1
|
Marouane E, El Mahmoudi N, Rastoldo G, Péricat D, Watabe I, Lapôtre A, Tonetto A, Xavier F, Dumas O, Chabbert C, Artzner V, Tighilet B. Sensorimotor Rehabilitation Promotes Vestibular Compensation in a Rodent Model of Acute Peripheral Vestibulopathy by Promoting Microgliogenesis in the Deafferented Vestibular Nuclei. Cells 2021; 10:3377. [PMID: 34943885 PMCID: PMC8699190 DOI: 10.3390/cells10123377] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Acute peripheral vestibulopathy leads to a cascade of symptoms involving balance and gait disorders that are particularly disabling for vestibular patients. Vestibular rehabilitation protocols have proven to be effective in improving vestibular compensation in clinical practice. Yet, the underlying neurobiological correlates remain unknown. The aim of this study was to highlight the behavioural and cellular consequences of a vestibular rehabilitation protocol adapted to a rat model of unilateral vestibular neurectomy. We developed a progressive sensory-motor rehabilitation task, and the behavioural consequences were quantified using a weight-distribution device. This analysis method provides a precise and ecological analysis of posturolocomotor vestibular deficits. At the cellular level, we focused on the analysis of plasticity mechanisms expressed in the vestibular nuclei. The results obtained show that vestibular rehabilitation induces a faster recovery of posturolocomotor deficits during vestibular compensation associated with a decrease in neurogenesis and an increase in microgliogenesis in the deafferented medial vestibular nucleus. This study reveals for the first time a part of the underlying adaptative neuroplasticity mechanisms of vestibular rehabilitation. These original data incite further investigation of the impact of rehabilitation on animal models of vestibulopathy. This new line of research should improve the management of vestibular patients.
Collapse
Affiliation(s)
- Emna Marouane
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
- BIOSEB ALLCAT Instruments, Couperigne, 13127 Vitrolles, France;
| | - Nada El Mahmoudi
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
| | - Guillaume Rastoldo
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
| | - David Péricat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31400 Toulouse, France;
| | - Isabelle Watabe
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
| | - Agnès Lapôtre
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
| | - Alain Tonetto
- Fédération de Recherche Sciences Chimiques Marseille FR 1739, Pôle 18 PRATIM, CEDEX 03, 13331 Marseille, France;
| | - Frédéric Xavier
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
- GDR Physiopathologie Vestibulaire—Unité GDR2074, CNRS, 13003 Marseille, France;
| | - Olivier Dumas
- GDR Physiopathologie Vestibulaire—Unité GDR2074, CNRS, 13003 Marseille, France;
| | - Christian Chabbert
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
- GDR Physiopathologie Vestibulaire—Unité GDR2074, CNRS, 13003 Marseille, France;
| | - Vincent Artzner
- BIOSEB ALLCAT Instruments, Couperigne, 13127 Vitrolles, France;
| | - Brahim Tighilet
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
- GDR Physiopathologie Vestibulaire—Unité GDR2074, CNRS, 13003 Marseille, France;
| |
Collapse
|
2
|
Joseph A, Parvathy S, Varma KK. Hyperinsulinemia Induced Altered Insulin Signaling Pathway in Muscle of High Fat- and Carbohydrate-Fed Rats: Effect of Exercise. J Diabetes Res 2021; 2021:5123241. [PMID: 33708999 PMCID: PMC7929694 DOI: 10.1155/2021/5123241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance is a state of impaired responsiveness to insulin action. This condition not only results in deficient glucose uptake but increases the risk for cardiovascular diseases (CVD), stroke, and obesity. The present work investigates the molecular mechanisms of high carbohydrate and fat diet in inducing prediabetic hyperinsulinemia and effect of exercise on InsR signaling events, muscular AChE, and lactate dehydrogenase activity. Adult male Wistar rats were divided into the control (C) diet group, high-carbohydrate diet (HCD) group, high-fat diet (HFD) group, and HCD and HFD groups with exercise (HCD Ex and HFD Ex, respectively). Acetyl choline esterase activity, lactate dehydrogenase activity, total lactate levels, IRS1 phosphorylations, and Glut4 expression patterns were studied in the muscle tissue among these groups. High carbohydrate and fat feeding led to hyperinsulinemic status with reduced acetylcholine esterase (AChE) activity and impaired phosphorylation of IRS1 along with increased lactate concentrations in the muscle. Exercise significantly upregulated phosphoinositide 3 kinase (PI3K) docking site phosphorylation and downregulated the negative IRS1 phosphorylations thereby increasing the glucose transporter (GLUT) expressions and reducing the lactate accumulation. Also, the levels of second messengers like IP3 and cAMP were increased with exercise. Increased second messenger levels induce calcium release thereby activating the downstream pathway promoting the translocation of GLUT4 to the plasma membrane. Our results showed that the metabolic and signaling pathway dysregulations seen during diet-induced hyperinsulinemia, a metabolic condition seen during the early stages in the development of prediabetes, were improved with vigorous physical exercise. Thus, exercise can be considered as an excellent management approach over drug therapy for diabetes and its complications.
