1
|
Kumar R, Srivastava V. Application of anti-fungal vaccines as a tool against emerging anti-fungal resistance. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1241539. [PMID: 37746132 PMCID: PMC10512234 DOI: 10.3389/ffunb.2023.1241539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/26/2023]
Abstract
After viruses and bacteria, fungal infections remain a serious threat to the survival and well-being of society. The continuous emergence of resistance against commonly used anti-fungal drugs is a serious concern. The eukaryotic nature of fungal cells makes the identification of novel anti-fungal agents slow and difficult. Increasing global temperature and a humid environment conducive to fungal growth may lead to a fungal endemic or a pandemic. The continuous increase in the population of immunocompromised individuals and falling immunity forced pharmaceutical companies to look for alternative strategies for better managing the global fungal burden. Prevention of infectious diseases by vaccines can be the right choice. Recent success and safe application of mRNA-based vaccines can play a crucial role in our quest to overcome anti-fungal resistance. Expressing fungal cell surface proteins in human subjects using mRNA technology may be sufficient to raise immune response to protect against future fungal infection. The success of mRNA-based anti-fungal vaccines will heavily depend on the identification of fungal surface proteins which are highly immunogenic and have no or least side effects in human subjects. The present review discusses why it is essential to look for anti-fungal vaccines and how vaccines, in general, and mRNA-based vaccines, in particular, can be the right choice in tackling the problem of rising anti-fungal resistance.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Pathology, Collage of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
2
|
Rabaan AA, Alfaraj AH, Alshengeti A, Alawfi A, Alwarthan S, Alhajri M, Al-Najjar AH, Al Fares MA, Najim MA, Almuthree SA, AlShurbaji ST, Alofi FS, AlShehail BM, AlYuosof B, Alynbiawi A, Alzayer SA, Al Kaabi N, Abduljabbar WA, Bukhary ZA, Bueid AS. Antibodies to Combat Fungal Infections: Development Strategies and Progress. Microorganisms 2023; 11:microorganisms11030671. [PMID: 36985244 PMCID: PMC10051215 DOI: 10.3390/microorganisms11030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The finding that some mAbs are antifungal suggests that antibody immunity may play a key role in the defense of the host against mycotic infections. The discovery of antibodies that guard against fungi is a significant advancement because it gives rise to the possibility of developing vaccinations that trigger protective antibody immunity. These vaccines might work by inducing antibody opsonins that improve the function of non-specific (such as neutrophils, macrophages, and NK cells) and specific (such as lymphocyte) cell-mediated immunity and stop or aid in eradicating fungus infections. The ability of antibodies to defend against fungi has been demonstrated by using monoclonal antibody technology to reconsider the function of antibody immunity. The next step is to develop vaccines that induce protective antibody immunity and to comprehend the mechanisms through which antibodies mediate protective effects against fungus.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence:
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Amal H. Al-Najjar
- Drug & Poison Information Center, Pharmacy Department, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mustafa A. Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Sultan T. AlShurbaji
- Outpatient Pharmacy, Dr. Sulaiman Alhabib Medical Group, Diplomatic Quarter, Riyadh 91877, Saudi Arabia
| | - Fadwa S. Alofi
- Department of Infectious Diseases, King Fahad Hospital, Madinah 42351, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Buthina AlYuosof
- Directorate of Public Health, Dammam Network, Eastern Health Cluster, Dammam 31444, Saudi Arabia
| | - Ahlam Alynbiawi
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Suha A. Alzayer
- Parasitology Laboratory Department, Qatif Comprehensive Inspection Center, Qatif 31911, Saudi Arabia
| | - Nawal Al Kaabi
- Department of Pediatric Infectious Disease, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Zakiyah A. Bukhary
- Department of Internal Medicine, King Fahad General Hospital, Jeddah 23325, Saudi Arabia
| | - Ahmed S. Bueid
- Microbiology Laboratory, King Faisal General Hospital, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Tong T, Wang Z, Xu Y, Shen J. Immunization with Pneumocystis carinii A12 1-85 antigen activates immune function against P. carinii. BMC Immunol 2021; 22:40. [PMID: 34174820 PMCID: PMC8236001 DOI: 10.1186/s12865-021-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pneumocystis pneumonia (PcP), which is caused by Pneumocystis carinii, is a life-threatening infection that affects immunocompromised individuals. Unfortunately, chemoprophylaxis and dapsone are only effective for half of the patients with PcP, indicating that additional preventive methods are needed. We predicated the pneumocystis surface protein A12 sequence 1-85 by DNAStar software and BepiPred, and identified it as a potential vaccine candidate by bioresearch. METHODS We used recombinant A121-85 as antigen to immunized mice and detected serum titer of IgG, expression of inflammatory factors by EILSA, qRT-PCR and flow cytometry. RESULTS Our results showed that immunization with recombinant A121-85 increased the serum titer of IgG, promoted the secretion of T lymphocytes, increased the expression of inflammatory factors, and elevated lung inflammatory injury in mice. CONCLUSIONS Our findings suggest that A121-85 is a potential vaccine target for preventing Pneumocystis carinii. The evaluation of A121-85-elicited antibodies in the prevention of PcP in humans deserves further investigation.
