2023.1131205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Thinopyrum ponticum (Podp.) Barkworth and D.R. Dewey is a decaploid species that has served as an important genetic resource for improving wheat for the better part of a century. The wheat-Th. ponticum 4Ag (4D) disomic substitution line Blue 58, which was obtained following the distant hybridization between Th. ponticum and common wheat, has been stably resistant to powdery mildew under field conditions for more than 40 years. The transfer of 4Ag into the susceptible wheat cultivar Xiaoyan 81 resulted in powdery mildew resistance, indicating the alien chromosome includes the resistance locus. Irradiated Blue 58 pollen were used for the pollination of the recurrent parent Xiaoyan 81, which led to the development of four stable wheat-Th. ponticum 4Ag translocation lines with diverse alien chromosomal segments. The assessment of powdery mildew resistance showed that translocation line L1 was susceptible, but the other three translocation lines (WTT139, WTT146, and WTT323) were highly resistant. The alignment of 81 specific-locus amplified fragments to the Th. elongatum genome revealed that 4Ag originated from a group 4 chromosome. The corresponding physical positions of every 4Ag-derived fragment were determined according to a cytogenetic analysis, the amplification of specific markers, and a sequence alignment. Considering the results of the evaluation of disease resistance, the Pm locus was mapped to the 3.79-97.12 Mb region of the short arm of chromosome 4Ag. Because of its durability, this newly identified Pm locus from a group 4 chromosome of Th. ponticum may be important for breeding wheat varieties with broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Guotang Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingchuan Deng
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Bin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Vershinin AV, Elisafenko EA, Evtushenko EV. Genetic Redundancy in Rye Shows in a Variety of Ways. PLANTS (BASEL, SWITZERLAND) 2023; 12:282. [PMID: 36678994 PMCID: PMC9862056 DOI: 10.3390/plants12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Fifty years ago Susumu Ohno formulated the famous C-value paradox, which states that there is no correlation between the physical sizes of the genome, i.e., the amount of DNA, and the complexity of the organism, and highlighted the problem of genome redundancy. DNA that does not have a positive effect on the fitness of organisms has been characterized as "junk or selfish DNA". The controversial concept of junk DNA remains viable. Rye is a convenient subject for yet another test of the correctness and scientific significance of this concept. The genome of cultivated rye, Secale cereale L., is considered one of the largest among species of the tribe Triticeae and thus it tops the average angiosperm genome and the genomes of its closest evolutionary neighbors, such as species of barley, Hordeum (by approximately 30-35%), and diploid wheat species, Triticum (approximately 25%). The review provides an analysis of the structural organization of various regions of rye chromosomes with a description of the molecular mechanisms contributing to their size increase during evolution and the classes of DNA sequences involved in these processes. The history of the development of the concept of eukaryotic genome redundancy is traced and the current state of this problem is discussed.
Collapse
Affiliation(s)
- Alexander V. Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
| | - Evgeny A. Elisafenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia
| | - Elena V. Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Zhang W, Danilova T, Zhang M, Ren S, Zhu X, Zhang Q, Zhong S, Dykes L, Fiedler J, Xu S, Frels K, Wegulo S, Boehm J, Cai X. Cytogenetic and genomic characterization of a novel tall wheatgrass-derived Fhb7 allele integrated into wheat B genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4409-4419. [PMID: 36201026 DOI: 10.1007/s00122-022-04228-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
We identified and integrated the novel FHB-resistant Fhb7The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived (Thinopyrum elongatum, genome EE) Fhb7 allele, designated Fhb7The2, was identified and integrated into the wheat B genome through a small 7B-7E translocation (7BS·7BL-7EL) involving the terminal regions of the long arms. Fhb7The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum-derived Fhb7 allele Fhb7Thp. This will further improve the utility of Fhb7The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7The2, Fhb7Thp, and another Th. elongatum-derived Fhb7 allele Fhb7The1, which led to seven amino acid conversions in Fhb7The2, Fhb7Thp, and Fhb7The1, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7The2. The 7EL segment containing Fhb7The2 in the translocation chromosome 7BS·7BL-7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.
Collapse
Affiliation(s)
- Wei Zhang
- Shanxi Key Laboratory of Minor Crop Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, 030031, China
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Tatiana Danilova
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Mingyi Zhang
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Shuangfeng Ren
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xianwen Zhu
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qijun Zhang
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Linda Dykes
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Jason Fiedler
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Steven Xu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA
| | - Katherine Frels
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Stephen Wegulo
- Department of Plant Pathology, University of Nebraska, Lincoln, NE, 68583, USA
| | - Jeffrey Boehm
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Xiwen Cai
- Wheat, Sorghum & Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA.
| |
Collapse
|
12
|
Wang Z, Li Q, Liu C, Liu F, Xu N, Yao M, Yu H, Wang Y, Chen J, Bai S, Yang J, Sun G, Long J, Fan Y, Kang L, Li H, Zhang X, Liu S. Development and identification of an elite wheat-Hordeum californicum T6HcS/6BL translocation line ND646 containing several desirable traits. Genet Mol Biol 2022; 45:e20220117. [PMID: 36214618 PMCID: PMC9549530 DOI: 10.1590/1678-4685-gmb-2022-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022] Open
Abstract
Hordeum californicum (H. californicum,
2n=2X=14, HcHc), one of the wild relatives of wheat
(Triticum aestivum L.), harbors many desirable genes and is
a potential genetic resource for wheat improvement. In this study, an elite line
ND646 was selected from a BC4F5 population, which was
developed using 60Co-γ irradiated wheat-H.
californicum disomic addition line WJ28-1 (DA6Hc) as the
donor parent and Ningchun 4 as the recurrent parent. ND646 was identified as a
novel wheat-H. californicum 6HcS/6BL translocation
line using genomic in situ hybridization (GISH), fluorescence
in situ hybridization (FISH), and H.
californicum-specific expressed sequence tag (EST) markers. Further
evaluation revealed that ND646 had excellent performance in several traits, such
as a higher sedimentation value (SV), higher water absorption rate (WAR), and
higher hardness index (HI). More importantly, it had more kernels per spike
(KPS), a higher grain yields (GY), and good resistance to powdery mildew, leaf
rust, and 2,4-D butylate (2,4-D). Its excellent phenotypic performance laid the
foundation for further investigation of its genetic architecture and makes ND646
a useful germplasm resource for wheat breeding.
Collapse
Affiliation(s)
- Zhangjun Wang
- Nanjing Agricultural University, Cytogenetics Institute, State Key
Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing, Jiangsu,
China.,Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Qingfeng Li
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China.,*Send correspondence to Qingfeng Li. Ningxia University, School of
Agriculture, 489 Helanshan West Rd., Xixia District, Yinchuan, Ningxia province,
China. E-mail:
| | - Caixia Liu
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Fenglou Liu
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Nali Xu
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Mingming Yao
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Huixia Yu
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Yanqing Wang
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Jiajing Chen
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Shuangyu Bai
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Jingxin Yang
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Gang Sun
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Jiaohui Long
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Yalei Fan
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Ling Kang
- Ningxia Academy of Agricultural-Forestry Sciences, Institute of Crop
Sciences, Yinchuan, Ningxia, China
| | - Hongxia Li
- Ningxia Academy of Agricultural-Forestry Sciences, Institute of Crop
Sciences, Yinchuan, Ningxia, China
| | - Xiaogang Zhang
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| | - Shengxiang Liu
- Ningxia University, School of Agriculture, Yinchuan, Ningxia,
China
| |
Collapse
|
13
|
Steed A, King J, Grewal S, Yang CY, Clarke M, Devi U, King IP, Nicholson P. Identification of Fusarium Head Blight Resistance in Triticum timopheevii Accessions and Characterization of Wheat- T. timopheevii Introgression Lines for Enhanced Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:943211. [PMID: 35874002 PMCID: PMC9298666 DOI: 10.3389/fpls.2022.943211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
A diverse panel of wheat wild relative species was screened for resistance to Fusarium head blight (FHB) by spray inoculation. The great majority of species and accessions were susceptible or highly susceptible to FHB. Accessions of Triticum timopheevii (P95-99.1-1), Agropyron desertorum (9439957), and Elymus vaillantianus (531552) were highly resistant to FHB while additional accessions of T. timopheevii were found to be susceptible to FHB. A combination of spray and point inoculation assessments over two consecutive seasons indicated that the resistance in accession P95-99.1-1 was due to enhanced resistance to initial infection of the fungus (type 1 resistance), and not to reduction in spread (type 2 resistance). A panel of wheat-T. timopheevii (accession P95-99.1-1) introgression lines was screened for FHB resistance over two consecutive seasons using spray inoculation. Most introgression lines were similar in susceptibility to FHB as the wheat recipient (Paragon) but substitution of the terminal portion of chromosome 3BS of wheat with a similar-sized portion of 3G of T. timopheevii significantly enhanced FHB resistance in the wheat background.
