1
|
Bai H, Guo Q, Yang B, Dong Z, Li X, Song Q, Jiang Y, Wang Z, Chang G, Chen G. Effects of residual feed intake divergence on growth performance, carcass traits, meat quality, and blood biochemical parameters in small-sized meat ducks. Poult Sci 2022; 101:101990. [PMID: 35841639 PMCID: PMC9289854 DOI: 10.1016/j.psj.2022.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Feed efficiency (FE) is a major economic trait of meat duck. This study aimed to evaluate the effects of residual feed intake (RFI) divergence on growth performance, carcass traits, meat quality, and blood biochemical parameters in small-sized meat ducks. A total of 500 healthy 21-day-old male ducks were housed in individual cages until slaughter at 63 d of age. The growth performance was determined for all the ducks. The carcass yield, meat quality, and blood biochemical parameters were determined for the selected 30 high-RFI (HRFI) and 30 low-RFI (LRFI) ducks. In terms of growth performance, the RFI, feed conversion ratio (FCR), and average daily feed intake (ADFI) were found to be significantly lower in the LRFI group (P < 0.01), whereas no differences were observed in the BW and body weight gain (P > 0.05). For slaughter performance, no differences were observed in the carcass traits between the LRFI and HRFI groups (P > 0.05). For meat quality, the shear force of breast muscle was significantly lower in the LRFI group (P < 0.05), while the other meat quality traits of breast and thigh muscles demonstrated no differences (P > 0.05). For blood biochemical parameters, the serum concentrations of triglycerides (TG) and glucose (GLU) were significantly lower in the LRFI group (P < 0.05), while the other parameters showed no differences (P > 0.05). The correlation analysis demonstrated a high positive correlation between RFI, FCR, and ADFI (P < 0.01). The RFI demonstrated a negative effect on the breast muscle and lean meat yields, but a positive effect on the shear force of breast muscle (P < 0.05). Further, the RFI demonstrated a positive effect on the TG and GLU levels (P < 0.05). These results indicate that the selection for low RFI could improve the FE of small-sized meat ducks without affecting the production performance. This study provides valuable insight into the biological processes underlying the variations in FE in small-sized meat ducks.
Collapse
Affiliation(s)
- H Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Jiangsu Yangzhou 225009, China
| | - Q Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - B Yang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Z Dong
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - X Li
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Q Song
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Y Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Z Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - G Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Jiangsu Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - G Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Jiangsu Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Ciriello J, Moreau JM, Caverson MM, Moranis R. Leptin: A Potential Link Between Obstructive Sleep Apnea and Obesity. Front Physiol 2022; 12:767318. [PMID: 35153807 PMCID: PMC8829507 DOI: 10.3389/fphys.2021.767318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), a pathophysiological manifestation of obstructive sleep apnea (OSA), is strongly correlated with obesity, as patients with the disease experience weight gain while exhibiting elevated plasma levels of leptin. This study was done to determine whether a relationship may exist between CIH and obesity, and body energy balance and leptin signaling during CIH. Sprague-Dawley rats were exposed to 96 days of CIH or normoxic control conditions, and were assessed for measures of body weight, food and water intake, and food conversion efficiency. At the completion of the study leptin sensitivity, locomotor activity, fat pad mass and plasma leptin levels were determined within each group. Additionally, the hypothalamic arcuate nucleus (ARC) was isolated and assessed for changes in the expression of proteins associated with leptin receptor signaling. CIH animals were found to have reduced locomotor activity and food conversion efficiency. Additionally, the CIH group had increased food and water intake over the study period and had a higher body weight compared to normoxic controls at the end of the study. Basal plasma concentrations of leptin were significantly elevated in CIH exposed animals. To test whether a resistance to leptin may have occurred in the CIH animals due to the elevated plasma levels of leptin, an acute exogenous (ip) leptin (0.04 mg/kg carrier-free recombinant rat leptin) injection was administered to the normoxic and CIH exposed animals. Leptin injections into the normoxic controls reduced their food intake, whereas CIH animals did not alter their food intake compared to vehicle injected CIH animals. Within ARC, CIH animals had reduced protein expression of the short form of the obese (leptin) receptor (isoform OBR100) and showed a trend toward an elevated protein expression of the long form of obese (leptin) receptor (OBRb). In addition, pro-opiomelanocortin (POMC) protein expression was reduced, but increased expression of the phosphorylated extracellular-signal-regulated kinase 1/2 (pERK1/2) and of the suppressor of cytokine signaling 3 (SOCS3) proteins was observed in the CIH group, with little change in phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Taken together, these data suggest that long-term exposure to CIH, as seen in obstructive sleep apnea, may contribute to a state of leptin resistance promoting an increase in body weight.
