1
|
Rautela H, Sengupta S, Vasisht VV. Breakdown of the Stokes-Einstein relation in Stillinger-Weber silicon. J Chem Phys 2025; 162:144502. [PMID: 40197579 DOI: 10.1063/5.0256328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025] Open
Abstract
We investigate the dynamical properties of liquid and supercooled liquid silicon, modeled using the Stillinger-Weber potential, to examine the validity of the Stokes-Einstein (SE) relation. Toward this end, we examine the relationship among various dynamical quantities, including (i) the macroscopic transport coefficients-self-diffusion coefficient D and viscosity η, (ii) relaxation time τα, and (iii) lengthscale dependent relaxation times τα(q) over a broad range of temperature T, pressure P, and density ρ covering both equilibrium and metastable liquid state points in the phase diagram. Our study shows a weak breakdown in the SE relation involving D and η, and the loci of the breakdown of the SE relation (SEB) are found in the high T liquid phase. The τα, when used as a proxy to η, shows a distinct breakdown in the SE relation, whose loci are found in the supercooled liquid phase. Interestingly, certain parts of the phase diagram show that the loci of onset of slow dynamics lie below the loci of SEB, suggesting a regime that exhibits Arrhenius but non-Fickian behavior. Computation of τα(q) enables us to extract the lengthscale associated with the Fickian to non-Fickian behavior using which we show that the breakdown of the SE relation occurs only below a specific lengthscale at a given temperature. Furthermore, we also compare the SEB loci with other features of the phase behavior, including the loci of compressibility maximum, density maximum, and diffusivity maximum.
Collapse
Affiliation(s)
- Himani Rautela
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shiladitya Sengupta
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vishwas V Vasisht
- Department of Physics, Indian Institute of Technology Palakkad, Nila Campus, Kanjikode, Palakkad, Kerala 678623, India
| |
Collapse
|
2
|
Han J, Gao Y, Feng Y, Yu Z, Wu J, Fang H. Toward mitigating the impact of non-bulk defects on describing water structure in salt aqueous solutions: Characterizing solution density with a network-based structural indicator. J Chem Phys 2025; 162:024503. [PMID: 39774899 DOI: 10.1063/5.0243846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Structural indicators, also known as structural descriptors, including order parameters, have been proposed to quantify the structural properties of water to account for its anomalous behaviors. However, these indicators, mainly designed for bulk water, are not naturally transferrable to the vicinity of ions due to disruptions in the immediate neighboring space and a resulting loss of feature completeness. To address these non-bulk defects, we introduced a structural indicator that draws on the concept of clique number from graph theory and the criterion in agglomerative clustering, denoted as the average cluster number. This structural indicator aims to discern intrinsic structural characteristics within the water molecules regardless of the ions occupying the neighboring space, without requiring additional corrections. From molecular dynamics simulation results for neat water and salt aqueous solutions utilizing the TIP4P/2005 water model and the Madrid-2019 force field, we characterized the variations in densities with temperature using this network-based indicator, thereby demonstrating its practical utility. The findings suggest that at lower temperatures, the addition of ions disrupts the intrinsic structure of water molecules, with this effect diminishing as the temperature rises. Cations with larger charge density tend to induce stronger disruptions. This study highlights the importance of mitigating the impact of non-bulk defects before applying the indicators to analyze water's intrinsic structural properties in solutions. By doing so, the relationship between changes in water structure and solution behaviors can be more accurately assessed.
Collapse
Affiliation(s)
- Jiale Han
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Yitian Gao
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Yixuan Feng
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jian Wu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Hongwei Fang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Ganachaud F. An Alternative Hypothesis on Enhanced Deep Supercooling of Water: Nucleator Inhibition via Bicarbonate Adsorption. J Phys Chem Lett 2025; 16:261-264. [PMID: 39780719 DOI: 10.1021/acs.jpclett.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Supercooling allows for retarding water crystallization toward negative Celsius temperatures. Previous findings of CO2 molecules shifting into bicarbonate species upon freezing, the latter which naturally adsorb on hydrophobic interfaces, are put in perspective here to interpret earlier published data. Since it has been shown that ice nucleation is unlikely on negatively charged surfaces, I propose that bicarbonates adsorb on most solid particles present in water that act as nucleators, thus retarding freezing and enhancing supercooling. This hypothesis can now explain the deep supercooling observed for sealed and boiled water samples and oil-topped water samples, promoting both more bicarbonate generation and adsorption. Such an explanation opens new directions for access to cryopreservation.