Collapse
Affiliation(s)
- Tong Tong
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Zhongxin Wang
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei, Anhui 230022 People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, Fourth Affiliated Hospital, Anhui Medical University, 100 Huaihai Road, Hefei, Anhui People’s Republic of China
| |
Collapse
|
4
|
Xue T, Chun-Li A. Role of Pneumocystis jirovecii infection in chronic obstructive pulmonary disease progression in an immunosuppressed rat Pneumocystis pneumonia model. Exp Ther Med 2020; 19:3133-3142. [PMID: 32256801 DOI: 10.3892/etm.2020.8545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2019] [Indexed: 11/05/2022] Open
Abstract
Pneumocystis jirovecii (P. jirovecii), an opportunistic fungal pathogen, is the primary cause of Pneumocystis pneumonia (PCP), which affects immunocompromised individuals and leads to high morbidity and mortality. P. jirovecii colonization is associated with development of chronic obstructive pulmonary disease (COPD) in patients with HIV infection, and also non-sufferers, and in primate models of HIV infection. However, the mechanisms underlying P. jirovecii infection in the pathogenesis of COPD have yet to be fully elucidated. To investigate the pathogenicity of P. jirovecii infection and its role in COPD development, the present study established a PCP rat model induced by dexamethasone sodium phosphate injection. Expression of COPD-related biomarkers, including matrix metalloproteinases (MMPs) MMP-2, MMP-8, MMP-9, and MMP-12, and heat shock protein-27 (HSP-27), were quantified in the rat PCP model using reverse transcription-quantitative polymerase chain reaction, ELISA, western blot analysis, immunohistochemistry and gelatin zymography. Body weight, COPD symptoms, and pulmonary histopathology were assessed. Inflammatory cell counts in splenic tissues were measured using flow cytometry. It was identified that MMP and HSP-27 expression increased in the PCP rats, which was in agreement with previous literature. Therefore, it was hypothesized that P. jirovecii infection may have an important role in COPD development.
Collapse
Affiliation(s)
- Ting Xue
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - An Chun-Li
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
5
|
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2018; 109:333-344. [PMID: 30399567 DOI: 10.1016/j.biopha.2018.10.075] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal infections include a wide range of opportunistic and invasive diseases. Two of four major fatal diseases in patients with human immunodeficiency virus (HIV) infection are related to the fungal infections, cryptococcosis, and pneumocystosis. Disseminated candidiasis and different clinical forms of aspergillosis annually impose expensive medical costs to governments and hospitalized patients and ultimately lead to high mortality rates. Therefore, urgent implementations are necessary to prevent the expansion of these diseases. Designing an effective vaccine is one of the most important approaches in this field. So far, numerous efforts have been carried out in developing an effective vaccine against fungal infections. Some of these challenges engaged in different stages of clinical trials but none of them could be approved by the United States Food and Drug Administration (FDA). Here, in addition to have a comprehensive overview on the data from studied vaccine programs, we will discuss the immunology response against fungal infections. Moreover, it will be attempted to clarify the underlying immune mechanisms of vaccines targeting different fungal infections that are crucial for designing an effective vaccination strategy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine/Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Vakili
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Khezripour
- Department of Pharmacotherapy, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm 2017; 2017:9870679. [PMID: 28694566 PMCID: PMC5485324 DOI: 10.1155/2017/9870679] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.