Collapse
|
3
|
Xu C, Wang X, Zhou S, Wu J, Geng Q, Ruan D, Qiu Y, Quan J, Ding R, Cai G, Wu Z, Zheng E, Yang J. Brain Transcriptome Analysis Reveals Potential Transcription Factors and Biological Pathways Associated with Feed Efficiency in Commercial DLY Pigs. DNA Cell Biol 2020; 40:272-282. [PMID: 33297854 DOI: 10.1089/dna.2020.6071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Feed efficiency (FE) is one of the most important economic traits in the porcine industry. In this study, high-throughput RNA sequencing (RNA-seq) was first utilized for brain tissue transcriptome analysis in pigs to indicate the potential genes and biological pathways related to FE in pigs. A total of 8 pigs with either extremely high-FE group (HE-group) or low-FE group (LE-group) were selected from 225 Duroc × (Landrace × Yorkshire) (DLY) pigs for transcriptomic analysis. RNA-seq analysis was performed to determine differentially expressed genes (DEGs) between the HE- and LE-group, and 430 DEGs were identified in brain tissues of pigs (|log2(FoldChange)| > 1; adjusted p-values <0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were mainly enriched in synaptic signaling or transmission, and hormone secretion pathways, in which insulin secretion, and oxytocin signaling pathways were closely associated with FE by regulating feeding behavior and energy metabolism (adjusted p-values <0.05). Further, the transcription factors (TFs) analysis and gene co-expression network analysis indicated three hub differentially expressed TFs (NR2F2, TFAP2D, and HNF1B) that affected FE by mainly regulating feeding behavior, insulin sensitivity, or energy metabolism. Our findings suggest several potential TFs and biological pathways for further investigations of FE in pigs.
Collapse
Affiliation(s)
- Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Qian Geng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, P.R. China
| |
Collapse
|
4
|
Prakash A, Saxena VK, Ravi Kumar G, Tomar S, Singh MK. Molecular basis of residual feed intake in broilers. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1789534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Anand Prakash
- Division of Avian Genetics and Breeding, ICAR-Central Avian Research Institute, Izatnagar, India
- Department of Livestock Farm Complex, SVU-GADVASU, Ludhiana, India
| | - Vishesh Kumar Saxena
- Division of Avian Genetics and Breeding, ICAR-Central Avian Research Institute, Izatnagar, India
| | - Gandham Ravi Kumar
- Department of Biotechnology, National Institute of Animal Biotechnology, Hyderabad
| | - Simmi Tomar
- Division of Avian Genetics and Breeding, ICAR-Central Avian Research Institute, Izatnagar, India
| | | |
Collapse
|
5
|
Yousefvand S, Hamidi F, Zendehdel M, Parham A. Hypophagic effects of insulin are mediated via NPY 1/NPY 2 receptors in broiler cockerels. Can J Physiol Pharmacol 2018; 96:1301-1307. [PMID: 30326197 DOI: 10.1139/cjpp-2018-0470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Neuropeptide Y (NPY) plays a mediatory role in cerebral insulin function by maintaining energy balance. The current study was designed to determine the role of insulin in food intake and its interaction with NPY receptors in 8 experiments using broiler cockerels (4 treatment groups per experiment, except for experiment 8). Chicks received control solution or 2.5, 5, or 10 ng of insulin in experiment 1 and control solution or 1.25, 2.5, or 5 μg of receptor antagonists B5063, SF22, or SML0891 in experiments 2, 3, and 4 through intracerebroventricular (ICV) injection, respectively. In experiments 5, 6, and 7, chicks received ICV injection of B5063, SF22, SML0891, or co-injection of an antagonist + insulin, control solution, and insulin. In experiment 8, blood glucose was measured. Insulin, B5063, and SML0891 decreased food intake, while SF22 led to an increase in food intake. The hypophagic effect of insulin was also reinforced by injection of B560, but ICV injection of SF22 destroyed this hypophagic effect of insulin and increased food intake (p < 0.05). However, SML0891 had no effect on decreased food intake induced by insulin (p > 0.05). At 30 min postinjection, blood sugar in the control group was higher than that in the insulin group (p < 0.05). Therefore, the NPY1 and NPY2 receptors mediate the hypophagic effect of insulin in broiler cockerels.
Collapse
Affiliation(s)
- Shiba Yousefvand
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshid Hamidi
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Morteza Zendehdel
- b Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Parham
- a Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
6
|
Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. ENVIRONMENTAL RESEARCH 2018; 164:45-52. [PMID: 29476947 PMCID: PMC8085909 DOI: 10.1016/j.envres.2018.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 06/01/2023]
Abstract
In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As food intake/appetite is one of the critical elements contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we studied the effects of BPA on NPC proliferation and differentiation, including putative signal and appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) protein expression. With NPC differentiation, BPA exposure increased appetite peptide and reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-mediated endocrine disruption by BPA during early life.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Monica G Ferrini
- Department of Health and Life Sciences Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA, USA
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Juanita K Jellyman
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Michael G Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA, USA
| |
Collapse
|
7
|