Collapse
Affiliation(s)
- François Ganachaud
- Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne Cédex, France
- BicarLab, 31 rue Octave Mirbeau, 69150 Décines Charpieu, France
| |
Collapse
|
4
|
Menendez CA, Accordino SR, Loubet NA, Appignanesi GA. Study of Protein Hydration Water with the V4S Structural Index: Focus on Binding Site Description. J Phys Chem B 2024; 128:11865-11875. [PMID: 39566099 DOI: 10.1021/acs.jpcb.4c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
V4S, a new structural indicator for water specially designed to be suitable for hydration and nanoconfined contexts, has been recently introduced and preliminarily applied for water in contact with self-assembled monolayers and graphene-like systems. This index enabled an accurate detection of defective high local density water molecules (called HDA-like given their structural resemblance with the high-density amorphous ice, HDA). In the present work, we shall apply this new metric to characterize protein hydration water with particular interest in protein binding sites. As a first result, we shall find that protein hydration water has a higher concentration of HDA-like molecular arrangements compared to the bulk. Significantly, we shall show that the concentration of HDA-like molecules sharply decreases beyond the first hydration layer. Finally, we shall also reveal a highly nonuniform spatial distribution of the V4S values for the first hydration shell on the protein surface, where the higher hydrophobicity inherent to the ligand binding site will be evident from an enrichment in HDA-like molecules as compared to the population exhibited by the global protein surface.
Collapse
Affiliation(s)
- C A Menendez
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - S R Accordino
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - N A Loubet
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - G A Appignanesi
- Sección Fisicoquímica, INQUISUR-UNS-CONICET and Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
5
|
de Almeida Ribeiro I, Dhabal D, Kumar R, Banik S, Sankaranarayanan SKRS, Molinero V. Medium-density amorphous ice unveils shear rate as a new dimension in water's phase diagram. Proc Natl Acad Sci U S A 2024; 121:e2414444121. [PMID: 39576349 PMCID: PMC11621468 DOI: 10.1073/pnas.2414444121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/09/2024] [Indexed: 12/08/2024] Open
Abstract
Recent experiments revealed a new amorphous ice phase, medium-density amorphous ice (MDA), formed by ball-milling ice Ih at 77 K [Rosu-Finsen et al., Science 379, 474-478 (2023)]. MDA has density between that of low-density amorphous (LDA) and high-density amorphous (HDA) ices, adding to the complexity of water's phase diagram, known for its glass polyamorphism and two-state thermodynamics. The nature of MDA and its relation to other amorphous ices and liquid water remain unsolved. Here, we use molecular simulations under controlled pressure and shear rate at 77 K to produce and investigate MDA. We find that MDA formed at constant shear rate is a steady-state nonequilibrium shear-driven amorphous ice (SDA), that can be produced by shearing ice Ih, LDA, or HDA. Our results suggest that MDA could be obtained by ball-milling water glasses without crystallization interference. Increasing the shear rate at ambient pressure produces SDAs with densities ranging from LDA to HDA, revealing shear rate as a new thermodynamic variable in the nonequilibrium phase diagram of water. Indeed, shearing provides access to amorphous states inaccessible by controlling pressure and temperature alone. SDAs produced with shearing rates as high as 106 s-1 sample the same region of the potential energy landscape than hyperquenched glasses with identical density, pressure, and temperature. Intriguingly, SDAs obtained by shearing at ~108 s-1 have density, enthalpy, and structure indistinguishable from those of water "instantaneously" quenched from room temperature to 77 K over 10 ps, making them good approximants for the "true glass" of ambient liquid water.
