1
|
Zhao P, Zhong S, Liao J, Tao J, Yao Y, Song P, Yang X. Caragana jubata ethanol extract ameliorates the symptoms of STZ-HFD-induced T2DM mice by PKC/GLUT4 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119171. [PMID: 39613004 DOI: 10.1016/j.jep.2024.119171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caragana jubata (Pall.) Poir., a traditional Tibetan medicinal plant in China, is renowned in Tibetan medicine for its hypoglycemic properties and long-standing use in treating diabetes. Despite its extensive clinical use, the mechanisms underlying its blood sugar-lowering effects still need to be explored. Our investigation contributes a new understanding of the hypoglycemic mechanism of C. jubata, validating its traditional medicinal application by demonstrating its ability to increase GLUT4 expression and glucose uptake, crucial elements in treating type 2 diabetes mellitus (T2DM). AIM OF THE STUDY This study investigated the potential anti-diabetic effects of C. jubata ethanol extract (CJEE) by upregulating GLUT4 expression and promoting its integration into the plasma membrane in L6 skeletal muscle cells and diabetic mice. Additionally, the research aimed to uncover the mechanisms involved, particularly focusing on the involvement of the PKC signaling pathway and Ca2⁺ release. MATERIALS AND METHODS The chemical composition of CJEE was evaluated using UPLC-Q-TOF/MS. Glucose uptake, GLUT4 expression, and plasma membrane fusion in L6 cells were assessed through a glucose oxidase kit, Western blotting, and laser confocal microscopy, respectively. The modulation of GLUT4 by Akt, AMPK, and PKC signaling pathways was investigated utilizing specific inhibitors. The impact of CJEE on intracellular Ca2⁺ concentration was determined with Fluo-4 dye. Additionally, an in vivo study was conducted on high-fat diet (HFD) and streptozotocin (STZ)-induced type 2 diabetic mice to evaluate the effects of CJEE on blood glucose levels, insulin resistance, lipid metabolism, and pancreatic function. RESULTS Chemical analysis of CJEE revealed 18 major constituents, primarily flavonoids. In L6 cells, CJEE was found to significantly enhance glucose uptake, increase GLUT4 expression, and facilitate its fusion with the plasma membrane. The study illustrated that CJEE predominantly activates the PKC pathway, with minimal involvement of the Akt pathway, emphasizing the critical role of Ca2⁺ release in GLUT4 regulation. Diabetic mice treated with CJEE exhibited decreased fasting blood glucose levels, enhanced oral glucose tolerance, reduced insulin resistance, and ameliorated lipid metabolism disorders. Additionally, CJEE elevated GLUT4 expression in insulin-sensitive tissues and alleviated pancreatic and hepatic lesions. CONCLUSIONS Our results demonstrated that the activation of the PKC pathway and release of Ca2⁺ by CJEE induce GLUT4 expression, promoting its fusion with the plasma membrane. Consequently, this process boosts glucose uptake and enhances insulin sensitivity, underscoring CJEE as a promising option for managing T2DM.
Collapse
Affiliation(s)
- Ping Zhao
- South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Shunhua Zhong
- South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Jingya Liao
- South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Jingze Tao
- South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Yanhong Yao
- South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China
| | - Ping Song
- College of Chemistry and Chemical Engineering, Qinghai Nationalities University, Xining, 810007, China.
| | - Xinzhou Yang
- South-Central Minzu University, 182 Min-Zu Road, Wuhan, 430074, China.
| |
Collapse
|
2
|
Hao Y, Luo J, Wang Y, Li Z, Wang X, Yan F. Ultrasound molecular imaging of p32 protein translocation for evaluation of tumor metastasis. Biomaterials 2023; 293:121974. [PMID: 36566551 DOI: 10.1016/j.biomaterials.2022.121974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Protein translocation is an essential process for living cells to respond to different physiological, pathological or environmental stimuli. However, its abnormal occurrence usually results in undesirable outcomes such as tumors. To date, there is still a lack of appropriate methods to detect this event in live animals in a real-time manner. Here, we identified the gradually increased cell-surface translocation of p32 protein from mitochondria during tumor progression. LyP-1-modified gas vesicles (LyP-1-GVs) were developed through conjugating LyP-1 (p32-targeting peptide) to the biosynthetic GVs to monitor the cell-surface level of p32 translocation. The resulting LyP-1-GVs have about 200 nm particle size and good tumor cell targeting performance. Upon systemic administration, LyP-1-GVs can traverse through blood vessels and bind to the tumor cells, producing strong contrast imaging signals in comparison with the non-targeted GVs. The contrast imaging signals correlate well with the cell-surface translocation level of p32 protein and tumor metastatic ability. To our knowledge, this is the first report about the in vivo detection of protein translocation to cell membrane from mitochondria by ultrasound molecular imaging. Our study provides a new strategy to explore the molecular events of protein membrane translocations for evaluation of tumor metastasis at the live animal level.
