1
|
Wang WB, Tang RQ, Yuan B, Wang Y, Liu GD, Li DM, Zhang HJ, Zhao XQ, Bai FW. Engineering Chromatin Regulation of Xylose Utilization in Budding Yeast Saccharomyces cerevisiae for Efficient Bioconversion. ACS Synth Biol 2025; 14:794-803. [PMID: 40063354 DOI: 10.1021/acssynbio.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Utilization of xylose as a renewable carbon source has received constant interest. Considering that the structure and state of eukaryotic chromatin are inextricably intertwined, it is significant to explore chromatin regulation for engineering xylose metabolism in yeast. Here, we show that two chromatin remodelers, namely, Swr1 and Isw1, affect xylose utilization in recombinant budding yeastSaccharomyces cerevisiae. Overexpressing SWR1 showed the highest increase in xylose utilization, up to 29.3%, compared to that of the parent strain. Furthermore, comparative transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed significantly different changes of gene expression by elevated expression of Swr1 and Isw1. Reduced histone H2A.Z occupancy in two key carbon-metabolism regulators of Mig2 and Sip2 was further observed in the engineered yeast. Further tests showed improved xylose utilization of the engineered yeast in the presence of corncob hydrolysate. Our results suggest that chromatin regulators are critical genetic elements in recombinant S. cerevisiae for engineering xylose metabolism.
Collapse
Affiliation(s)
- Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui-Qi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guo-Dong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dong-Min Li
- Nutrition and Health Research Institute, 4 Rd., Future Science Park South, Beiqijia, Changping District, Beijing 102209, China
| | - Hong-Jia Zhang
- Nutrition and Health Research Institute, 4 Rd., Future Science Park South, Beiqijia, Changping District, Beijing 102209, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Moos HK, Patel R, Flaherty SK, Loverde SM, Nikolova EN. H2A.Z facilitates Sox2-nucleosome interaction by promoting DNA and histone H3 tail mobility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641691. [PMID: 40093108 PMCID: PMC11908261 DOI: 10.1101/2025.03.06.641691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Epigenetic regulation of eukaryotic chromatin structure and function can be modulated by histone variants and post-translational modifications. The conserved variant H2A.Z has been functionally linked to pioneer factors Sox2 and Oct4 that open chromatin and initiate cell fate-specific expression programs. However, the molecular basis for their interaction remains unknown. Using biochemistry, nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations, we examine the role of H2A.Z nucleosome dynamics in pioneer factor binding. We find that H2A.Z facilitates Sox2 and Oct4 binding at distinct locations in 601 nucleosomes. We further link this to increased DNA accessibility and perturbed dynamics of the H3 N-terminal tail, which we show competes with Sox2 for DNA binding. Our simulations validate a coupling between H2A.Z-mediated DNA unwrapping and altered H3 N-tail conformations with fewer contacts to DNA and the H2A.Z C- terminal tail. This destabilizing effect of H2A.Z is DNA sequence dependent and enhanced with the less stable Lin28B nucleosome. Collectively, our findings suggest that H2A.Z promotes pioneer factor binding by increasing access to DNA and reducing competition with H3 tails. This could have broader implications for how epigenetic marks or oncogenic mutations tune pioneer factor engagement with chromatin and thus affect its structure and recognition.
Collapse
|
3
|
Abrhámová K, Groušlová M, Valentová A, Hao X, Liu B, Převorovský M, Gahura O, Půta F, Sunnerhagen P, Folk P. Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes. RNA Biol 2024; 21:1-17. [PMID: 38711165 PMCID: PMC11085953 DOI: 10.1080/15476286.2024.2348896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/13/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Martina Groušlová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
4
|
Zhao H, Shao X, Guo M, Xing Y, Wang J, Luo L, Cai L. Competitive Chemical Reaction Kinetic Model of Nucleosome Assembly Using the Histone Variant H2A.Z and H2A In Vitro. Int J Mol Sci 2023; 24:15846. [PMID: 37958827 PMCID: PMC10647764 DOI: 10.3390/ijms242115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nucleosomes not only serve as the basic building blocks for eukaryotic chromatin but also regulate many biological processes, such as DNA replication, repair, and recombination. To modulate gene expression in vivo, the histone variant H2A.Z can be dynamically incorporated into the nucleosome. However, the assembly dynamics of H2A.Z-containing nucleosomes remain elusive. Here, we demonstrate that our previous chemical kinetic model for nucleosome assembly can be extended to H2A.Z-containing nucleosome assembly processes. The efficiency of H2A.Z-containing nucleosome assembly, like that of canonical nucleosome assembly, was also positively correlated with the total histone octamer concentration, reaction rate constant, and reaction time. We expanded the kinetic model to represent the competitive dynamics of H2A and H2A.Z in nucleosome assembly, thus providing a novel method through which to assess the competitive ability of histones to assemble nucleosomes. Based on this model, we confirmed that histone H2A has a higher competitive ability to assemble nucleosomes in vitro than histone H2A.Z. Our competitive kinetic model and experimental results also confirmed that in vitro H2A.Z-containing nucleosome assembly is governed by chemical kinetic principles.
Collapse
Affiliation(s)
- Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xueqin Shao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
| | - Mingxin Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Jingyan Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Liaofu Luo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; (H.Z.); (X.S.); (M.G.); (Y.X.); (J.W.); (L.L.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou 014010, China
| |
Collapse
|
5
|
Dijkwel Y, Tremethick DJ. The Role of the Histone Variant H2A.Z in Metazoan Development. J Dev Biol 2022; 10:jdb10030028. [PMID: 35893123 PMCID: PMC9326617 DOI: 10.3390/jdb10030028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
During the emergence and radiation of complex multicellular eukaryotes from unicellular ancestors, transcriptional systems evolved by becoming more complex to provide the basis for this morphological diversity. The way eukaryotic genomes are packaged into a highly complex structure, known as chromatin, underpins this evolution of transcriptional regulation. Chromatin structure is controlled by a variety of different epigenetic mechanisms, including the major mechanism for altering the biochemical makeup of the nucleosome by replacing core histones with their variant forms. The histone H2A variant H2A.Z is particularly important in early metazoan development because, without it, embryos cease to develop and die. However, H2A.Z is also required for many differentiation steps beyond the stage that H2A.Z-knockout embryos die. H2A.Z can facilitate the activation and repression of genes that are important for pluripotency and differentiation, and acts through a variety of different molecular mechanisms that depend upon its modification status, its interaction with histone and nonhistone partners, and where it is deposited within the genome. In this review, we discuss the current knowledge about the different mechanisms by which H2A.Z regulates chromatin function at various developmental stages and the chromatin remodeling complexes that determine when and where H2A.Z is deposited.
Collapse
|
6
|
Colino-Sanguino Y, Clark SJ, Valdes-Mora F. The H2A.Z-nuclesome code in mammals: emerging functions. Trends Genet 2021; 38:273-289. [PMID: 34702577 DOI: 10.1016/j.tig.2021.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
H2A.Z is a histone variant that provides specific structural and docking-side properties to the nucleosome, resulting in diverse and specialised molecular and cellular functions. In this review, we discuss the latest studies uncovering new functional aspects of mammalian H2A.Z in gene transcription, including pausing and elongation of RNA polymerase II (RNAPII) and enhancer activity; DNA repair; DNA replication; and 3D chromatin structure. We also review the recently described role of H2A.Z in embryonic development, cell differentiation, neurodevelopment, and brain function. In conclusion, our cumulative knowledge of H2A.Z over the past 40 years, in combination with the implementation of novel molecular technologies, is unravelling an unexpected and complex role of histone variants in gene regulation and disease.
Collapse
Affiliation(s)
- Yolanda Colino-Sanguino
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St. Vincent's Clinical School, University of NSW Sydney, Sydney, NSW, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, NSW, Australia; School of Children and Women Health, University of NSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Dai L, Xiao X, Pan L, Shi L, Xu N, Zhang Z, Feng X, Ma L, Dou S, Wang P, Zhu B, Li W, Zhou Z. Recognition of the inherently unstable H2A nucleosome by Swc2 is a major determinant for unidirectional H2A.Z exchange. Cell Rep 2021; 35:109183. [PMID: 34038732 DOI: 10.1016/j.celrep.2021.109183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
The multisubunit chromatin remodeler SWR1/SRCAP/p400 replaces the nucleosomal H2A-H2B dimer with the free-form H2A.Z-H2B dimer, but the mechanism governing the unidirectional H2A-to-H2A.Z exchange remains elusive. Here, we perform single-molecule force spectroscopy to dissect the disassembly/reassembly processes of the H2A nucleosome and H2A.Z nucleosome. We find that the N-terminal 1-135 residues of yeast SWR1 complex protein 2 (previously termed Swc2-Z) facilitate the disassembly of nucleosomes containing H2A but not H2A.Z. The Swc2-mediated nucleosome disassembly/reassembly requires the inherently unstable H2A nucleosome, whose instability is conferred by three H2A α2-helical residues, Gly47, Pro49, and Ile63, as they selectively weaken the structural rigidity of the H2A-H2B dimer. It also requires Swc2-ZN (residues 1-37) that directly anchors to the H2A nucleosome and functions in the SWR1-catalyzed H2A.Z replacement in vitro and yeast H2A.Z deposition in vivo. Our findings provide mechanistic insights into how the SWR1 complex discriminates between the H2A nucleosome and H2A.Z nucleosome, establishing a simple paradigm for the governance of unidirectional H2A.Z exchange.