Collapse
|
8
|
Fan H, Guo JY, Ma SL, Zhang N, An CL. Synthetic p55 tandem DNA vaccine against Pneumocystis carinii in rats. Microbiol Immunol 2017; 60:397-406. [PMID: 27185490 DOI: 10.1111/1348-0421.12386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 11/30/2022]
Abstract
Pneumocystis spp. are opportunistic fungal pathogens that are closely associated with severe pneumonia and pulmonary complications in patients with impaired immunity. In this study, the antigenic epitopes of the gene encoding the 55 kDa antigen fragment of Pneumocystis (p55), which may play an important role in Pneumocystis pneumonia, were analyzed. A gene containing tandem variants of the p55 antigen was synthesized and named the tandem antigen gene (TAG). TAG's potential as a DNA vaccine was assessed in immunosuppressed rats. Immunization with p55-TAG DNA vaccine significantly reduced both the pathogen burden and lung-weight to body-weight ratios. Additionally, p55-TAG vaccination in immunosuppressed rats elicited both cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hua Fan
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Jiu-Ying Guo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Su-Li Ma
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Nan Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Chun-Li An
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
9
|
Immunization with Pneumocystis Cross-Reactive Antigen 1 (Pca1) Protects Mice against Pneumocystis Pneumonia and Generates Antibody to Pneumocystis jirovecii. Infect Immun 2017; 85:IAI.00850-16. [PMID: 28031260 DOI: 10.1128/iai.00850-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis pneumonia (PcP) is a life-threatening infection that affects immunocompromised individuals. Nearly half of all PcP cases occur in those prescribed effective chemoprophylaxis, suggesting that additional preventive methods are needed. To this end, we have identified a unique mouse Pneumocystis surface protein, designated Pneumocystis cross-reactive antigen 1 (Pca1), as a potential vaccine candidate. Mice were immunized with a recombinant fusion protein containing Pca1. Subsequently, CD4+ T cells were depleted, and the mice were exposed to Pneumocystis murina Pca1 immunization completely protected nearly all mice, similar to immunization with whole Pneumocystis organisms. In contrast, all immunized negative-control mice developed PcP. Unexpectedly, Pca1 immunization generated cross-reactive antibody that recognized Pneumocystis jirovecii and Pneumocystis carinii Potential orthologs of Pca1 have been identified in P. jirovecii Such cross-reactivity is rare, and our findings suggest that Pca1 is a conserved antigen and potential vaccine target. The evaluation of Pca1-elicited antibodies in the prevention of PcP in humans deserves further investigation.
Collapse
|
10
|
Ruan S, Cai Y, Ramsay AJ, Welsh DA, Norris K, Shellito JE. B cell and antibody responses in mice induced by a putative cell surface peptidase of Pneumocystis murina protect against experimental infection. Vaccine 2017; 35:672-679. [PMID: 28012778 PMCID: PMC5241231 DOI: 10.1016/j.vaccine.2016.11.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/21/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022]
Abstract
RATIONALE Pneumocystis pneumonia is a major cause of morbidity and mortality in HIV-infected subjects, cancer patients undergoing chemotherapy and solid organ transplant recipients. No vaccine is currently available. By chemical labeling coupled with proteomic approach, we have identified a putative surface protein (SPD1, Broad Institute gene accession number PNEG_01848) derived from single suspended P. murina cysts. SPD1 was expressed in an insect cell line and tested for vaccine development. METHODS Mice were immunized with SPD1 plus adjuvant MF-59 by subcutaneous injection. Three weeks after the last immunization, CD4+ cells were depleted with anti-CD4 antibody GK1.5. The mice were then challenged with 2×105Pneumocystis organisms. Mice were sacrificed at 4 and 6weeks after PC challenge. Spleen/lung cells and serum were harvested. B cells and memory B cells were assessed via flow cytometry. Specific Pneumocystis IgG antibody was measured by ELISA before and after challenge. Infection burden was measured as real-time PCR for P. murina rRNA. RESULTS Normal mice infected with Pneumocystis mounted a serum IgG antibody response to SPD1. Serum from rhesus macaques exposed to Pneumocystis showed a similar serum IgG response to purified SPD1. SPD1 immunization increased B cell and memory B cell absolute cell counts in CD4-depleted Balb/c mice post Pneumocystis challenge in spleen and lung. Immunization with SPD1 significantly increased specific Pneumocystis IgG antibody production before and after challenge. Mice immunized with SPD1 showed significantly decreased P. murina copy number compared with mice that did not receive SPD1 at 6weeks after challenge. CONCLUSION Immunization with SPD1 provides protective efficacy against P. murina infection. SPD1 protection against Pneumocystis challenge is associated with enhanced memory B cell production and higher anti-Pneumocystis IgG antibody production. SPD1 is a potential vaccine candidate to prevent or treat pulmonary infection with Pneumocystis.