Collapse
Affiliation(s)
- Anu Joseph
- MIMS Research Foundation, Mankavu P.O., Calicut, Kerala 673007, India
| | - S. Parvathy
- MIMS Research Foundation, Mankavu P.O., Calicut, Kerala 673007, India
| | | |
Collapse
|
3
|
Batra A, Vohra RS, Chrzanowski SM, Hammers DW, Lott DJ, Vandenborne K, Walter GA, Forbes SC. Effects of PDE5 inhibition on dystrophic muscle following an acute bout of downhill running and endurance training. J Appl Physiol (1985) 2019; 126:1737-1745. [PMID: 30946638 DOI: 10.1152/japplphysiol.00664.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lack of sarcolemma-localized neuronal nitric oxide synthase mu (nNOSμ) contributes to muscle damage and fatigue in dystrophic muscle. In this study, we examined the effects of compensating for lack of nNOSμ with a phosphodiesterase type 5 (PDE5) inhibitor in mdx mice following downhill running and endurance training. Dystrophic mice (mdx) were treated with sildenafil citrate and compared with untreated mdx and wild-type mice after an acute bout of downhill running and during a progressive low-intensity treadmill running program (5 days/wk, 4 wk). Magnetic resonance imaging (MRI) and spectroscopy (MRS) transverse relaxation time constant (T2) of hindlimb and forelimb muscles were measured as a marker of muscle damage after downhill running and throughout training. The MRI blood oxygenation level dependence (BOLD) response and 31phosphorus MRS (31P-MRS) data were acquired after stimulated muscle contractions. After downhill running, the increase in T2 was attenuated (P < 0.05) in treated mdx and wild-type mice compared with untreated mdx. During training, resting T2 values did not change in wild-type and mdx mice from baseline values; however, the running distance completed during training was greater (P < 0.05) in treated mdx (>90% of target distance) and wild-type (100%) than untreated mdx (60%). The post-contractile BOLD response was greater (P < 0.05) in treated mdx that trained than untreated mdx, with no differences in muscle oxidative capacity, as measured by 31P-MRS. Our findings indicate that PDE5 inhibition reduces muscle damage after a single bout of downhill running and improves performance during endurance training in dystrophic mice, possibly because of enhanced microvascular function. NEW & NOTEWORTHY This study examined the combined effects of PDE5 inhibition and exercise in dystrophic muscle using high-resolution magnetic resonance imaging and spectroscopy. Our findings demonstrated that sildenafil citrate reduces muscle damage after a single bout of downhill running, improves endurance-training performance, and enhances microvascular function in dystrophic muscle. Collectively, the results support the combination of exercise and PDE5 inhibition as a therapeutic approach in muscular dystrophies lacking nNOSμ.