Desai M, Li T, Ross MG. Fetal hypothalamic neuroprogenitor cell culture: preferential differentiation paths induced by leptin and insulin. Endocrinology 2011; 152:3192-201. [PMID: 21652728 PMCID: PMC3138224 DOI: 10.1210/en.2010-1217] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In response to temporally orchestrated growth factor stimulation, developing neural stem/progenitor cells undergo extensive self-renewal and then generate neurons and astrocytes. Fetal neonatal leptin and insulin deficiency results in reduced hypothalamic axonal pathways regulating appetite, which may predispose to offspring hyperphagia and obesity. Neural development of the arcuate nucleus, a key target of adiposity signals, leptin and insulin, is immature at birth. Hence, to explore proximate effects of leptin/insulin on hypothalamic development, we determined trophic and differentiation effects on neural stem/progenitor cells using a model of fetal hypothalamic neurospheres (NS). NS cultures were produced from embryonic d 20 fetal rats and passage 1 and passage 2 cells examined for proliferation and differentiation into neurons (neuronal nuclei, class IIIβ-tubulin, and doublecortin) and astrocytes (glial fibrillary acidic protein). Leptin-induced NS proliferation was significantly greater than that induced by insulin, although both effects were blocked by Notch, extracellular signal-regulated kinase, or signal transducer and activator of transcription 3 inhibition. Leptin preferentially induced neuronal, whereas insulin promoted astrocyte differentiation. Extracellular signal-regulated kinase inhibition suppressed both leptin and insulin-mediated differentiation, whereas signal transducer and activator of transcription inhibition only affected leptin-mediated responses. These findings demonstrate preferential and disparate differentiation paths induced by leptin and insulin. Altered fetal exposure to leptin or insulin, resulting from fetal growth restriction, macrosomia, or maternal diabetes, may potentially have marked effects on fetal brain development.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
8
|
Gelez H, Poirier S, Facchinetti P, Allers KA, Wayman C, Bernabé J, Alexandre L, Giuliano F. Neuroanatomical distribution of the melanocortin-4 receptors in male and female rodent brain. J Chem Neuroanat 2010; 40:310-24. [DOI: 10.1016/j.jchemneu.2010.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/29/2022]
|
9
|
Frassetto SS, Bitencourt GOD. Aspectos da leptina na anorexia nervosa: possíveis efeitos benéficos no tratamento da hiperatividade. REV NUTR 2009. [DOI: 10.1590/s1415-52732009000500014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pesquisas recentes demonstram a relação direta da leptina na regulação do balanço energético e como um dos fatores envolvidos em transtornos alimentares. Com ação no sistema nervoso central, a leptina interfere na ingestão alimentar, no metabolismo da glicose, no peso corporal, na produção de hormônios sexuais e na atividade física. As pesquisas realizadas tanto em seres humanos como em animais demonstram que a queda nos níveis de leptina está relacionada aos sintomas apresentados na anorexia nervosa: a baixa ingestão alimentar, a perda excessiva de peso corporal, a amenorréia e a hiperatividade. Assim, o grau de hipoleptinemia não é apenas uma forte indicação de baixa reserva de tecido adiposo, mas também de severa desordem, sendo que os níveis de leptina podem ser utilizados para avaliar melhor a gravidade da doença. Pesquisas estão sendo realizadas com o objetivo de discutir a possibilidade de utilização da leptina como coadjuvante no tratamento de pacientes com anorexia nervosa para a diminuição da hiperatividade. Acredita-se que o tratamento com leptina associado à medicação e à psicoterapia, poderia ser benéfico em pacientes anoréxicas extremamente ativas, deixando-as mais suscetíveis ao tratamento adicional. Uma realimentação suficiente, a medicação, a psicoterapia e um ambiente acolhedor durante o tratamento com leptina devem ser assegurados. Assim, este artigo tem como objetivo discorrer sobre a leptina e aspectos relacionados à anorexia, e discutir como esta informação pode ser importante na avaliação clínica de pacientes com este transtorno alimentar.
Collapse
|
10
|
Kim JH, Kang SA, Han SM, Shim I. Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother Res 2009; 23:78-85. [DOI: 10.1002/ptr.2561] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Zagoory-Sharon O, Schroeder M, Levine A, Moran TH, Weller A. Adaptation to lactation in OLETF rats lacking CCK-1 receptors: body weight, fat tissues, leptin and oxytocin. Int J Obes (Lond) 2008; 32:1211-21. [PMID: 18461073 PMCID: PMC5599931 DOI: 10.1038/ijo.2008.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To understand the adaptation to lactation of obese rats, by studying the interplay among the gut hormone cholecystokinin (CCK), the adiposity hormone leptin and the affiliation hormone oxytocin in modulating body mass and fat storage. DESIGN Strain differences were examined between Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking expression of functional CCK-1 receptors and Long Evans Tokushima Otsuka (LETO) controls, tested as nulliparous dams, at the 7 and 15th lactation day, at weaning (lactation day 22) or 8 weeks postweaning. MEASUREMENTS We measured body mass, fat pads (brown, retroperitoneal and inguinal) and inguinal adipocytes. Plasma levels of leptin and oxytocin were determined. RESULTS Fat depots of LETO female rats were larger during lactation compared to the levels found in postweaning and nulliparous female rats. LETO female rats gained weight and accumulated fat during pregnancy and lactation, returning to their normal fat levels postweaning. In contrast, OLETF female rats presented lower body weight and fat depots during the lactation period than nulliparous dams, and regained the weight and fat postweaning. Plasma leptin and oxytocin were highly correlated and followed the same pattern. OLETF leptin levels were highly correlated with fat depot and inguinal cell surface. No significant correlation was found for LETO parameters. CONCLUSIONS Pregnancy and lactation are energy-consuming events, which naturally induce female rats to increase food intake and accumulate fat. When challenged by the demands of rapidly growing preobese OLETF pups, OLETF dams' fat stores are reduced to lean, LETO levels. During lactation, sensitivity of the oxytocinergic neurons descending from the paraventricular nuclei to the nucleus of the solitary tract to CCK is reduced. We theorized that this pathway is not available to OLETF female rats that lack functional CCK-1 receptors to mediate the signal. The current study contributes to the understanding of the female body's adaptation to lactation.