Collapse
Affiliation(s)
| | - Debdas Dhabal
- Department of Chemistry, The University of Utah, Salt Lake City, UT84112-0850
| | - Rajat Kumar
- Department of Chemistry, The University of Utah, Salt Lake City, UT84112-0850
| | - Suvo Banik
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL60607
| | - Subramanian K. R. S. Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL60439
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL60607
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, UT84112-0850
| |
Collapse
|
6
|
Loubet NA, Verde AR, Accordino SR, Alarcón LM, Appignanesi GA. Role of hydrogen-bond coordination defects in the structural relaxation of supercooled water. Phys Rev E 2024; 110:054601. [PMID: 39690579 DOI: 10.1103/physreve.110.054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/11/2024] [Indexed: 12/19/2024]
Abstract
In this work, we shall study the role of threefold and fivefold coordination defects in the structure and dynamics of the hydrogen bond network of liquid water, with special emphasis on the glassy regime. A significant defect clusterization propensity will be made evident, with a prevalence of mixed pairs, that is, threefold- and fivefold-coordinated defects being first neighbors of each other. This structural analysis will enable us to determine the existence of defective and nondefective regions compatible with the high local density and low local density molecular states of liquid water, respectively. Hydrogen bond coordination defects will also be shown to promote water's structural relaxation, with the undercoordinated ones playing a main role in driving glassy relaxation dynamics. Moreover, we shall show that the three-foldcoordinated molecules together with their first neighbors present at the initial configuration act as markers of the dynamical heterogeneities that would emerge at later times commensurate with the structural relaxation of the supercooled system.
Collapse
|
7
|
Coronas LE, Franzese G. Phase behavior of metastable water from large-scale simulations of a quantitatively accurate model near ambient conditions: The liquid-liquid critical point. J Chem Phys 2024; 161:164502. [PMID: 39435842 DOI: 10.1063/5.0219313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
The molecular mechanisms of water's unique anomalies are still debated upon. Experimental challenges have led to simulations suggesting a liquid-liquid (LL) phase transition, culminating in the supercooled region's LL critical point (LLCP). Computational expense, small system sizes, and the reliability of water models often limit these simulations. We adopt the CVF model, which is reliable, transferable, scalable, and efficient across a wide range of temperatures and pressures around ambient conditions. By leveraging the timescale separation between fast hydrogen bonds and slow molecular coordinates, the model allows a thorough exploration of the metastable phase diagram of liquid water. Using advanced numerical techniques to bypass dynamical slowing down, we perform finite-size scaling on larger systems than those used in previous analyses. Our study extrapolates thermodynamic behavior in the infinite-system limit, demonstrating the existence of the LLCP in the 3D Ising universality class in the low-temperature, low-pressure side of the line of temperatures of maximum density, specifically at TC = 186 ± 4 K and PC = 174 ± 14 MPa, at the end of a liquid-liquid phase separation stretching up to ∼200 MPa. These predictions align with recent experimental data and sophisticated models, highlighting that hydrogen bond cooperativity governs the LLCP and the origin of water anomalies. We also observe substantial cooperative fluctuations in the hydrogen bond network at scales larger than 10 nm, even at temperatures relevant to biopreservation. These findings have significant implications for nanotechnology and biophysics, providing new insights into water's behavior under varied conditions.
Collapse
Affiliation(s)
- Luis Enrique Coronas
- 1 Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Facutat de Física, University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| | - Giancarlo Franzese
- 1 Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Facutat de Física, University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
8
|
Loubet NA, Verde AR, Appignanesi GA. A structural determinant of the behavior of water at hydration and nanoconfinement conditions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:61. [PMID: 39343851 DOI: 10.1140/epje/s10189-024-00454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
The molecular nature of the phases that conform the two-liquid scenario is elucidated in this work in the light of a molecular principle governing water structuring, which unveils the relevance of the contraction and reorientation of the second molecular shell to allow for the existence of coordination defects in water's hydrogen bond network. In turn, such principle is shown to also determine the behavior of hydration and nanoconfined water while enabling to define conditions for wettability (quantifying hydrophobicity and predicting drying transitions), thus opening the possibility to unravel the active role of water in central fields of research.