Collapse
Affiliation(s)
- Abhinandan Batra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Ravneet S Vohra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Steve M Chrzanowski
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - David W Hammers
- Department of Pharmacology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| |
Collapse
|
4
|
Just TP, DeLorey DS. Exercise training and α1-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle. Physiol Rep 2016; 4:4/3/e12707. [PMID: 26869686 PMCID: PMC4758927 DOI: 10.14814/phy2.12707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exercise training (ET) increases sympathetic vasoconstrictor responsiveness and enhances contraction‐mediated inhibition of sympathetic vasoconstriction (i.e., sympatholysis) through a nitric oxide (NO)‐dependent mechanism. Changes in α2‐adrenoreceptor vasoconstriction mediate a portion of these training adaptations, however the contribution of other postsynaptic receptors remains to be determined. Therefore, the purpose of this study was to investigate the effect of ET on α1‐adrenoreceptor‐mediated vasoconstriction in resting and contracting muscle. It was hypothesized that α1‐adrenoreceptor‐mediated sympatholysis would be enhanced following ET. Male Sprague Dawley rats were randomized to sedentary (S; n = 12) or heavy‐intensity treadmill ET (n = 11) groups. Subsequently, rats were anesthetized and instrumented for lumbar sympathetic chain stimulation and measurement of femoral vascular conductance (FVC) at rest and during muscle contraction. The percentage change in FVC in response to sympathetic stimulation was measured in control, α1‐adrenoreceptor blockade (Prazosin; 20 μg, IV), and combined α1 and NO synthase (NOS) blockade (l‐NAME; 5 mg·kg−1IV) conditions. Sympathetic vasoconstrictor responsiveness was increased (P < 0.05) in ET compared to S rats at low, but not high (P > 0.05) stimulation frequencies at rest (S: 2 Hz: −25 ± 4%; 5 Hz: −45 ± 5 %; ET: 2 Hz: −35 ± 7%, 5 Hz: −52 ± 7%), whereas sympathetic vasoconstrictor responsiveness was not different (P > 0.05) between groups during contraction (S: 2 Hz: −11 ± 8%; 5 Hz: −26 ± 11%; ET: 2 Hz: −10 ± 7%, 5 Hz: −27 ± 12%). Prazosin blunted (P < 0.05) vasoconstrictor responsiveness in S and ET rats at rest and during contraction, and abolished group differences in vasoconstrictor responsiveness. Subsequent NOS blockade increased vasoconstrictor responses (P < 0.05) in S at rest and during contraction, whereas in ET vasoconstriction was increased (P < 0.05) in response to sympathetic stimulation at 2 Hz at rest and unchanged (P > 0.05) during contraction. ET enhanced (P < 0.05) sympatholysis, however the training‐mediated improvements in sympatholysis were abolished by α1‐adrenoreceptor blockade. Subsequent NOS inhibition did not alter (P > 0.05) sympatholysis in S or ET rats. In conclusion, ET augmented α1‐adrenoreceptor‐mediated vasoconstriction in resting skeletal muscle and enhanced α1‐adrenoreceptor‐mediated sympatholysis. Furthermore, these data suggest that NO is not required to inhibit α2‐adrenoreceptor‐ and nonadrenoreceptor‐mediated vasoconstriction during exercise.
Collapse
Affiliation(s)
- Timothy P Just
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Darren S DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Reyes LM, Morton JS, Kirschenman R, DeLorey DS, Davidge ST. Vascular effects of aerobic exercise training in rat adult offspring exposed to hypoxia-induced intrauterine growth restriction. J Physiol 2015; 593:1913-29. [PMID: 25616117 DOI: 10.1113/jphysiol.2014.288449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Prenatal hypoxia, one of the most common consequences of complicated pregnancies, leads to intrauterine growth restriction (IUGR) and impairs later-life endothelium-dependent vascular function. Early interventions are needed to ultimately reduce later-life risk for cardiovascular disease. Aerobic exercise training has been shown to prevent cardiovascular diseases. Whether exercise can be used as an intervention to reverse the vascular phenotype of this susceptible population is unknown. Aerobic exercise training enhanced endothelium-derived hyperpolarization-mediated vasodilatation in gastrocnemius muscle arteries in male IUGR offspring, and did not improve nitric oxide-mediated vasodilatation in IUGR offspring. Understanding the mechanisms by which exercise impacts the cardiovascular system in a susceptible population and the consideration of sexual dimorphism is essential to define whether exercise could be used as a preventive strategy in this population. ABSTRACT Hypoxia in utero is a critical insult causing intrauterine growth restriction (IUGR). Adult offspring born with hypoxia-induced IUGR have impaired endothelium-dependent vascular function. We tested whether aerobic exercise improves IUGR-induced endothelial dysfunction. Pregnant Sprague-Dawley rats were exposed to control (21% oxygen) or hypoxic (11% oxygen) conditions from gestational day 15 to 21. Male and female offspring from normoxic and hypoxic (IUGR) pregnancies were randomized at 10 weeks of age to either an exercise-trained or sedentary group. Exercise-trained rats ran on a treadmill for 30 min at 20 m min(-1) , 5 deg gradient, 5 days week(-1) , for 6 weeks. Concentration-response curves to phenylephrine and methylcholine were performed in second order mesenteric and gastrocnemius muscle arteries, in the presence or absence of l-NAME (100 μm), MnTBAP (peroxynitrite scavenger; 10 μm), apamin (0.1 μm) and TRAM-34 (an intermediate-conductance calcium-activated potassium channel blocker; 10 μm), or indomethacin (5 μm). In adult male IUGR offspring, prenatal hypoxia had no effect on total vasodilator responses in either vascular bed. Aerobic exercise training in IUGR males, however, improved endothelium-derived hyperpolarization (EDH)-mediated vasodilatation in gastrocnemius muscle arteries. Female IUGR offspring had reduced NO-mediated vasodilatation in both vascular beds, along with decreased total vasodilator responses and increased prostaglandin-mediated vasoconstriction in gastrocnemius muscle arteries. In contrast to males, aerobic exercise training in IUGR female offspring had no effect on either vascular bed. Exercise may not prove to be a beneficial therapy for specific vascular pathways affected by prenatal hypoxia, particularly in female offspring.