Collapse
Affiliation(s)
- O Zagoory-Sharon
- Department of Psychology, The Leslie and Susan Gonda Goldschmied Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
| | | | | | | | | |
Collapse
|
12
|
Kemp CJ, D'Alessio DA, Scott RO, Kelm GR, Meller ST, Barrera JG, Seeley RJ, Clegg DJ, Benoit SC. Voluntary consumption of ethyl oleate reduces food intake and body weight in rats. Physiol Behav 2008; 93:912-8. [PMID: 18234242 PMCID: PMC2372161 DOI: 10.1016/j.physbeh.2007.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/13/2007] [Accepted: 12/14/2007] [Indexed: 11/15/2022]
Abstract
Previous studies have shown that administration of the fatty acids, linoleic and oleic acid, either by intragastric or intraintestinal infusion, suppresses food intake and body weight in rats. While still not fully understood, gut-mediated satiety mechanisms likely are potential effectors of this robust response to gastrointestinal fatty acid infusions. The objective of this study was to assess the effects of voluntary access to an oleic acid derivative, ethyl oleate (EO), on subsequent food intake and body weight in rats. Animals were randomized either to a 12.5% EO diet or a soybean oil diet as a "breakfast," followed either by two one-hour or one five-hour access periods to standard rodent diet, and food intake and body weights were collected. Across 14 days access, rats consuming EO on both feeding schedules gained less weight and consumed less total kilocalories than rats consuming the SO diet. Further, plasma levels of glucose and insulin were comparable in both EO and SO diet groups. In summary, EO was found to increase weight loss in rats maintained on a 75% food-restriction regimen, and attenuate weight-gain upon resumption of an ad-libitum feeding regimen. These data indicate that voluntary access to EO promoted short-term satiety, compared to SO diet, and that these effects contributed to an important and novel attenuated weight gain in EO-fed animals.
Collapse
Affiliation(s)
- Christopher J Kemp
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH 45237 USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Korbonits M, Blaine D, Elia M, Powell-Tuck J. Metabolic and hormonal changes during the refeeding period of prolonged fasting. Eur J Endocrinol 2007; 157:157-66. [PMID: 17656593 DOI: 10.1530/eje-06-0740] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The discovery of leptin, a hormone primarily involved in adaptation to fasting, led to an increased interest in appetite regulation and appetite-modulating hormones. Here, we present unique data from a case of extreme starvation and refeeding, showing changes in plasma concentrations of appetite-modulating and metabolic hormones as well as biochemical changes, and draw attention to the dangers of the refeeding syndrome. PATIENTS AND METHODS We studied the refeeding period of a 44-day voluntary fast uncomplicated by underlying disease. Biochemical and hormonal variables were compared with 16 matched subjects such that the BMI range of the controls covered the entire spectrum for the index subject's recovering BMI. RESULTS Lack of calorie intake with free access to water resulted in 25% loss of body weight. Haemoconcentration was observed and feeding was started with a low sodium, hypocaloric liquid formulation. During early refeeding, marked hypophosphataemia, haemodilution and slight oedema developed. Vitamins B1, B12 and B6 were depleted while serum free fatty acids, ketone bodies and zinc levels were abnormally high; abnormal liver function developed over the first week. The hormonal profile showed low IGF-I and insulin levels, and elevated IGF-binding protein-1 concentrations. Appetite-regulating hormones were either very low (leptin and ghrelin) or showed no marked difference from the control group (peptide YY, agouti-related peptide, alpha-melanocyte-stimulating hormone, neuropeptide Y and pro-opiomelanocortin). Appetite was low at the beginning of refeeding and a transient increase in orexin and resistin was observed coincidently with an increase in subjective hunger. CONCLUSIONS Our study illustrates the potential dangers of refeeding and provides a comprehensive insight into the endocrinology of prolonged fasting and the refeeding process.
Collapse
Affiliation(s)
- Márta Korbonits
- Department of Endocrinology, Barts and the London Medical School, UK.
| | | | | | | |
Collapse
|
14
|
Richards MP, Proszkowiec-Weglarz M. Mechanisms Regulating Feed Intake, Energy Expenditure, and Body Weight in Poultry. Poult Sci 2007; 86:1478-90. [PMID: 17575199 DOI: 10.1093/ps/86.7.1478] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To achieve energy balance and maintain a constant BW, changes in feed intake and energy expenditure must be coordinated and tightly regulated. This may not hold true for some poultry species intensively selected for such economically important traits as growth and meat production. For example, the modern commercial broiler breeder does not adequately control voluntary feed intake to meet its energy requirements and maintain energy balance. As a consequence, feeding must be limited in these birds to avoid overconsumption and excessive fattening during production. It is important to determine a genetic basis to help explain this situation and to offer potential strategies for producing more efficient poultry. This review summarizes what is currently known about the control of feed intake and energy expenditure at the gene level in birds. Highly integrated regulatory systems have been identified that link the control of feeding with the sensing of energy status. How such systems function in poultry is currently being explored. One example recently identified in chickens is the adenosine monophosphate-activated protein kinase pathway that links energy sensing with modulation of metabolic activity to maintain energy homeostasis at the cellular level. In the hypothalamus, this same pathway may also play an important role in regulating feed intake and energy expenditure commensurate with perceived whole body energy needs. Genes encoding key regulatory factors such as hormones, neuropeptides, receptors, enzymes, and transcription factors produce the molecular components that make up intricate and interconnected neural, endocrine, and metabolic pathway networks linking peripheral tissues with the central nervous system. Moreover, coordinate expression of specific gene groups can establish functional pathways that respond to and are regulated by such factors as hormones, nutrients, and metabolites. Thus, with a better understanding of the genetic and molecular basis for regulating feed intake and energy expenditure in birds important progress can be made in developing, evaluating, and managing more efficient commercial poultry lines.