Collapse
Affiliation(s)
- Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Alejandro R Verde
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
9
|
Aasen A, Hammer M, Reguera D, Wilhelmsen Ø. Estimating metastable thermodynamic properties by isochoric extrapolation from stable states. J Chem Phys 2024; 161:044113. [PMID: 39051829 DOI: 10.1063/5.0220207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
The description of metastable fluids, those in local but not global equilibrium, remains an important problem of thermodynamics, and it is crucial for many industrial applications and all first order phase transitions. One way to estimate their properties is by extrapolation from nearby stable states. This is often done isothermally, in terms of a virial expansion for gases or a Taylor expansion in density for liquids. This work presents evidence that an isochoric expansion of pressure at a given temperature is superior to an isothermal density expansion. Two different isochoric extrapolation strategies are evaluated, one best suited for vapors and one for liquids. Both are exact for important model systems, including the van der Waals equation of state. Moreover, we present a simple method to evaluate all the coefficients of the isochoric expansion directly from a simulation in the canonical ensemble. Using only the properties of stable states, the isochoric extrapolation methods reproduce simulation results with Lennard-Jones potentials, mostly within their uncertainties. The isochoric extrapolation methods are able to predict deeply metastable pressures accurately even from temperatures well above the critical. Isochoric extrapolation also predicts a mechanical stability limit, i.e., the thermodynamic spinodal. For water, the liquid spinodal pressure is predicted to be monotonically decreasing with decreasing temperature, in contrast to the re-entrant behavior predicted by the direct extension of the reference equation of state.
Collapse
Affiliation(s)
- Ailo Aasen
- Department of Gas Technology, SINTEF Energy Research, NO-7465 Trondheim, Norway
| | - Morten Hammer
- Department of Gas Technology, SINTEF Energy Research, NO-7465 Trondheim, Norway
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - David Reguera
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Martí i Franquès 1, 08028 Barcelona, Spain
| | - Øivind Wilhelmsen
- Department of Gas Technology, SINTEF Energy Research, NO-7465 Trondheim, Norway
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
10
|
Accordino SR, Alarcón LM, Loubet NA, Appignanesi GA. Water at the nanoscale: From filling or dewetting hydrophobic pores and carbon nanotubes to "sliding" on graphene. J Chem Phys 2024; 161:044504. [PMID: 39037145 DOI: 10.1063/5.0215579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
In this work, we study the effect of nanoconfinement on the hydration properties of model hydrophobic pores and carbon nanotubes, determining their wetting propensity and the conditions for geometrically induced dehydration. By employing a recently introduced water structural index, we aim at two main goals: (1) to accurately quantify the local hydrophobicity and predict the drying transitions in such systems, and (2) to provide a molecular rationalization of the wetting process. In this sense, we will further discuss the number and strength of the interactions required by the water molecules to promote wetting. In the case of graphene-like surfaces, an explanation for their unexpectedly significant hydrophilicity will also be provided. On the one hand, the structural index will show that the net attraction to the dense carbon network that a water molecule experiences through several simultaneous weak interactions is sufficient to give rise to hydrophilic behavior. On the other hand, we will show that an additional effect is also at play: the hydrating water molecule is retained on the surface by a smooth exchange of such simultaneous weak interactions, as if "sliding" on graphene.
