1
|
Neuregulin-1/PI3K signaling effects on oligodendrocyte proliferation, remyelination and behaviors deficit in a male mouse model of ischemic stroke. Exp Neurol 2023; 362:114323. [PMID: 36690057 DOI: 10.1016/j.expneurol.2023.114323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the effect of neuregulin-1 (NRG1) on demyelination and neurological function in an ischemic stroke model, and further explored its neuroprotective mechanisms. Adult male ICR mice underwent photothrombotic ischemia surgery and were injected with NRG1 beginning 30 min after ischemia. Cylinder and grid walking tests were performed to evaluate the forepaw function. In addition, the effect of NRG1 on neuronal damage/death (Cresyl violet, CV), neuronal nuclei (NeuN), nestin, doublecortin (DCX), myelin basic protein (MBP), non-phosphorylated neurofilaments (SMI-32), adenomatous polyposis coli (APC), erythroblastic leukemia viral oncogene homolog (ErbB) 2, 4 and serine-threonine protein kinase (Akt) in cortex were evaluated using immunohistochemistry, immunofluorescence and western blot. The cylinder and grid walking tests exposed that treatment of NRG1 observably regained the forepaw function. NRG1 treatment reduced cerebral infarction, restored forepaw function, promoted proliferation and differentiation of neuron and increased oligodendrogliogenesis. The neuroprotective effect of NRG1 is involved in its activation of PI3K/Akt signaling pathway via ErbB2, as shown by the suppression of the effect of NRG1 by the PI3K inhibitor LY294002. Our results demonstrate that NRG1 is effective in ameliorating the both acute phase neuroprotection and long-term neurological functions via resumption of neuronal proliferation and differentiation and oligodendrogliogenesis in a male mouse model of ischemic stroke.
Collapse
|
2
|
Hypoxia pretreatment improves the therapeutic potential of bone marrow mesenchymal stem cells in hindlimb ischemia via upregulation of NRG-1. Cell Tissue Res 2022; 388:105-116. [DOI: 10.1007/s00441-021-03562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
|
3
|
Shahsavani N, Alizadeh A, Kataria H, Karimi-Abdolrezaee S. Availability of neuregulin-1beta1 protects neurons in spinal cord injury and against glutamate toxicity through caspase dependent and independent mechanisms. Exp Neurol 2021; 345:113817. [PMID: 34314724 DOI: 10.1016/j.expneurol.2021.113817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) causes sensorimotor and autonomic impairment that partly reflects extensive, permanent loss of neurons at the epicenter and penumbra of the injury. Strategies aimed at enhancing neuronal protection are critical to attenuate neurodegeneration and improve neurological recovery after SCI. In rat SCI, we previously uncovered that the tissue levels of neuregulin-1beta 1 (Nrg-1β1) are acutely and persistently downregulated in the injured spinal cord. Nrg-1β1 is well-known for its critical roles in the development, maintenance and physiology of neurons and glia in the developing and adult spinal cord. However, despite this pivotal role, Nrg-1β1 specific effects and mechanisms of action on neuronal injury remain largely unknown in SCI. In the present study, using a clinically-relevant model of compressive/contusive SCI in rats and an in vitro model of glutamate toxicity in primary neurons, we demonstrate Nrg-1β1 provides early neuroprotection through attenuation of reactive oxygen species, lipid peroxidation, necrosis and apoptosis in acute and subacute stages of SCI. Mechanistically, availability of Nrg-1β1 following glutamate challenge protects neurons from caspase-dependent and independent cell death that is mediated by modulation of mitochondria associated apoptotic cascades and MAP kinase and AKT signaling pathways. Altogether, our work provides novel insights into the role and mechanisms of Nrg-1β1 in neuronal injury after SCI and introduces its potential as a new neuroprotective target for this debilitating neurological condition.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
4
|
Liu F, Li L, Chen J, Wu Y, Cao Y, Zhong P. A Network Pharmacology to Explore the Mechanism of Calculus Bovis in the Treatment of Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611018. [PMID: 33778069 PMCID: PMC7972848 DOI: 10.1155/2021/6611018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Calculus Bovis is a valuable Chinese medicine, which is widely used in the clinical treatment of ischemic stroke. The present study is aimed at investigating its target and the mechanism involved in ischemic stroke treatment by network pharmacology. METHODS Effective compounds of Calculus Bovis were collected using methods of network pharmacology and using the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Potential compound targets were searched in the TCMSP and SwissTargetPrediction databases. Ischemic stroke-related disease targets were searched in the Drugbank, DisGeNet, OMIM, and TTD databases. These two types of targets were uploaded to the STRING database, and a network of their interaction (PPI) was built with its characteristics calculated, aiming to reveal a number of key targets. Hub genes were selected using a plug-in of the Cytoscape software, and Gene Ontology (GO) biological processes and pathway enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using the clusterProfiler package of R language. RESULTS Among 12 compounds, deoxycorticosterone, methyl cholate, and biliverdin were potentially effective components. A total of 344 Calculus Bovis compound targets and 590 ischemic stroke targets were found with 92 overlapping targets, including hub genes such as TP53, AKT, PIK2CA, MAPK3, MMP9, and MMP2. Biological functions of Calculus Bovis are associated with protein hydrolyzation, phosphorylation of serine/threonine residues of protein substrates, peptide bond hydrolyzation of peptides and proteins, hydrolyzation of intracellular second messengers, antioxidation and reduction, RNA transcription, and other biological processes. CONCLUSION Calculus Bovis may play a role in ischemic stroke by activating PI3K-AKT and MAPK signaling pathways, which are involved in regulating inflammatory response, cell apoptosis, and proliferation.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ying Wu
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ping Zhong
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200090, China
| |
Collapse
|
5
|
Lu F, Wei L, Yang C, Qiao Y, Liu YS, Chen XD, Wang J, Shi ZH, Chen FQ, Zha DJ, Xue T. Nrg1/ErbB2 regulates differentiation and apoptosis of neural stem cells in the cochlear nucleus through PI3K/Akt pathway. Neurosci Lett 2021; 751:135803. [PMID: 33705930 DOI: 10.1016/j.neulet.2021.135803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Sensorineural hearing loss (SNHL) is a common causes of disability. Neural stem cells (NSCs) from the cochlear nuclei have been considered to be a potential direction for the treatment of SNHL. Neuregulin 1 (NRG1)/ErbB2 signaling displays an essential role in nervous system development. In this study, we aimed to explore the roles of NRG1/ErbB2 in differentiation and apoptosis of cochlear nuclei NSCs. The data showed that the expression of NGR1 and ErbB2 in cochlear nuclei NSCs isolated from rats were increased with the age of rats. NRG1 treatment reduced the nestin-positive cells number, increased the MAP2-positive and GFAP-positive cells number, decreased the expression of cleaved-caspase-3, and increased the activation of PI3K/AKT. ErbB2 knockdown by lentiviral-mediated ErbB2 shRNA infection reversed the effect of NRG1 on cochlear nuclei NSCs. LY294002 administration further enhanced the effect of ErbB2 silencing on the expression of nestin, MAP2, GFAP and cleaved-caspase-3. Taken together, NRG1/ErbB2 regulates differentiation and apoptosis of cochlear nucleus NSCs through PI3K/Akt pathway.