Collapse
Affiliation(s)
- M P Richards
- USDA, ARS, Growth Biology Laboratory, Beltsville, MD 20705-2350, USA.
| | | |
Collapse
|
15
|
Abstract
CART is a neuropeptide that appears to play an important role in a variety of physiological processes. The major research focus into the function of CART peptide has been on feeding behavior, modulation of mesolimbic dopamine, and actions of psychostimulant drugs. The neuroanatomic expression profile of CART does however suggest other functions as well, and its presence within the limbic system points to a possible role in emotionality. There are now several published reports which describe a new role for CART as a mediator of anxiety-like behaviors in rodents. This review will summarize these findings and speculate on the mechanisms by which CART might be involved in the modulation of these behaviors. We will also consider what future studies need to be done to further clarify the role of this peptide in anxiety.
Collapse
Affiliation(s)
- Lisa M Stanek
- Emory University School of Medicine, Yerkes National Primate Research Center, Department of Neuroscience, Yerkes Research Center, Atlanta, GA 30329, USA.
| |
Collapse
|
16
|
Hermsdorff HHM, Vieira MADQM, Monteiro JBR. Leptina e sua influência na patofisiologia de distúrbios alimentares. REV NUTR 2006. [DOI: 10.1590/s1415-52732006000300008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A leptina é uma proteína secretada pelos adipócitos com papel regulador em vários sistemas do organismo, como sistema imune, respiratório e reprodutivo, bem como no balanço energético via ação hipotalâmica. Sua ação primária ocorre no núcleo hipotalâmico arqueado, no qual inicia uma cascata de eventos para inibição da ingestão energética e aumento do gasto energético. As concentrações de leptina são influenciadas pela adiposidade, fatores hormonais e nutricionais. A restrição e os episódios de compulsão alimentar, presentes na anorexia nervosa e bulimia, respectivamente, são considerados, na literatura científica, fatores determinantes na leptinemia. Seus níveis também alterados no tratamento desses distúrbios alimentares sugerem uma relação entre as alterações neuroendócrinas e conseqüentes modificações nos sinais de fome e saciedade, com a patogenia ou manutenção dos quadros clínicos. Trabalhos têm encontrado impacto dessas alterações na saúde dos pacientes, em curto e longo prazos. Esta revisão tem como objetivo esclarecer quais são as funções da leptina nos tecidos nervoso e periférico, quais os mecanismos que interferem na sua concentração nos distúrbios alimentares e como isso reflete na saúde do paciente anoréxico ou bulímico.
Collapse
|
17
|
Abstract
Melanocortin receptors in the forebrain and spinal cord can be activated by endogenous or synthetic ligands to induce penile erection in rats and human subjects. To better understand how melanocortin circuits play a role in sex behavior, we review the contribution of melanocortin receptors and/or neurons in the hypothalamus, hindbrain, spinal cord and peripheral nerves to erectile function. New information regarding neuropeptides that mediate penile erection has extended our understanding of the central control of sex behavior, and melanocortin agonists may provide alternatives to existing treatment for highly prevalent problems including erectile dysfunction.
Collapse
Affiliation(s)
- H Wessells
- Department of Urology, University of Washington, Harborview Medical Center, 325 Ninth Avenue, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
18
|
Abstract
The regulation of energy balance is complex and, in man, imprecise. Nevertheless, in many individuals intake and expenditure are balanced with <1% error with little or no conscious effect. Essential components of such a regulatory system are signals, leptin and insulin, that reflect the size of lipid stores. Leptin receptors signal via phosphatidylinositol 3-kinase (as do insulin receptors) and via the transcription factor signal transducer and activator of transcription-3 to activate various types of neurone. Obese rodents, and possibly man, are resistant to leptin; in some cases because of genetic or perinatal programming (primary resistance), but commonly in response to high leptin levels (secondary resistance). Secondary leptin resistance may be a result of reduced transport of leptin to the brain or down-regulation of leptin signalling. Signals that reflect lipid stores form the tonic homeostatic regulatory system. They interact with episodic homeostatic signals carried by neurones, hormones and metabolites to regulate meal size and frequency. They also interact with signals related to the palatability of food, biorhythms and learning. Many neurotransmitters and hormones mediate responses to more than one input (e.g. gastric and adipocyte leptin), but are nevertheless most involved with particular inputs (e.g. leptin with adipocyte fat stores). Feeding can be divided into appetitive (preparation for feeding) and consummatory phases, which can both be further subdivided. Different sets of neurotransmitters and hormones are involved at each stage. In the long term it may be possible to customise obesity therapies according to those inputs and outputs that are most disturbed and most amenable to intervention in individual subjects.
Collapse
|
19
|
Kuo AY, Cline MA, Werner E, Siegel PB, Denbow DM. Leptin effects on food and water intake in lines of chickens selected for high or low body weight. Physiol Behav 2005; 84:459-64. [PMID: 15763584 DOI: 10.1016/j.physbeh.2005.01.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 01/12/2005] [Accepted: 01/24/2005] [Indexed: 11/21/2022]
Abstract
There is an association between autonomic nervous system output and obesity. The sympathetic nervous system stimulates lipid metabolism and regulates food intake and, hence, body weight. Leptin, produced by adipocytes in proportion to their size, has been shown to directly stimulate the satiety center. In the experiment reported here, food and water intake were compared after intracerebroventricular administration of human recombinant leptin to lines of chickens that had undergone divergent selection for over 45 generations from a common White Rock base population for high (HWS) or low (LWS) body weight at 8 weeks-of-age. Leptin caused a linear decrease in food intake in chickens from the LWS line whereas no effect was observed in those from the HWS line. The HWS chickens tended to have reduced water intake post leptin administration. Others reported that leptin decreased food intake in both broiler and Leghorn chickens. Leptin concentration in the central nervous system may not contribute directly to the difference of body weight between HWS and LWS chickens.