Collapse
Affiliation(s)
- Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Julie King
- Department of Plant and Crop Sciences, School of Biosciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Loughborough, United Kingdom
| | - Surbhi Grewal
- Department of Plant and Crop Sciences, School of Biosciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Loughborough, United Kingdom
| | - Cai-yun Yang
- Department of Plant and Crop Sciences, School of Biosciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Loughborough, United Kingdom
| | - Martha Clarke
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Urmila Devi
- Department of Plant and Crop Sciences, School of Biosciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Loughborough, United Kingdom
| | - Ian P. King
- Department of Plant and Crop Sciences, School of Biosciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Loughborough, United Kingdom
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
14
|
Liu C, Wang J, Fu S, Wang L, Li H, Wang M, Huang Y, Shi Q, Zhou Y, Guo X, Zhu C, Zhang J, Han F. Establishment of a set of wheat-rye addition lines with resistance to stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2469-2480. [PMID: 35676422 DOI: 10.1007/s00122-022-04127-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Complete new wheat-rye disomic, telosomic addition lines and various chromosomal aberrations were developed and characterized by molecular cytogenetic method as novel chromosome engineering materials. A new stem rust resistance (Ug99) gene was located on 3RL. Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating fungal disease worldwide. A recently emerged great threat to global wheat production is Pgt strain Ug99 and its derivatives, which have overcome most of the commonly used resistance genes. Rye (Secale cereale L.), closely related to wheat (Triticum aestivum L.), is a significant and valuable resource of resistance genes for wheat germplasm improvement. It is of great importance and urgency to identify new resistance gene sources of rye and transfer them into wheat. In this study, two complete sets of wheat-rye addition lines were established through wide hybridization, chromosome doubling and backcrossing. A wheat-rye 3RL telosomic addition line was identified with high resistance to stem rust strain Ug99. PCR-based markers specific for the rye chromosome were developed. Furthermore, abundant chromosomal aberrations such as minichromosomes, ring chromosomes as well as centromere reduction and expansion were identified in the progeny of wheat-rye addition lines by multicolor GISH and FISH. The line carrying a novel resistance gene to stem rust can be utilized as a bridge material for wheat disease resistance breeding. The chromosomal and centromeric variation within the wheat-rye hybrids can further contribute to genetic diversity of their offspring.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Shulan Fu
- Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Hongwei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mian Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Shi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congle Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Duan Y, Luo J, Yang Z, Li G, Tang Z, Fu S. The Physical Location of Stripe Rust Resistance Genes on Chromosome 6 of Rye ( Secale cereale L.) AR106BONE. FRONTIERS IN PLANT SCIENCE 2022; 13:928014. [PMID: 35845635 PMCID: PMC9277549 DOI: 10.3389/fpls.2022.928014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
It was reported that the chromosome 6R of rye (Secale cereale L.) carries stripe rust resistance gene Yr83, and the region with the candidate resistance gene(s) still needs to be narrowed down. This study confirmed that the chromosome 6RLAr derived from rye AR106BONE contains stripe rust resistance gene(s). A wheat-rye T6BS.6RLAr translocation chromosome, a wheat-rye small-segment translocation T6RLAr-6AS.6AL, and three kinds of deleted T6BS.6RLAr translocations, T6BS.6RLAr-1, T6BS.6RLAr-2, and T6BS.6RLAr-3, were identified. Translocations T6BS.6RLAr, T6BS.6RLAr-2, and T6RLAr-6AS.6AL were highly resistant to stripe rust and T6BS.6RLAr-1 and T6BS.6RLAr-3 were highly susceptible. The molecular markers specific to 6RL determined that the three regions of the 6RLAr arm from 732,999,830 bp to the telomere, from 735,010,030 to 848,010,414 bp, and from 848,011,262 bp to the telomere were deleted from T6BS.6RLAr-1, T6BS.6RLAr-2, and T6BS.6RLAr-3, respectively. T6BS.6RLAr-2 and T6RLAr-6AS.6AL contained the segment that was deleted in T6BS.6RLAr-3. Therefore, it can be concluded that about 37 Mb segment from 848,011,262 bp to the telomere carried stripe rust resistance gene(s), and it was smaller than that with the Yr83 gene. Gene annotation indicated that about 37 Mb region contains 43 potential resistance genes, and 42 of them are nucleotide-binding site and leucine-rich repeat (NBS-LRR)-like resistance protein genes. The results in this study narrowed down the size of the region with candidate stripe rust resistance gene(s) on the 6RL arm, and the T6RLAr-6AS.6AL is a promising small-segment translocation for improvement of wheat cultivars.
Collapse
Affiliation(s)
- Yanling Duan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Jie Luo
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Zujun Yang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guangrong Li
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
King J, Grewal S, Othmeni M, Coombes B, Yang CY, Walter N, Ashling S, Scholefield D, Walker J, Hubbart-Edwards S, Hall A, King IP. Introgression of the Triticum timopheevii Genome Into Wheat Detected by Chromosome-Specific Kompetitive Allele Specific PCR Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:919519. [PMID: 35720607 PMCID: PMC9198554 DOI: 10.3389/fpls.2022.919519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 05/08/2023]
Abstract
Triticum timopheevii (2n = 28, A t A t GG) is a tetraploid wild relative species with great potential to increase the genetic diversity of hexaploid wheat Triticum aestivum (2n = 42, AABBDD) for various important agronomic traits. A breeding scheme that propagated advanced backcrossed populations of wheat-T. timopheevii introgression lines through further backcrossing and self-fertilisation resulted in the generation of 99 introgression lines (ILs) that carried 309 homozygous segments from the A t and G subgenomes of T. timopheevii. These introgressions contained 89 and 74 unique segments from the A t and G subgenomes, respectively. These overlapping segments covered 98.9% of the T. timopheevii genome that has now been introgressed into bread wheat cv. Paragon including the entirety of all T. timopheevii chromosomes via varying sized segments except for chromosomes 3A t , 4G, and 6G. Homozygous ILs contained between one and eight of these introgressions with an average of three per introgression line. These homozygous introgressions were detected through the development of a set of 480 chromosome-specific Kompetitive allele specific PCR (KASP) markers that are well-distributed across the wheat genome. Of these, 149 were developed in this study based on single nucleotide polymorphisms (SNPs) discovered through whole genome sequencing of T. timopheevii. A majority of these KASP markers were also found to be T. timopheevii subgenome specific with 182 detecting A t subgenome and 275 detecting G subgenome segments. These markers showed that 98% of the A t segments had recombined with the A genome of wheat and 74% of the G genome segments had recombined with the B genome of wheat with the rest recombining with the D genome of wheat. These results were validated through multi-colour in situ hybridisation analysis. Together these homozygous wheat-T. timopheevii ILs and chromosome-specific KASP markers provide an invaluable resource to wheat breeders for trait discovery to combat biotic and abiotic stress factors affecting wheat production due to climate change.
Collapse
Affiliation(s)
- Julie King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Manel Othmeni
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Cai-yun Yang
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nicola Walter
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jack Walker
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | | | - Ian Phillip King
- Nottingham BBSRC Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
17
|
Li LF, Zhang ZB, Wang ZH, Li N, Sha Y, Wang XF, Ding N, Li Y, Zhao J, Wu Y, Gong L, Mafessoni F, Levy AA, Liu B. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. MOLECULAR PLANT 2022; 15:488-503. [PMID: 34979290 DOI: 10.1016/j.molp.2021.12.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 05/23/2023]
Abstract
Common wheat (Triticum aestivum, BBAADD) is a major staple food crop worldwide. The diploid progenitors of the A and D subgenomes have been unequivocally identified; that of B, however, remains ambiguous and controversial but is suspected to be related to species of Aegilops, section Sitopsis. Here, we report the assembly of chromosome-level genome sequences of all five Sitopsis species, namely Aegilops bicornis, Ae. longissima, Ae. searsii, Ae. sharonensis, and Ae. speltoides, as well as the partial assembly of the Amblyopyrum muticum (synonym Aegilops mutica) genome for phylogenetic analysis. Our results reveal that the donor of the common wheat B subgenome is a distinct, and most probably extinct, diploid species that diverged from an ancestral progenitor of the B lineage to which the still extant Ae. speltoides and Am. muticum belong. In addition, we identified interspecific genetic introgressions throughout the evolution of the Triticum/Aegilops species complex. The five Sitopsis species have various assembled genome sizes (4.11-5.89 Gb) with high proportions of repetitive sequences (85.99%-89.81%); nonetheless, they retain high collinearity with other genomes or subgenomes of species in the Triticum/Aegilops complex. Differences in genome size were primarily due to independent post-speciation amplification of transposons. We also identified a set of Sitopsis genes pertinent to important agronomic traits that can be harnessed for wheat breeding. These newly assembled genome resources provide a new roadmap for evolutionary and genetic studies of the Triticum/Aegilops complex, as well as for wheat improvement.