Collapse
Affiliation(s)
- Linchang Dai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuxin Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuoxing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Ramzan F, Baumbach J, Monks AD, Zovkic IB. Histone H2A.Z is required for androgen receptor-mediated effects on fear memory. Neurobiol Learn Mem 2020; 175:107311. [PMID: 32916283 DOI: 10.1016/j.nlm.2020.107311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic factors translate environmental signals into stable outcomes, but how they are influenced by regulators of plasticity remain unclear. We previously showed that androgen receptor overexpression inhibited fear memory in male mice and increased expression of the histone variant H2A.Z, a novel epigenetic regulator of memory. Here, we used conditional-inducible H2A.Z knockout mice to investigate how H2A.Z deletion influences androgenic regulation of fear memory. We showed that conditional inducible H2A.Z deletion blocked memory-enhancing effects of androgen depletion (induced by gonadectomy), and of pharmacological inhibition of the androgen receptor with flutamide. Similarly, H2A.Z deletion blocked the memory-reducing effects of DHT, and DHT treatment in cultured hippocampal neurons altered H2A.Z binding, suggesting that AR is an H2A.Z regulator in neurons. Overall, these data show that fear memory formation is regulated by interactions between sex hormones and epigenetic factors, which has implications for sex differences in fear-related disorders.
Collapse
Affiliation(s)
- Firyal Ramzan
- University of Toronto Mississauga, Department of Psychology, Mississauga, Ontario L5L 1C6, Canada
| | - Jennet Baumbach
- University of Toronto Mississauga, Department of Psychology, Mississauga, Ontario L5L 1C6, Canada
| | - Ashley D Monks
- University of Toronto Mississauga, Department of Psychology, Mississauga, Ontario L5L 1C6, Canada
| | - Iva B Zovkic
- University of Toronto Mississauga, Department of Psychology, Mississauga, Ontario L5L 1C6, Canada.
| |
Collapse
|
9
|
Cheema MS, Good KV, Kim B, Soufari H, O’Sullivan C, Freeman ME, Stefanelli G, Casas CR, Zengeler KE, Kennedy AJ, Eirin Lopez JM, Howard PL, Zovkic IB, Shabanowitz J, Dryhurst DD, Hunt DF, Mackereth CD, Ausió J. Deciphering the Enigma of the Histone H2A.Z-1/H2A.Z-2 Isoforms: Novel Insights and Remaining Questions. Cells 2020; 9:cells9051167. [PMID: 32397240 PMCID: PMC7290884 DOI: 10.3390/cells9051167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
The replication independent (RI) histone H2A.Z is one of the more extensively studied variant members of the core histone H2A family, which consists of many replication dependent (RD) members. The protein has been shown to be indispensable for survival, and involved in multiple roles from DNA damage to chromosome segregation, replication, and transcription. However, its functional involvement in gene expression is controversial. Moreover, the variant in several groups of metazoan organisms consists of two main isoforms (H2A.Z-1 and H2A.Z-2) that differ in a few (3–6) amino acids. They comprise the main topic of this review, starting from the events that led to their identification, what is currently known about them, followed by further experimental, structural, and functional insight into their roles. Despite their structural differences, a direct correlation to their functional variability remains enigmatic. As all of this is being elucidated, it appears that a strong functional involvement of isoform variability may be connected to development.
Collapse
Affiliation(s)
- Manjinder S. Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Bohyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Heddy Soufari
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France; (H.S.); (C.D.M.)
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, Univ. Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Connor O’Sullivan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Melissa E. Freeman
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Gilda Stefanelli
- Department of Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.S.); (I.B.Z.)
| | - Ciro Rivera Casas
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL 33181, USA; (C.R.C.); (J.M.E.L.)
| | - Kristine E. Zengeler
- Department of Chemistry and Biochemistry, Bates College, 2 Andrews Road, Lewiston, ME 04240, USA; (K.E.Z.); (A.J.K.)
| | - Andrew J. Kennedy
- Department of Chemistry and Biochemistry, Bates College, 2 Andrews Road, Lewiston, ME 04240, USA; (K.E.Z.); (A.J.K.)
| | - Jose Maria Eirin Lopez
- Environmental Epigenetics Group, Department of Biological Sciences, Florida International UniversityNorth Miami, FL 33181, USA; (C.R.C.); (J.M.E.L.)
| | - Perry L. Howard
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Iva B. Zovkic
- Department of Neurosciences & Mental Health, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (G.S.); (I.B.Z.)
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (J.S.); (D.F.H.)
| | - Deanna D. Dryhurst
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; (J.S.); (D.F.H.)
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| | - Cameron D. Mackereth
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France; (H.S.); (C.D.M.)
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, Univ. Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux, France
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada; (M.S.C.); (K.V.G.); (B.K.); (C.O.); (M.E.F.); (P.L.H.); (D.D.D.)
- Correspondence: ; Tel.: +1-250-721-8863; Fax: +1-250-721-8855
| |
Collapse
|
10
|
Kwapisz M, Morillon A. Subtelomeric Transcription and its Regulation. J Mol Biol 2020; 432:4199-4219. [PMID: 32035903 PMCID: PMC7374410 DOI: 10.1016/j.jmb.2020.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
The subtelomeres, highly heterogeneous repeated sequences neighboring telomeres, are transcribed into coding and noncoding RNAs in a variety of organisms. Telomereproximal subtelomeric regions produce non-coding transcripts i.e., ARRET, αARRET, subTERRA, and TERRA, which function in telomere maintenance. The role and molecular mechanisms of the majority of subtelomeric transcripts remain unknown. This review depicts the current knowledge and puts into perspective the results obtained in different models from yeasts to humans.
Collapse
Affiliation(s)
- Marta Kwapisz
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, CNRS UMR 3244, Sorbonne Université, PSL University, Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248, Paris, France.
| |
Collapse
|
11
|
Rona G, Roberti D, Yin Y, Pagan JK, Homer H, Sassani E, Zeke A, Busino L, Rothenberg E, Pagano M. PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading. eLife 2018; 7:e38771. [PMID: 29985131 PMCID: PMC6037479 DOI: 10.7554/elife.38771] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 12/05/2022] Open
Abstract
The mammalian FBXL10-RNF68-RNF2 ubiquitin ligase complex (FRRUC) mono-ubiquitylates H2A at Lys119 to repress transcription in unstressed cells. We found that the FRRUC is rapidly and transiently recruited to sites of DNA damage in a PARP1- and TIMELESS-dependent manner to promote mono-ubiquitylation of H2A at Lys119, a local decrease of H2A levels, and an increase of H2A.Z incorporation. Both the FRRUC and H2A.Z promote transcriptional repression, double strand break signaling, and homologous recombination repair (HRR). All these events require both the presence and activity of the FRRUC. Moreover, the FRRUC and its activity are required for the proper recruitment of BMI1-RNF2 and MEL18-RNF2, two other ubiquitin ligases that mono-ubiquitylate Lys119 in H2A upon genotoxic stress. Notably, whereas H2A.Z is not required for H2A mono-ubiquitylation, impairment of the latter results in the inhibition of H2A.Z incorporation. We propose that the recruitment of the FRRUC represents an early and critical regulatory step in HRR.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Domenico Roberti
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Yandong Yin
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Julia K Pagan
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Harrison Homer
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Andras Zeke
- Institute of Enzymology, Research Center for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Luca Busino
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
| | - Michele Pagano
- Department of Biochemistry and Molecular PharmacologyNew York University School of MedicineNew YorkUnited States
- Perlmutter Cancer CenterNew York University School of MedicineNew YorkUnited States
- Howard Hughes Medical Institute, New York University School of MedicineNew YorkUnited States
| |
Collapse
|
12
|
Wang L, Xu Z, Khawar MB, Liu C, Li W. The histone codes for meiosis. Reproduction 2018; 154:R65-R79. [PMID: 28696245 DOI: 10.1530/rep-17-0153] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022]
Abstract
Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhiliang Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | | | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Dronamraju R, Ramachandran S, Jha DK, Adams AT, DiFiore JV, Parra MA, Dokholyan NV, Strahl BD. Redundant Functions for Nap1 and Chz1 in H2A.Z Deposition. Sci Rep 2017; 7:10791. [PMID: 28883625 PMCID: PMC5589762 DOI: 10.1038/s41598-017-11003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022] Open
Abstract
H2A.Z is a histone H2A variant that contributes to transcriptional regulation, DNA damage response and limits heterochromatin spreading. In Saccharomyces cerevisiae, H2A.Z is deposited by the SWR-C complex, which relies on several histone chaperones including Nap1 and Chz1 to deliver H2A.Z-H2B dimers to SWR-C. However, the mechanisms by which Nap1 and Chz1 cooperate to bind H2A.Z and their contribution to H2A.Z deposition in chromatin is not well understood. Using structural modeling and molecular dynamics simulations, we identify a series of H2A.Z residues that form a chaperone-specific binding surface. Mutation of these residues revealed different surface requirements for Nap1 and Chz1 interaction with H2A.Z. Consistent with this result, we found that loss of Nap1 or Chz1 individually resulted in mild defects in H2A.Z deposition, but that deletion of both Nap1 and Chz1 resulted in a significant reduction of H2A.Z deposition at promoters and led to heterochromatin spreading. Together, our findings reveal unique H2A.Z surface dependences for Nap1 and Chz1 and a redundant role for these chaperones in H2A.Z deposition.