Collapse
Affiliation(s)
- Sebastián R Accordino
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Laureano M Alarcón
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
11
|
Sedano LF, Blazquez S, Vega C. Accuracy limit of non-polarizable four-point water models: TIP4P/2005 vs OPC. Should water models reproduce the experimental dielectric constant? J Chem Phys 2024; 161:044505. [PMID: 39046346 DOI: 10.1063/5.0211871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024] Open
Abstract
The last generation of four center non-polarizable models of water can be divided into two groups: those reproducing the dielectric constant of water, as OPC, and those significantly underestimating its value, as TIP4P/2005. To evaluate the global performance of OPC and TIP4P/2005, we shall follow the test proposed by Vega and Abascal in 2011 evaluating about 40 properties to fairly address this comparison. The liquid-vapor and liquid-solid equilibria are computed, as well as the heat capacities, isothermal compressibilities, surface tensions, densities of different ice polymorphs, the density maximum, equations of state at high pressures, and transport properties. General aspects of the phase diagram are considered by comparing the ratios of different temperatures (namely, the temperature of maximum density, the melting temperature of hexagonal ice, and the critical temperature). The final scores are 7.2 for TIP4P/2005 and 6.3 for OPC. The results of this work strongly suggest that we have reached the limit of what can be achieved with non-polarizable models of water and that the attempt to reproduce the experimental dielectric constant deteriorates the global performance of the water force field. The reason is that the dielectric constant depends on two surfaces (potential energy and dipole moment surfaces), whereas in the absence of an electric field, all properties can be determined simply from just one surface (the potential energy surface). The consequences of the choice of the water model in the modeling of electrolytes in water are also discussed.
Collapse
Affiliation(s)
- L F Sedano
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Blazquez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
12
|
Yang C, Ladd-Parada M, Nam K, Jeong S, You S, Eklund T, Späh A, Pathak H, Lee JH, Eom I, Kim M, Perakis F, Nilsson A, Kim KH, Amann-Winkel K. Unveiling a common phase transition pathway of high-density amorphous ices through time-resolved x-ray scattering. J Chem Phys 2024; 160:244503. [PMID: 38916268 DOI: 10.1063/5.0216904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Here, we investigate the hypothesis that despite the existence of at least two high-density amorphous ices, only one high-density liquid state exists in water. We prepared a very-high-density amorphous ice (VHDA) sample and rapidly increased its temperature to around 205 ± 10 K using laser-induced isochoric heating. This temperature falls within the so-called "no-man's land" well above the glass-liquid transition, wherein the IR laser pulse creates a metastable liquid state. Subsequently, this high-density liquid (HDL) state of water decompresses over time, and we examined the time-dependent structural changes using short x-ray pulses from a free electron laser. We observed a liquid-liquid transition to low-density liquid water (LDL) over time scales ranging from 20 ns to 3 μs, consistent with previous experimental results using expanded high-density amorphous ice (eHDA) as the initial state. In addition, the resulting LDL derived both from VHDA and eHDA displays similar density and degree of inhomogeneity. Our observation supports the idea that regardless of the initial annealing states of the high-density amorphous ices, the same HDL and final LDL states are reached at temperatures around 205 K.
Collapse
Affiliation(s)
- Cheolhee Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Marjorie Ladd-Parada
- Chemistry Department, Glycoscience Division, Kungliga Tekniska Högskola, Roslagstullsbacken 21, 11421 Stockholm, Sweden
| | - Kyeongmin Nam
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seonju You
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tobias Eklund
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, 55128 Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
13
|
Iorio A, Perin L, Gallo P. Structure and slow dynamics of protein hydration water with cryopreserving DMSO and trehalose upon cooling. J Chem Phys 2024; 160:244502. [PMID: 38912631 DOI: 10.1063/5.0205569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
We study, through molecular dynamics simulations, three aqueous solutions with one lysozyme protein and three different concentrations of trehalose and dimethyl sulfoxide (DMSO). We analyze the structural and dynamical properties of the protein hydration water upon cooling. We find that trehalose plays a major role in modifying the structure of the network of HBs between water molecules in the hydration layer of the protein. The dynamics of hydration water presents, in addition to the α-relaxation, typical of glass formers, a slower long-time relaxation process, which greatly slows down the dynamics of water, particularly in the systems with trehalose, where it becomes dominant at low temperatures. In all the solutions, we observe, from the behavior of the α-relaxation times, a shift of the Mode Coupling Theory crossover temperature and the fragile-to-strong crossover temperature toward higher values with respect to bulk water. We also observe a strong-to-strong crossover from the temperature behavior of the long-relaxation times. In the aqueous solution with only DMSO, the transition shifts to a lower temperature than in the case with only lysozyme reported in the literature. We observe that the addition of trehalose to the mixture has the opposite effect of restoring the original location of the strong-to-strong crossover. In all the solutions analyzed in this work, the observed temperature of the protein dynamical transition is slightly shifted at lower temperatures than that of the strong-to-strong crossover, but their relative order is the same, showing a correlation between the motion of the protein and that of the hydration water.