Collapse
Affiliation(s)
- Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Zhi-Bin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zhen-Hui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xin-Feng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ning Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Fabrizio Mafessoni
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
18
|
Gong B, Zhang H, Yang Y, Zhang J, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Wu D, Chen G, Zhou Y, Kang H. Development and Identification of a Novel Wheat- Thinopyrum scirpeum 4E (4D) Chromosomal Substitution Line with Stripe Rust and Powdery Mildew Resistance. PLANT DISEASE 2022; 106:975-983. [PMID: 34698515 DOI: 10.1094/pdis-08-21-1599-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici and powdery mildew caused by Blumeria graminis f. sp. tritici are devastating diseases of wheat worldwide. Exploration of new disease-resistant genes from cultivated wheat and wild relatives are the most effective means of reducing the amounts of fungicides applied to combat these diseases. Thinopyrum scirpeum (2n = 4x = 28, EEEE) is an important promising reservoir of useful genes, including stripe rust and powdery mildew resistance, and may be useful for increasing wheat disease resistance. Here, we characterize a novel wheat-Th. scirpeum disomic substitution line, K16-730-3, and chromosome-specific markers were developed that can be used to trace the Th. scirpeum chromosome or chromosome segments transferred into wheat. Genomic in situ hybridization and fluorescence in situ hybridization analyses indicated that K16-730-3 is a new 4E (4D) chromosomal substitution line. Evaluation of seedling and adult disease responses revealed that K16-730-3 is resistant to stripe rust and powdery mildew. In addition, no obvious difference in grain yield was observed between K16-730-3 and its wheat parents. Genotyping-by-sequencing analyses indicated that 74 PCR-based markers can accurately trace chromosome 4E, which were linked to the disease resistance genes in the wheat background. Further marker validation analyses revealed that 13 specific markers can distinguish between the E-genome chromosomes of Th. scirpeum and the chromosomes of other wheat-related species. The new substitution line K16-730-3 carrying the stripe rust and powdery mildew resistance genes will be useful as novel germplasm in breeding for disease resistance. The markers developed in this study can be used in marker-assisted selection for increasing disease resistance in wheat.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yulu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juwei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - DanDan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
19
|
Othmeni M, Grewal S, Walker J, Yang CY, King IP, King J. Assessing the Potential of Using the Langdon 5D(5B) Substitution Line for the Introgression of Aegilops tauschii Into Durum Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:927728. [PMID: 35873983 PMCID: PMC9302120 DOI: 10.3389/fpls.2022.927728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/07/2022] [Indexed: 05/17/2023]
Abstract
Aegilops tauschii, the D-genome donor of hexaploid wheat, provides a source of genetic variation that could be used for tetraploid (durum) wheat improvement. In addition to the genes for wheat quality on the D-genome, which differentiate between bread and durum wheats in terms of end-use properties, genes coding for resistances to biotic and abiotic stresses are also present on the D-genome which would be useful in durum wheat. The introgression of Ae. tauschii into durum wheat, however, requires cytogenetic manipulation to induce homoeologous chromosome pairing to promote recombination. For this purpose, the introgression of Ae. tauschii into durum wheat was performed through a bridge cross of the wild species to the Langdon 5D(5B) disomic substitution line that lacks the Ph1 locus present on chromosome 5B, followed by a cross of the F1 to the durum wheat cultivar Om Rabi 5. Subsequent generations were self-fertilized, and these were screened for D-genome introgressions using (i) D-genome-specific Kompetitive Allele-Specific PCR (KASP) markers and (ii) KASP markers polymorphic between the 5D chromosomes of wheat, present in the Langdon 5D(5B) substitution line, and of Ae. tauschii. Homozygous introgression lines were confirmed using genomic and fluorescence in situ hybridization. The results showed that the use of the Langdon 5D(5B) disomic substitution line did not promote D-genome introgression across all linkage groups with only a limited success in the introgression of Ae. tauschii 5D segments into durum wheat.
Collapse
|
20
|
Zhang Y, Fan C, Chen Y, Wang RRC, Zhang X, Han F, Hu Z. Genome evolution during bread wheat formation unveiled by the distribution dynamics of SSR sequences on chromosomes using FISH. BMC Genomics 2021; 22:55. [PMID: 33446108 PMCID: PMC7809806 DOI: 10.1186/s12864-020-07364-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the bread wheat speciation by polyploidization, a series of genome rearrangement and sequence recombination occurred. Simple sequence repeat (SSR) sequences, predominately located in heterochromatic regions of chromosomes, are the effective marker for tracing the genomic DNA sequence variations. However, to date the distribution dynamics of SSRs on chromosomes of bread wheat and its donors, including diploid and tetraploid Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum turgidum ssp. dicocoides, reflecting the genome evolution events during bread wheat formation had not been comprehensively investigated. RESULTS The genome evolution was studied by comprehensively comparing the distribution patterns of (AAC)n, (AAG)n, (AGC)n and (AG)n in bread wheat Triticum aestivum var. Chinese Spring and its progenitors T. urartu, A. speltoides, Ae. tauschii, wild tetroploid emmer wheat T. dicocoides, and cultivated emmer wheat T. dicoccum. Results indicated that there are specific distribution patterns in different chromosomes from different species for each SSRs. They provided efficient visible markers for identification of some individual chromosomes and SSR sequence evolution tracing from the diploid progenitors to hexaploid wheat. During wheat speciation, the SSR sequence expansion occurred predominately in the centromeric and pericentromeric regions of B genome chromosomes accompanied by little expansion and elimination on other chromosomes. This result indicated that the B genome might be more sensitive to the "genome shock" and more changeable during wheat polyplodization. CONCLUSIONS During the bread wheat evolution, SSRs including (AAC)n, (AAG)n, (AGC)n and (AG)n in B genome displayed the greatest changes (sequence expansion) especially in centromeric and pericentromeric regions during the polyploidization from Ae. speltoides S genome, the most likely donor of B genome. This work would enable a better understanding of the wheat genome formation and evolution and reinforce the viewpoint that B genome was originated from S genome.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,College of Agriculture, Yangtze University, Jingzhou, 434000, Hubei, China
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Richard R-C Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT, 84322-6300, USA
| | - Xiangqi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Agriculture, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Grewal S, Othmeni M, Walker J, Hubbart-Edwards S, Yang CY, Scholefield D, Ashling S, Isaac P, King IP, King J. Development of Wheat- Aegilops caudata Introgression Lines and Their Characterization Using Genome-Specific KASP Markers. FRONTIERS IN PLANT SCIENCE 2020; 11:606. [PMID: 32477394 PMCID: PMC7240103 DOI: 10.3389/fpls.2020.00606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 05/23/2023]
Abstract
Aegilops caudata L. [syn. Ae. markgrafii (Greuter) Hammer], is a diploid wild relative of wheat (2n = 2x = 14, CC) and a valuable source for new genetic diversity for wheat improvement. It has a variety of disease resistance factors along with tolerance for various abiotic stresses and can be used for wheat improvement through the generation of genome-wide introgressions resulting in different wheat-Ae. caudata recombinant lines. Here, we report the generation of nine such wheat-Ae. caudata recombinant lines which were characterized using wheat genome-specific KASP (Kompetitive Allele Specific PCR) markers and multi-color genomic in situ hybridization (mcGISH). Of these, six lines have stable homozygous introgressions from Ae. caudata and will be used for future trait analysis. Using cytological techniques and molecular marker analysis of the recombinant lines, 182 KASP markers were physically mapped onto the seven Ae. caudata chromosomes, of which 155 were polymorphic specifically with only one wheat subgenome. Comparative analysis of the physical positions of these markers in the Ae. caudata and wheat genomes confirmed that the former had chromosomal rearrangements with respect to wheat, as previously reported. These wheat-Ae. caudata recombinant lines and KASP markers are useful resources that can be used in breeding programs worldwide for wheat improvement. Additionally, the genome-specific KASP markers could prove to be a valuable tool for the rapid detection and marker-assisted selection of other Aegilops species in a wheat background.
Collapse
Affiliation(s)
- Surbhi Grewal
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Manel Othmeni
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jack Walker
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stella Hubbart-Edwards
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Cai-yun Yang
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Duncan Scholefield
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Stephen Ashling
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Peter Isaac
- IDna Genetics Ltd., Norwich Research Park, Norwich, United Kingdom
| | - Ian P. King
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Julie King
- Division of Plant and Cop Sciences, Nottingham BBSRC Wheat Research Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
22
|
Feng Z, Zhang M, Liu X, Liang D, Liu X, Hao M, Liu D, Ning S, Yuan Z, Jiang B, Chen X, Chen X, Zhang L. FISH karyotype comparison between A b- and A-genome chromosomes using oligonucleotide probes. J Appl Genet 2020; 61:313-322. [PMID: 32248406 DOI: 10.1007/s13353-020-00555-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 02/03/2023]
Abstract
Triticum boeoticum (2n = 2x = 14, AbAb) contains beneficial traits for common wheat improvement. The discrimination of Ab-genome chromosomes from A-genome chromosomes is an important step in gene transfer from T. boeoticum to common wheat. In this study, fluorescence in situ hybridization (FISH) analysis using nine oligonucleotide probes revealed high divergence between chromosomes of the common wheat germplasm Crocus and T. boeoticum accession G52. The combination of Oligo-pTa535-HM and Oligo-pSc119.2-HM can differentiate Ab and A chromosomes within homologous groups 2, 4, 5, and 6; chromosomes 2Ab and 6Ab can be identified by using (ACT)7, (CTT)7, and (GAA)7. The probes Oligo-pTa713 and (ACT)7 can be utilized for the identification of chromosomes 1Ab and 3Ab, respectively. Probes (CAG)7 and (CAC)7 can be applied in the identification of 7Ab. Moreover, probe combinations consisting of Oligo-pTa535-HM and (AAC)7 with (ACT)7 or (CTT)7 and of Oligo-pTa535-HM and Oligo-pTa713 with (CAC)7 or (CTT)7 will help discriminate the Ab-genome chromosomes of T. boeoticum. These probes are being used as potential markers to select common wheat Crocus-T. boeoticum G52 alien chromosome lines. Moreover, FISH patterns are highly divergent between Ab- and A-genome chromosomes, indicating that obvious chromosome structural variations arose during wheat evolution.