Collapse
Affiliation(s)
- Laura M Reyes
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
6
|
Jendzjowsky NG, Just TP, DeLorey DS. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats. J Physiol 2014; 592:4789-802. [PMID: 25194041 DOI: 10.1113/jphysiol.2014.278846] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We tested the hypothesis that exercise training would increase neuronal nitric oxide synthase (nNOS)-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 18) were randomized to sedentary or exercise-trained (40 m min(-1), 5° grade; 5 days week(-1) for 4 weeks) groups. Following completion of sedentary behaviour or exercise training, rats were anaesthetized and instrumented with a brachial artery catheter, femoral artery flow probe and stimulating electrodes on the lumbar sympathetic chain. The percentage change of femoral vascular conductance (%FVC) in response to sympathetic chain stimulations delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg kg(-1), i.v.) and subsequent non-selective NOS blockade with l-NAME (5 mg kg(-1), i.v.; SMTC + l-NAME). At rest, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained compared to sedentary rats in control, SMTC and SMTC + l-NAME conditions. During contraction, the constrictor response was not different (P > 0.05) between exercise trained (2 Hz: -11 ± 4%FVC; 5 Hz: -21 ± 5%FVC) and sedentary rats (2 Hz: -7 ± 6%FVC; 5 Hz: -18 ± 10%FVC) in control conditions. SMTC augmented (P < 0.05) sympathetic vasoconstriction in sedentary and exercise-trained rats; however, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained (2 Hz: -27 ± 5%FVC; 5 Hz: -39 ± 5%FVC) compared to sedentary (2 Hz: -17 ± 6%FVC; 5 Hz: -27 ± 8%FVC) rats during selective nNOS inhibition. SMTC + l-NAME further augmented (P < 0.05) sympathetic vasoconstrictor responsiveness by a similar magnitude (P > 0.05) in exercise-trained and sedentary rats. These data demonstrate that exercise training augmented nNOS-mediated inhibition of sympathetic vasoconstriction in contracting muscle.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| | - Timothy P Just
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| | - Darren S DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| |
Collapse
|
7
|
Jendzjowsky NG, DeLorey DS. Short-term exercise training augments 2-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle. J Physiol 2013; 591:5221-33. [PMID: 23940382 DOI: 10.1113/jphysiol.2013.257626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We hypothesized that exercise training (ET) would alter α2-adrenoreceptor-mediated sympathetic vasoconstriction. Sprague-Dawley rats (n = 30) were randomized to sedentary (S), mild- (M) or heavy-intensity (H) treadmill ET groups (5 days per week for 4 weeks). Following the ET component of the study, rats were anaesthetized, and instrumented for lumbar sympathetic chain stimulation, triceps surae muscle contraction and measurement of femoral vascular conductance (FVC). The percentage change of FVC in response to sympathetic stimulation was determined at rest and during contraction in control, α2 blockade (yohimbine) and combined α2 + nitric oxide (NO) synthase (NOS) blockade (N-nitro-L-arginine methyl ester hydrochloride, L-NAME) conditions. ET augmented (P < 0.05) sympathetic vasoconstrictor responses at rest and during contraction. Yohimbine reduced (P < 0.05) the vasoconstrictor response in ET rats at rest (M: 2 Hz: 8 ± 2%, 