Collapse
MESH Headings
- Animals
- Antibodies, Fungal/blood
- Antibody Formation
- Antigens, Fungal/genetics
- Antigens, Fungal/immunology
- B-Lymphocytes/immunology
- Colony Count, Microbial
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Fungal Vaccines/administration & dosage
- Fungal Vaccines/genetics
- Fungal Vaccines/immunology
- Lung/microbiology
- Macaca mulatta
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice, Inbred BALB C
- Peptide Hydrolases/genetics
- Peptide Hydrolases/immunology
- Pneumocystis/enzymology
- Pneumocystis/immunology
- Pneumonia, Pneumocystis/prevention & control
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Sanbao Ruan
- Section of Pulmonary, Critical Care Medicine, and Allergy/Immunology, LSU Health Sciences Center, New Orleans, United States
| | - Yang Cai
- The Research Institute for Children, Children's Hospital, New Orleans and Department of Chemistry, University of New Orleans, United States
| | - Alistair J Ramsay
- Department of Microbiology, Immunology, and Parasitology, LSU Health Sciences Center, New Orleans, United States
| | - David A Welsh
- Section of Pulmonary, Critical Care Medicine, and Allergy/Immunology, LSU Health Sciences Center, New Orleans, United States
| | - Karen Norris
- Department of Immunology, University of Pittsburgh, United States
| | - Judd E Shellito
- Section of Pulmonary, Critical Care Medicine, and Allergy/Immunology, LSU Health Sciences Center, New Orleans, United States.
| |
Collapse
|
11
|
Abstract
Fungal organisms are ubiquitous in the environment. Pathogenic fungi, although relatively few in the whole gamut of microbial pathogens, are able to cause disease with varying degrees of severity in individuals with normal or impaired immunity. The disease state is an outcome of the fungal pathogen's interactions with the host immunity, and therefore, it stands to reason that deep/invasive fungal diseases be amenable to immunotherapy. Therefore, antifungal immunotherapy continues to be attractive as an adjunct to the currently available antifungal chemotherapy options for a number of reasons, including the fact that existing antifungal drugs, albeit largely effective, are not without limitations, and that morbidity and mortality associated with invasive mycoses are still unacceptably high. For several decades, intense basic research efforts have been directed at development of fungal immunotherapies. Nevertheless, this approach suffers from a severe bench-bedside disconnect owing to several reasons: the chemical and biological peculiarities of the fungal antigens, the complexities of host-pathogen interactions, an under-appreciation of the fungal disease landscape, the requirement of considerable financial investment to bring these therapies to clinical use, as well as practical problems associated with immunizations. In this general, non-exhaustive review, we summarize the features of ongoing research efforts directed towards devising safe and effective immunotherapeutic options for mycotic diseases, encompassing work on antifungal vaccines, adoptive cell transfers, cytokines, antimicrobial peptides (AMPs), monoclonal antibodies (mAbs), and other agents.
Collapse
Affiliation(s)
- Kausik Datta
- a Division of Infectious Diseases , Johns Hopkins University School of Medicine , Baltimore , MD , USA , and
| | - Mawieh Hamad
- b Department of Medical Laboratory Sciences and the Sharjah Institute for Medical Research , University of Sharjah , Sharjah , UAE
| |
Collapse
|
12
|
Abstract
There has been a global upsurge in fungal infections due to rise in immunodeficiencies, debilitation and situations of violated anatomical barriers. The available antifungal repertoire has limited activity and is fraught with toxicity concerns. Drug resistance has also shown a rapid upward trend. This has resulted in increased treatment failures, mortality and health care costs. Novel effective and safe antimycotics are needed. Analogues of existing antifungal compounds and new molecules are being developed. New targets are being explored for their putative role in curtailing fungal infections. Newer antigens as vaccine candidates are being researched into. Focused efforts in this direction have yielded encouraging results. This review illuminates the various antifungal strategies which hold promise for the future.
Collapse
|
13
|
Nanjappa SG, Klein BS. Vaccine immunity against fungal infections. Curr Opin Immunol 2014; 28:27-33. [PMID: 24583636 DOI: 10.1016/j.coi.2014.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Som G Nanjappa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States.
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States; Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States.
| |
Collapse
|
14
|
Abstract
This discussion is intended to be an overview of current advances in the development of fungal cell wall vaccines with an emphasis on Candida; it is not a comprehensive historical review of all fungal cell wall vaccines. Selected, more recent, innovative strategies for developing fungal vaccines will be highlighted. Both scientific and logistical obstacles related to the development of, and clinical use of, fungal vaccines will be discussed.
Collapse
Affiliation(s)
- John E Edwards
- Harbor/UCLA Medical Center and Los Angeles Biomedical Research Institute, 1124 West Carson Street, Torrance, CA 90502, USA
| |
Collapse
|