Collapse
Affiliation(s)
- Zhen Feng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Dongyu Liang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xiaojuan Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China. .,Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
23
|
Bai S, Yuan F, Zhang H, Zhang Z, Zhao J, Yang Q, Wu J, Chen X. Characterization of the Wheat- Psathyrostachys huashania Keng 2Ns/2D Substitution Line H139: A Novel Germplasm With Enhanced Resistance to Wheat Take-All. FRONTIERS IN PLANT SCIENCE 2020; 11:233. [PMID: 32210998 PMCID: PMC7077511 DOI: 10.3389/fpls.2020.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/14/2020] [Indexed: 05/30/2023]
Abstract
Take-all is a devastating soil-borne disease that affects wheat production. The continuous generation of disease-resistance germplasm is an important aspect of the management of this pathogen. In this study, we characterized the wheat-Psathyrostachys huashania Keng (P. huashania)-derived progeny H139 that exhibits significantly improved resistance to wheat take-all disease compared with its susceptible parent 7182. Sequential genomic in situ hybridization (GISH) and multicolor fluorescence in situ hybridization (mc-FISH) analyses revealed that H139 is a stable wheat-P. huashania disomic substitution line lacking wheat chromosome 2D. Expressed sequence tag-sequence tagged site (EST-STS) marker and Wheat Axiom 660K Genotyping Array analysis further revealed that H139 was a novel wheat-P. huashania 2Ns/2D substitution line. In addition, the H139 line was shown to be cytologically stable with a dwarf phenotype and increased spikelet number. These results indicate that H139, with its enhanced wheat take-all disease resistance and desirable agronomic traits, provides valuable genetic resources for wheat chromosome engineering breeding.
Collapse
Affiliation(s)
- Shengsheng Bai
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, China
| | - Fengping Yuan
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, China
| | - Hanbing Zhang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhenyue Zhang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jixin Zhao
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jun Wu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Gong B, Zhu W, Li S, Wang Y, Xu L, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Qi P, Huang L, Chen G, Zhou Y, Kang H. Molecular cytogenetic characterization of wheat-Elymus repens chromosomal translocation lines with resistance to Fusarium head blight and stripe rust. BMC PLANT BIOLOGY 2019; 19:590. [PMID: 31881925 PMCID: PMC6935081 DOI: 10.1186/s12870-019-2208-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/18/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe and stripe rust caused by Puccinia striiformis f. sp. tritici are devastating diseases that affect wheat production worldwide. The use of disease-resistant genes and cultivars is the most effective means of reducing fungicide applications to combat these diseases. Elymus repens (2n = 6x = 42, StStStStHH) is a potentially useful germplasm of FHB and stripe rust resistance for wheat improvement. RESULTS Here, we report the development and characterization of two wheat-E. repens lines derived from the progeny of common wheat-E. repens hybrids. Cytological studies indicated that the mean chromosome configuration of K15-1192-2 and K15-1194-2 at meiosis were 2n = 42 = 0.86 I + 17.46 II (ring) + 3.11 II (rod) and 2n = 42 = 2.45 I + 14.17 II (ring) + 5.50 II (rod) + 0.07 III, respectively. Genomic and fluorescence in situ hybridization karyotyping and simple sequence repeats markers revealed that K15-1192-2 was a wheat-E. repens 3D/?St double terminal chromosomal translocation line. Line K15-1194-2 was identified as harboring a pair of 7DS/?StL Robertsonian translocations and one 3D/?St double terminal translocational chromosome. Further analyses using specific expressed sequence tag-SSR markers confirmed that the wheat-E. repens translocations involved the 3St chromatin in both lines. Furthermore, compared with the wheat parent Chuannong16, K15-1192-2 and K15-1194-2 expressed high levels of resistance to FHB and stripe rust pathogens prevalent in China. CONCLUSIONS Thus, this study has determined that the chromosome 3St of E. repens harbors gene(s) highly resistant to FHB and stripe rust, and chromatin of 3St introgressed into wheat chromosomes completely presented the resistance, indicating the feasibility of using these translocation lines as novel material for breeding resistant wheat cultivars and alien gene mining.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sanyue Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuqi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
25
|
Li D, Zhang J, Liu H, Tan B, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Ma J, Chen G, Zhou Y, Kang H. Characterization of a wheat-tetraploid Thinopyrum elongatum 1E(1D) substitution line K17-841-1 by cytological and phenotypic analysis and developed molecular markers. BMC Genomics 2019; 20:963. [PMID: 31823771 PMCID: PMC6905003 DOI: 10.1186/s12864-019-6359-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/01/2019] [Indexed: 01/17/2023] Open
Abstract
Background Tetraploid Thinopyrum elongatum (2n = 4x = 28) is a promising source of useful genes, including those related to adaptability and resistance to diverse biotic (Fusarium head blight, rust, powdery mildew, and yellow dwarf virus) and abiotic (cold, drought, and salt) stresses. However, gene transfer rates are low for this species and relatively few species-specific molecular markers are available. Results The wheat-tetraploid Th. elongatum line K17–841-1 derived from a cross between a hexaploid Trititrigia and Sichuan wheat cultivars was characterized based on sequential genomic and fluorescence in situ hybridizations and simple sequence repeat markers. We revealed that K17–841-1 is a 1E (1D) chromosomal substitution line that is highly resistant to stripe rust pathogen strains prevalent in China. By comparing the sequences generated during genotyping-by-sequencing (GBS), we obtained 597 specific fragments on the 1E chromosome of tetraploid Th. elongatum. A total of 235 primers were designed and 165 new Th. elongatum-specific markers were developed, with an efficiency of up to 70%. Marker validation analyses indicated that 25 specific markers can discriminate between the tetraploid Th. elongatum chromosomes and the chromosomes of other wheat-related species. An evaluation of the utility of these markers in a F2 breeding population suggested these markers are linked to the stripe rust resistance gene on chromosome 1E. Furthermore, 28 markers are unique to diploid Th. elongatum, tetraploid Th. elongatum, or decaploid Thinopyrum ponticum, which carry the E genome. Finally, 48 and 74 markers revealed polymorphisms between Thinopyrum E-genome- containing species and Thinopyrum bessarabicum (Eb) and Pseudoroegneria libanotica (St), respectively. Conclusions This new substitution line provide appropriate bridge–breeding–materials for alien gene introgression to improve wheat stripe rust resistance. The markers developed using GBS technology in this study may be useful for the high-throughput and accurate detection of tetraploid Th. elongatum DNA in diverse materials. They may also be relevant for investigating the genetic differences and phylogenetic relationships among E, Eb, St, and other closely-related genomes and for further characterizing these complex species.
Collapse
Affiliation(s)
- Daiyan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juwei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haijiao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Binwen Tan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
26
|
Othmeni M, Grewal S, Hubbart-Edwards S, Yang C, Scholefield D, Ashling S, Yahyaoui A, Gustafson P, Singh PK, King IP, King J. The Use of Pentaploid Crosses for the Introgression of Amblyopyrum muticum and D-Genome Chromosome Segments Into Durum Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1110. [PMID: 31620148 PMCID: PMC6760530 DOI: 10.3389/fpls.2019.01110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/13/2019] [Indexed: 05/25/2023]
Abstract
The wild relatives of wheat provide an important source of genetic variation for wheat improvement. Much of the work in the past aimed at transferring genetic variation from wild relatives into wheat has relied on the exploitation of the ph1b mutant, located on the long arm of chromosome 5B. This mutation allows homologous recombination to occur between chromosomes from related but different genomes, e.g. between the chromosomes of wheat and related chromosomes from a wild relative resulting in the generation of interspecific recombinant chromosomes. However, the ph1b mutant also enables recombination to occur between the homologous genomes of wheat, e.g. A/B, A/D, B/D, resulting in the generation of wheat intergenomic recombinant chromosomes. In this work we report on the presence of wheat intergenomic recombinants in the genomic background of hexaploid wheat/Amblyopyrum muticum introgression lines. The transfer of genomic rearrangements involving the D-genome through pentaploid crosses provides a strategy by which the D-genome of wheat can be introgressed into durum wheat. Hence, a pentaploid crossing strategy was used to transfer D-genome segments, introgressed with either the A- and/or the B-genome, into the tetraploid background of two durum wheat genotypes Karim and Om Rabi 5 in either the presence or absence of different Am. muticum (2n = 2x = 14, TT) introgressions. Introgressions were monitored in backcross generations to the durum wheat parents via multi-color genomic in situ hybridization (mc-GISH). Tetraploid lines carrying homozygous D-genome introgressions, as well as simultaneous homozygous D- and T-genome introgressions, were developed. Introgression lines were characterized via Kompetitive Allele-Specific PCR (KASP) markers and multi-color fluorescence in situ hybridization (FISH). Results showed that new wheat sub-genomic translocations were generated at each generation in progeny that carried any Am. muticum chromosome introgression irrespective of the linkage group that the segment was derived from. The highest frequencies of homologous recombination were observed between the A- and the D-genomes. Results indicated that the genotype Karim had a higher tolerance to genomic rearrangements and T-genome introgressions compared to Om Rabi 5. This indicates the importance of the selection of the parental genotype when attempting to transfer/develop introgressions into durum wheat from pentaploid crosses.