Collapse
Affiliation(s)
- Antonio Iorio
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Leonardo Perin
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Paola Gallo
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| |
Collapse
|
14
|
Gabriel JP, Horstmann R, Tress M. Local and global expansivity in water. J Chem Phys 2024; 160:234502. [PMID: 38884401 DOI: 10.1063/5.0203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
The supra-molecular structure of a liquid is strongly connected to its dynamics, which in turn control macroscopic properties such as viscosity. Consequently, detailed knowledge about how this structure changes with temperature is essential to understand the thermal evolution of the dynamics ranging from the liquid to the glass. Here, we combine infrared spectroscopy (IR) measurements of the hydrogen (H) bond stretching vibration of water with molecular dynamics simulations and employ a quantitative analysis to extract the inter-molecular H-bond length in a wide temperature range of the liquid. The extracted expansivity of this H-bond differs strongly from that of the average nearest neighbor distance of oxygen atoms obtained through a common conversion of mass density. However, both properties can be connected through a simple model based on a random loose packing of spheres with a variable coordination number, which demonstrates the relevance of supra-molecular arrangement. Furthermore, the exclusion of the expansivity of the inter-molecular H-bonds reveals that the most compact molecular arrangement is formed in the range of ∼316-331K (i.e., above the density maximum) close to the temperature of several pressure-related anomalies, which indicates a characteristic point in the supra-molecular arrangement. These results confirm our earlier approach to deduce inter-molecular H-bond lengths via IR in polyalcohols [Gabriel et al. J. Chem. Phys. 154, 024503 (2021)] quantitatively and open a new alley to investigate the role of inter-molecular expansion as a precursor of molecular fluctuations on a bond-specific level.
Collapse
Affiliation(s)
- Jan Philipp Gabriel
- Institute of Materials Physics in Space, German Aerospace Center, 51170 Köln, Germany
| | - Robin Horstmann
- Institute for Condensed Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Martin Tress
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Muthachikavil AV, Sun G, Peng B, Tanaka H, Kontogeorgis GM, Liang X. Unraveling thermodynamic anomalies of water: A molecular simulation approach to probe the two-state theory with atomistic and coarse-grained water models. J Chem Phys 2024; 160:154505. [PMID: 38624123 DOI: 10.1063/5.0194036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
Thermodynamic and dynamic anomalies of water play a crucial role in supporting life on our planet. The two-state theory attributes these anomalies to a dynamic equilibrium between locally favored tetrahedral structures (LFTSs) and disordered normal liquid structures. This theory provides a straightforward, phenomenological explanation for water's unique thermodynamic and dynamic characteristics. To validate this two-state feature, it is critical to unequivocally identify these structural motifs in a dynamically fluctuating disordered liquid. In this study, we employ a recently introduced structural parameter (θavg) that characterizes the local angular order within the first coordination shell to identify these LFTSs through molecular dynamics simulations. We employ both realistic water models with a liquid-liquid critical point (LLCP) and a coarse-grained water model without an LLCP to study water's anomalies in low-pressure regions below 2 kbar. The two-state theory consistently describes water's thermodynamic anomalies in these models, both with and without an LLCP. This suggests that the anomalies predominantly result from the two-state features rather than criticality, particularly within experimentally accessible temperature-pressure regions.