Collapse
Affiliation(s)
- Alice Y Kuo
- Department of Animal and Poultry Sciences (0306), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States
| | | | | | | | | |
Collapse
|
20
|
McMurtry JP, Ashwell CM, Brocht DM, Caperna TJ. Plasma clearance and tissue distribution of radiolabeled leptin in the chicken. Comp Biochem Physiol A Mol Integr Physiol 2005; 138:27-32. [PMID: 15165567 DOI: 10.1016/j.cbpb.2004.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/14/2004] [Accepted: 02/16/2004] [Indexed: 11/15/2022]
Abstract
Leptin is an adipose and liver tissue-derived secreted protein in chickens that has been implicated in the regulation of food intake and whole-body energy balance. In this study, the metabolic clearance and tissue uptake of leptin were examined in the chicken (Gallus gallus). Four-week-old broiler males were infused with (125)I-labeled mouse leptin. Chromatography of radiolabeled leptin in plasma produced two peaks, one at 16 kDa (free leptin) and a free iodine peak. No leptin binding protein in blood was detected. Leptin was cleared with a half-life estimate of 23 min. In order to investigate the tissue distribution and uptake of radiolabeled leptin, multiple tissues were removed from infused birds at 15 and 240 min post-infusion, and trichloroacetic acid (TCA)-precipitable radioactivity was determined. The amounts of radioactivity at 15 min post-infusion in the tissues in rank order were: kidney, testis, lung, spleen, heart, liver, small and large intestine, gizzard, pancreas, bursa, leg and breast muscle, adrenals, and brain. A slightly different pattern of distribution was observed at 240 min post-infusion. We conclude from these studies that unlike mammals, no circulating leptin binding protein is present in chickens. Leptin is metabolized and cleared very rapidly from blood by the kidney.
Collapse
Affiliation(s)
- John P McMurtry
- Growth Biology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, ANRI, GBL, Bldg. 200, Rm. 217, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA.
| | | | | | | |
Collapse
|
21
|
Takenoya F, Kageyama H, Guan JL, Kita T, Funahashi H, Kitamura Y, Hirayama M, Takeuchi M, Shioda S. Distribution and Neuronal Networks of Novel GPCR Ligands in Feeding Regulation. Acta Histochem Cytochem 2005. [DOI: 10.1267/ahc.38.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Fumiko Takenoya
- Department of Anatomy, Showa University School of Medicine
- Department of Physical Education, Hoshi University School of Pharmacy and Pharmacological Science
| | | | - Jian-Lian Guan
- Department of Anatomy, Showa University School of Medicine
| | - Tetsuro Kita
- Department of Anatomy, Showa University School of Medicine
| | | | | | | | - Masao Takeuchi
- Department of Physical Education, Hoshi University School of Pharmacy and Pharmacological Science
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine
| |
Collapse
|
22
|
Friedrich A, Thomas U, Müller U. Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. J Neurosci 2004; 24:4460-8. [PMID: 15128860 PMCID: PMC6729435 DOI: 10.1523/jneurosci.0669-04.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Learning and memory formation in intact animals is generally studied under defined parameters, including the control of feeding. We used associative olfactory conditioning of the proboscis extension response in honeybees to address effects of feeding status on processes of learning and memory formation. Comparing groups of animals with different but defined feeding status at the time of conditioning reveals new and characteristic features in memory formation. In animals fed 18 hr earlier, three-trial conditioning induces a stable memory that consists of different phases: a mid-term memory (MTM), translation-dependent early long-term memory (eLTM; 1-2 d), and a transcription-dependent late LTM (lLTM; > or =3 d). Additional feeding of a small amount of sucrose 4 hr before conditioning leads to a loss of all of these memory phases. Interestingly, the basal activity of the cAMP-dependent protein kinase A (PKA), a key player in LTM formation, differs in animals with different satiation levels. Pharmacological rescue of the low basal PKA activity in animals fed 4 hr before conditioning points to a specific function of cAMP-PKA cascade in mediating satiation-dependent memory formation. An increase in PKA activity during conditioning rescues only transcription-dependent lLTM; acquisition, MTM, and eLTM are still impaired. Thus, during conditioning, the cAMP-PKA cascade mediates the induction of the transcription-dependent lLTM, depending on the satiation level. This result provides the first evidence for a central and distinct function of the cAMP-PKA cascade connecting satiation level with learning.
Collapse
Affiliation(s)
- Anke Friedrich
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | |
Collapse
|
23
|
Abstract
A complex system has evolved to regulate food intake and to maintain energy homeostasis. A series of short-term hormonal and neural signals that derive from the gastrointestinal tract, such as cholecystokinin (CCK), pancreatic polypeptide (PP) and peptide YY-(3-36), recently discovered to regulate meal size. Others such as ghrelin initiate meals, and insulin and leptin, together with circulating nutrients, indicate long-term energy stores. All these signals act on central nervous system sites which converge on the hypothalamus, an area that contains a large number of peptide and other neurotransmitters that influence food intake with neuropeptide Y (NPY) being one of the most prominent ones. Five Y receptors are known which mediate the action of neuropeptide Y and its two other family members, peptide YY and pancreatic polypeptide. Elevated neuropeptide Y expression in the hypothalamus leads to the development of obesity and its related phenotypes, Type II diabetes and cardiovascular disease. The limited availability of specific pharmacological tools and the considerable number of Y receptors have made it difficult to delineate their individual contributions to the regulation of energy homeostasis. However, recent studies analysing transgenic and knockout neuropeptide Y and Y receptor mouse models have started to unravel some of the individual functions of these Y receptors potentially also helping to develop novel therapeutics for a variety of physiological disorders including obesity.