Collapse
Affiliation(s)
- Manel Othmeni
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Surbhi Grewal
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Stella Hubbart-Edwards
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Caiyun Yang
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Duncan Scholefield
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Stephen Ashling
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Amor Yahyaoui
- International Maize and Wheat Improvement Center (CIMMYT) Mexico, Mexico City, Mexico
| | - Perry Gustafson
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT) Mexico, Mexico City, Mexico
| | - Ian P. King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| | - Julie King
- Nottingham BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
27
|
Devi U, Grewal S, Yang CY, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge A, King IP, King J. Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background. BMC PLANT BIOLOGY 2019; 19:183. [PMID: 31060503 PMCID: PMC6501383 DOI: 10.1186/s12870-019-1785-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/17/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Triticum timopheevii (2n = 4x = 28; AtAtGG), is an important source for new genetic variation for wheat improvement with genes for potential disease resistance and salt tolerance. By generating a range of interspecific hybrid lines, T. timopheevii can contribute to wheat's narrow gene-pool and be practically utilised in wheat breeding programmes. Previous studies that have generated such introgression lines between wheat and its wild relatives have been unable to use high-throughput methods to detect the presence of wild relative segments in such lines. RESULTS A whole genome introgression approach, exploiting homoeologous recombination in the absence of the Ph1 locus, has resulted in the transfer of different chromosome segments from both the At and G genomes of T. timopheevii into wheat. These introgressions have been detected and characterised using single nucleotide polymorphism (SNP) markers present on a high-throughput Axiom® Genotyping Array. The analysis of these interspecific hybrid lines has resulted in the detection of 276 putative unique introgressions from T. timopheevii, thereby allowing the generation of a genetic map of T. timopheevii containing 1582 SNP markers, spread across 14 linkage groups representing each of the seven chromosomes of the At and G genomes of T. timopheevii. The genotyping of the hybrid lines was validated through fluorescence in situ hybridisation (FISH). Comparative analysis of the genetic map of T. timopheevii and the physical map of the hexaploid wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed the presence of inter- and intra-genomic translocations within the At and G genomes of T. timopheevii that have been previously only detected through cytological techniques. CONCLUSIONS In this work, we report a set of SNP markers present on a high-throughput genotyping array, able to detect the presence of T. timopheevii in a hexaploid wheat background making it a potentially valuable tool for marker assisted selection (MAS) in wheat pre-breeding programs. These valuable resources of high-density molecular markers and wheat-T. timopheevii hybrid lines will greatly enhance the work being undertaken for wheat improvement through wild relative introgressions.
Collapse
Affiliation(s)
- Urmila Devi
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Surbhi Grewal
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Cai-Yun Yang
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Stella Hubbart-Edwards
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Duncan Scholefield
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Stephen Ashling
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Amanda Burridge
- Cereal Genomics Lab, Life Sciences Building, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ian P King
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Julie King
- Division of Plant and Cop Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK.
| |
Collapse
|
28
|
The Polymorphisms of Oligonucleotide Probes in Wheat Cultivars Determined by ND-FISH. Molecules 2019; 24:molecules24061126. [PMID: 30901897 PMCID: PMC6471732 DOI: 10.3390/molecules24061126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/24/2023] Open
Abstract
Non-denaturing fluorescence in situ hybridization (ND-FISH) has been used to distinguish wheat chromosomes and to detect alien chromosomes in the wheat genome. In this study, five different oligonucleotide probes were used with ND-FISH to examine 21 wheat cultivars and lines. These oligonucleotide probes distinguished 42 wheat chromosomes and also detected rye chromatin in the wheat genome. Moreover, the signal patterns of the oligonucleotide probes Oligo-pTa535-1 and Oligo-pSc119.2-1 showed high polymorphism in the wheat chromosomes. A total of 17.6% of the A group chromosomes, 25.9% of the B group chromosomes and 8.9% of the D group chromosomes showed obvious mutations when they were compared to the standard ND-FISH signal patterns, and most of them were Oligo-pSc119.2-1 mutants. The results suggested that these polymorphisms could be induced by the crossing of wheat cultivars. The results provided more information for the further application of oligonucleotide probes and ND-FISH.
Collapse
|
29
|
Lang T, Li G, Wang H, Yu Z, Chen Q, Yang E, Fu S, Tang Z, Yang Z. Physical location of tandem repeats in the wheat genome and application for chromosome identification. PLANTA 2019; 249:663-675. [PMID: 30357506 DOI: 10.1007/s00425-018-3033-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/20/2018] [Indexed: 05/07/2023]
Abstract
A general distribution of tandem repeats (TRs) in the wheat genome was predicted and a new web page combined with fluorescence in situ hybridization experiments, and the newly developed Oligo probes will improve the resolution for wheat chromosome identification. Comprehensive sequence analysis of tandem repeats (TR) in the wheat reference genome permits discovery and application of TRs for chromosome identification. Genome-wide localization of TRs was identified in the reference sequences of Chinese Spring using Tandem Repeat Finder (TRF). A database of repeats unit size, array number, and physical coverage length of TRs in the wheat genome was built. The distribution of TRs occupied 3-5% of the wheat chromosomes, with non-random dispersal across the A, B, and D genomes. Three classes of TRs surrounding the predicted genes were compared. An optimized computer-assisted website page B2DSC was constructed for the general distribution and chromosomally enriched zones of TR sequences to be displayed graphically. The physical distribution of predicted TRs in the wheat genome by B2DSC matched well with the corresponding hybridization signals obtained with fluorescence in situ hybridization (FISH). We developed 20 oligonucleotide probes representing 20-60 bp lengths of high copy number of TRs and verified by FISH. An integrated physical map of TR-Oligo probes for wheat chromosome identification was constructed. Our results suggest that the combination of both molecular cytogenetics and genomic research will significantly benefit wheat breeding through chromosome manipulation and engineering.
Collapse
Affiliation(s)
- Tao Lang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hongjin Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhihui Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiheng Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Shulan Fu
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongxiang Tang
- Province Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
30
|
Handa H, Kanamori H, Tanaka T, Murata K, Kobayashi F, Robinson SJ, Koh CS, Pozniak CJ, Sharpe AG, Paux E, Wu J, Nasuda S. Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1148-1159. [PMID: 30238531 DOI: 10.1111/tpj.14094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
The reference genome sequence of wheat 'Chinese Spring' (CS) is now available (IWGSC RefSeq v1.0), but the core sequences defining the nucleolar organizer regions (NORs) have not been characterized. We estimated that the total copy number of the rDNA units in the wheat genome is 11 160, of which 30.5%, 60.9% and 8.6% are located on Nor-B1 (1B), Nor-B2 (6B) and other NORs, respectively. The total length of the NORs is estimated to be 100 Mb, corresponding to approximately 10% of the unassembled portion of the genome not represented in RefSeq v1.0. Four subtypes (S1-S4) of the rDNA units were identified based on differences within the 3' external transcribed spacer regions in Nor-B1 and Nor-B2, and quantitative PCR indicated locus-specific variation in rDNA subtype contents. Expression analyses of rDNA subtypes revealed that S1 was predominantly expressed and S2 weakly expressed, in contrast to the relative abundance of rDNA subtypes in the wheat genome. These results suggest a regulation mechanism of differential rDNA expression based on sequence differences. S3 expression increased in the ditelosomic lines Dt1BL and Dt6BL, suggesting that S3 is subjected to chromosome-mediated silencing. Structural differences were detected in the regions surrounding the NOR among homoeologous chromosomes of groups 1 and 6. The adjacent regions distal to the major NORs were expanded compared with their homoeologous counterparts, and the gene density of these expanded regions was relatively low. We provide evidence that these regions are likely to be important for autoregulation of the associated major NORs as well as silencing of minor NORs.
Collapse
Affiliation(s)
- Hirokazu Handa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Tsuyoshi Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Kazuki Murata
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Fuminori Kobayashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Stephen J Robinson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Chu S Koh
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Etienne Paux
- GDEC, INRA, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Jianzhong Wu
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8518, Japan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
31
|
Murata K, Watanabe S, Tsujimoto H, Nasuda S. Cytological observation of chromosome breakage in wheat male gametophytes caused by gametocidal action of Aegilops triuncialis-derived chromosome 3C t. Genes Genet Syst 2018; 93:111-118. [PMID: 30089747 DOI: 10.1266/ggs.18-00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we investigated the chromosome breakage caused by gametocidal (Gc) chromosome 3Ct and its interaction with the suppressor gene Igc1 (inhibitor of gametocidal gene 1) on wheat chromosome 3B. We demonstrated cytologically that patterns of 3Ct-induced chromosomal fragmentation in microspores differed from patterns observed for other Gc genes. Uninuclear microspores of the monosomic 3Ct addition line had high frequencies of micronuclei, possibly explaining its low fertility. Chromosome fragmentation was observed in prometaphase and metaphase of the first pollen mitosis in the monosomic 3Ct addition line. Patterns of chromosome fragmentation were different from those previously reported for Gc chromosomes 2S of Aegilops speltoides, 4Ssh of Ae. sharonensis and 2Ccy of Ae. cylindrica; many chromosome fragments were observed in prometaphase of the first pollen mitosis in the monosomic 3Ct addition plants. In anthers at the binuclear stage, many microspores at the uninuclear stage coexisted with normally developed microspores.