Collapse
Affiliation(s)
- Raghuvar Dronamraju
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Deepak K Jha
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Alexander T Adams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Julia V DiFiore
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael A Parra
- Department Susquehanna University, Selinsgrove, PA, 17870, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
INO80 exchanges H2A.Z for H2A by translocating on DNA proximal to histone dimers. Nat Commun 2017; 8:15616. [PMID: 28604691 PMCID: PMC5472786 DOI: 10.1038/ncomms15616] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/12/2017] [Indexed: 12/27/2022] Open
Abstract
ATP-dependent chromatin remodellers modulate nucleosome dynamics by mobilizing or disassembling nucleosomes, as well as altering nucleosome composition. These chromatin remodellers generally function by translocating along nucleosomal DNA at the H3–H4 interface of nucleosomes. Here we show that, unlike other remodellers, INO80 translocates along DNA at the H2A–H2B interface of nucleosomes and persistently displaces DNA from the surface of H2A–H2B. DNA translocation and DNA torsional strain created near the entry site of nucleosomes by INO80 promotes both the mobilization of nucleosomes and the selective exchange of H2A.Z–H2B dimers out of nucleosomes and replacement by H2A–H2B dimers without any additional histone chaperones. We find that INO80 translocates and mobilizes H2A.Z-containing nucleosomes more efficiently than those containing H2A, partially accounting for the preference of INO80 to replace H2A.Z with H2A. Our data suggest that INO80 has a mechanism for dimer exchange that is distinct from other chromatin remodellers including its paralogue SWR1. Chromatin remodellers usually mobilize or disassemble nucleosomes by translocating along the nucleosomal DNA at the H3-H4 interface. Here, the authors provide evidence chromatin remodeller INO80 translocates along DNA at the H2A-H2B interface and displaces DNA from the surface of H2A-H2B.
Collapse
|
15
|
Xu W, Li Y, Cheng Z, Xia G, Wang M. A wheat histone variant gene TaH2A.7 enhances drought tolerance and promotes stomatal closure in Arabidopsis. PLANT CELL REPORTS 2016; 35:1853-62. [PMID: 27215438 DOI: 10.1007/s00299-016-1999-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/12/2016] [Indexed: 05/22/2023]
Abstract
We found a histone variant enhances drought tolerance partially via promoting stomatal closure other than osmotic stress resistance, indicating the crucial and complicated contribution of epigenetic regulation to abiotic stress response. Histone variants epigenetically regulate gene transcription through remodeling chromatin. They have been implicated in modulating plant abiotic stress response, however, the role(s) is not well documented. Here, we identified an abiotic stress responsive H2A variant gene TaH2A.7 from wheat. TaH2A.7 shared high identity with H2A homologs and localized to the nucleus. TaH2A.7 overexpression in Arabidopsis significantly enhanced drought tolerance, but had no effect on the response to saline, osmotic and oxidative stresses. TaH2A.7 lowered water loss rate, and promoted ABA-induced stomatal closure. In TaH2A.7 overexpression plants, the mRNA levels of numerous genes involved in the ABA pathway and stomatal movement signaling pathway were elevated, H2O2 level in guard cells was increased, as well. Together, TaH2A.7 can enhance drought tolerance via, at least in part, promoting stomatal closure, and appears to be a promising target for molecular breeding.
Collapse
Affiliation(s)
- Wenjing Xu
- Key Laboratory of Cellular Engineering and Germplasm Innovation, School of Life Science, Ministry of Education, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Yongchao Li
- Key Laboratory of Cellular Engineering and Germplasm Innovation, School of Life Science, Ministry of Education, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Zhaohui Cheng
- Key Laboratory of Cellular Engineering and Germplasm Innovation, School of Life Science, Ministry of Education, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Guangmin Xia
- Key Laboratory of Cellular Engineering and Germplasm Innovation, School of Life Science, Ministry of Education, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Mengcheng Wang
- Key Laboratory of Cellular Engineering and Germplasm Innovation, School of Life Science, Ministry of Education, Shandong University, 27 Shandanan Road, Jinan, 250100, China.
| |
Collapse
|
16
|
Colino-Sanguino Y, Clark SJ, Valdes-Mora F. H2A.Z acetylation and transcription: ready, steady, go! Epigenomics 2016; 8:583-6. [PMID: 27087541 DOI: 10.2217/epi-2016-0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yolanda Colino-Sanguino
- Histone Variants Group, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Sydney 2010, New South Wales, Australia.,Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Sydney 2010, New South Wales, Australia
| | - Susan J Clark
- Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Sydney 2010, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney 2010, New South Wales, Australia
| | - Fatima Valdes-Mora
- Histone Variants Group, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Sydney 2010, New South Wales, Australia.,Epigenetics Research Laboratory, Genomics & Epigenetics Division, Garvan Institute of Medical Research, Sydney 2010, New South Wales, Australia.,St. Vincent's Clinical School, University of NSW, Sydney 2010, New South Wales, Australia
| |
Collapse
|
17
|
Vernì F, Cenci G. The Drosophila histone variant H2A.V works in concert with HP1 to promote kinetochore-driven microtubule formation. Cell Cycle 2015; 14:577-88. [PMID: 25591068 DOI: 10.4161/15384101.2014.991176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Unlike other organisms that have evolved distinct H2A variants for different functions, Drosophila melanogaster has just one variant which is capable of filling many roles. This protein, H2A.V, combines the features of the conserved variants H2A.Z and H2A.X in transcriptional control/heterochromatin assembly and DNA damage response, respectively. Here we show that mutations in the gene encoding H2A.V affect chromatin compaction and perturb chromosome segregation in Drosophila mitotic cells. A microtubule (MT) regrowth assay after cold exposure revealed that loss of H2A.V impairs the formation of kinetochore-driven (k) fibers, which can account for defects in chromosome segregation. All defects are rescued by a transgene encoding H2A.V that lacks the H2A.X function in the DNA damage response, suggesting that the H2A.Z (but not H2A.X) functionality of H2A.V is required for chromosome segregation. We also found that loss of H2A.V weakens HP1 localization, specifically at the pericentric heterochromatin of metaphase chromosomes. Interestingly, loss of HP1 yielded not only telomeric fusions but also mitotic defects similar to those seen in H2A.V null mutants, suggesting a role for HP1 in chromosome segregation. We also show that H2A.V precipitates HP1 from larval brain extracts indicating that both proteins are part of the same complex. Moreover, we found that the overexpression of HP1 rescues chromosome missegregation and defects in the kinetochore-driven k-fiber regrowth of H2A.V mutants indicating that both phenotypes are influenced by unbalanced levels of HP1. Collectively, our results suggest that H2A.V and HP1 work in concert to ensure kinetochore-driven MT growth.
Collapse
Affiliation(s)
- Fiammetta Vernì
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" ; Sapienza Università di Roma ; Roma , Italy
| | | |
Collapse
|
18
|
Martins NMC, Bergmann JH, Shono N, Kimura H, Larionov V, Masumoto H, Earnshaw WC. Epigenetic engineering shows that a human centromere resists silencing mediated by H3K27me3/K9me3. Mol Biol Cell 2015; 27:177-96. [PMID: 26564795 PMCID: PMC4694756 DOI: 10.1091/mbc.e15-08-0605] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022] Open
Abstract
Centromeres are embedded within heterochromatin but are transcriptionally active. Centromeric transcription and the centromere function of a human artificial chromosome resist repression mediated by nucleation of repressive marks H3K27me3 or H3K9me3 via tethering of EZH2 or the SET domain of Suv39h1, respectively. Centromeres are characterized by the centromere-specific H3 variant CENP-A, which is embedded in chromatin with a pattern characteristic of active transcription that is required for centromere identity. It is unclear how centromeres remain transcriptionally active despite being flanked by repressive pericentric heterochromatin. To further understand centrochromatin’s response to repressive signals, we nucleated a Polycomb-like chromatin state within the centromere of a human artificial chromosome (HAC) by tethering the methyltransferase EZH2. This led to deposition of the H3K27me3 mark and PRC1 repressor binding. Surprisingly, this state did not abolish HAC centromere function or transcription, and this apparent resistance was not observed on a noncentromeric locus, where transcription was silenced. Directly tethering the reader/repressor PRC1 bypassed this resistance, inactivating the centromere. We observed analogous responses when tethering the heterochromatin Editor Suv39h1-methyltransferase domain (centromere resistance) or reader HP1α (centromere inactivation), respectively. Our results reveal that the HAC centromere can resist repressive pathways driven by H3K9me3/H3K27me3 and may help to explain how centromeres are able to resist inactivation by flanking heterochromatin.