5 Hz: 9 ± 4%; H: 2 Hz: 14 ± 5%, 5 Hz: 11 ± 6%) and during contraction (M: 2 Hz: 9 ± 2%, 5 Hz: 9 ± 5%; H: 2 Hz: 8 ± 3%, 5 Hz: 6 ± 6%) but did not change the response in S rats. The addition of L-NAME caused a larger increase (P < 0.05) in the vasoconstrictor response in ET than in S rats at rest (2 Hz: S: 8 ± 2%, M: 15 ± 3%, H: 23 ± 7%; 5 Hz: S: 8 ± 5%, M: 15 ± 3%, H: 17 ± 5%) and during contraction (2 Hz: S: 9 ± 3%, M: 18 ± 3%, H: 22 ± 6%; 5 Hz: S: 9 ± 5%, M: 22 ± 4%, H:26 ± 9%). Sympatholysis was greater (P < 0.05) in ET than in S rats. Blockade of α2-adrenoreceptors and NOS reduced (P < 0.05) sympatholysis in ET rats, but had no effect on sympatholysis in S rats. In conclusion, ET increased α2-mediated vasoconstriction at rest and during contraction.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Darren S. DeLorey: Faculty of Physical Education and Recreation, University of Alberta, E-435 Van Vliet Centre, Edmonton, T6G 2H9, Alberta, Canada.
| | | |
Collapse
|
8
|
Jendzjowsky NG, DeLorey DS. Acute superoxide scavenging reduces sympathetic vasoconstrictor responsiveness in short-term exercise-trained rats. J Appl Physiol (1985) 2013; 114:1511-8. [DOI: 10.1152/japplphysiol.00131.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We hypothesized that acute superoxide (O2−) scavenging would attenuate sympathetic vasoconstrictor responsiveness by augmenting nitric oxide (NO)-mediated inhibition of sympathetic vasoconstriction in exercise-trained rats. Sprague-Dawley rats were randomly assigned to sedentary time control (S; n = 7) or mild- (M: 20 m/min, 5° grade; n = 7) or heavy-intensity (H: 40 m/min, 5° grade; n = 7) exercise training (ET) groups and trained 5 days/wk for 4 wk with matched training volume. Following ET, rats were anesthetized and instrumented for lumbar sympathetic chain stimulation and measurement of femoral vascular conductance. In resting skeletal muscle, the percentage change of femoral vascular conductance in response to continuous (2 Hz) and patterned (20 and 40 Hz) sympathetic stimulation was determined during control conditions, O2− scavenging (TIRON, 1 g·kg−1·h−1 iv) and combined O2− scavenging + nitric oxide synthase blockade ( Nω-nitro-l-arginine methyl ester, 5 mg/kg iv). ET augmented the vasoconstrictor response to sympathetic stimulation in a training intensity-dependent manner ( P < 0.05) (S: 2 Hz: −26 ± 7.1%; 20 Hz: −26.9 ± 7.3%; 40 Hz: −27.7 ± 7.0%; M: 2 Hz: −37.4 ± 8.3%; 20 Hz: −35.9 ± 7.4%; 40 Hz: −38.2 ± 9.4%; H: 2 Hz: −46.9 ± 7.8%; 20 Hz: −48.5 ± 7.2%; 40 Hz: −51.2 ± 7.3%). O2− scavenging did not alter ( P > 0.05) the vasoconstrictor response in S rats (S: 2 Hz: −23.9 ± 7.6%; 20 Hz: −26.1 ± 9.1%; 40 Hz: −27.5 ± 7.2%), whereas the response in ET rats was diminished (M: 2 Hz: −26.3 ± 5.1%; 20 Hz: −28.7 ± 5.3%; 40 Hz: −28.5 ± 5.6%; H: 2 Hz: −35.5 ± 10.3%; 20 Hz: −38.6 ± 6.8%; 40 Hz: −43.9 ± 5.9%, P < 0.05). TIRON + Nω-nitro-l-arginine methyl ester increased vasoconstrictor responsiveness ( P < 0.05) in ET rats (M: 2 Hz: −47.7 ± 9.8%; 20 Hz: −41.2 ± 7.2%; 40 Hz: −50.5 ± 7.9%; H: 2 Hz: −55.8 ± 7.6%; 20 Hz: −55.7 ± 7.8%; 40 Hz: −58.7 ± 6.2%), whereas, in S rats, the response was unchanged (2 Hz: −29.4 ± 8.7%; 20 Hz: −30.0 ± 7.4%; 40 Hz: −35.2 ± 10.3%; P > 0.05). These data indicate that the augmented sympathetic vasoconstrictor responsiveness in ET rats was related to increased oxidative stress and altered nitric oxide-mediated inhibition of vasoconstriction.