Collapse
Affiliation(s)
- Kazuki Murata
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| | - Shota Watanabe
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| | | | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
32
|
Cui Y, Zhang Y, Qi J, Wang H, Wang RRC, Bao Y, Li X. Identification of chromosomes in Thinopyrum intermedium and wheat Th. intermedium amphiploids based on multiplex oligonucleotide probes. Genome 2018; 61:515-521. [DOI: 10.1139/gen-2018-0019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synthesized oligonucleotides (oligos) can be used as effective probes similar to plasmid clones for chromosome identification in fluorescence in situ hybridization (FISH) analysis, making oligo FISH a simpler and more efficient molecular cytogenetic technique for studying plants. In this study, multiplex oligonucleotide probes, including pSc119.2-1, pAs1-4, (GAA)10, (AAC)6, and pTa71, were combined and used in FISH to identify chromosomes in common wheat, Thinopyrum intermedium, and a wheat – Th. intermedium amphiploid TE256-1. In comparison with general FISH probes, signals generated by the multiplex probes were more abundant, colorful, and characteristic. Combining the results of genomic in situ hybridization (GISH) with FISH, Th. intermedium chromosomes and alien chromosomes in TE256-1 could be classified and identified more precisely, especially the J- and Js-genome chromosomes. Moreover, based on the FISH results using multiplex probes, more structural variations in wheat chromosomes of TE256-1 were detected. The results indicated that multiplex oligo probes would have a wide range of application prospects in the creation and identification of wheat – Th. intermedium germplasms.
Collapse
Affiliation(s)
- Yu Cui
- State Key Laboratory of Crop Biology, Shandong Agriculture University, Tai’an, Shandong 271018, China
| | - Yanping Zhang
- College of Agronomy, Shandong Agriculture University, Tai’an, Shandong 271018, China
| | - Juan Qi
- State Key Laboratory of Crop Biology, Shandong Agriculture University, Tai’an, Shandong 271018, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, Shandong Agriculture University, Tai’an, Shandong 271018, China
- College of Agronomy, Shandong Agriculture University, Tai’an, Shandong 271018, China
| | - Richard R.-C. Wang
- United States Department of Agriculture – Agricultural Research Services, Forage and Range Research Laboratory, Logan, UT 84322-6300, USA
| | - Yinguang Bao
- College of Agronomy, Shandong Agriculture University, Tai’an, Shandong 271018, China
| | - Xingfeng Li
- State Key Laboratory of Crop Biology, Shandong Agriculture University, Tai’an, Shandong 271018, China
- College of Agronomy, Shandong Agriculture University, Tai’an, Shandong 271018, China
| |
Collapse
|
33
|
Grewal S, Yang C, Edwards SH, Scholefield D, Ashling S, Burridge AJ, King IP, King J. Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:389-406. [PMID: 29101420 PMCID: PMC5787220 DOI: 10.1007/s00122-017-3009-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/26/2017] [Indexed: 05/07/2023]
Abstract
Genome-wide introgressions of Thinopyrum bessarabicum into wheat resulted in 12 recombinant lines. Cytological and molecular techniques allowed mapping of 1150 SNP markers across all seven chromosomes of the J genome. Thinopyrum bessarabicum (2n = 2x = 14, JJ) is an important source for new genetic variation for wheat improvement due to its salinity tolerance and disease resistance. Its practical utilisation in wheat improvement can be facilitated through development of genome-wide introgressions leading to a variety of different wheat-Th . bessarabicum translocation lines. In this study, we report the generation of 12 such wheat-Th . bessarabicum recombinant lines, through two different crossing strategies, which were characterized using sequential single colour and multi-colour genomic in situ hybridization (sc-GISH and mc-GISH), multi-colour fluorescent in situ hybridization (mc-FISH) and single nucleotide polymorphic (SNP) DNA markers. We also detected 13 lines containing different Th. bessarabicum chromosome aberrations through sc-GISH. Through a combination of molecular and cytological analysis of all the 25 lines containing Th. bessarabicum recombinants and chromosome aberrations we were able to physically map 1150 SNP markers onto seven Th. bessarabicum J chromosomes which were divided into 36 segmental blocks. Comparative analysis of the physical map of Th. bessarabicum and the wheat genome showed that synteny between the two species is highly conserved at the macro-level and confirmed that Th. bessarabicum contains the 4/5 translocation also present in the A genome of wheat. These wheat-Th . bessarabicum recombinant lines and SNP markers provide a useful genetic resource for wheat improvement with the latter having a wider impact as a tool for detection of introgressions from other Thinopyrum species containing the J or a closely-related genome such as Thinopyrum intermedium (JrJrJvsJvsStSt) and Thinopyrum elongatum (EeEe), respectively.
Collapse
Affiliation(s)
- Surbhi Grewal
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | - Caiyun Yang
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stella Hubbart Edwards
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Duncan Scholefield
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Stephen Ashling
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | - Ian P King
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Julie King
- Nottingham/BBSRC Wheat Research Centre, Division of Plant and Cop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
34
|
Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J Genet Genomics 2017; 44:531-539. [DOI: 10.1016/j.jgg.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/07/2017] [Indexed: 11/18/2022]
|
35
|
Oligonucleotides and ND-FISH Displaying Different Arrangements of Tandem Repeats and Identification of Dasypyrum villosum Chromosomes in Wheat Backgrounds. Molecules 2017; 22:molecules22060973. [PMID: 28613230 PMCID: PMC6152725 DOI: 10.3390/molecules22060973] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022] Open
Abstract
Oligonucleotide probes and the non-denaturing fluorescence in situ hybridization (ND-FISH) technique are widely used to analyze plant chromosomes because they are convenient tools. New oligonucleotide probes, Oligo-Ku, Oligo-3B117.1, Oligo-3B117.2, Oligo-3B117.2.1, Oligo-3B117.3, Oligo-3B117.4, Oligo-3B117.5, Oligo-3B117.6, Oligo-pTa71A-1, Oligo-pTa71A-2, Oligo-pTa71B-1, Oligo-pTa71B-2, Oligo-pTa71C-1, Oligo-pTa71C-2, Oligo-pTa71C-3 and Oligo-pTa71D were designed based on the repetitive sequences KU.D15.15, pSc119.2-like sequence 3B117 and pTa71. Oligonucleotide probe (GT)₇ was also used. Oligo-Ku and (GT)₇ can be together used to identify Dasypyrum villosum from wheat chromosomes and to distinguish individual D. villosum chromosomes. The oligonucleotide probes that were derived from the same repeat sequence displayed different signal intensity and hybridization sites on the same chromosomes. Both the length and the nucleotide composition of oligonucleotide probes determined their signal intensity. For example, Oligo-3B117.2 (25 bp) and Oligo-pTa71A-2 (46 bp) produced the strongest signals on chromosomes of wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare ssp. vulgare) or D. villosum, the signal of Oligo-3B117.4 (18 bp) on the short arm of 7B chromosome was weaker than that of Oligo-3B117.2.1 (15 bp) and Oligo-3B117.3 (16 bp), and Oligo-pTa71A-1 (38 bp) produced the same strong signals as Oligo-pTa71A-2 did on 1B and 6B chromosomes, but its signals on 1R and 1V chromosomes were weaker than the ones of Oligo-pTa71A-2. Oligonucleotide probes and ND-FISH analysis can reflect the distribution and structural statues of different segments of tandem repeats on chromosomes. The possible reasons why different segments derived from the same repeat sequence produced different signal patterns are discussed.
Collapse
|
36
|
Wang L, Shi Q, Su H, Wang Y, Sha L, Fan X, Kang H, Zhang H, Zhou Y. St 2-80: a new FISH marker for St genome and genome analysis in Triticeae. Genome 2017; 60:553-563. [PMID: 28314114 DOI: 10.1139/gen-2016-0228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The St genome is one of the most fundamental genomes in Triticeae. Repetitive sequences are widely used to distinguish different genomes or species. The primary objectives of this study were to (i) screen a new sequence that could easily distinguish the chromosome of the St genome from those of other genomes by fluorescence in situ hybridization (FISH) and (ii) investigate the genome constitution of some species that remain uncertain and controversial. We used degenerated oligonucleotide primer PCR (Dop-PCR), Dot-blot, and FISH to screen for a new marker of the St genome and to test the efficiency of this marker in the detection of the St chromosome at different ploidy levels. Signals produced by a new FISH marker (denoted St2-80) were present on the entire arm of chromosomes of the St genome, except in the centromeric region. On the contrary, St2-80 signals were present in the terminal region of chromosomes of the E, H, P, and Y genomes. No signal was detected in the A and B genomes, and only weak signals were detected in the terminal region of chromosomes of the D genome. St2-80 signals were obvious and stable in chromosomes of different genomes, whether diploid or polyploid. Therefore, St2-80 is a potential and useful FISH marker that can be used to distinguish the St genome from those of other genomes in Triticeae.