Collapse
Affiliation(s)
- Yongsheng Hao
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Shenzhen College of Advanced Technology, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingna Luo
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, PR China; Shenzhen University Health Science Center, Shenzhen 518000, PR China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, PR China; Shenzhen University Health Science Center, Shenzhen 518000, PR China
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen 518055, PR China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
de Melo Madureira ÁN, de Oliveira JRS, de Menezes Lima VL. The Role of IL-6 Released During Exercise to Insulin Sensitivity and Muscle Hypertrophy. Mini Rev Med Chem 2022; 22:2419-2428. [PMID: 35264090 DOI: 10.2174/1389557522666220309161245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Interleukin-6 (IL-6) influences both inflammatory response and anti-inflammatory processes. This cytokine can be released by the exercising skeletal muscle, which characterizes it as a myokine. Unlike what is observed in inflammation, IL-6 produced by skeletal muscle is not preceded by the release of other pro-inflammatory cytokines, but is seems to be dependent on the lactate produced during exercise, thus causing different effects from those of seen in inflammatory state. After binding to its receptor, myokine IL-6 activates the PI3K-Akt pathway. One consequence of this upregulation is the potentiation of insulin signaling, which enhances insulin sensitivity. IL-6 increases GLUT-4 vesicle mobilization to muscle cell periphery, increasing the glucose transport into the cell, and also glycogen synthesis. Muscle glycogen provides energy for the ATP resynthesis, and regulates Ca2+ release by the sarcoplasmic reticulum, influencing muscle contraction, and, hence, muscle function by multiple pathways. Another implication for the upregulation of PI3K-Akt pathway is the activation of mTORC1, which regulates mRNA translational efficiency by regulating translation machinery, and translational capacity by inducing ribosomal biogenesis. Thus, IL-6 may contribute for skeletal muscle hypertrophy and function by increasing contractile protein synthesis.
Collapse
Affiliation(s)
- Álvaro Nóbrega de Melo Madureira
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| | - João Ricardhis Saturnino de Oliveira
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| | - Vera Lúcia de Menezes Lima
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| |
Collapse
|
4
|
Abstract
As the principal tissue for insulin-stimulated glucose disposal, skeletal muscle is a primary driver of whole-body glycemic control. Skeletal muscle also uniquely responds to muscle contraction or exercise with increased sensitivity to subsequent insulin stimulation. Insulin's dominating control of glucose metabolism is orchestrated by complex and highly regulated signaling cascades that elicit diverse and unique effects on skeletal muscle. We discuss the discoveries that have led to our current understanding of how insulin promotes glucose uptake in muscle. We also touch upon insulin access to muscle, and insulin signaling toward glycogen, lipid, and protein metabolism. We draw from human and rodent studies in vivo, isolated muscle preparations, and muscle cell cultures to home in on the molecular, biophysical, and structural elements mediating these responses. Finally, we offer some perspective on molecular defects that potentially underlie the failure of muscle to take up glucose efficiently during obesity and type 2 diabetes.
Collapse
|
5
|
Bondy SC, Wu M, Prasad KN. Alternatives to Insulin for the Regulation of Blood Sugar Levels in Type 2 Diabetes. Int J Mol Sci 2020; 21:E8302. [PMID: 33167495 PMCID: PMC7663956 DOI: 10.3390/ijms21218302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/29/2022] Open
Abstract
This short overview focuses on the causation and treatment of type 2 diabetes (T2D). Emphasis is given to the historical basis of understanding this disease and the background leading to emergence of the central role of insulin. The strengths of insulin administration in the treatment of diabetes are profound, but these need to be balanced against several serious shortcomings of its extended use. Some alternative approaches to T2D management are considered. Insulin is no longer considered as the first choice for type 2 diabetes, and an expanding range of new therapeutic possibilities is emerging. While these may lack the potency of insulin, at a minimum, they allow a major reduction in the intensity of insulin use. In view of the rising worldwide incidence of this disease, it is imperative to develop safe and inexpensive means of limiting its potential for impairment of normal functioning.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Meixia Wu
- Evergreen World Healthcare Center, Garden Grove, CA 92844, USA;
| | | |
Collapse
|
6
|
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 2019; 11:nu11102432. [PMID: 31614762 PMCID: PMC6835691 DOI: 10.3390/nu11102432] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism.
Collapse
|
7
|
Yang J, Zhang LJ, Wang F, Hong T, Liu Z. Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β-cell targeting. Adv Drug Deliv Rev 2019; 139:32-50. [PMID: 30529307 DOI: 10.1016/j.addr.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic non-communicable disease affecting over 400 million people worldwide. Diabetic patients are at a high risk of various complications, such as cardiovascular, renal, and other diseases. The pathogenesis of diabetes (both type 1 and type 2 diabetes) is associated with a functional impairment of pancreatic β-cells. Consequently, most efforts to manage and prevent diabetes have focused on preserving β-cells and their function. Advances in imaging techniques, such as magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, and single-photon-emission computed tomography, have enabled noninvasive and quantitative detection and characterization of the population and function of β-cells in vivo. These advantages aid in defining and monitoring the progress of diabetes and determining the efficacy of anti-diabetic therapies. Beyond β-cell targeting, molecular imaging of biomarkers associated with the development of diabetes, e.g., lymphocyte infiltration, insulitis, and metabolic changes, may also be a promising strategy for early detection of diabetes, monitoring its progression, and occurrence of complications, as well as facilitating exploration of new therapeutic interventions. Moreover, molecular imaging of glucose uptake, production and excretion in specified tissues is critical for understanding the pathogenesis of diabetes. In the current review, we summarize and discuss recent advances in noninvasive imaging technologies for imaging of biomarkers beyond β-cells for early diagnosis of diabetes, investigation of glucose metabolism, and precise diagnosis and monitoring of diabetic complications for better management of diabetic patients.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
8
|
Foley K, Boguslavsky S, Klip A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 2011; 50:3048-61. [PMID: 21405107 DOI: 10.1021/bi2000356] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems.