Collapse
Affiliation(s)
- Fei Lu
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Li Wei
- Departments of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Chun Yang
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yan Qiao
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yong-Shou Liu
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Xiao-Dong Chen
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Jian Wang
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Zhao-Hui Shi
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Fu-Quan Chen
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Ding-Jun Zha
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| | - Tao Xue
- Departments of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| |
Collapse
|
6
|
Niu HM, Ma DL, Wang MY, Chen XP, Zhang L, Li YL, Zhang L, Li L. Epimedium flavonoids protect neurons and synapses in the brain via activating NRG1/ErbB4 and BDNF/Fyn signaling pathways in a chronic cerebral hypoperfusion rat model. Brain Res Bull 2020; 162:132-140. [PMID: 32592805 DOI: 10.1016/j.brainresbull.2020.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Cerebral hypoperfusion is a common feature of cerebral small vascular disease (CSVD), which has been considered as one of the causes of cognitive decline in recent years. Epimedium flavonoids (EF) are the main ingredients extracted from Epimedium. The purpose of this study was to investigate the effects of EF on cognitive impairment, and the underlying mechanisms in rats with permanent occlusion of the bilateral common carotid artery (2VO). EF (50, 100, and 200 mg/kg) was intragastrically administered for 12 weeks starting 2 weeks after 2VO surgery. The results showed that EF treatment improved learning and memory impairment in 2VO rats evaluated by novel object recognition and Y-maze tests. NeuN immunohistochemical staining indicated that EF alleviated neuronal loss in the hippocampus and cerebral cortex of 2VO rats. MAP-2 immunofluorescence staining and western blotting showed that EF protected neuronal dendrites and increased the expression of cytoskeleton proteins MAP-2 and NF200 in the hippocampus of 2VO rats. Moreover, EF protected the synapse ultrastructure detected by transmission electron microscopy, and increased the expression of synaptic plasticity-related proteins, including synaptophysin, synaptotagmin-I, synapsin I, PSD-95, p-NMDA2B, and p-CaMKII-α in the hippocampus of 2VO rats. In addition, EF increased the expression of neuregulin-1 (NRG-1), p-ErbB4, brain-derived neurotrophic factor (BDNF), p-Fyn, PI3K, p-Akt, and p-CREB in the hippocampus of 2VO rats. These results suggest that EF may protect neurons and synapses by activating the NRG1/ErbB4, BDNF/Fyn, and P13 K/Akt/CREB pathways in the hippocampus and cerebral cortex, thus improving cognitive impairment induced by chronic cerebral hypoperfusion. EF may be a potential candidate drug for chronic cerebral hypoperfusion and CSVD therapy.
Collapse
Affiliation(s)
- Hong-Mei Niu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Deng-Lei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Ming-Yang Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Xiao-Ping Chen
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Ya-Li Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nerve System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
7
|
α7 nicotinic acetylcholine receptor upregulation by anti-apoptotic Bcl-2 proteins. Nat Commun 2019; 10:2746. [PMID: 31227712 PMCID: PMC6588605 DOI: 10.1038/s41467-019-10723-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/24/2019] [Indexed: 01/07/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate and modulate synaptic transmission throughout the brain, and contribute to learning, memory, and behavior. Dysregulation of α7-type nAChRs in neuropsychiatric as well as immunological and oncological diseases makes them attractive targets for pharmaceutical development. Recently, we identified NACHO as an essential chaperone for α7 nAChRs. Leveraging the robust recombinant expression of α7 nAChRs with NACHO, we utilized genome-wide cDNA library screening and discovered that several anti-apoptotic Bcl-2 family proteins further upregulate receptor assembly and cell surface expression. These effects are mediated by an intracellular motif on α7 that resembles the BH3 binding domain of pro-apoptotic Bcl-2 proteins, and can be blocked by BH3 mimetic Bcl-2 inhibitors. Overexpression of Bcl-2 member Mcl-1 in neurons enhanced surface expression of endogenous α7 nAChRs, while a combination of chemotherapeutic Bcl2-inhibitors suppressed neuronal α7 receptor assembly. These results demonstrate that Bcl-2 proteins link α7 nAChR assembly to cell survival pathways. The α7 nicotinic acetylcholine receptor (nAChR) plays a major role in shaping the activity of neuronal circuits and contributes to the pathophysiology of several neurological disorders. Following cDNA library screening, the authors identify anti-apoptotic, Bcl-2 family proteins as enhancers of α7 nAChR assembly, acting through an intracellular BH3-like domain during receptor biogenesis in the endoplasmic reticulum.
Collapse
|
8
|
Hei Y, Chen R, Mao X, Wang J, Long Q, Liu W. Neuregulin1 attenuates cognitive deficits and hippocampal CA1 neuronal apoptosis partly via ErbB4 receptor in a rat model of chronic cerebral hypoperfusion. Behav Brain Res 2019; 365:141-149. [PMID: 30826297 DOI: 10.1016/j.bbr.2019.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
Abstract
Neuregulin1 (NRG1) is an effective neuroprotectant. Previously we demonstrated that the expression of hippocampal NRG1/ErbB4 gradually decreased and correlates with neuronal apoptosis during chronic cerebral hypoperfusion (CCH). Here we aimed to further investigate the protective role of NRG1 in CCH. AG1478, an ErbB4 inhibitor, was used to explore the involvement of ErbB4 receptors in NRG1's action. Permanent bilateral common carotid artery occlusion (2VO) or sham operation was performed in Sprague-Dawley rats. NRG1 (100 μM) and AG1478 (50 mM) was administered intraventricularly. Eight weeks post-surgery, cognitive impairment was analyzed using Morris water maze (MWM) and radial arm water maze (RAWM) tests, followed by histological assessment of the survival and apoptosis of hippocampal CA1 neurons using NeuN and TUNEL immunostaining respectively. Expression of apoptosis-related proteins and ErbB4 activation (pErbB4/ErbB4) was evaluated by Western blotting. The results showed that NRG1 significantly improved the performances in MWM (spatial learning and memory) and RAWM (spatial working and reference memory), attenuated hippocampal CA1 neuronal loss and apoptosis, upregulated the expression of pErbB4/ErbB4 and the anti-apoptotic protein Bcl-2, and downregulated the expression of pro-apoptotic proteins of Cleaved (Cl)-caspase3 and Bax. In addition, the protective effects of NRG1 could be partly abolished by AG1478. Taken together, our study suggested that NRG1 ameliorates cognitive impairment and neuronal apoptosis partly via ErbB4 receptors in rats with CCH.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Xingang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Qianfa Long
- Department of Neurosurgery, Institute of Mini-invasive Neurosurgery and Translational Medicine, Xi'an Central Hospital, No. 185 Houzai Gate of North Street, Xi'an, 710003, PR China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China.
| |
Collapse
|
9
|
Jiang W, Guo M, Gong M, Chen L, Bi Y, Zhang Y, Shi Y, Qu P, Liu Y, Chen J, Li T. Vitamin A bio-modulates apoptosis via the mitochondrial pathway after hypoxic-ischemic brain damage. Mol Brain 2018; 11:14. [PMID: 29534734 PMCID: PMC5851324 DOI: 10.1186/s13041-018-0360-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/05/2018] [Indexed: 11/10/2022] Open
Abstract
Our previous studies demonstrated that vitamin A deficiency (VAD) can impair the postnatal cognitive function of rats by damaging the hippocampus. The present study examined the effects of retinoic acid (RA) on apoptosis induced by hypoxic-ischemic damage in vivo and in vitro, and investigated the possible signaling pathway involved in the neuroprotective anti-apoptotic effects of RA. Flow cytometry, immunofluorescence staining and behavioral tests were used to evaluate the neuroprotective and anti-apoptotic effects of RA. The protein and mRNA levels of RARα, PI3K, Akt, Bad, caspase-3, caspase-8, Bcl-2, Bax, and Bid were measured with western blotting and real-time PCR, respectively. We found impairments in learning and spatial memory in VAD group compared with vitamin A normal (VAN) and vitamin A supplemented (VAS) group. Additionally, we showed that hippocampal apoptosis was weaker in the VAN group than that in VAD group. Relative to the VAD group, the VAN group also had increased mRNA and protein levels of RARα and PI3K, and upregulated phosphorylated Akt/Bad levels in vivo. In vitro, excessively low or high RA signaling promoted apoptosis. Furthermore, the effects on apoptosis involved the mitochondrial membrane potential (MMP). These data support the idea that sustained VAD following hypoxic-ischemic brain damage (HIBD) inhibits RARα, which downregulates the PI3K/Akt/Bad and Bcl-2/Bax pathways and upregulates the caspase-8/Bid pathway to influence the MMP, ultimately producing deficits in learning and spatial memory in adolescence. This suggests that clinical interventions for HIBD should include suitable doses of VA.