Collapse
Affiliation(s)
- Nuno M C Martins
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Jan H Bergmann
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | - Nobuaki Shono
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Vladimir Larionov
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| |
Collapse
|
19
|
Mojardín L, Botet J, Moreno S, Salas M. Chromosome segregation and organization are targets of 5'-Fluorouracil in eukaryotic cells. Cell Cycle 2015; 14:206-18. [PMID: 25483073 DOI: 10.4161/15384101.2014.974425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The antimetabolite 5'-Fluorouracil (5FU) is an analog of uracil commonly employed as a chemotherapeutic agent in the treatment of a range of cancers including colorectal tumors. To assess the cellular effects of 5FU, we performed a genome-wide screening of the haploid deletion library of the eukaryotic model Schizosaccharomyces pombe. Our analysis validated previously characterized drug targets including RNA metabolism, but it also revealed unexpected mechanisms of action associated with chromosome segregation and organization (post-translational histone modification, histone exchange, heterochromatin). Further analysis showed that 5FU affects the heterochromatin structure (decreased levels of histone H3 lysine 9 methylation) and silencing (down-regulation of heterochromatic dg/dh transcripts). To our knowledge, this is the first time that defects in heterochromatin have been correlated with increased cytotoxicity to an anticancer drug. Moreover, the segregation of chromosomes, a process that requires an intact heterochromatin at centromeres, was impaired after drug exposure. These defects could be related to the induction of genes involved in chromatid cohesion and kinetochore assembly. Interestingly, we also observed that thiabendazole, a microtubule-destabilizing agent, synergistically enhanced the cytotoxic effects of 5FU. These findings point to new targets and drug combinations that could potentiate the effectiveness of 5FU-based treatments.
Collapse
Key Words
- 5FU, 5′-Fluorouracil, 5FU
- 5′-Fluorouracil
- Anticancer drug
- CENP-A, centromere-associated protein A
- CLRC, Clr4 methyltransferase complex
- ChIP, chromatin immunoprecipitation
- FUTP, fluorouridine triphosphate
- FdUMP, fluorodeoxyuridine monophosphate
- FdUTP, fluorodeoxyuridine triphosphate
- G1 phase, gap 1 phase of cell cycle
- GO, Gene Ontology
- H3K9me, H3 lysine 9 methylation
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HMT, histone methyltransferase
- HP1, heterochromatin protein 1
- HULC, histone H2B ubiquitin ligase complex
- MNAse, micrococcal nuclease
- RDRC, RNA-directed RNA polymerase complex
- RITS, RNA-induced transcriptional silencing
- RNAi, interference RNA
- S phase, synthesis phase of cell cycle
- Schizosaccharomyces pombe
- TBZ, thiabendazole
- centromere
- chromosome organization
- chromosome segregation
- cnt, central core
- dsRNA, double-stranded RNA
- heterochromatin
- histone modification
- imr, innermost repeats
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Laura Mojardín
- a Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-Universidad Autónoma) ; Cantoblanco , Madrid , Spain
| | | | | | | |
Collapse
|
20
|
Abstract
Histone variants are an important part of the histone contribution to chromatin epigenetics. In this review, we describe how the known structural differences of these variants from their canonical histone counterparts impart a chromatin signature ultimately responsible for their epigenetic contribution. In terms of the core histones, H2A histone variants are major players while H3 variant CenH3, with a controversial role in the nucleosome conformation, remains the genuine epigenetic histone variant. Linker histone variants (histone H1 family) haven’t often been studied for their role in epigenetics. However, the micro-heterogeneity of the somatic canonical forms of linker histones appears to play an important role in maintaining the cell-differentiated states, while the cell cycle independent linker histone variants are involved in development. A picture starts to emerge in which histone H2A variants, in addition to their individual specific contributions to the nucleosome structure and dynamics, globally impair the accessibility of linker histones to defined chromatin locations and may have important consequences for determining different states of chromatin metabolism.
Collapse
Affiliation(s)
- Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada.
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada.
| |
Collapse
|
21
|
Kwapisz M, Ruault M, van Dijk E, Gourvennec S, Descrimes M, Taddei A, Morillon A. Expression of Subtelomeric lncRNAs Links Telomeres Dynamics to RNA Decay in S. cerevisiae. Noncoding RNA 2015; 1:94-126. [PMID: 29861418 PMCID: PMC5932542 DOI: 10.3390/ncrna1020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to regulate gene expression, chromatin domains and chromosome stability in eukaryotic cells. Recent observations have reported the existence of telomeric repeats containing long ncRNAs – TERRA in mammalian and yeast cells. However, their functions remain poorly characterized. Here, we report the existence in S. cerevisiae of several lncRNAs within Y′ subtelomeric regions. We have called them subTERRA. These belong to Cryptic Unstable Transcripts (CUTs) and Xrn1p-sensitive Unstable Transcripts (XUTs) family. subTERRA transcription, carried out mainly by RNAPII, is initiated within the subtelomeric Y’ element and occurs in both directions, towards telomeres as well as centromeres. We show that subTERRA are distinct from TERRA and are mainly degraded by the general cytoplasmic and nuclear 5′- and 3′- RNA decay pathways in a transcription-dependent manner. subTERRA accumulates preferentially during the G1/S transition and in C-terminal rap1 mutant but independently of Rap1p function in silencing. The accumulation of subTERRA in RNA decay mutants coincides with telomere misregulation: shortening of telomeres, loss of telomeric clustering in mitotic cells and changes in silencing of subtelomeric regions. Our data suggest that subtelomeric RNAs expression links telomere maintenance to RNA degradation pathways.
Collapse
Affiliation(s)
- Marta Kwapisz
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
- Authors to whom correspondence should be addressed; E-Mails: (M.K.); (A.M.); Tel.: +33-561-335-824 (M.K.); +33-(0)-156-246-515 (A.M.); Fax: +33-524-335-886 (M.K.); +33-(0)-156-246-674 (A.M.)
| | - Myriam Ruault
- Nuclear Dynamics, Institut Curie, PSL Research University, CNRS UMR3664, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mails: (M.R.); (A.T.)
| | - Erwin van Dijk
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Stephanie Gourvennec
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Marc Descrimes
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
| | - Angela Taddei
- Nuclear Dynamics, Institut Curie, PSL Research University, CNRS UMR3664, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mails: (M.R.); (A.T.)
| | - Antonin Morillon
- ncRNA, epigenetics and genome fluidity, Institut Curie, PSL Research University, CNRS UMR3244, Université Pierre et Marie Curie, 26 rue d’Ulm, 75248 Paris Cedex 05, France; E-Mail: (M.D.)
- Authors to whom correspondence should be addressed; E-Mails: (M.K.); (A.M.); Tel.: +33-561-335-824 (M.K.); +33-(0)-156-246-515 (A.M.); Fax: +33-524-335-886 (M.K.); +33-(0)-156-246-674 (A.M.)
| |
Collapse
|
22
|
Abstract
Genetic and epigenetic changes are at the root of all cancers. The epigenetic component involves alterations of the post-synthetic modifications of DNA (methylation) and histones (histone posttranslational modifications, PTMs) as well as of those of their molecular "writers," "readers," and "erasers." Noncoding RNAs (ncRNA) can also play a role. Here, we focus on the involvement of histone alterations in cancer, in particular that of the histone variant H2A.Z in the etiology of prostate cancer. The structural mechanisms putatively responsible for the contribution of H2A.Z to oncogenic gene expression programs are first described, followed by what is currently known about the involvement of this histone variant in the regulation of androgen receptor regulated gene expression. The implications of this and their relevance to oncogene deregulation in different stages of prostate cancer, including the progression toward androgen independence, are discussed. This review underscores the increasing awareness of the epigenetic contribution of histone variants to oncogenic progression.
Collapse
Affiliation(s)
- Deanna Dryhurst
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 258a, Victoria, British Columbia Canada V8W 3P6
- ImmunoPrecise Antibodies Ltd., 3204-4464 Markham St., Victoria, British Columbia Canada V8Z 7X8
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 258a, Victoria, British Columbia Canada V8W 3P6
| |
Collapse
|
23
|
Yamanaka S, Siomi MC, Siomi H. piRNA clusters and open chromatin structure. Mob DNA 2014; 5:22. [PMID: 25126116 PMCID: PMC4131230 DOI: 10.1186/1759-8753-5-22] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TEs) are major structural components of eukaryotic genomes; however, mobilization of TEs generally has negative effects on the host genome. To counteract this threat, host cells have evolved genetic and epigenetic mechanisms that keep TEs silenced. One such mechanism involves the Piwi-piRNA complex, which represses TEs in animal gonads either by cleaving TE transcripts in the cytoplasm or by directing specific chromatin modifications at TE loci in the nucleus. Most Piwi-interacting RNAs (piRNAs) are derived from genomic piRNA clusters. There has been remarkable progress in our understanding of the mechanisms underlying piRNA biogenesis. However, little is known about how a specific locus in the genome is converted into a piRNA-producing site. In this review, we will discuss a possible link between chromatin boundaries and piRNA cluster formation.