Collapse
Affiliation(s)
- Aswin V Muthachikavil
- Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering, Technical University of Denmark, Building 229, Lyngby DK-2800, Denmark
| | - Gang Sun
- Department of Physics, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China
| | - Baoliang Peng
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, Beijing 100083, China
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Georgios M Kontogeorgis
- Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering, Technical University of Denmark, Building 229, Lyngby DK-2800, Denmark
| | - Xiaodong Liang
- Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering, Technical University of Denmark, Building 229, Lyngby DK-2800, Denmark
| |
Collapse
|
16
|
Loubet NA, Verde AR, Appignanesi GA. A water structure indicator suitable for generic contexts: Two-liquid behavior at hydration and nanoconfinement conditions and a molecular approach to hydrophobicity and wetting. J Chem Phys 2024; 160:144502. [PMID: 38587223 DOI: 10.1063/5.0203989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
In a recent work, we have briefly introduced a new structural index for water that, unlike previous indicators, was devised specifically for generic contexts beyond bulk conditions, making it suitable for hydration and nanoconfinement settings. In this work, we shall study this metric in detail, demonstrating its ability to reveal the existence of a fine-tuned interplay between the local structure and energetics in liquid water. This molecular principle enables the establishment of an extended hydrogen bond network, while simultaneously allowing for the existence of network defects by compensating for uncoordinated sites. By studying different water models and different temperatures encompassing both the normal liquid and the supercooled regime, this molecular mechanism will be shown to underlie the two-state behavior of bulk water. In addition, by studying functionalized self-assembled monolayers and diverse graphene-like surfaces, we shall show that this principle is also operative at hydration and nanoconfinement conditions, thus generalizing the validity of the two-liquid scenario of water to these contexts. This approach will allow us to define conditions for wettability, providing an accurate measure of hydrophobicity and a reliable predictor of filling and drying transitions. Hence, it might open the possibility of elucidating the active role of water in the broad fields of biophysics and materials science. As a preliminary step, we shall study the hydration structure and hydrophilicity of graphene-like systems (parallel graphene sheets and carbon nanotubes) as a function of the confinement dimensionality.
Collapse
Affiliation(s)
- Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Alejandro R Verde
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
17
|
Bachler J, Daidone I, Zanetti-Polzi L, Loerting T. Tuning the low-temperature phase behavior of aqueous ionic liquids. Phys Chem Chem Phys 2024; 26:9741-9753. [PMID: 38470827 DOI: 10.1039/d3cp06101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Water's anomalous behavior is often explained using a two-liquid model, where two types of water, high-density liquid (HDL) and low-density liquid (LDL), can be separated via a liquid-liquid phase transition (LLPT) at low temperature. Mixtures of water and the ionic liquid hydrazinium trifluoroacetate were suggested to also show an LLPT but with the advantage that there is no rapid ice crystallization hampering its observation. It remains controversial whether these solutions exhibit an LLPT or are instead associated with complex phase separation phenomena. We here show detailed low-temperature calorimetry and diffraction experiments on aqueous solutions containing hydrazinium trifluoroacetate and other similar ionic liquids, all at a solute mole fraction of x = 0.175. Hydrazinium trifluoroacetate, ammonium trifluoroacetate, ethylammonium trifluoroacetate and hydrazinium pentafluoropropionate all boast exothermic transitions unrelated to crystallization as well as remarkable structural changes upon cooling into the glassy state. We propose a model inspired by micelle formation and decomposition in surfactant solutions, which is complemented by MD simulations and allows rationalizing the rich phase behavior of our mixtures during cooling. The fundamental aspect of the model is the hydrophobic nature of fluorinated anions that enables aggregation, which is reversed upon cooling and culminates in the remarkable exothermic first-order transition observed at low temperature. That is, we assign the first-order transition not to an LLPT but to phase-separations similar to the ones when falling below the Krafft temperature. All other solutions merely show simple vitrification behavior. Still, they exhibit distinct differences in liquid fragility, which is decreased continuously with decreasing hydrophobicity of the anions. This might enable the systematic tuning of ionic liquids with the goal of designing aqueous solutions of specific fragility.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck A-6020, Austria.