Collapse
Affiliation(s)
- Wei Jiang
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
- Children Rehabilitation Center, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Min Guo
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
- Children Rehabilitation Center, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Min Gong
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| | - Li Chen
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| | - Yang Bi
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| | - Yun Zhang
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| | - Yuan Shi
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| | - Ping Qu
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| | - Youxue Liu
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| | - Jie Chen
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| | - Tingyu Li
- Children Nutrition Research Center, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014 China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014 China
| |
Collapse
|
10
|
Nguyen T, Fan T, George SR, Perreault ML. Disparate Effects of Lithium and a GSK-3 Inhibitor on Neuronal Oscillatory Activity in Prefrontal Cortex and Hippocampus. Front Aging Neurosci 2018; 9:434. [PMID: 29375364 PMCID: PMC5770585 DOI: 10.3389/fnagi.2017.00434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) plays a critical role in cognitive dysfunction associated with Alzheimer’s disease (AD), yet the mechanism by which GSK-3 alters cognitive processes in other disorders, such as schizophrenia, remains unknown. In the present study, we demonstrated a role for GSK-3 in the direct regulation of neuronal oscillations in hippocampus (HIP) and prelimbic cortex (PL). A comparison of the GSK-3 inhibitors SB 216763 and lithium demonstrated disparate effects of the drugs on spatial memory and neural oscillatory activity in HIP and PL. SB 216763 administration improved spatial memory whereas lithium treatment had no effect. Analysis of neuronal local field potentials in anesthetized animals revealed that whereas both repeated SB 216763 (2.5 mg/kg) and lithium (100 mg/kg) induced a theta frequency spike in HIP at approximately 10 Hz, only SB 216763 treatment induced an overall increase in theta power (4–12 Hz) compared to vehicle. Acute administration of either drug suppressed slow (32–59 Hz) and fast (61–100 Hz) gamma power. In PL, both drugs induced an increase in theta power. Repeated SB 216763 increased HIP–PL coherence across all frequencies except delta, whereas lithium selectively suppressed delta coherence. These findings demonstrate that GSK-3 plays a direct role in the regulation of theta oscillations in regions critically involved in cognition, and highlight a potential mechanism by which GSK-3 may contribute to cognitive decline in disorders of cognitive dysfunction.
Collapse
Affiliation(s)
- Tuan Nguyen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Xu J, Hu C, Chen S, Shen H, Jiang Q, Huang P, Zhao W. Neuregulin-1 protects mouse cerebellum against oxidative stress and neuroinflammation. Brain Res 2017; 1670:32-43. [PMID: 28623147 DOI: 10.1016/j.brainres.2017.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 02/05/2023]
Abstract
Cerebellum undergoes degenerative changes in neurodegenerative diseases. Two main factors including oxidative stress and neuroinflammation mediate neurodegeneration. Neuregulin-1 (Nrg1) has been implicated in many neurodegenerative diseases, while the underlying mechanisms are unknown. We hypothesized that Nrg1 prevents oxidative stress and neuroinflammation in neurodegeneration. We found a positive correlation between Nrg1 protein levels and ErbB4 and ErbB2 receptor phosphorylation in microarrays of normal human cerebellar tissue. In addition, Nrg1 was also co-localized with pErbB4 and pErbB2. Primary mouse cerebellar granule neurons (CGNs) were treated with H2O2 or LPS combined with recombinant Nrg1β (rNrg1β). Western blot analysis and immunofluorescence revealed that H2O2 and LPS-induced neuronal toxicity down-regulated the activation of ErbB receptors and Akt1, and the ratio of Bcl2/Bax, which was reversed by rNrg1β. In vivo studies showed that LPS-induced neuroinflammation in mouse cerebellum down-regulated pErbB4, pErbB2, pAkt1/Akt1 and Bcl2/Bax levels, whereas rNrg1β treatment reversed the changes. Immunohistochemistry and Western blot analysis showed that rNrg1β alleviates neuroinflammation by reducing the number of microglial cells and astrocytes and the expression of IL1β. Our results indicate that Nrg1 protects against oxidative stress and neuroinflammation in mouse cerebellum, suggesting potential therapeutic application in neuroinflammation associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Junping Xu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, People's Republic of China.
| | - Chengliang Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, People's Republic of China.
| | - Shuangxi Chen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, People's Republic of China.
| | - Huifan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, People's Republic of China.
| | - Qiong Jiang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, People's Republic of China.
| | - Peizhi Huang
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, People's Republic of China.
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, People's Republic of China.
| |
Collapse
|
12
|
Perreault ML, Fan T, Banasikowski TJ, Grace AA, George SR. The atypical dopamine receptor agonist SKF 83959 enhances hippocampal and prefrontal cortical neuronal network activity in a rat model of cognitive dysfunction. Eur J Neurosci 2017; 46:2015-2025. [PMID: 28677227 DOI: 10.1111/ejn.13635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
Deficits in neuronal network synchrony in hippocampus and prefrontal cortex have been widely demonstrated in disorders of cognitive dysfunction, including schizophrenia and Alzheimer's disease. The atypical dopamine agonist SKF 83959 has been shown to increase brain-derived neurotrophic factor signalling and suppress activity of glycogen synthase kinase-3 in PFC, two processes important to learning and memory. The purpose of this study was to therefore evaluate the impact of SKF 83959 on oscillatory deficits in methylazoxymethanol acetate (MAM) rat model of schizophrenia. To achieve this, local field potentials were recorded simultaneously from the hippocampus and prefrontal cortex of anesthetized rats at 15 and 90 min following both acute and repeated administration of SKF 83959 (0.4 mg/kg). In MAM rats, but not controls, repeated SKF 83959 treatment increased signal amplitude in hippocampus and enhanced the spectral power of low frequency delta and theta oscillations in this region. In PFC, SKF 83959 increased delta, theta and gamma spectral power. Increased HIP-PFC theta coherence was also evident following acute and repeated SKF 83959. In apparent contradiction to these oscillatory effects, in MAM rats, SKF 83959 inhibited spatial learning and induced a significant increase in thigmotactic behaviour. These findings have uncovered a previously unknown role for SKF 83959 in the positive regulation of hippocampal-prefrontal cortical oscillatory network activity. As SKF 83959 is known to have affinity for a number of receptors, delineating the receptor mechanisms that mediate the positive drug effects on neuronal oscillations could have significant future implications in disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Tomek J Banasikowski
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Bldg. Room 4358, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Li B, Liu J, Zhang YY, Wang PQ, Yu YN, Kang RX, Wu HL, Zhang XX, Wang Z, Wang YY. Quantitative Identification of Compound-Dependent On-Modules and Differential Allosteric Modules From Homologous Ischemic Networks. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2016; 5:575-584. [PMID: 27758049 PMCID: PMC5080653 DOI: 10.1002/psp4.12127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/28/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022]
Abstract
Module‐based methods have made much progress in deconstructing biological networks. However, it is a great challenge to quantitatively compare the topological structural variations of modules (allosteric modules [AMs]) under different situations. A total of 23, 42, and 15 coexpression modules were identified in baicalin (BA), jasminoidin (JA), and ursodeoxycholic acid (UA) in a global anti‐ischemic mice network, respectively. Then, we integrated the methods of module‐based consensus ratio (MCR) and modified Zsummary module statistic to validate 12 BA, 22 JA, and 8 UA on‐modules based on comparing with vehicle. The MCRs for pairwise comparisons were 1.55% (BA vs. JA), 1.45% (BA vs. UA), and 1.27% (JA vs. UA), respectively. Five conserved allosteric modules (CAMs) and 17 unique allosteric modules (UAMs) were identified among these groups. In conclusion, module‐centric analysis may provide us a unique approach to understand multiple pharmacological mechanisms associated with differential phenotypes in the era of modular pharmacology.