Collapse
Affiliation(s)
- Soichiro Yamanaka
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
24
|
Billon P, Côté J. Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:290-302. [PMID: 24459731 DOI: 10.1016/j.bbagrm.2011.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone variant H2A.Z is essential in higher eukaryotes and has different functions in the cell. Several studies indicate that H2A.Z is found at specific loci in the genome such as regulatory-gene regions, where it poises genes for transcription. Itsdeposition creates chromatin regions with particular structural characteristics which could favor rapid transcription activation. This review focuses on the highly regulated mechanism of H2A.Z deposition in chromatin which is essential for genome integrity. Chaperones escort H2A.Z to large ATP-dependent chromatin remodeling enzymes which are responsible for its deposition/eviction. Over the last ten years, biochemical, genetic and genomic studies helped us understand the precise role of these complexes in this process. It hasbeen suggested that a cooperation occurs between histone acetyltransferase and chromatin remodeling activities to incorporate H2A.Z in chromatin. Its regulated deposition near centromeres and telomeres also shows its implication in chromosomal structure integrity and parallels a role in DNA damage response. Thedynamics of H2A.Z deposition/eviction at specific loci was shown to be critical for genome expression andmaintenance, thus cell fate. Altogether, recent findings reassert the importance of the regulated depositionof this histone variant. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
25
|
Insights into chromatin structure and dynamics in plants. BIOLOGY 2013; 2:1378-410. [PMID: 24833230 PMCID: PMC4009787 DOI: 10.3390/biology2041378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology.
Collapse
|
26
|
Subramanian V, Mazumder A, Surface LE, Butty VL, Fields PA, Alwan A, Torrey L, Thai KK, Levine SS, Bathe M, Boyer LA. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet 2013; 9:e1003725. [PMID: 23990805 PMCID: PMC3749939 DOI: 10.1371/journal.pgen.1003725] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/01/2013] [Indexed: 12/20/2022] Open
Abstract
The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3)) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3) interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3) was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3) ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3) ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3) displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3) mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.
Collapse
Affiliation(s)
- Vidya Subramanian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aprotim Mazumder
- Laboratory for Computational Biology and Biophysics, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Lauren E. Surface
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Paul A. Fields
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Allison Alwan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Lillian Torrey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kevin K. Thai
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stuart S. Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mark Bathe
- Laboratory for Computational Biology and Biophysics, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Laurie A. Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Histone variant H2A.Z functions in sister chromatid cohesion in Saccharomyces cerevisiae. Mol Cell Biol 2013; 33:3473-81. [PMID: 23816883 DOI: 10.1128/mcb.00162-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H2A.Z is a highly conserved variant of histone H2A with well-characterized roles in transcriptional regulation. We previously reported that H2A.Z and Mcd1, a subunit of the cohesin complex, regulate the establishment of transcriptional silencing at telomeres in Saccharomyces cerevisiae and that H2A.Z broadly dissociated from chromatin during the anaphase-to-telophase transition, coincident with the dissociation of Mcd1 from chromosomes and dissolution of cohesion. In this study, we show that depletion of H2A.Z causes precocious loss of sister chromatid cohesion in yeast without loss of Mcd1 from chromosomes. H2A.Z is deposited into chromatin by the SWR1 complex and is subject to acetylation of its four N-terminal tail lysine residues by the NuA4 and SAGA histone acetyltransferase complexes. We found that cells compromised for function of the SWR1 complex were defective in cohesion, as were cells expressing a form of H2A.Z not subject to acetylation. Finally, inactivation of H2A.Z in metaphase-blocked cells led immediately to cohesion defects, suggesting a direct role for H2A.Z in the maintenance of sister chromatid cohesion.
Collapse
|
28
|
A combination of H2A.Z and H4 acetylation recruits Brd2 to chromatin during transcriptional activation. PLoS Genet 2012; 8:e1003047. [PMID: 23144632 PMCID: PMC3493454 DOI: 10.1371/journal.pgen.1003047] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/11/2012] [Indexed: 11/19/2022] Open
Abstract
H2A.Z is an essential histone variant that has been implicated to have multiple chromosomal functions. To understand how H2A.Z participates in such diverse activities, we sought to identify downstream effector proteins that are recruited to chromatin via H2A.Z. For this purpose, we developed a nucleosome purification method to isolate H2A.Z-containing nucleosomes from human cells and used mass spectrometry to identify the co-purified nuclear proteins. Through stringent filtering, we identified the top 21 candidates, many of which have conserved structural motifs that bind post-translationally modified histones. We further validated the biological significance of one such candidate, Brd2, which is a double-bromodomain-containing protein known to function in transcriptional activation. We found that Brd2's preference for H2A.Z nucleosomes is mediated through a combination of hyperacetylated H4 on these nucleosomes, as well as additional features on H2A.Z itself. In addition, comparison of nucleosomes containing either H2A.Z-1 or H2A.Z-2 isoforms showed that significantly more Brd2 co-purifies with the former, suggesting these two isoforms engage different downstream effector proteins. Consistent with these biochemical analyses, we found that Brd2 is recruited to AR–regulated genes in an H2A.Z-dependent manner and that chemical inhibition of Brd2 recruitment greatly inhibits AR–regulated gene expression. Taken together, we propose that Brd2 is a key downstream mediator that links H2A.Z and transcriptional activation of AR–regulated genes. Moreover, this study validates the approach of using proteomics to identify nucleosome-interacting proteins in order to elucidate downstream mechanistic functions associated with the histone variant H2A.Z. Within the cell's nucleus, DNA closely associates with histone proteins, forming a structure known as chromatin. Packaging DNA into chromatin allows for efficient storage of the genome, and it also provides an additional means of regulating processes, such as gene expression, that require access to DNA. Two copies each of the four core histones (H2A, H2B, H3, H4) associate with approximately 150 base pairs of DNA to make up the basic unit of chromatin, the nucleosome. In addition to the core histones, variants exist that have specialized functions within chromatin. One such variant is H2A.Z, which is essential for cell viability. Here, we describe an approach by which to characterize proteins that interact with H2A.Z-containing nucleosomes. Our findings reveal that many of the identified proteins may interact with H2A.Z nucleosomes by recognizing specific chemical modifications uniquely present on H2A.Z nucleosomes. One such protein, Brd2, interacted in a manner dependent on recognition of acetylated histone residues that are enriched on H2A.Z nucleosomes. Furthermore, this interaction is required for expression of hormone-responsive genes in prostate cancer cells. By this approach, we uncovered a key mediator linking H2A.Z to transcriptional regulation and found a potentially targetable step to regulate prostate cell proliferation.
Collapse
|
29
|
Ioudinkova ES, Barat A, Pichugin A, Markova E, Sklyar I, Pirozhkova I, Robin C, Lipinski M, Ogryzko V, Vassetzky YS, Razin SV. Distinct distribution of ectopically expressed histone variants H2A.Bbd and MacroH2A in open and closed chromatin domains. PLoS One 2012; 7:e47157. [PMID: 23118866 PMCID: PMC3484066 DOI: 10.1371/journal.pone.0047157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 09/13/2012] [Indexed: 12/12/2022] Open
Abstract
Background It becomes increasingly evident that nuclesomes are far from being identical to each other. This nucleosome diversity is due partially to the existence of histone variants encoded by separate genes. Among the known histone variants the less characterized are H2A.Bbd and different forms of macroH2A. This is especially true in the case of H2A.Bbd as there are still no commercially available antibodies specific to H2A.Bbd that can be used for chromatin immunoprecipitation (ChIP). Methods We have generated HeLa S3 cell lines stably expressing epitope-tagged versions of macroH2A1.1, H2A.Bbd or canonical H2A and analyzed genomic distribution of the tagged histones using ChIP-on-chip technique. Results The presence of histone H2A variants macroH2A1.1 and H2A.Bbd has been analyzed in the chromatin of several segments of human chromosomes 11, 16 and X that have been chosen for their different gene densities and chromatin status. Chromatin immunoprecipitation (ChIP) followed by hybridization with custom NimbleGene genomic microarrays demonstrated that in open chromatin domains containing tissue-specific along with housekeeping genes, the H2A.Bbd variant was preferentially associated with the body of a subset of transcribed genes. The macroH2A1.1 variant was virtually absent from some genes and underrepresented in others. In contrast, in closed chromatin domains which contain only tissue-specific genes inactive in HeLa S3 cells, both macroH2A1.1 and H2A.Bbd histone variants were present and often colocalized. Conclusions Genomic distribution of macro H2A and H2A.Bbd does not follow any simple rule and is drastically different in open and closed genomic domains.
Collapse
Affiliation(s)
- Elena S. Ioudinkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Ana Barat
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- The Centre for Scientific Computing & Complex Systems Modelling (SCI-SYM), School of Computing, Dublin City University, Dublin, Ireland
| | - Andrey Pichugin
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Elena Markova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Ilya Sklyar
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Iryna Pirozhkova
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Chloe Robin
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Marc Lipinski
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Vasily Ogryzko
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| | - Yegor S. Vassetzky
- CNRS UMR 8126, Univ. Paris-Sud 11, Institut de cancérologie Gustave Roussy, Villejuif, France
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
- * E-mail:
| | - Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- LIA1066, Laboratoire Franco-Russe de recherches en oncologie, Villejuif, France
| |
Collapse
|
30
|
Nekrasov M, Amrichova J, Parker BJ, Soboleva TA, Jack C, Williams R, Huttley GA, Tremethick DJ. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat Struct Mol Biol 2012; 19:1076-83. [PMID: 23085713 DOI: 10.1038/nsmb.2424] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/24/2012] [Indexed: 12/20/2022]
Abstract
Although it has been clearly established that well-positioned histone H2A.Z-containing nucleosomes flank the nucleosome-depleted region (NDR) at the transcriptional start site (TSS) of active mammalian genes, how this chromatin-based information is transmitted through the cell cycle is unknown. We show here that in mouse trophoblast stem cells, the amount of histone H2A.Z at promoters decreased during S phase, coinciding with homotypic (H2A.Z-H2A.Z) nucleosomes flanking the TSS becoming heterotypic (H2A.Z-H2A). To our surprise these nucleosomes remained heterotypic at M phase. At the TSS, we identified an unstable heterotypic histone H2A.Z-containing nucleosome in G1 phase that was lost after DNA replication. These dynamic changes at the TSS mirror a global expansion of the NDR at S and M phases, which, unexpectedly, is unrelated to transcriptional activity. Coincident with the loss of histone H2A.Z at promoters, histone H2A.Z is targeted to the centromere when mitosis begins.