Collapse
Affiliation(s)
- Nicholas G. Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Darren S. DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Jendzjowsky NG, Delorey DS. Short-term exercise training enhances functional sympatholysis through a nitric oxide-dependent mechanism. J Physiol 2013; 591:1535-49. [PMID: 23297301 DOI: 10.1113/jphysiol.2012.238998] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We tested the hypothesis that short-term mild- (M) and heavy-intensity (H) exercise training would enhance sympatholysis through a nitric oxide (NO)-dependent mechanism. Sprague-Dawley rats (n = 36) were randomly assigned to sedentary (S) or to M (20 m min(-1) 5% gradient) or H exercise training groups (40 m min(-1) 5% gradient). Rats assigned to M and H groups trained on 5 days week(-1) for 4 weeks, with the volume of training being matched between groups. Rats were anaesthetized and instrumented for stimulation of the lumbar sympathetic chain and the measurement of arterial blood pressure and femoral artery blood flow. The triceps surae muscle group was stimulated to contract rhythmically at 30 and 60% of maximal contractile force (MCF). The percentage change of femoral vascular conductance (%FVC) in response to sympathetic stimulation delivered at 2 and 5 Hz was determined at rest and during contraction at 30 and 60% MCF. The vascular response to sympathetic stimulation was reduced as a function of MCF in all rats (P < 0.05). At 30% MCF, the magnitude of sympatholysis (%FVC rest - contraction; %FVC) was greater in H compared with M and S groups (%FVC at 2 Hz, S, 9 ± 5; M, 11 ± 8; and H, 18 ± 7; and %FVC at 5 Hz, S, 6 ± 6; M, 12 ± 9; and H, 18 ± 7; P < 0.05) and was greater in H and M compared with S at 60% MCF (%FVC at 2 Hz, S, 15 ± 5; M, 25 ± 3; and H, 36 ± 6; and %FVC at 5 Hz, S, 22 ± 6; M, 33 ± 9; and H, 39 ± 9; P < 0.05). Blockade of NO synthase did not alter the magnitude of sympatholysis in S during contraction at 30 or 60% MCF. In contrast, NO synthase inhibition diminished sympatholysis in H at 30% MCF and in M and H at 60% MCF (P < 0.05). The present findings indicate that short-term exercise training augments sympatholysis in a training-intensity-dependent manner and through an NO-dependent mechanism.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, E-435 Van Vliet Centre, Edmonton, Alberta, Canada T6G 2H9.
| | | |
Collapse
|
10
|
Jendzjowsky NG, DeLorey DS. Short-term exercise training augments sympathetic vasoconstrictor responsiveness and endothelium-dependent vasodilation in resting skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2012; 303:R332-9. [DOI: 10.1152/ajpregu.00053.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups. Rats were anesthetized and instrumented for study 24 h after the last training session. Arterial pressure and femoral artery blood flow were measured, and femoral vascular conductance (FVC) was calculated. Lumbar sympathetic chain stimulation was delivered continuously at 2 Hz and in patterns at 20 and 40 Hz. EDD was assessed by the vascular response to intra-arterial bolus injections of ACh. The response (% change FVC) to sympathetic stimulation increased ( P < 0.05) in a training intensity-dependent manner at 2 Hz (S: −20.2 ± 9.8%, M: −34.0 ± 6.7%, and H: −44.9 ± 2.0%), 20 Hz (S: −22.0 ± 10.6%, M: −31.2 ± 8.4%, and H: −42.8 ± 5.9%), and 40 Hz (S: H −24.5 ± 8.5%, M: −35.1 ± 8.9%, H: −44.9 ± 6.5%). The magnitude of EDD also increased in a training intensity-dependent manner ( P < 0.05). These data demonstrate that short-term exercise training augments the magnitude of vasoconstriction in response to sympathetic stimulation and EDD in resting skeletal muscle in a training intensity-dependent manner.
Collapse
Affiliation(s)
- Nicholas G. Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Darren S. DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|