Collapse
Affiliation(s)
- B Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - J Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Y Y Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - P Q Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Y N Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - R X Kang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - H L Wu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - X X Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Z Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Y Y Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Neuregulin 1 Attenuates Neuronal Apoptosis Induced by Deep Hypothermic Circulatory Arrest Through ErbB4 Signaling in Rats. J Cardiovasc Pharmacol 2016; 66:551-7. [PMID: 26647012 DOI: 10.1097/fjc.0000000000000303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mounting evidence suggests that neurological injury occurs after deep hypothermic circulatory arrest (DHCA), a protocol widely used in surgery for congenital heart diseases and aortic repair. Neuregulin 1 (NRG1), a neurotrophic factor highly expressed in the central nervous system, is crucial for neuronal survival. However, whether NRG1 is protective against apoptosis induced by DHCA is still unclear, as are the putative mechanisms involved. In this study, exogenous human NRG1 pretreatment (2.5 and 3.75 ng/kg, intracarotid injection) significantly inhibited neuronal apoptosis in DHCA-treated male rats, and notably, endogenous NRG1 expression was also increased. Bcl-2, as well as phosphorylated phosphatidylinositol-3-kinase, Akt, and cAMP-response element binding protein, were all increased, resulting in phosphorylation and subsequent activation of the ErbB4 receptor. Finally, expression of the apoptosis-related protein cleaved-caspase-3 was decreased, resulting in the inhibition of neuronal apoptosis induced by DHCA. Thus, our data indicate that NRG1 treatment inhibited DHCA-induced neuronal apoptosis by activating ErbB4 signaling, providing a potential therapeutic pathway for the prevention of neurological injury induced by DHCA.
Collapse
|
15
|
Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation AKT and ERK signaling pathways in rats. J Neurol Sci 2016; 368:277-84. [DOI: 10.1016/j.jns.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/20/2022]
|
16
|
Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep 2016; 14:2614-24. [PMID: 27486021 PMCID: PMC4991731 DOI: 10.3892/mmr.2016.5542] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/14/2016] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD), one of the neurodegenerative disorders that may develop in the elderly, is characterized by the deposition of β‑amyloid protein (Aβ) and extensive neuronal cell death in the brain. Neuregulin‑1 (Nrg1)‑mediated intercellular and intracellular communication via binding to ErbB receptors regulates a diverse set of biological processes involved in the development of the nervous system. In the present study, a linear correlation was identified between Nrg1 and phosphorylated ErbB (pNeu and pErbB4) receptors in a human cortical tissue microarray. In addition, increased expression levels of Nrg1, but reduced pErbB receptor levels, were detected in the frontal lobe of a patient with AD. Western blotting and immunofluorescence staining were subsequently performed to uncover the potential preventive role of Nrg1 in cortical neurons affected by the neurodegenerative processes of AD. It was observed that the expression of Nrg1 increased as the culture time of the cortical neurons progressed. In addition, H2O2 and Aβ1‑42, two inducers of oxidative stress and neuronal damage, led to a dose‑dependent decrease in Nrg1 expression. Recombinant Nrg1β, however, was revealed to exert a pivotal role in preventing oxidative stress and neuronal damage from occurring in the mouse cortical neurons. Taken together, these results suggest that changes in Nrg1 signaling may influence the pathological development of AD, and exogenous Nrg1 may serve as a potential candidate for the prevention and treatment of AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Weijiang Zhao
- Correspondence to: Professor Weijiang Zhao, Center for Neuroscience, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
17
|
Yu ZH, Cai M, Xiang J, Zhang ZN, Zhang JS, Song XL, Zhang W, Bao J, Li WW, Cai DF. PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:8-19. [PMID: 26805466 DOI: 10.1016/j.jep.2016.01.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongxinluo (TXL), a compound prescription, is formulated according to the collateral disease doctrine of traditional Chinese medicine, and is widely used for the treatment of cardio-cerebrovascular diseases in China. AIM OF THE STUDY We aimed to investigate the neuroprotective effect of TXL on focal cerebral ischemia and reperfusion injury in rats by attenuating its brain damage and neuronal apoptosis, and to assess the potential role of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in this protection. MATERIALS AND METHODS Adult Male Sprague-Dawley rats (n=120) were randomly divided into 5 groups: sham, cerebral ischemia and reperfusion (I/R), cerebral ischemia and reperfusion plus TXL (1.6g/kg/day) (TXL1.6), TXL1.6 plus LY294002 and dimethyl sulfoxide (DMSO) (TXL1.6+LY294002), TXL1.6 plus DMSO (TXL1.6+vehicle). Prior to the grouping, TXL1.6 was selected to be the optimal dose of TXL by evaluating the neurological deficits score of five group rats (Sham, I/R, TXL0.4, TXL0.8 and TXL1.6, n=30) at 0, 1, 3, 5, and 7 days after reperfusion. Rats, being subjected to middle cerebral artery occlusion (MCAO) for 90min followed by 24h reperfusion, were the cerebral ischemia/reperfusion models. At 24h after reperfusion, cerebral infarct area was measured via tetrazolium staining and neuronal damage was showed by Nissl staining. The double staining of Terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) staining and immunofluorescence labeling with NeuN, was performed to evaluate neuronal apoptosis. Proteins involved in PI3K/Akt pathway were detected by Western blot. RESULTS The results showed that TXL markedly improved neurological function, reduced cerebral infarct area, decreased neuronal damage, and significantly attenuated neuronal apoptosis, while these effects were eliminated by inhibition of PI3K/Akt with LY294002. We also found that TXL up-regulated the expression levels of p-PDK1, p-Akt, p-c-Raf, p-BAD and down-regulated Cleaved caspase 3 expression notably, which were partially reversed by LY294002. Additionally, the increment of p-PTEN level on which LY294002 had little effect was also detected in response to TXL treatment. CONCLUSIONS These findings demonstrated that TXL provided neuroprotection against cerebral ischemia/reperfusion injury and neuronal apoptosis, and this effect was mediated partly by activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Zhong-Hai Yu
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Zhen-Nian Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jing-Si Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Xiao-Ling Song
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Jie Bao
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Wen-Wei Li
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ding-Fang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
18
|
Alizadeh A, Karimi-Abdolrezaee S. Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. J Physiol 2016; 594:3539-52. [PMID: 26857216 DOI: 10.1113/jp270895] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/26/2015] [Indexed: 01/29/2023] Open
Abstract
Myelin is a proteolipid sheath enwrapping axons in the nervous system that facilitates signal transduction along the axons. In the central nervous system (CNS), oligodendrocytes are specialized glial cells responsible for myelin formation and maintenance. Following spinal cord injury (SCI), oligodendroglia cell death and myelin damage (demyelination) cause chronic axonal damage and irreparable loss of sensory and motor functions. Accumulating evidence shows that replacement of damaged oligodendrocytes and renewal of myelin (remyelination) are promising approaches to prevent axonal degeneration and restore function following SCI. Neural precursor cells (NPCs) and oligodendrocyte progenitor cells (OPCs) are two main resident cell populations in the spinal cord with innate capacities to foster endogenous oligodendrocyte replacement and remyelination. However, due to the hostile microenvironment of SCI, the regenerative capacity of these endogenous precursor cells is conspicuously restricted. Activated resident glia, along with infiltrating immune cells, are among the key modulators of secondary injury mechanisms that create a milieu impermissible to oligodendrocyte differentiation and remyelination. Recent studies have uncovered inhibitory roles for astrocyte-associated molecules such as matrix chondroitin sulfate proteoglycans (CSPGs), and a plethora of pro-inflammatory cytokines and neurotoxic factors produced by activated microglia/macrophages. The quality of axonal remyelination is additionally challenged by dysregulation of the supportive growth factors required for maturation of new oligodendrocytes and axo-oligodendrocyte signalling. Careful understanding of factors that modulate the activity of endogenous precursor cells in the injury microenvironment is a key step in developing efficient repair strategies for remyelination and functional recovery following SCI.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Ryu J, Hong BH, Kim YJ, Yang EJ, Choi M, Kim H, Ahn S, Baik TK, Woo RS, Kim HS. Neuregulin-1 attenuates cognitive function impairments in a transgenic mouse model of Alzheimer's disease. Cell Death Dis 2016; 7:e2117. [PMID: 26913607 PMCID: PMC4849157 DOI: 10.1038/cddis.2016.30] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
The neuregulin (NRG) family of epidermal growth factor-related proteins is composed of a wide variety of soluble and membrane-bound proteins that exert their effects via the tyrosine kinase receptors ErbB2-ErbB4. In the nervous system, the functions of NRG1 are essential for peripheral myelination, the establishment and maintenance of neuromuscular and sensorimotor systems and the plasticity of cortical neuronal circuits. In the present study, we report that an intracerebroventricular infusion of NRG1 attenuated cognitive impairments in 13-month-old Tg2576 mice, an animal model of Alzheimer's disease (AD). In addition, according to Golgi-Cox staining, NRG1 rescued the reduction in the number of dendritic spines detected in the brains of Tg2576 mice compared with vehicle (PBS)-infused mice. This result was also corroborated in vitro as NRG1 attenuated the oligomeric amyloid beta peptide1-42 (Aβ1-42)-induced decrease in dendritic spine density in rat primary hippocampal neuron cultures. NRG1 also alleviated the decrease in neural differentiation induced by oligomeric Aβ1-42 in mouse fetal neural stem cells. Collectively, these results suggest that NRG1 has a therapeutic potential for AD by alleviating the reductions in dendritic spine density and neurogenesis found in AD brains.