Collapse
Affiliation(s)
- Maxim Nekrasov
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Bönisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 2012; 40:10719-41. [PMID: 23002134 PMCID: PMC3510494 DOI: 10.1093/nar/gks865] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes, DNA is organized together with histones and non-histone proteins into a highly complex nucleoprotein structure called chromatin, with the nucleosome as its monomeric subunit. Various interconnected mechanisms regulate DNA accessibility, including replacement of canonical histones with specialized histone variants. Histone variant incorporation can lead to profound chromatin structure alterations thereby influencing a multitude of biological processes ranging from transcriptional regulation to genome stability. Among core histones, the H2A family exhibits highest sequence divergence, resulting in the largest number of variants known. Strikingly, H2A variants differ mostly in their C-terminus, including the docking domain, strategically placed at the DNA entry/exit site and implicated in interactions with the (H3–H4)2-tetramer within the nucleosome and in the L1 loop, the interaction interface of H2A–H2B dimers. Moreover, the acidic patch, important for internucleosomal contacts and higher-order chromatin structure, is altered between different H2A variants. Consequently, H2A variant incorporation has the potential to strongly regulate DNA organization on several levels resulting in meaningful biological output. Here, we review experimental evidence pinpointing towards outstanding roles of these highly variable regions of H2A family members, docking domain, L1 loop and acidic patch, and close by discussing their influence on nucleosome and higher-order chromatin structure and stability.
Collapse
Affiliation(s)
- Clemens Bönisch
- Department of Molecular Biology, Center for Integrated Protein Science Munich, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| | | |
Collapse
|
32
|
Fujimoto S, Seebart C, Guastafierro T, Prenni J, Caiafa P, Zlatanova J. Proteome analysis of protein partners to nucleosomes containing canonical H2A or the variant histones H2A.Z or H2A.X. Biol Chem 2012; 393:47-61. [DOI: 10.1515/bc-2011-216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/21/2011] [Indexed: 12/14/2022]
Abstract
Abstract
Although the existence of histone variants has been known for quite some time, only recently are we grasping the breadth and diversity of the cellular processes in which they are involved. Of particular interest are the two variants of histone H2A, H2A.Z and H2A.X because of their roles in regulation of gene expression and in DNA double-strand break repair, respectively. We hypothesize that nucleosomes containing these variants may perform their distinct functions by interacting with different sets of proteins. Here, we present our proteome analysis aimed at identifying protein partners that interact with nucleosomes containing H2A.Z, H2A.X or their canonical H2A counterpart. Our development of a nucleosome-pull down assay and analysis of the recovered nucleosome-interacting proteins by mass spectrometry allowed us to directly compare nuclear partners of these variant-containing nucleosomes to those containing canonical H2A. To our knowledge, our data represent the first systematic analysis of the H2A.Z and H2A.X interactome in the context of nucleosome structure.
Collapse
|
33
|
Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer. Genome Res 2011; 22:307-21. [PMID: 21788347 DOI: 10.1101/gr.118919.110] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone H2A.Z (H2A.Z) is an evolutionarily conserved H2A variant implicated in the regulation of gene expression; however, its role in transcriptional deregulation in cancer remains poorly understood. Using genome-wide studies, we investigated the role of promoter-associated H2A.Z and acetylated H2A.Z (acH2A.Z) in gene deregulation and its relationship with DNA methylation and H3K27me3 in prostate cancer. Our results reconcile the conflicting reports of positive and negative roles for histone H2A.Z and gene expression states. We find that H2A.Z is enriched in a bimodal distribution at nucleosomes, surrounding the transcription start sites (TSSs) of both active and poised gene promoters. In addition, H2A.Z spreads across the entire promoter of inactive genes in a deacetylated state. In contrast, acH2A.Z is only localized at the TSSs of active genes. Gene deregulation in cancer is also associated with a reorganization of acH2A.Z and H2A.Z nucleosome occupancy across the promoter region and TSS of genes. Notably, in cancer cells we find that a gain of acH2A.Z at the TSS occurs with an overall decrease of H2A.Z levels, in concert with oncogene activation. Furthermore, deacetylation of H2A.Z at TSSs is increased with silencing of tumor suppressor genes. We also demonstrate that acH2A.Z anti-correlates with promoter H3K27me3 and DNA methylation. We show for the first time, that acetylation of H2A.Z is a key modification associated with gene activity in normal cells and epigenetic gene deregulation in tumorigenesis.
Collapse
|
34
|
Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K. Chromatin modifications and remodeling in plant abiotic stress responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:129-36. [PMID: 21708299 DOI: 10.1016/j.bbagrm.2011.06.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/22/2011] [Accepted: 06/14/2011] [Indexed: 12/24/2022]
Abstract
Sensing environmental changes and initiating a gene expression response are important for plants as sessile autotrophs. The ability of epigenetic status to alter rapidly and reversibly could be a key component to the flexibility of plant responses to the environment. The involvement of epigenetic mechanisms in the response to environmental cues and to different types of abiotic stresses has been documented. Different environmental stresses lead to altered methylation status of DNA as well as modifications of nucleosomal histones. Understanding how epigenetic mechanisms are involved in plant response to environmental stress is highly desirable, not just for a better understanding of molecular mechanisms of plant stress response but also for possible application in the genetic manipulation of plants. In this review, we highlight our current understanding of the epigenetic mechanisms of chromatin modifications and remodeling, with emphasis on the roles of specific modification enzymes and remodeling factors in plant abiotic stress responses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Ming Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | |
Collapse
|
35
|
p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Proc Natl Acad Sci U S A 2011; 108:10385-90. [PMID: 21606339 DOI: 10.1073/pnas.1105680108] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that p53 contacts DNA in a sequence-dependent manner in order to transactivate its myriad target genes. Yet little is known about how p53 interacts with its binding site/response element (RE) within such genes in vivo in the context of nucleosomal DNA. In this study we demonstrate that both distal (5') and proximal (3') p53 REs within the promoter of the p21 gene in unstressed HCT116 colon carcinoma cells are localized within a region of relatively high nucleosome occupancy. In the absence of cellular stress, p53 is prebound to both p21 REs within nucleosomal DNA in these cells. Treatment of cells with the DNA-damaging drug doxorubicin or the p53 stabilizing agent Nutlin-3, however, is accompanied by p53-dependent subsequent loss of nucleosomes associated with such p53 REs. We show that in vitro p53 can bind to mononucleosomal DNA containing the distal p21 RE, provided the binding site is not close to the diad center of the nucleosome. In line with this, our data indicate that the p53 distal RE within the p21 gene is located close to the end of the nucleosome. Thus, low- and high-resolution mapping of nucleosome boundaries around p53 REs within the p21 promoter have provided insight into the mechanism of p53 binding to its sites in cells and the consequent changes in nucleosome occupancy at such sites.
Collapse
|
36
|
Jensen K, Santisteban MS, Urekar C, Smith MM. Histone H2A.Z acid patch residues required for deposition and function. Mol Genet Genomics 2011; 285:287-96. [PMID: 21359583 PMCID: PMC3253533 DOI: 10.1007/s00438-011-0604-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 01/31/2011] [Indexed: 11/30/2022]
Abstract
The incorporation of histone variants is one mechanism used by the eukaryotic cell to alter the generally repressive chromatin template. However, the exact molecular mechanisms that direct this incorporation are not well understood. The SWR1 chromatin remodeling complex that binds to and directs incorporation of histone variant H2A.Z into chromatin has been characterized, but significantly less information is available concerning the requirements on the H2A.Z target molecule. We performed an unbiased mutagenic screen designed to elucidate the function of H2A.Z in Saccharomyces cerevisiae. The screen identified residues within the conserved acidic patch of H2A.Z as being important for the function of the variant. We characterized single point mutations in the patch that are phenotypically sensitive to a variety of growth conditions and are expressed at lower protein levels, but are functionally defective (htz1-D99A, htz1-D99K, and htz1-E101K). The mutants were significantly less detectable by chromatin immunoprecipitation at PHO5, a gene previously described to be enriched for H2A.Z. These results identify acidic patch residues of H2A.Z that are critical for mediating deposition and function in chromatin, and represent potential candidates for the interaction of H2A.Z with its deposition and/or targeting machinery.