Collapse
Affiliation(s)
- Kevin Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M4G 1X8, Canada
| | | | | |
Collapse
|
9
|
Korzh V, Teh C, Kondrychyn I, Chudakov DM, Lukyanov S. Visualizing Compound Transgenic Zebrafish in Development: A Tale of Green Fluorescent Protein and KillerRed. Zebrafish 2011; 8:23-9. [DOI: 10.1089/zeb.2011.0689] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vladimir Korzh
- Genomics and Development Division, Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cathleen Teh
- Genomics and Development Division, Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Igor Kondrychyn
- Genomics and Development Division, Institute of Molecular and Cell Biology, A-STAR, Singapore, Singapore
| | - Dmitry M. Chudakov
- Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Sergey Lukyanov
- Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
10
|
Alkhateeb H, Bonen A. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010; 299:R804-12. [DOI: 10.1152/ajpregu.00216.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thujone is thought to be the main constituent of medicinal herbs that have antidiabetic properties. Therefore, we examined whether thujone ameliorated palmitate-induced insulin resistance in skeletal muscle. Soleus muscles were incubated for ≤12 h without or with palmitate (2 mM). Thujone (0.01 mg/ml), in the presence of palmitate, was provided in the last 6 h of incubation. Palmitate oxidation, AMPK/acetyl-CoA carboxylase (ACC) phosphorylation and insulin-stimulated glucose transport, plasmalemmal GLUT4, and AS160 phosphorylation were examined at 0, 6, and 12 h. Palmitate treatment for 12 h reduced fatty acid oxidation (−47%), and insulin-stimulated glucose transport (−71%), GLUT4 translocation (−40%), and AS160 phosphorylation (−26%), but it increased AMPK (+51%) and ACC phosphorylations (+44%). Thujone (6–12 h) fully rescued palmitate oxidation and insulin-stimulated glucose transport, but only partially restored GLUT4 translocation and AS160 phosphorylation, raising the possibility that an increased GLUT4 intrinsic activity may also have contributed to the restoration of glucose transport. Thujone also further increased AMPK phosphorylation but had no further effect on ACC phosphorylation. Inhibition of AMPK phosphorylation with adenine 9-β-d-arabinofuranoside (Ara) (2.5 mM) or compound C (50 μM) inhibited the thujone-induced improvement in insulin-stimulated glucose transport, GLUT4 translocation, and AS160 phosphorylation. In contrast, the thujone-induced improvement in palmitate oxidation was only slightly inhibited (≤20%) by Ara or compound C. Thus, while thujone, a medicinal herb component, rescues palmitate-induced insulin resistance in muscle, the improvement in fatty acid oxidation cannot account for this thujone-mediated effect. Instead, the rescue of palmitate-induced insulin resistance appears to occur via an AMPK-dependent mechanism involving partial restoration of insulin-stimulated GLUT4 translocation.
Collapse
Affiliation(s)
- Hakam Alkhateeb
- Department of Laboratory Medical Sciences, Hashemite University, Zarqa, Jordan; and
| | - Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Abstract
Skeletal muscle plays a key role in regulating whole body glucose homeostasis and severe dysfunction in insulin-mediated glucose uptake is the hallmark of insulin-resistant states and type II diabetes. Therefore it is highly pathophysiologically relevant to perform detailed studies of insulin signaling inside skeletal muscle cells in order to elucidate the specific molecular events during both normal and insulin-resistant conditions. So far, cell biology imaging techniques have been limited to in vitro cultured muscle originating from primary or cell line-based myoblasts. However, these types of cultured muscle lack many characteristics of fully differentiated muscle cells. By performing intravital protein translocation analysis directly in situ in living animals, we have been able to give a high-resolution account of the spatial and temporal details during insulin signaling in vivo in muscle that does not have the limitations of in vitro cultures. We have shown that after i.v. insulin injection, PI3-kinase activation and, in turn, GLUT4 translocation are initiated at the plasma membrane proper, the sarcolemma. Then insulin signaling progresses into the t-tubules with a velocity corresponding to the diffusion of sulforhodamine B-conjugated insulin molecules. By using intravital confocal time-lapse analysis we have revealed that the t-tubules are the membrane surface where the majority of the insulin signaling is located.
Collapse
|