Collapse
Affiliation(s)
- J Ryu
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - B-H Hong
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - Y-J Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Republic of Korea
| | - E-J Yang
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - M Choi
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - H Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - S Ahn
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| | - T-K Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Republic of Korea
| | - R-S Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Republic of Korea
| | - H-S Kim
- Department of Pharmacology and Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea.,Seoul National University College of Medicine, Bundang Hospital, Bundang-Gu, Sungnam, Republic of Korea.,Neuroscience Research Institute, College of Medicine, Seoul National University, 103 Daehakro, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
20
|
Zheng WX, Cao XL, Wang F, Wang J, Ying TZ, Xiao W, Zhang Y, Xing H, Dong W, Xu SQ, Min ZL, Wu FJ, Hu XM. Baicalin inhibiting cerebral ischemia/hypoxia-induced neuronal apoptosis via MRTF-A-mediated transactivity. Eur J Pharmacol 2015; 767:201-10. [PMID: 26485504 DOI: 10.1016/j.ejphar.2015.10.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Baicalin has been shown to provide the neuroprotective effect by alleviating cerebral ischemia injury. However, little's known about the underlying mechanism. Here, a cerebral artery occlusion (MACO)/reperfusion rat model and rat primary cortical neuron culture exposed to hydrogen peroxide (H2O2) were established to evaluate the effect of baicalin on ischemia-induced neuronal apoptosis. We found baicalin can significantly less neurological deficit and reduced infarct volume in vivo. And it efficiently inhibited neuronal apoptosis in vivo and vitro, which was especially characterized by the enhancing of transcription and expression of myeloid cell leukemia-1 (MCL-1) and B-cell lymphoma-2 (BCL-2) in a dose-dependent manner. Furthermore, Baicalin markedly increased myocardin-related transcription factor-A (MRTF-A) level either in ischemic hemisphere or in primary cortical neuron cultures, whiles the anti-apoptosis effect of baicalin was significantly inhibited by transfected with the small interfering RNA of MRTF-A (MRTF-A siRNA) in primary cortical neuron cultures. The luciferase assays also indicated baicalin enhanced the transactivity of MCL-1 and BCL-2 promoter by activating the key CArG box (CC [A/T] 6GG) element, which was reduced by MRTF-A siRNA, suggesting MRTF-A may participate the anti-apoptosis effect of baicalin, and MRTF-A was involved in the transcriptional activity of MCL-1 and BCL-2 that was induced by baicalin. LY294002 (phosphatidylinositol-3 kinase (PI3K) inhibitor) and PD98059 (extracellular signal regulates kinase-1/2 (ERK1/2) inhibitor) obviously reduced baicalin-induced MRTF-A expression and transactivity and expression of MCL-1 and BCL-2, which further abolished the anti-apoptotic effect of baicalin on neuronal apoptosis. Taken together, our data provided the evidence demonstrating the neuroprotective effect of baicalin partially due to MRTF-A-mediated transactivity and expression of MCL-1 and BCL-2 by triggering the CArG box, which might be controlled by the activation of PI3K and ERK1/2.
Collapse
Affiliation(s)
- Wen-xia Zheng
- Department of Pharmacy, Yangtze River Shipping General Hospital, Wuhan, 430010 Hubei Province, China
| | - Xiao-lu Cao
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China; Drug research base of cardiovascular and cerebral vascular, Wuhan University of Science and Technology, China
| | - Feng Wang
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China; Drug research base of cardiovascular and cerebral vascular, Wuhan University of Science and Technology, China
| | - Jun Wang
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China; Drug research base of cardiovascular and cerebral vascular, Wuhan University of Science and Technology, China
| | - Ting-zi Ying
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China; Drug research base of cardiovascular and cerebral vascular, Wuhan University of Science and Technology, China
| | - Wan Xiao
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China; Drug research base of cardiovascular and cerebral vascular, Wuhan University of Science and Technology, China
| | - Ying Zhang
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China; Drug research base of cardiovascular and cerebral vascular, Wuhan University of Science and Technology, China
| | - Hong Xing
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China
| | - Wei Dong
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China
| | - Shi-qiang Xu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China
| | - Zhen-li Min
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China
| | - Fang-jian Wu
- Department of Pharmacy, Yangtze River Shipping General Hospital, Wuhan, 430010 Hubei Province, China.
| | - Xia-min Hu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065 Hubei Province, China; Drug research base of cardiovascular and cerebral vascular, Wuhan University of Science and Technology, China.
| |
Collapse
|
21
|
Bcl-2 associated with severity of manic symptoms in bipolar patients in a manic phase. Psychiatry Res 2015; 225:305-8. [PMID: 25563670 DOI: 10.1016/j.psychres.2014.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/18/2014] [Accepted: 12/14/2014] [Indexed: 01/26/2023]
Abstract
B cell lymphoma protein-2 (Bcl-2) may contribute to the pathophysiology of bipolar disorder, and may be involved in the therapeutic action of anti-manic drugs. The aim of this study was to investigate serum levels of Bcl-2 in bipolar patients in a manic phase, and evaluate the Bcl-2 changes after treatment. We consecutively enrolled 23 bipolar inpatients in a manic phase and 40 healthy subjects; 20 bipolar patients were followed up with treatment. Serum Bcl-2 levels were measured with assay kits. All 20 patients were evaluated by examining the correlation between Bcl-2 levels and Young Mania Rating Scale (YMRS) scores, using Spearman׳s correlation coefficients. The serum Bcl-2 levels in bipolar patients in a manic phase were higher than in healthy subjects, but without a significant difference. The YMRS scores were significantly negatively associated with serum Bcl-2 levels (p=0.042). Bcl-2 levels of the 20 bipolar patients were measured at the end of treatment. Using the Wilcoxon Signed Rank test, we found no significant difference in the Bcl-2 levels of bipolar patients after treatment. Our results suggest that Bcl-2 levels might be an indicator of severity of manic symptoms in bipolar patients in a manic phase.