Collapse
Affiliation(s)
- Kurt Jensen
- Department of Microbiology, University of Virginia Health System, University of Virginia, P.O. Box 800734, Charlottesville, VA 22908-0734, USA.
| | | | | | | |
Collapse
|
37
|
Farrona S, Hurtado L, March-Díaz R, Schmitz RJ, Florencio FJ, Turck F, Amasino RM, Reyes JC. Brahma is required for proper expression of the floral repressor FLC in Arabidopsis. PLoS One 2011; 6:e17997. [PMID: 21445315 PMCID: PMC3061888 DOI: 10.1371/journal.pone.0017997] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 02/22/2011] [Indexed: 01/07/2023] Open
Abstract
Background BRAHMA (BRM) is a member of a family of ATPases of the SWI/SNF chromatin remodeling complexes from Arabidopsis. BRM has been previously shown to be crucial for vegetative and reproductive development. Methodology/Principal Findings Here we carry out a detailed analysis of the flowering phenotype of brm mutant plants which reveals that, in addition to repressing the flowering promoting genes CONSTANS (CO), FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), BRM also represses expression of the general flowering repressor FLOWERING LOCUS C (FLC). Thus, in brm mutant plants FLC expression is elevated, and FLC chromatin exhibits increased levels of histone H3 lysine 4 tri-methylation and decreased levels of H3 lysine 27 tri-methylation, indicating that BRM imposes a repressive chromatin configuration at the FLC locus. However, brm mutants display a normal vernalization response, indicating that BRM is not involved in vernalization-mediated FLC repression. Analysis of double mutants suggests that BRM is partially redundant with the autonomous pathway. Analysis of genetic interactions between BRM and the histone H2A.Z deposition machinery demonstrates that brm mutations overcome a requirement of H2A.Z for FLC activation suggesting that in the absence of BRM, a constitutively open chromatin conformation renders H2A.Z dispensable. Conclusions/Significance BRM is critical for phase transition in Arabidopsis. Thus, BRM represses expression of the flowering promoting genes CO, FT and SOC1 and of the flowering repressor FLC. Our results indicate that BRM controls expression of FLC by creating a repressive chromatin configuration of the locus.
Collapse
Affiliation(s)
- Sara Farrona
- Max Planck Institute for Plant Breeding, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Nucleosomes containing histone variant H2A.Z (Htz1) serve to poise quiescent genes for activation and transcriptional initiation. However, little is known about their role in transcription elongation. Here we show that dominant mutations in the elongation genes SPT5 and SPT16 suppress the hypersensitivity of htz1Δ strains to drugs that inhibit elongation, indicating that Htz1 functions at the level of transcription elongation. Direct kinetic measurements of RNA polymerase II (Pol II) movement across the 9.5-kb GAL10p-VPS13 gene revealed that the elongation rate of polymerase is 24% slower in the absence of Htz1. We provide evidence for two nonexclusive mechanisms. First, we observed that both the phospho-Ser2 levels in the elongating isoform of Pol II and the loading of Spt5 and Elongator over the GAL1 open reading frame (ORF) depend on Htz1. Second, in the absence of Htz1, the density of nucleosome occupancy is increased over the GAL10p-VPS13 ORF and the chromatin is refractory to remodeling during active transcription. These results establish a mechanistic role for Htz1 in transcription elongation and suggest that Htz1-containing nucleosomes facilitate Pol II passage by affecting the correct assembly and modification status of Pol II elongation complexes and by favoring efficient nucleosome remodeling over the gene.
Collapse
|
39
|
Draker R, Sarcinella E, Cheung P. USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Res 2011; 39:3529-42. [PMID: 21245042 PMCID: PMC3089478 DOI: 10.1093/nar/gkq1352] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
H2A.Z, a variant of H2A, is found at the promoters of inducible genes in both yeast and higher eukaryotes. However, its role in transcriptional regulation is complex since it has been reported to function both as a repressor and activator. We have previously found that mono-ubiquitylation of H2A.Z is linked to transcriptional silencing. Here, we provide new evidence linking H2A.Z deubiquitylation to transcription activation. We found that H2A.Z and ubiquitin-specific protease 10 (USP10) are each required for transcriptional activation of the androgen receptor (AR)-regulated PSA and KLK3 genes. USP10 directly deubiquitylates H2A.Z in vitro and in vivo, and reducing USP10 expression in prostate cancer cells results in elevated steady-state levels of mono-ubiquitylated H2A.Z (H2A.Zub1). Moreover, knockdown of USP10 ablates hormone-induced deubiquitylation of chromatin proteins at the AR-regulated genes. Finally, by sequential ChIP assays, we found that H2A.Zub1 is enriched at the PSA and KLK3 regulatory regions, and loss of H2A.Zub1 is associated with transcriptional activation of these genes. Together, these data provide novel insights into how H2A.Z ubiquitylation/deubiquitylation and USP10 function in AR-regulated gene expression.
Collapse
Affiliation(s)
- Ryan Draker
- Ontario Cancer Institute, 610 University Avenue, University of Toronto, Toronto, ON, Canada M5G 2M9
| | | | | |
Collapse
|
40
|
Jufvas Å, Strålfors P, Vener AV. Histone variants and their post-translational modifications in primary human fat cells. PLoS One 2011; 6:e15960. [PMID: 21249133 PMCID: PMC3017551 DOI: 10.1371/journal.pone.0015960] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/01/2010] [Indexed: 01/12/2023] Open
Abstract
Epigenetic changes related to human disease cannot be fully addressed by studies of cells from cultures or from other mammals. We isolated human fat cells from subcutaneous abdominal fat tissue of female subjects and extracted histones from either purified nuclei or intact cells. Direct acid extraction of whole adipocytes was more efficient, yielding about 100 µg of protein with histone content of 60%-70% from 10 mL of fat cells. Differential proteolysis of the protein extracts by trypsin or ArgC-protease followed by nanoLC/MS/MS with alternating CID/ETD peptide sequencing identified 19 histone variants. Four variants were found at the protein level for the first time; particularly HIST2H4B was identified besides the only H4 isoform earlier known to be expressed in humans. Three of the found H2A potentially organize small nucleosomes in transcriptionally active chromatin, while two H2AFY variants inactivate X chromosome in female cells. HIST1H2BA and three of the identified H1 variants had earlier been described only as oocyte or testis specific histones. H2AFX and H2AFY revealed differential and variable N-terminal processing. Out of 78 histone modifications by acetylation/trimethylation, methylation, dimethylation, phosphorylation and ubiquitination, identified from six subjects, 68 were found for the first time. Only 23 of these modifications were detected in two or more subjects, while all the others were individual specific. The direct acid extraction of adipocytes allows for personal epigenetic analyses of human fat tissue, for profiling of histone modifications related to obesity, diabetes and metabolic syndrome, as well as for selection of individual medical treatments.
Collapse
Affiliation(s)
- Åsa Jufvas
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Peter Strålfors
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alexander V. Vener
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
41
|
Abstract
Background Nucleosome, the fundamental unit of chromatin, is formed by wrapping nearly 147bp of DNA around an octamer of histone proteins. This histone core has many variants that are different from each other by their biochemical compositions as well as biological functions. Although the deposition of histone variants onto chromatin has been implicated in many important biological processes, such as transcription and replication, the mechanisms of how they are deposited on target sites are still obscure. Results By analyzing genomic sequences of nucleosomes bearing different histone variants from human, including H2A.Z, H3.3 and both (H3.3/H2A.Z, so-called double variant histones), we found that genomic sequence contributes in part to determining target sites for different histone variants. Moreover, dinucleotides CA/TG are remarkably important in distinguishing target sites of H2A.Z-only nucleosomes with those of H3.3-containing (both H3.3-only and double variant) nucleosomes. Conclusions There exists a DNA-related mechanism regulating the deposition of different histone variants onto chromatin and biological outcomes thereof. This provides additional insights into epigenetic regulatory mechanisms of many important cellular processes.
Collapse
Affiliation(s)
- Ngoc Tu Le
- School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan.
| | | | | |
Collapse
|
42
|
Luk E, Ranjan A, FitzGerald PC, Mizuguchi G, Huang Y, Wei D, Wu C. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 2010; 143:725-36. [PMID: 21111233 PMCID: PMC7251641 DOI: 10.1016/j.cell.2010.10.019] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/25/2010] [Accepted: 10/12/2010] [Indexed: 11/18/2022]
Abstract
Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucleosomes containing one, two, or zero H2A.Z molecules. SWR1-catalyzed H2A.Z replacement in vitro occurs in a stepwise and unidirectional fashion, one H2A.Z-H2B dimer at a time, producing heterotypic nucleosomes as intermediates and homotypic H2A.Z nucleosomes as end products. The ATPase activity of SWR1 is specifically stimulated by H2A-containing nucleosomes without ensuing histone H2A eviction. Remarkably, further addition of free H2A.Z-H2B dimer leads to hyperstimulation of ATPase activity, eviction of nucleosomal H2A-H2B, and deposition of H2A.Z-H2B. These results suggest that the combination of H2A-containing nucleosome and free H2A.Z-H2B dimer acting as both effector and substrate for SWR1 governs the specificity and outcome of the replacement reaction.