Collapse
Affiliation(s)
- Long Wang
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Qinghua Shi
- b State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Handong Su
- b State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing 100101, China
| | - Yi Wang
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Lina Sha
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Xing Fan
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Houyang Kang
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Haiqin Zhang
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| | - Yonghong Zhou
- a Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China.,c Key Laboratory of Genetic Resources and Crop Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang 611130, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Zhang Y, Fan C, Li S, Chen Y, Wang RRC, Zhang X, Han F, Hu Z. The Diversity of Sequence and Chromosomal Distribution of New Transposable Element-Related Segments in the Rye Genome Revealed by FISH and Lineage Annotation. FRONTIERS IN PLANT SCIENCE 2017; 8:1706. [PMID: 29046683 PMCID: PMC5632726 DOI: 10.3389/fpls.2017.01706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 05/18/2023]
Abstract
Transposable elements (TEs) in plant genomes exhibit a great variety of structure, sequence content and copy number, making them important drivers for species diversity and genome evolution. Even though a genome-wide statistic summary of TEs in rye has been obtained using high-throughput DNA sequencing technology, the accurate diversity of TEs in rye, as well as their chromosomal distribution and evolution, remains elusive due to the repetitive sequence assembling problems and the high dynamic and nested nature of TEs. In this study, using genomic plasmid library construction combined with dot-blot hybridization and fluorescence in situ hybridization (FISH) analysis, we successfully isolated 70 unique FISH-positive TE-related sequences including 47 rye genome specific ones: 30 showed homology or partial homology with previously FISH characterized sequences and 40 have not been characterized. Among the 70 sequences, 48 sequences carried Ty3/gypsy-derived segments, 7 sequences carried Ty1/copia-derived segments and 15 sequences carried segments homologous with multiple TE families. 26 TE lineages were found in the 70 sequences, and among these lineages, Wilma was found in sequences dispersed in all chromosome regions except telomeric positions; Abiba was found in sequences predominantly located at pericentromeric and centromeric positions; Wis, Carmilla, and Inga were found in sequences displaying signals dispersed from distal regions toward pericentromeric positions; except DNA transposon lineages, all the other lineages were found in sequences displaying signals dispersed from proximal regions toward distal regions. A high percentage (21.4%) of chimeric sequences were identified in this study and their high abundance in rye genome suggested that new TEs might form through recombination and nested transposition. Our results also gave proofs that diverse TE lineages were arranged at centromeric and pericentromeric positions in rye, and lineages like Abiba might play a role in their structural organization and function. All these results might help in understanding the diversity and evolution of TEs in rye, as well as their driving forces in rye genome organization and evolution.
Collapse
Affiliation(s)
- Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chengming Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengming Fan, Zanmin Hu,
| | - Shuangshuang Li
- Department of Life Science, Henan Normal University, Xinxiang, China
| | - Yuhong Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Richard R.-C. Wang
- Forage and Range Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Utah State University, Logan, UT, United States
| | - Xiangqi Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Center for Life Science, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Chengming Fan, Zanmin Hu,
| |
Collapse
|
38
|
Du P, Zhuang L, Wang Y, Yuan L, Wang Q, Wang D, Dawadondup, Tan L, Shen J, Xu H, Zhao H, Chu C, Qi Z. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 2016; 60:93-103. [PMID: 27936984 DOI: 10.1139/gen-2016-0095] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In comparison with general FISH for preparing probes in terms of time and cost, synthesized oligonucleotide (oligo hereafter) probes for FISH have many advantages such as ease of design, synthesis, and labeling. Low cost and high sensitivity and resolution of oligo probes greatly simplify the FISH procedure as a simple, fast, and efficient method of chromosome identification. In this study, we developed new oligo and oligo multiplex probes to accurately and efficiently distinguish wheat (Triticum aestivum, 2n = 6x, AABBDD) and Thinopyrum bessarabicum (2n = 2x = 14, JJ) chromosomes. The oligo probes contained more nucleotides or more repeat units that produced stronger signals for more efficient chromosome painting. Four Th. bessarabicum-specific oligo probes were developed based on genomic DNA sequences of Th. bessarabicum chromosome arm 4JL, and one of them (oligo DP4J27982) was pooled with the oligo multiplex #1 to simultaneously detect wheat and Th. bessarabicum chromosomes for quick and accurate identification of Chinese Spring (CS) - Th. bessarabicum alien chromosome introgression lines. Oligo multiplex #4 revealed chromosome variations among CS and eight wheat cultivars by a single round of FISH analysis. This research demonstrated the high efficiency of using oligos and oligo multiplexes in chromosome identification and manipulation.
Collapse
Affiliation(s)
- Pei Du
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifang Zhuang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhi Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Yuan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Danrui Wang
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Dawadondup
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijun Tan
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Shen
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Xu
- b Faculty of Biology and Environmental Science, Nanjing Forestry University, Nanjing 210037, China
| | - Han Zhao
- c Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chenggen Chu
- d Monsanto Company, 21120 Hwy 30, Filer, ID 83328, USA
| | - Zengjun Qi
- a State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
Qi W, Tang Y, Zhu W, Li D, Diao C, Xu L, Zeng J, Wang Y, Fan X, Sha L, Zhang H, Zheng Y, Zhou Y, Kang H. Molecular cytogenetic characterization of a new wheat-rye 1BL•1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. PLANTA 2016; 244:405-16. [PMID: 27084678 DOI: 10.1007/s00425-016-2517-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/01/2016] [Indexed: 05/08/2023]
Abstract
A new wheat-rye 1BL•1RS translocation line, with the characteristics of superior stripe rust resistance and high thousand-kernel weight and grain number per spike, was developed and identified from progenies of wheat-rye- Psathyrostachys huashanica trigeneric hybrids. The wheat-rye 1BL•1RS translocation line from Petkus rye has contributed substantially to the world wheat production. However, due to extensive growing of cultivars with disease resistance genes from short arm of rye chromosome 1R and coevolution of pathogen virulence and host resistance, these cultivars successively lost resistance to pathogens. In this study, a new wheat-rye line K13-868, derived from the progenies of wheat-rye-Psathyrostachys huashanica trigeneric hybrids, was identified and analyzed using fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH), acid polyacrylamide gel electrophoresis (A-PAGE), and molecular markers. Cytological studies indicated that the mean chromosome configuration of K13-868 at meiosis was 2n = 42 = 0.14 I + 18.78 II (ring) + 2.15 II (rod). Sequential FISH and GISH results demonstrated that K13-868 was a compensating wheat-rye 1BL•1RS Robertsonian translocation line. Acid PAGE analysis revealed that clear specific bands of rye 1RS were expressed in K13-868. Simple sequence repeat (SSR) and rye 1RS-specific markers ω-sec-p1/ω-sec-p2 and O-SEC5'-A/O-SEC3'-R suggested that the 1BS arm of wheat had been substituted by the 1RS arm of rye. At the seedling and adult growth stage, compared with its recurrent wheat parent SM51 and six other wheat cultivars containing the 1RS arm in southwestern China, K13-868 showed high levels of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, which are virulent to Yr10 and Yr24/Yr26. In addition, K13-868 expresses higher thousand-kernel weight and more grain number per spike than these controls in two growing seasons, suggesting that this line may carry yield-related genes of rye. This translocation line, with significant characteristics of resistance to stripe rust and high thousand-kernel weight and grain number per spike, could be utilized as a valuable germplasm for wheat improvement.
Collapse
Affiliation(s)
- Weiliang Qi
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yao Tang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Daiyan Li
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Chengdou Diao
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
40
|
Ma X, Wang Q, Wang Y, Ma J, Wu N, Ni S, Luo T, Zhuang L, Chu C, Cho SW, Tsujimoto H, Qi Z. Chromosome aberrations induced by zebularine in triticale. Genome 2016; 59:485-92. [DOI: 10.1139/gen-2016-0047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0–12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat–rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation.
Collapse
Affiliation(s)
- Xuhui Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Jieyun Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Ni
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengxiao Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifang Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenggen Chu
- Monsanto Company, 21120 Hwy 30, Filer, ID 83328, USA
| | - Seong-Woo Cho
- Crop Breeding Research Division, National Institute of Crop Science, RDA, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Hamasaka, Tottori 680-0001, Japan
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Kang H, Wang H, Huang J, Wang Y, Li D, Diao C, Zhu W, Tang Y, Wang Y, Fan X, Zeng J, Xu L, Sha L, Zhang H, Zhou Y. Divergent Development of Hexaploid Triticale by a Wheat - Rye -Psathyrostachys huashanica Trigeneric Hybrid Method. PLoS One 2016; 11:e0155667. [PMID: 27182983 PMCID: PMC4868327 DOI: 10.1371/journal.pone.0155667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 11/19/2022] Open
Abstract
Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we developed an effective method for production of diverse types of hexaploid triticale via wheat—rye—Psathyrostachys huashanica trigeneric hybrid. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) karyotyping revealed that D genome chromosomes were completely eliminated and the whole A, B, and R genome chromosomes were retained in three lines. More interestingly, the composite genome of the line K14-489-2 consisted of complete A and B genomes and chromosomes 1D, 2R, 3R, 4R, 5R, 6R, and 7R, that of line K14-491-2 was 12 A-genome (1A-6A), 14 B-genome (1B-7B), 12 R-genome (1R-3R, 5R-7R), and chromosomes 1D and 3D, and that of the line K14-547-1 had 26A/B and 14R chromosomes, plus one pair of centric 6BL/2DS translocations. This finding implies that some of D genome chromosomes can be spontaneously and stably incorporated into the hexaploid triticale. Additionally, a variety of high-molecular-weight glutenin subunits (HMW-GS) compositions were detected in the six hexaploid triticale lines, respectively. Besides, compared with its recurrent triticale parent Zhongsi828, these lines showed high level of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, including V26/Gui 22. These new hexaploid triticales not only enhanced diversification of triticale but also could be utilized as valuable germplasm for wheat improvement.
Collapse
Affiliation(s)
- Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Hao Wang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Juan Huang
- Dazhou Institute of Agricultural Science, 188 Jianmin Road, Dazhou, 635000, Sichuan, China
| | - Yujie Wang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Daiyan Li
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Chengdou Diao
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yao Tang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
- * E-mail:
| |
Collapse
|
42
|
Evtushenko EV, Levitsky VG, Elisafenko EA, Gunbin KV, Belousov AI, Šafář J, Doležel J, Vershinin AV. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genomics 2016; 17:337. [PMID: 27146967 PMCID: PMC4857426 DOI: 10.1186/s12864-016-2667-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained. RESULTS Using a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization. 454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays. The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250 arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences. CONCLUSION The large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of recombination mechanisms.