Collapse
|
22
|
Xing XS, Liu F, He ZY. Akt regulates β-catenin in a rat model of focal cerebral ischemia-reperfusion injury. Mol Med Rep 2014; 11:3122-8. [PMID: 25435199 DOI: 10.3892/mmr.2014.3000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the effects of the phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway on the Wnt/β‑catenin signaling pathway in rats with focal cerebral ischemia‑reperfusion injury. A total of 96 rat focal cerebral ischemia‑reperfusion models, established according to a modified version of Longa's method, were randomly divided into four groups: Sham‑operated (S), cerebral ischemia‑reperfusion injury (I), cerebral ischemia‑reperfusion + basic fibroblast growth factor (bFGF) post‑processing and, finally, cerebral ischemia‑reperfusion + bFGF post‑processing + PI3K inhibitor LY294002 (LY). Each group consisted of 24 rats and each group was divided into four subgroups according to the indicated reperfusion times of 12, 24, 48 and 72 h. The morphological changes of the cortical tissue and the cellular apoptosis were determined using hematoxylin and eosin staining and the terminal deoxynucleotidyl transferase dUTP nick end labeling method, respectively. The expression levels of phosphorylated (p‑)Akt, glycogen synthase kinase‑3β (GSK‑3β) mRNA and β‑catenin in the cortical tissue were detected at different time‑points. The number of apoptotic cells and the expression levels of p‑Akt, GSK‑3β mRNA and β‑catenin in the I and LY groups were significantly higher compared with those in the S group (P<0.05). In the bFGF group, the number of apoptotic cells and the mRNA expression levels of GSK‑3β were significantly decreased, whereas the expression levels of p‑Akt and β‑catenin were significantly increased compared with those in the I and LY groups (P<0.05). In cerebral ischemia‑reperfusion injury, the PI3K/Akt signaling pathway regulated β‑catenin, the main member of the Wnt signaling pathway, via GSK‑3β, providing information to assist in further investigation of the mechanism of β‑catenin in ischemia‑reperfusion injury.
Collapse
Affiliation(s)
- Xue-Song Xing
- Department of Neurology, Shenyang Medical College, Fengtian Hospital, Shenyang, Liaoning 110024, P.R. China
| | - Fang Liu
- Department of Neurology, Shenyang Medical College, Fengtian Hospital, Shenyang, Liaoning 110024, P.R. China
| | - Zhi-Yi He
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
23
|
Linying Z, Wei W, Minxia W, Wenmin Z, Liangcheng Z. Neuroprotective effects of neuregulin-1 ß on oligodendrocyte type 2 astrocyte progenitors following oxygen and glucose deprivation. Pediatr Neurol 2014; 50:357-62. [PMID: 24529326 DOI: 10.1016/j.pediatrneurol.2013.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/27/2013] [Accepted: 12/07/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hypoxic-ischemic brain injury in neonates, especially in premature infants, is one of the main contributors to the mortality of newborns and can cause nervous system dysfunction in children. The major pathogenesis seems to be cerebral ischemia/reperfusion in the immature white matter that preferentially targets vulnerable premyelinating oligodendrocytes. OBJECTIVES The goal of this study was to culture oligodendrocyte type 2 astrocyte cells in an oxygen and glucose deprivation environment to simulate ischemia injury and examine the cellular and molecular mechanisms involved in the neuroprotective effects of neuregulin-1ß on ischemia-induced immature oligodendrocytes. METHODS Oligodendrocyte type 2 astrocyte cells were cultured from neonatal Sprague-Dawley rat cerebra. The cells were divided into two groups: one was subjected to oxygen and glucose deprivation for 9 hours and the other was treated with 50 ng/mL or 100 ng/mL neuregulin-1β during oxygen and glucose deprivation. Cell survival was determined by Trypan Blue staining and cell apoptosis were observed by fluorescein isothiocyanate-Annexin V and propidium iodide double staining. To study if the PI3K-Akt signaling pathway was involved in the mechanism of protective effect of neuregulin-1ß, Western blot analysis was used to quantitative the changes of protein. RESULTS Treatment with neuregulin-1ß within the period of oxygen and glucose deprivation significantly increased cell survival and also resulted in a significant decrease in cell apoptosis. The neuroprotective effects of neuregulin-1ß were prevented by treatment with Ly294002, an inhibitor of the phosphatidylinositol-3-kinase/Akt pathway. CONCLUSIONS These results suggest that neuregulin-1ß could protect the oligodendrocyte type 2 astrocyte progenitors against hypoxic injury, and the mechanism may be associated with the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Zhou Linying
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Centre of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wang Wei
- Centre of Neuroscience, Fujian Medical University, Fuzhou, China.
| | - Wu Minxia
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhang Wenmin
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhang Liangcheng
- Department of Anaesthesiology, The Affiliated Union Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
24
|
Nickl-Jockschat T, Stöcker T, Krug A, Markov V, Huang R, Schneider F, Habel U, Eickhoff SB, Zerres K, Nöthen MM, Treutlein J, Rietschel M, Shah NJ, Kircher T. A Neuregulin-1 schizophrenia susceptibility variant causes perihippocampal fiber tract anomalies in healthy young subjects. Brain Behav 2014; 4:215-26. [PMID: 24683514 PMCID: PMC3967537 DOI: 10.1002/brb3.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/05/2013] [Accepted: 11/24/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Changes in fiber tract architecture have gained attention as a potentially important aspect of schizophrenia neuropathology. Although the exact pathogenesis of these abnormalities yet remains to be elucidated, a genetic component is highly likely. Neuregulin-1 (NRG1) is one of the best-validated schizophrenia susceptibility genes. We here report the impact of the Neuregulin-1 rs35753505 variant on white matter structure in healthy young individuals with no family history of psychosis. METHODS We compared fractional anisotropy in 54 subjects that were either homozygous for the risk C allele carriers (n = 31) for rs35753505 or homozygous for the T allele (n = 23) using diffusion tensor imaging with 3T. Tract-Based Spatial Statistics (TBSS), a method especially developed for diffusion data analysis, was used to improve white matter registration and to focus the statistical analysis to major fiber tracts. RESULTS Statistical analysis showed that homozygous risk C allele carriers featured elevated fractional anisotropy (FA) in the right perihippocampal region and the white matter proximate to the left area 4p as well as the right hemisphere of the cerebellum. We found three clusters of reduced FA values in homozygous C allele carriers: in the left superior parietal region, the right prefrontal white matter and in the deep white matter of the left frontal lobe. CONCLUSION Our results highlight the importance of Neuregulin-1 for structural connectivity of the right medial temporal lobe. This finding is in line with well known neuropathological findings in this region in patients with schizophrenia.
Collapse
Affiliation(s)
- Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Correspondence Thomas Nickl-Jockschat, Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse-30-, D-52074 Aachen, Germany. Tel: 0049-241/80-36413;, Fax: 0049-241/80-82401;, E-mail:
| | - Tony Stöcker
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of MarburgMarburg, Germany
| | - Valentin Markov
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
| | - Ruiwang Huang
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine UniversityDüsseldorf, Germany
- Department of Neuroscience und Medicine, INM-1, Research Center JülichJülich, Germany
| | - Klaus Zerres
- Institute of Human Genetics, RWTH Aachen UniversityAachen, Germany
| | - Markus M Nöthen
- Department of Genomics, Life and Brain Center, University of BonnBonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental HealthMannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental HealthMannheim, Germany
| | - Nadim Jon Shah
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
- Department of Neurology, RWTH Aachen UniversityAachen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of MarburgMarburg, Germany
| |
Collapse
|
25
|
Solomon W, Wilson NO, Anderson L, Pitts S, Patrickson J, Liu M, Ford BD, Stiles JK. Neuregulin-1 attenuates mortality associated with experimental cerebral malaria. J Neuroinflammation 2014; 11:9. [PMID: 24433482 PMCID: PMC3906904 DOI: 10.1186/1742-2094-11-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/23/2013] [Indexed: 12/17/2022] Open
Abstract
Background Cerebral Malaria (CM) is a diffuse encephalopathy caused by Plasmodium falciparum infection. Despite availability of antimalarial drugs, CM-associated mortality remains high at approximately 30% and a subset of survivors develop neurological and cognitive disabilities. While antimalarials are effective at clearing Plasmodium parasites they do little to protect against CM pathophysiology and parasite-induced brain inflammation that leads to seizures, coma and long-term neurological sequelae in CM patients. Thus, there is urgent need to explore therapeutics that can reduce or prevent CM pathogenesis and associated brain inflammation to improve survival. Neuregulin-1 (NRG-1) is a neurotrophic growth factor shown to protect against brain injury associated with acute ischemic stroke (AIS) and neurotoxin exposure. However, this drug has not been tested against CM-associated brain injury. Since CM-associated brain injuries and AIS share similar pathophysiological features, we hypothesized that NRG-1 will reduce or prevent neuroinflammation and brain damage as well as improve survival in mice with late-stage experimental cerebral malaria (ECM). Methods We tested the effects of NRG-1 on ECM-associated brain inflammation and mortality in P. berghei ANKA (PbA)-infected mice and compared to artemether (ARM) treatment; an antimalarial currently used in various combination therapies against malaria. Results Treatment with ARM (25 mg/kg/day) effectively cleared parasites and reduced mortality in PbA-infected mice by 82%. Remarkably, NRG-1 therapy (1.25 ng/kg/day) significantly improved survival against ECM by 73% despite increase in parasite burden within NRG-1-treated mice. Additionally, NRG-1 therapy reduced systemic and brain pro-inflammatory factors TNFalpha, IL-6, IL-1alpha and CXCL10 and enhanced anti-inflammatory factors, IL-5 and IL-13 while decreasing leukocyte accumulation in brain microvessels. Conclusions This study suggests that NRG-1 attenuates ECM-associated brain inflammation and injuries and may represent a novel supportive therapy for the management of CM.