Collapse
Affiliation(s)
- Ed Luk
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anand Ranjan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter C. FitzGerald
- Genome Analysis Unit, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gaku Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yingzi Huang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Debbie Wei
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carl Wu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Kelly TK, Miranda TB, Liang G, Berman BP, Lin JC, Tanay A, Jones PA. H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol Cell 2010; 39:901-11. [PMID: 20864037 PMCID: PMC2947862 DOI: 10.1016/j.molcel.2010.08.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/26/2010] [Accepted: 07/06/2010] [Indexed: 11/16/2022]
Abstract
Profound chromatin changes occur during mitosis to allow for gene silencing and chromosome segregation followed by reactivation of memorized transcription states in daughter cells. Using genome-wide sequencing, we found H2A.Z-containing +1 nucleosomes of active genes shift upstream to occupy TSSs during mitosis, significantly reducing nucleosome-depleted regions. Single-molecule analysis confirmed nucleosome shifting and demonstrated that mitotic shifting is specific to active genes that are silenced during mitosis and, thus, is not seen on promoters, which are silenced by methylation or mitotically expressed genes. Using the GRP78 promoter as a model, we found H3K4 trimethylation is also maintained while other indicators of active chromatin are lost and expression is decreased. These key changes provide a potential mechanism for rapid silencing and reactivation of genes during the cell cycle.
Collapse
Affiliation(s)
- Theresa K. Kelly
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Tina Branscombe Miranda
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Gangning Liang
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Benjamin P. Berman
- USC Epigenome Center, University of Southern California, Los Angeles, CA USA
| | - Joy C. Lin
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, The Weizmann Institute, Rehovot, Israel
| | - Peter A. Jones
- Departments of Urology and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
44
|
Kafer GR, Lehnert SA, Pantaleon M, Kaye PL, Moser RJ. Expression of genes coding for histone variants and histone-associated proteins in pluripotent stem cells and mouse preimplantation embryos. Gene Expr Patterns 2010; 10:299-305. [DOI: 10.1016/j.gep.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/20/2010] [Accepted: 06/10/2010] [Indexed: 01/01/2023]
|
45
|
Morillo-Huesca M, Clemente-Ruiz M, Andújar E, Prado F. The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z. PLoS One 2010; 5:e12143. [PMID: 20711347 PMCID: PMC2920830 DOI: 10.1371/journal.pone.0012143] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/19/2022] Open
Abstract
The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing, chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different cellular processes and genome-wide transcriptional misregulation in htz1Δ can be partially or totally suppressed if SWR1 is not formed (swr1Δ), if it forms but cannot bind to chromatin (swc2Δ) or if it binds to chromatin but lacks histone replacement activity (swc5Δ and the ATPase-dead swr1-K727G). These results suggest that in htz1Δ the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show that in htz1Δ, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1 complex impairs the repair of spontaneous DNA damage in htz1Δ. In addition, SWR1 causes DSBs sensitivity in htz1Δ; consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type (MAT) locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also to prevent the deleterious consequences of an incomplete nucleosome remodelling.
Collapse
Affiliation(s)
| | | | | | - Félix Prado
- Department of Molecular Biology, CABIMER-CSIC, Seville, Spain
- * E-mail:
| |
Collapse
|
46
|
Abstract
In eukaryotic genomes, gene expression and DNA recombination are affected by structural chromatin traits. Chromatin structure is shaped by the activity of enzymes that either introduce covalent modifications in DNA and histone proteins or use energy from ATP to disrupt histone-DNA interactions. The genomic 'marks' that are generated by covalent modifications of histones and DNA, or by the deposition of histone variants, are susceptible to being altered in response to stress. Recent evidence has suggested that proteins generating these epigenetic marks play crucial roles in the defence against pathogens. Histone deacetylases are involved in the activation of jasmonic acid- and ethylene-sensitive defence mechanisms. ATP-dependent chromatin remodellers mediate the constitutive repression of the salicylic acid-dependent pathway, whereas histone methylation at the WRKY70 gene promoter affects the activation of this pathway. Interestingly, bacterial-infected tissues show a net reduction in DNA methylation, which may affect the disease resistance genes responsible for the surveillance against pathogens. As some epigenetic marks can be erased or maintained and transmitted to offspring, epigenetic mechanisms may provide plasticity for the dynamic control of emerging pathogens without the generation of genomic lesions.
Collapse
Affiliation(s)
- María E Alvarez
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| | | | | |
Collapse
|
47
|
Slupianek A, Yerrum S, Safadi FF, Monroy MA. The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J Cell Physiol 2010; 224:369-75. [PMID: 20432434 DOI: 10.1002/jcp.22132] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SNF2-related CBP activator protein (SRCAP) serves as a coactivator for several nuclear receptors including the androgen receptor (AR). SRCAP is an ATPase that is the core subunit of a large multiprotein complex and was shown to incorporate the histone variant H2A.Z into nucleosomes. In this report, we demonstrate that SRCAP is expressed in the epithelium of normal prostate and in prostate carcinoma cells, and is associated with AR in the nucleus. Using transient transfection assays we demonstrate that SRCAP activates hormone-dependent transcription of the androgen responsive, prostate specific antigen (PSA)-Luciferase reporter gene in human prostate cells. The in vivo occupancy of SRCAP at the endogenous PSA promoter is demonstrated using chromatin immunoprecipitation assays. ShRNA mediated knockdown of SRCAP resulted in decreased H2A.Z binding at the enhancer region of the PSA promoter and decreased expression of PSA in prostate cancer cells. Furthermore, inhibition of SRCAP expression significantly inhibited androgen dependent prostate cancer cell growth. These data identify SRCAP as a physiologically relevant mediator of PSA expression, and demonstrate that SRCAP plays a role in prostate cancer cell proliferation.
Collapse
Affiliation(s)
- Artur Slupianek
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
48
|
Altaf M, Auger A, Monnet-Saksouk J, Brodeur J, Piquet S, Cramet M, Bouchard N, Lacoste N, Utley RT, Gaudreau L, Côté J. NuA4-dependent acetylation of nucleosomal histones H4 and H2A directly stimulates incorporation of H2A.Z by the SWR1 complex. J Biol Chem 2010; 285:15966-77. [PMID: 20332092 PMCID: PMC2871465 DOI: 10.1074/jbc.m110.117069] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Indexed: 01/09/2023] Open
Abstract
Structural and functional analyses of nucleosomes containing histone variant H2A.Z have drawn a lot of interest over the past few years. Important work in budding yeast has shown that H2A.Z (Htz1)-containing nucleosomes are specifically located on the promoter regions of genes, creating a specific chromatin structure that is poised for disassembly during transcription activation. The SWR1 complex is responsible for incorporation of Htz1 into nucleosomes through ATP-dependent exchange of canonical H2A-H2B dimers for Htz1-H2B dimers. Interestingly, the yeast SWR1 complex is functionally linked to the NuA4 acetyltransferase complex in vivo. NuA4 and SWR1 are physically associated in higher eukaryotes as they are homologous to the TIP60/p400 complex, which encompasses both histone acetyltransferase (Tip60) and histone exchange (p400/Domino) activities. Here we present work investigating the impact of NuA4-dependent acetylation on SWR1-driven incorporation of H2A.Z into chromatin. Using in vitro histone exchange assays with native chromatin, we demonstrate that prior chromatin acetylation by NuA4 greatly stimulates the exchange of H2A for H2A.Z. Interestingly, we find that acetylation of H2A or H4 N-terminal tails by NuA4 can independently stimulate SWR1 activity. Accordingly, we demonstrate that mutations of H4 or H2A N-terminal lysine residues have similar effects on H2A.Z incorporation in vivo, and cells carrying mutations in both tails are nonviable. Finally, depletion experiments indicate that the bromodomain-containing protein Bdf1 is important for NuA4-dependent stimulation of SWR1. These results provide important mechanistic insight into the functional cross-talk between chromatin acetylation and ATP-dependent exchange of histone H2A variants.
Collapse
Affiliation(s)
- Mohammed Altaf
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Andréanne Auger
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Julie Monnet-Saksouk
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Joëlle Brodeur
- the Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Sandra Piquet
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Myriam Cramet
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Nathalie Bouchard
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Nicolas Lacoste
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Rhea T. Utley
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| | - Luc Gaudreau
- the Department of Biology, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Jacques Côté
- From the Laval University Cancer Research Center, Hôtel-Dieu de Québec (CHUQ), Quebec City, Quebec G1R 2J6, Canada and
| |
Collapse
|
49
|
Dalvai M, Bystricky K. The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:19-33. [PMID: 20131086 DOI: 10.1007/s10911-010-9167-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 01/08/2010] [Indexed: 02/03/2023] Open
Abstract
The role of epigenetic phenomena in cancer biology is increasingly being recognized. Here we focus on the mechanisms and enzymes involved in regulating histone methylation and acetylation, and the modulation of histone variant expression and deposition. Implications of these epigenetic marks for tumor development, progression and invasiveness are discussed with a particular emphasis on breast cancer progression.
Collapse
Affiliation(s)
- Mathieu Dalvai
- Université de Toulouse, LBME, 118 route de Narbonne, 31062, Toulouse, France.
| | | |
Collapse
|
50
|
Straube K, Blackwell JS, Pemberton LF. Nap1 and Chz1 have Separate Htz1 Nuclear Import and Assembly Functions. Traffic 2010. [DOI: 10.1111/j.1600-0854.2009.001010.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|