Collapse
Affiliation(s)
- Herbert Herzog
- Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Sydney, Australia.
| |
Collapse
|
24
|
Blevins JE, Eakin TJ, Murphy JA, Schwartz MW, Baskin DG. Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res 2004; 993:30-41. [PMID: 14642828 DOI: 10.1016/j.brainres.2003.08.036] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of 'long-term' adiposity signaling with the 'short-term' meal-related signal cholecystokinin (CCK) is proposed to involve descending hypothalamic projections to areas of the caudal brainstem (CBS) that regulate the amount of food consumed during a single meal. One such projection extends from cell bodies in the hypothalamic paraventricular nucleus (PVN) to the nucleus tractus solitarius (NTS), where cells that respond to peripheral CCK are concentrated. Candidate neuronal cell types that may comprise this PVN-NTS projection includes those expressing corticotropin-releasing hormone (CRH) or oxytocin. We therefore sought to determine whether oxytocin or CRH axons are preferentially located in close anatomical proximity to neurons of the NTS that are activated by peripheral administration of CCK, as determined by immunocytochemical staining for Fos protein. Rats received injections of either an anorexic dose of CCK (8 nmol/kg, i.p.) or vehicle and were perfused 2 h later with 4% paraformaldehyde. Immunocytochemistry was performed on cryostat sections (14 microm) of caudal brainstem, using a polyclonal antibody to Fos protein and either a monoclonal antibody to oxytocin or a polyclonal antibody to CRH. As expected, CCK administration significantly increased the numbers of Fos-positive neurons by 489% (p<0.01) and 400% (p<0.01), respectively, in the medial and gelatinosus subdivisions of the NTS. These same regions received dense oxytocin axon innervation, whereas CRH immunoreactivity was not as prevalent in these areas. In areas outside the NTS, such as the dorsal motor nucleus of the vagus (DMV), Fos activation was absent despite a dense oxytocin and CRH innervation. To investigate whether CCK-induced reductions of food intake require intact oxytocin signaling, we performed a separate study in which CCK injection was preceded by injection into the fourth ventricle of an oxytocin receptor antagonist [d(CH(2))(5), Tyr (Me)(2), Orn(8)]-vasotocin (OVT). This study showed CCK was 23% and 22% less effective at inhibiting food intake at 30 min (p<0.05) and 1 h (p<0.05) food intake, respectively, in the presence of OVT. Taken together, the data indicate that oxytocin axons within the descending pathway from the PVN to the NTS are anatomically positioned to interact with NTS neurons that respond to vagally mediated peripheral CCK signals such as those that occur following ingestion of a meal. These findings support the hypothesis that oxytocin exerts a tonic stimulatory effect on the response of key neurons within the NTS to CCK and further reduce meal size.
Collapse
Affiliation(s)
- James E Blevins
- Division of Endocrinology/Metabolism, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | |
Collapse
|
25
|
Fekete C, Wittmann G, Liposits Z, Lechan RM. Origin of cocaine- and amphetamine-regulated transcript (CART)-immunoreactive innervation of the hypothalamic paraventricular nucleus. J Comp Neurol 2004; 469:340-50. [PMID: 14730586 DOI: 10.1002/cne.10999] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Axons containing cocaine- and amphetamine-regulated transcript (CART) densely innervate the hypothalamic paraventricular nucleus (PVN). Recent data from our laboratory demonstrated that CART-immunoreactive (IR) neurons of arcuate nucleus origin innervate the PVN, but comprise only a portion of the total CART-IR input to this region of the brain. To identify sources other than the arcuate nucleus, retrograde transport studies were performed with cholera toxin B subunit (CTB), focally delivered into the PVN of adult rats. Neurons double-labeled for CTB and CART were visualized by immunofluorescence. The most prominent groups of double-labeled cells were identified in the retrochiasmatic area, arcuate nucleus, lateral hypothalamus, perifornical area, zona incerta, C1-3 regions, and the medial subnucleus of the nucleus tractus solitarius (NTS). In addition, scattered retrogradely labeled CART-IR neurons were found in the parabrachial nucleus. In the diencephalon, the majority of double-labeled neurons were localized ipsilateral to the injection site; however, in the medulla the CART/CTB-containing neurons were found bilaterally. By triple-labeling immunofluorescence, CART/CTB neurons in the perifornical area, zona incerta complex, and more medial portions of the lateral hypothalamus were found to co-contain melanin concentrating hormone (MCH), whereas CART/CTB neurons of the C1-3 regions of the brainstem but not medial subnucleus of the NTS were observed to express phenylethanolamine N-methyltransferase (PNMT). We conclude that the CART innervation of the PVN derives from multiple neuronal sources of the hypothalamus and medulla. These observations raise the possibility that CART serves multiple functions in the PVN and is utilized to transmit diverse physiological signals that contribute to the complex regulation of homeostatic functions of the PVN.