Collapse
Affiliation(s)
- Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Caspase Inhibition Via A3 Adenosine Receptors: A New Cardioprotective Mechanism Against Myocardial Infarction. Cardiovasc Drugs Ther 2013; 28:19-32. [DOI: 10.1007/s10557-013-6500-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Cui W, Tao J, Wang Z, Ren M, Zhang Y, Sun Y, Peng Y, Li R. Neuregulin1beta1 antagonizes apoptosis via ErbB4-dependent activation of PI3-kinase/Akt in APP/PS1 transgenic mice. Neurochem Res 2013; 38:2237-46. [PMID: 23982319 DOI: 10.1007/s11064-013-1131-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/06/2013] [Accepted: 08/10/2013] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of beta-amyloid protein (Aβ) and extensive neuronal cell death. Apoptosis plays a crucial role in loss of neurons in AD. Neuregulin1 (NRG1) has been found to protect neurons from oxygen glucose deprivation induced apoptosis and hypoxia ischemia induced apoptosis. However, the relationship between NRG1 and apoptosis related protein expression in AD and its mechanism remain uncertain. The present study explores the effects of NRG1 on Aβ-induced apoptosis in AD. In this study, extracellular domain of NRG1beta1 (NRG1β1-ECD) promoted the expression of p-ErbB4 receptor, p-Akt and increased the level of Bcl-2 both in APP/PS1 transgenic mice and in vitro. In primary culture of neurons, the level of Bcl-2 protein decreased significantly after Aβ treatment. These changes were inhibited by pretreatment of neurons with NRG1β1-ECD. A specific inhibitor of PI3-kinase/Akt pathway, wortmannin, significantly abrogated the effects of NRG1β1-ECD on p-Akt and Bcl-2 levels. Furthermore, the expression of PI3-kinase/Akt by NRG1β1-ECD was ErbB4-dependent. Our data demonstrated that NRG1β1-ECD might serve as an obvious neuroprotection in AD, and the possible protective mechanism occurs most likely via ErbB4-dependent activation of PI3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Weigang Cui
- Key Open Lab for Tissue Regeneration of Henan Universities, Department of Human Anatomy, Xinxiang Medical University, Xinxiang, 453003, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li B, Xiao J, Li Y, Zhang J, Zeng M. Gene transfer of human neuregulin-1 attenuates ventricular remodeling in diabetic cardiomyopathy rats. Exp Ther Med 2013; 6:1105-1112. [PMID: 24223630 PMCID: PMC3820667 DOI: 10.3892/etm.2013.1273] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023] Open
Abstract
Neuregulin-1 (NRG-1) is a cardioactive growth factor released from endothelial cells. However, the effect of NRG-1 on ventricular remodeling in diabetic cardiomyopathy (DCM) remains unclear. The aim of the present study was to investigate the pathophysiological role of NRG-1 in a rat model of DCM. Rat cardiac microvascular endothelial cells (CMECs) were transfected with human NRG-1 (hNRG-1) lentivirus. The hNRG-1 medium was utilized to culture rat cardiomyocytes. The cardiomyocytes were counted with a hemacytometer to determine the proliferation index and Annexin V/propidium iodide double staining was employed to examine the apoptotic rate. A rat model of DCM was induced by an intraperitoneal injection of streptozotocin. The hNRG-1 lentivirus was injected into the myocardium of the DCM model rats. Four weeks after the lentiviral injection, cardiac catheterization was performed to evaluate the cardiac function. Apoptotic cells were determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. Left ventricular sections were stained with Masson’s trichrome to investigate the myocardial collagen content. The expression levels of related genes and proteins were analyzed. The results indicated that hNRG-1 conditioned medium stimulated the proliferation and counteracted the apoptosis of cardiomyocytes in vitro. In the rats with DCM, gene transfer of hNRG-1 to the myocardium improved heart function, as indicated by invasive hemodynamic measurements. In addition, hNRG-1 reduced the number of apoptotic cells, decreased the expression of bax and increased the expression of bcl-2 in the myocardium of the DCM model rats. Myocardial fibrosis and type I and III pro-collagen mRNA levels in the myocardium were significantly reduced by hNRG-1. hNRG-1 also increased the expression of phospho-Akt and phospho-eNOS in the myocardium. In conclusion, the gene transfer of hNRG-1 ameliorates cardiac dysfunction in diabetes. Although further studies are required, NRG-1 appears to protect cardiomyocytes against apoptosis and to reduce the extent of myocardial interstitial fibrosis.
Collapse
Affiliation(s)
- Bingong Li
- Department of Cardiology, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | | | | | | | | |
Collapse
|
29
|
He X, Sandhu HK, Yang Y, Hua F, Belser N, Kim DH, Xia Y. Neuroprotection against hypoxia/ischemia: δ-opioid receptor-mediated cellular/molecular events. Cell Mol Life Sci 2013; 70:2291-303. [PMID: 23014992 PMCID: PMC11113157 DOI: 10.1007/s00018-012-1167-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 12/24/2022]
Abstract
Hypoxic/ischemic injury remains the most dreaded cause of neurological disability and mortality. Despite the humbling experiences due to lack of promising therapy, our understanding of the complex cascades underlying the neuronal insult has led to advances in basic science research. One of the most noteworthy has been the effect of opioid receptors, especially the delta-opioid receptor (DOR), on hypoxic/ischemic neurons. Our recent studies, and those of others worldwide, present strong evidence that sheds light on DOR-mediated neuroprotection in the brain, especially in the cortex. The mechanisms of DOR neuroprotection are broadly categorized as: (1) stabilization of the ionic homeostasis, (2) inhibition of excitatory transmitter release, (3) attenuation of disrupted neuronal transmission, (4) increase in antioxidant capacity, (5) regulation of intracellular pathways-inhibition of apoptotic signals and activation of pro-survival signaling, (6) regulation of specific gene and protein expression, and (7) up-regulation of endogenous opioid release and/or DOR expression. Depending upon the severity and duration of hypoxic/ischemic insult, the release of endogenous opioids and DOR expression are regulated in response to the stress, and DOR signaling acts at multiple levels to confer neuronal tolerance to harmful insult. The phenomenon of DOR neuroprotection offers a potential clue for a promising target that may have significant clinical implications in our quest for neurotherapeutics.