Collapse
Affiliation(s)
- E V Evtushenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia
| | - V G Levitsky
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - E A Elisafenko
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
| | - K V Gunbin
- Institute of Cytology and Genetics, Siberian Branch of the RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - A I Belousov
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia
| | - J Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - J Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - A V Vershinin
- Institute of Molecular and Cellular Biology, Siberian Branch of the RAS, Novosibirsk, Russia.
| |
Collapse
|
43
|
Yang W, Wang C, Chen C, Wang Y, Zhang H, Liu X, Ji W. Molecular cytogenetic identification of a wheat-rye 1R addition line with multiple spikelets and resistance to powdery mildew. Genome 2016; 59:277-88. [PMID: 27021228 DOI: 10.1139/gen-2015-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alien addition lines are important for transferring useful genes from alien species into common wheat. Rye is an important and valuable gene resource for improving wheat disease resistance, yield, and environment adaptation. A new wheat-rye addition line, N9436B, was developed from the progeny of the cross of common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) cultivar Shaanmai 611 and rye (Secale cereal L., 2n = 2x = 14, RR) accession Austrian rye. We characterized this new line by cytology, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), molecular markers, and disease resistance screening. N9436B was stable in morphology and cytology, with a chromosome composition of 2n = 42 + 2t = 22II. GISH investigations showed that this line contained two rye chromosomes. GISH, FISH, and molecular maker identification suggested that the introduced R chromosome and the missing wheat chromosome arms were 1R chromosome and 2DL chromosome arm, respectively. N9436B exhibited 30-37 spikelets per spike and a high level of resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) isolate E09 at the seedling stage. N9436B was cytologically stable, had the trait of multiple spikelets, and was resistant to powdery mildew; this line should thus be useful in wheat improvement.
Collapse
Affiliation(s)
- Wujuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
44
|
Chahota RK, Mukai Y, Sharma TR, Chaudhary HK, Rani S. Cytological and morphological characterization of rye-wheat derivatives for important agronomic traits. THE NUCLEUS 2016. [DOI: 10.1007/s13237-016-0158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
45
|
Abstract
Fluorescent in situ hybridization (FISH) is a powerful cytogenetic technique for identifying chromosomes and mapping specific genes and DNA sequences on individual chromosomes. Genomic in situ hybridization (GISH) and multicolor FISH (mc-FISH) represent two special types of FISH techniques. Both GISH and mc-FISH experiments have general steps and features of FISH, including chromosome preparation, probe labeling, blocking DNA preparation, target-probe DNA hybridization, post-hybridization washes, and hybridization signal detection. Specifically, GISH uses total genomic DNA from two species as probe and blocking DNA, respectively, and it can differentiate chromosomes from different genomes. The mc-FISH takes advantage of simultaneous hybridization of several DNA probes labeled by different fluorochromes to different targets on the same chromosome sample. Hybridization signals from different probes are detected using different fluorescence filter sets. Multicolor FISH can provide more structural details for target chromosomes than single-color FISH. In this chapter, we present the general experimental procedures for these two techniques with specific details in the critical steps we have modified in our laboratories.
Collapse
Affiliation(s)
- Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Northern Crop Science Laboratory, 1605 Albrecht Blvd. North, Fargo, ND, 58102, USA.
| | - Zhao Liu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Qijun Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Zhixia Niu
- USDA-ARS, Cereal Crops Research Unit, Northern Crop Science Laboratory, 1605 Albrecht Blvd. North, Fargo, ND, 58102, USA
| | - Chao-Chien Jan
- USDA-ARS, Sunflower and Plant Biology Research Unit, Northern Crop Science Laboratory, Fargo, ND, 58102, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
46
|
Molecular cytogenetic characterization of novel wheat-Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma 2015; 125:163-72. [DOI: 10.1007/s00412-015-0537-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
|
47
|
|
48
|
Li H, Guo X, Wang C, Ji W. Spontaneous and divergent hexaploid triticales derived from common wheat × rye by complete elimination of D-genome chromosomes. PLoS One 2015; 10:e0120421. [PMID: 25781330 PMCID: PMC4364014 DOI: 10.1371/journal.pone.0120421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/22/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Hexaploid triticale could be either synthesized by crossing tetraploid wheat with rye, or developed by crossing hexaploid wheat with a hexaploid triticale or an octoploid triticale. METHODOLOGY/PRINCIPAL FINDINGS Here two hexaploid triticales with great morphologic divergence derived from common wheat cultivar M8003 (Triticum aestivum L.) × Austrian rye (Secale cereale L.) were reported, exhibiting high resistance for powdery mildew and stripe rust and potential for wheat improvement. Sequential fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) karyotyping revealed that D-genome chromosomes were completely eliminated and the whole A-genome, B-genome and R-genome chromosomes were retained in both lines. Furthermore, plentiful alterations of wheat chromosomes including 5A and 7B were detected in both triticales and additionally altered 5B, 7A chromosome and restructured chromosome 2A was assayed in N9116H and N9116M, respectively, even after selfing for several decades. Besides, meiotic asynchrony was displayed and a variety of storage protein variations were assayed, especially in the HMW/LMW-GS region and secalins region in both triticales. CONCLUSION This study confirms that whole D-genome chromosomes could be preferentially eliminated in the hybrid of common wheat × rye, "genome shock" was accompanying the allopolyploidization of nascent triticales, and great morphologic divergence might result from the genetic variations. Moreover, new hexaploid triticale lines contributing potential resistance resources for wheat improvement were produced.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xiaoxue Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
49
|
Zhan H, Zhang X, Li G, Pan Z, Hu J, Li X, Qiao L, Jia J, Guo H, Chang Z, Yang Z. Molecular characterization of a new wheat-Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int J Mol Sci 2015; 16:2162-73. [PMID: 25608651 PMCID: PMC4307355 DOI: 10.3390/ijms16012162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 11/23/2022] Open
Abstract
A new wheat-Thinopyrum translocation line CH13-21 was selected from the progenies derived from a cross between wheat-Th. intermedium partial amphiploid TAI7047 and wheat line Mianyang11. CH13-21 was characterized by using genomic in situ hybridization (GISH), multicolor-GISH (mc-GISH), multicolor-fluorescence in situ hybridization (mc-FISH) and chromosome-specific molecular markers. When inoculated with stripe rust and powdery mildew isolates, CH13-21 displayed novel resistance to powdery mildew and stripe rust which inherited from its Thinopyrum parent. The chromosomal counting analyses indicated that CH13-21 has 42 chromosomes, with normal bivalent pairing at metaphase I of meiosis. GISH probed by Th. intermedium genomic DNA showed that CH13-21 contained a pair of wheat-Th. intermedium translocated chromosomes. Sequential mc-FISH analyses probed by pSc119.2 and pAs1 clearly revealed that chromosome arm 6BS of CH13-21 was replaced by Thinopyrum chromatin in the translocation chromosome. The molecular markers analysis further confirmed that the introduced Th. intermedium chromatin in CH13-21 belonged to the long arm of homoeologous group 6 chromosome. Therefore, CH13-21 was a new T6BS.6Ai#1L compensating Robertsonian translocation line. It concludes that CH13-21 is a new genetic resource for wheat breeding programs providing novel variation for disease resistances.
Collapse
Affiliation(s)
- Haixian Zhan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Xiaojun Zhang
- Crop Science Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zhihui Pan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jin Hu
- Crop Science Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Xin Li
- Crop Science Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Linyi Qiao
- Crop Science Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Juqing Jia
- College of agronomy, Shanxi Agricultural University, Taigu 030801, China.
| | - Huijuan Guo
- Crop Science Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Zhijian Chang
- Crop Science Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
50
|
Cuacos M, H. Franklin FC, Heckmann S. Atypical centromeres in plants-what they can tell us. FRONTIERS IN PLANT SCIENCE 2015; 6:913. [PMID: 26579160 PMCID: PMC4620154 DOI: 10.3389/fpls.2015.00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/12/2015] [Indexed: 05/20/2023]
Abstract
The centromere, visible as the primary constriction of condensed metaphase chromosomes, is a defined chromosomal locus essential for genome stability. It mediates transient assembly of a multi-protein complex, the kinetochore, which enables interaction with spindle fibers and thus faithful segregation of the genetic information during nuclear divisions. Centromeric DNA varies in extent and sequence composition among organisms, but a common feature of almost all active eukaryotic centromeres is the presence of the centromeric histone H3 variant cenH3 (a.k.a. CENP-A). These typical centromere features apply to most studied species. However, a number of species display "atypical" centromeres, such as holocentromeres (centromere extension along almost the entire chromatid length) or neocentromeres (ectopic centromere activity). In this review, we provide an overview of different atypical centromere types found in plants including holocentromeres, de novo formed centromeres and terminal neocentromeres as well as di-, tri- and metapolycentromeres (more than one centromere per chromosomes). We discuss their specific and common features and compare them to centromere types found in other eukaryotic species. We also highlight new insights into centromere biology gained in plants with atypical centromeres such as distinct mechanisms to define a holocentromere, specific adaptations in species with holocentromeres during meiosis or various scenarios leading to neocentromere formation.
Collapse
|