Collapse
Affiliation(s)
- Csaba Fekete
- Department of Endocrine and Behavioral Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary
| | | | | | | |
Collapse
|
26
|
Funahashi H, Takenoya F, Guan JL, Kageyama H, Yada T, Shioda S. Hypothalamic neuronal networks and feeding-related peptides involved in the regulation of feeding. Anat Sci Int 2003; 78:123-38. [PMID: 14527127 DOI: 10.1046/j.0022-7722.2003.00055.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hypothalamus is a region of the brain that plays a critical role in feeding regulation. It has been revealed by various physiological experiments that the feeding-regulating center is confined to the ventromedial hypothalamus, lateral hypothalamus (LH) and arcuate nucleus (ARC). Many kinds of neurons in these areas of the hypothalamus express factors such as melanin-concentrating hormone (MCH), neuropeptide Y (NPY), proopiomelanocortin (POMC), orexin (OX) and ghrelin, which have been implicated in feeding regulation. In tissues of the periphery, two critical factors involved in feeding regulation, leptin and ghrelin, have been identified. Both hormone peptides are secreted mainly from adipose and stomach tissue, respectively, and are considered to function via their receptors mainly through several hypothalamic nuclei that play important roles in the regulation of appetite. The present review looks mainly at the functional significance of feeding-regulation factors, such as those described above, and the humoral and neuronal interactions among these compounds in the hypothalamus by drawing on published reports of morphological and physiological analyses. Immunohistochemical and in situ hybridization experiments indicate that both leptin and ghrelin receptors are distributed in the hypothalamus and that there are reciprocal interactions between MCH and OX neurons in the LH. Morphological and physiological studies on single living cells isolated from fresh rat hypothalamus or with receptor agonist and antagonist combined with immunohistochemisry clearly demonstrate that both leptin and OX reciprocally regulate NPY- and POMC-containing neurons in the ARC and that ghrelin may regulate feeding status independently through direct OX and NPY pathways. In this way, cross-talking systems in the hypothalamus play a role in determining feeding states.
Collapse
Affiliation(s)
- Hisayuki Funahashi
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Intensive selection by poultry breeders over many generations for economically important production traits such as growth rate and meat production has been accompanied by significant changes in feed intake and energy balance. For example, the modern commercial broiler, selected for rapid growth and enhanced muscle mass, does not adequately regulate voluntary feed intake to achieve energy balance. When given unrestricted access to feed, broilers exhibit hyperphagia leading to an excessive accumulation of energy (fat) stores, making these birds prone to obesity and other health-related problems. Humoral and neural pathways have been identified and studied in mammals that link appetite and energy balance. A series of highly integrated regulatory mechanisms exists for both of these processes involving complex interactions between peripheral tissues and the central nervous system. Within the central nervous system, the brainstem and the hypothalamus play critical roles in the regulation of feed intake and energy balance. Genes encoding key regulatory factors such as hormones, neuropeptides, receptors, enzymes, transcription factors, and binding/transport proteins constitute the molecular basis for regulatory systems that derive from integrated sensing, signaling, and metabolic pathways. However, we do not yet have a complete understanding of the genetic basis for this regulation in poultry. This review examines what is currently known about the regulation of feed intake and energy balance in poultry. A better understanding of the genes associated with controlling feed intake and energy balance and how their expression is regulated by nutritional and hormonal stimuli will offer new insights into current poultry breeding and management practices.
Collapse
Affiliation(s)
- M P Richards
- USDA, ARS, Growth Biology Laboratory, 10300 Baltimore Avenue, Building 200, Room 206, BARC-East, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
28
|
Volkoff H, Eykelbosh AJ, Peter RE. Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting. Brain Res 2003; 972:90-109. [PMID: 12711082 DOI: 10.1016/s0006-8993(03)02507-1] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To assess the role of leptin on food intake regulation in goldfish, we examined the effects of central (intracerebroventricular, ICV) and peripheral (intraperitoneal, IP) injections of recombinant murine leptin on feeding behavior. Centrally (100 ng/g) and peripherally (300 ng/g) injected leptin both caused a significant decrease in food intake, compared to the saline-treated controls. To test the hypothesis that leptin influenced orexigenic neuropeptide systems in goldfish, fish were co-injected with neuropeptide Y (NPY) or orexin A and leptin. Both NPY (5 ng/g) and orexin A (10 ng/g) significantly increased food intake. Fish co-injected ICV with NPY (5 ng/g) or orexin A (10 ng/g) and leptin (1 or 10 ng/g) had a food intake lower than that of fish treated with NPY or orexin A alone. NPY mRNA expression in goldfish brain was reduced 2 and 6 h following central injection of leptin. To test the hypothesis that the cholecystokinin (CCK) mediates the effects of leptin in goldfish, fish were simultaneously injected ICV with an ineffective dose of leptin (10 ng/g) and either ICV or IP with an ineffective doses of CCK (1 ng/g ICV or 25 ng/g IP). These fish had a food intake lower than vehicle-treated fish, suggesting that leptin potentiates the satiety actions of CCK. CCK hypothalamic mRNA expression was increased 2 h following central treatment with leptin. The CCK receptor antagonist proglumide blocked both central and peripheral CCK satiety effects. Blockade of CCK brain receptors by proglumide resulted in an inhibition of the leptin-induced decrease in food intake and an attenuation of the inhibiting action of leptin on both NPY- and orexin A-induced feeding. These data suggests that CCK has a role in mediating the effects of leptin on food intake. Fasting potentiated the actions of leptin and attenuated the effects of CCK. Whereas fasting had no effects on the brain mRNA expression of CCK, it increased the brain mRNA expression of NPY and decreased the expression of CART. These changes in neuropeptide expression were partially reversed when fish were treated ICV with leptin. These results provide strong evidence that, in goldfish, leptin influences food intake, in part by modulating the orexigenic effects of NPY and orexin and that its actions are mediated, at least in part, by CCK.
Collapse
Affiliation(s)
- Helene Volkoff
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|