Collapse
Affiliation(s)
- Xiaozhou He
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Harleen K. Sandhu
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Yilin Yang
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Fei Hua
- The Third Clinical College of Suzhou University, Changzhou, Jiangsu China
| | - Nathalee Belser
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Dong H. Kim
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| | - Ying Xia
- The Vivian L Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, 77030 TX USA
| |
Collapse
|
30
|
Snyder MA, Gao WJ. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci 2013; 7:31. [PMID: 23543703 PMCID: PMC3608949 DOI: 10.3389/fncel.2013.00031] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/11/2013] [Indexed: 01/05/2023] Open
Abstract
Schizophrenia is a disabling mental illness that is now recognized as a neurodevelopmental disorder. It is likely that genetic risk factors interact with environmental perturbations to affect normal brain development and that this altered trajectory results in a combination of positive, negative, and cognitive symptoms. Although the exact pathophysiology of schizophrenia is unknown, the N-methyl-D-aspartate receptor (NMDAR), a major glutamate receptor subtype, has received great attention. Proper expression and regulation of NMDARs in the brain is critical for learning and memory processes as well as cortical plasticity and maturation. Evidence from both animal models and human studies implicates a dysfunction of NMDARs both in disease progression and symptoms of schizophrenia. Furthermore, mutations in many of the known genetic risk factors for schizophrenia suggest that NMDAR hypofunction is a convergence point for schizophrenia. In this review, we discuss how disrupted NMDAR function leads to altered neurodevelopment that may contribute to the progression and development of symptoms for schizophrenia, particularly cognitive deficits. We review the shared signaling pathways among the schizophrenia susceptibility genes DISC1, neuregulin1, and dysbindin, focusing on the AKT/GSK3β pathway, and how their mutations and interactions can lead to NMDAR dysfunction during development. Additionally, we explore what open questions remain and suggest where schizophrenia research needs to move in order to provide mechanistic insight into the cause of NMDAR dysfunction, as well as generate possible new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | | |
Collapse
|
31
|
Li Y, Li H, Liu G, Liu Z. Effects of neuregulin-1β on growth-associated protein 43 expression in dorsal root ganglion neurons with excitotoxicity induced by glutamate in vitro. Neurosci Res 2013; 76:22-30. [PMID: 23524246 DOI: 10.1016/j.neures.2013.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/19/2022]
Abstract
Neuregulin-1β (NRG-1β) is a growth factor with potent neuroprotective capacity. Growth-associated protein 43 (GAP-43) is expressed in dorsal root ganglion (DRG) neurons and an indicator of neuronal survival in vitro. The purpose of present study is to evaluate the effects of NRG-1β on GAP-43 expression in DRG neurons with excitotoxicity induced by glutamate (Glu) in vitro. The phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated protein kinase 1/2 (ERK1/2) signaling pathways involved in these effects were also determined. Embryonic rat DRG neurons were treated with Glu in the absence or presence of NRG-1β and PI3K inhibitor LY294002 and/or ERK1/2 inhibitor PD98059. After that, GAP-43 mRNA and GAP-43 protein levels were analyzed by real time-PCR and western blot assay, respectively. GAP-43 expression in situ was determined by immunofluorescent labeling. The results showed that the decreased GAP-43 levels induced by Glu could be partially reversed by the presence of NRG-1β. Inhibitors (LY294002, PD98059) either alone or in combination blocked the effects of NRG-1β. These data provide new insights of the actions of NRG-1β in sensory neurons.
Collapse
Affiliation(s)
- Yunfeng Li
- Faculty of Clinical Medicine, Shandong University School of Medicine, Jinan 250012, China
| | | | | | | |
Collapse
|
32
|
Xu C, Lv L, Zheng G, Li B, Gao L, Sun Y. Neuregulin1β1 protects oligodendrocyte progenitor cells from oxygen glucose deprivation injury induced apoptosis via ErbB4-dependent activation of PI3-kinase/Akt. Brain Res 2012; 1467:104-12. [PMID: 22659027 DOI: 10.1016/j.brainres.2012.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
Abstract
Mounting evidence suggests that the injury of oligodendrocyte progenitor cells (OPCs) caused by hypoxia plays a pivotal role in periventricular white matter injury (PWMI) causation. We investigated the potential role of active extracellular domain of Neuregulin1 isotypeβ1 (NRG1β1)/ErbB signaling in protecting OPCs from oxygen glucose deprivation (OGD) induced apoptosis. At different time points, endogenous NRG1β1 protein was analyzed after OGD. Escalating dosages of NRG1β1 were used to treat OPCs with OGD, and the apoptosis was measured, as well as the expression of ErbB receptors, Akt and Erk phosphorylation and caspase3 activation. OGD damage resulted in decreased expression of endogenous NRG1β1. In parallel, NRG1β1 treatment promoted the expression of p-ErbB4 receptor, phosphorylated Akt and inhibited caspase3 activation. Furthermore, the activation of PI3-kinase/Akt by NRG1β1 was ErbB4 dependent. Our data demonstrated that NRG1β1 protected OPCs from OGD induced apoptosis and the possible protective mechanism is linking with ErbB4-dependent activation of PI3-kinase/Akt pathway.
Collapse
Affiliation(s)
- Chongchong Xu
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, PR China
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Migración neuronal, apoptosis y trastorno bipolar. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2012; 5:127-33. [DOI: 10.1016/j.rpsm.2011.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/12/2011] [Accepted: 11/28/2011] [Indexed: 11/23/2022]
|
35
|
Woo RS, Lee JH, Kim HS, Baek CH, Song DY, Suh YH, Baik TK. Neuregulin-1 protects against neurotoxicities induced by Swedish amyloid precursor protein via the ErbB4 receptor. Neuroscience 2011; 202:413-23. [PMID: 22186019 DOI: 10.1016/j.neuroscience.2011.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 12/25/2022]
Abstract
Neuregulin-1 (NRG1) plays an important role in the development and plasticity of the brain and exhibits potent neuroprotective properties. However, little information on its role in Alzheimer's disease (AD) is known. The neuroprotective effect and mechanisms of NRG1 in SH-SY5Y cells overexpressing the Swedish mutant form of amyloid precursor protein (Swe-APP) and primary cortical neuronal cells treated with amyloid beta peptide(1-42) (Aβ(1-42)) were investigated in this study. NRG1 attenuated Swe-APP- or Aβ(1-42)-induced lactate dehydrogenase (LDH) release in a concentration-dependent manner. The mitigating effects of NRG1 on neuronal cell death were blocked by ErbB4 inhibition, a key NRG1 receptor, which suggests a role of ErbB4 in the neuroprotective function of NRG1. Moreover, NRG1 reduced the number of Swe-APP- and Aβ(1-42)-induced TUNEL-positive SH-SY5Y cells and primary cortical neurons, respectively. NRG1 reduced the accumulation of reactive oxygen species and attenuated Swe-APP-induced mitochondrial membrane potential loss. NRG1 also induced the upregulation of the expression of the anti-apoptotic protein, Bcl-2, and decreased caspase-3 activation. Collectively, our results demonstrate that NRG1 exerts neuroprotective effects via the ErbB4 receptor, which suggests the neuroprotective potential of NRG1 in AD.
Collapse
Affiliation(s)
- R-S Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Hu J, Chai Y, Wang Y, Kheir MM, Li H, Yuan Z, Wan H, Xing D, Lei F, Du L. PI3K p55γ promoter activity enhancement is involved in the anti-apoptotic effect of berberine against cerebral ischemia-reperfusion. Eur J Pharmacol 2011; 674:132-42. [PMID: 22119079 DOI: 10.1016/j.ejphar.2011.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 01/29/2023]
Abstract
Berberine is a candidate clinical neuroprotective agent against ischemic stroke. In the present study, we examined the influence of the PI3K/Akt pathway in mediating the anti-apoptotic effects of berberine. Oxygen-glucose deprivation and reoxygenation of nerve growth factor-differentiated PC12 cells and primary neurons, and bilateral common carotid artery occlusion in mice were used as in vitro and in vivo ischemia models. We found that the anti-apoptotic effects of berberine against ischemia were indeed mediated by the increased phosphor-activation of Akt (higher p-Akt to total Akt), leading to the intensified phosphorylation of Bad and the decreased cleavage of the pro-apoptotic protease caspase-3. Berberine action is specific for PI3K, rather than the upstream receptor tyrosine kinase. The anti-apoptotic effect is maintained in the presence of tyrosine kinase inhibitor genistein and the epidermal growth factor receptor inhibitor PD153035, but is suppressed by the PI3K inhibitor Ly294002 and the Akt inhibitor Akti-1/2.The unique PI3K regulatory subunit p55γ was upregulated by berberine during ischemia-reperfusion and was not blocked by these inhibitors. We constructed a reporter plasmid to detect PI3K p55γ promoter activity and found that berberine enhanced PI3K p55γ promoter activity during cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Jun Hu
- Protein Science Laboratory of the Ministry of Education, Laboratory of Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|