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila 67010, Italy
| | | | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck A-6020, Austria.
| |
Collapse
|
18
|
Maturi F, Raposo Filho RS, Brites CDS, Fan J, He R, Zhuang B, Liu X, Carlos LD. Deciphering Density Fluctuations in the Hydration Water of Brownian Nanoparticles via Upconversion Thermometry. J Phys Chem Lett 2024; 15:2606-2615. [PMID: 38420927 PMCID: PMC10926164 DOI: 10.1021/acs.jpclett.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
We investigate the intricate relationship among temperature, pH, and Brownian velocity in a range of differently sized upconversion nanoparticles (UCNPs) dispersed in water. These UCNPs, acting as nanorulers, offer insights into assessing the relative proportion of high-density and low-density liquid in the surrounding hydration water. The study reveals a size-dependent reduction in the onset temperature of liquid-water fluctuations, indicating an augmented presence of high-density liquid domains at the nanoparticle surfaces. The observed upper-temperature threshold is consistent with a hypothetical phase diagram of water, validating the two-state model. Moreover, an increase in pH disrupts the organization of water molecules, similar to external pressure effects, allowing simulation of the effects of temperature and pressure on hydrogen bonding networks. The findings underscore the significance of the surface of suspended nanoparticles for understanding high- to low-density liquid fluctuations and water behavior at charged interfaces.
Collapse
Affiliation(s)
- Fernando
E. Maturi
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Chemistry, São Paulo State University
(UNESP), 14800-060 Araraquara, SP, Brazil
| | - Ramon S. Raposo Filho
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos D. S. Brites
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jingyue Fan
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Ruihua He
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Bilin Zhuang
- Harvey
Mudd College, 301 Platt
Boulevard, Claremont, California 91711, United States
| | - Xiaogang Liu
- Department
of Chemistry, National University of Singapore, Singapore 117543
| | - Luís D. Carlos
- Phantom-g,
CICECO - Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Finney JL. The structure of water: A historical perspective. J Chem Phys 2024; 160:060901. [PMID: 38341786 DOI: 10.1063/5.0182665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024] Open
Abstract
Attempts to understand the molecular structure of water were first made well over a century ago. Looking back at the various attempts, it is illuminating to see how these were conditioned by the state of knowledge of chemistry and physics at the time and the experimental and theoretical tools then available. Progress in the intervening years has been facilitated by not only conceptual and theoretical advances in physics and chemistry but also the development of experimental techniques and instrumentation. Exploitation of powerful computational methods in interpreting what at first sight may seem impenetrable experimental data has led us to the consistent and detailed picture we have today of not only the structure of liquid water itself and how it changes with temperature and pressure but also its interactions with other molecules, in particular those relevant to water's role in important chemical and biological processes. Much remains to be done in the latter areas, but the experimental and computational techniques that now enable us to do what might reasonably be termed "liquid state crystallography" have opened the door to make possible further advances. Consequently, we now have the tools to explore further the role of water in those processes that underpin life itself-the very prospect that inspired Bernal to develop his ideas on the structure of liquids in general and of water in particular.
Collapse
Affiliation(s)
- John L Finney
- Department of Physics and Astronomy and London Centre for Nanotechnology, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Bordin JR. A DPD model of soft spheres with waterlike anomalies and poly(a)morphism. SOFT MATTER 2023; 19:7613-7624. [PMID: 37772324 DOI: 10.1039/d3sm00972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Core-softened approaches have been employed to understand the behavior of a large variety of systems in soft condensed matter, from biological molecules to colloidal crystals, glassy phases, and water-like anomalies. At the same time, dissipative particle dynamics (DPD) is a powerful tool suitable for studying larger length and time scales. In this sense, we propose a simple model of soft molecules that exhibits a wide range of interesting phenomena: polyamorphism, with three amorphous phases, polymorphysm, including a recently found gyroid phase and a cubic diamond structure, reentrant liquid phase, and density, diffusion, and structural water-like anomalies. Each molecule is constituted by two collapsing beads, representing a harder central core and a softer corona. This induces a competition between distinct conformations that leads to their unique behavior. This provides a basis for the development of more accurate water-like DPD models that can then be parameterized for specific systems and even used to model and understand the self-assembly of colloidal crystals.
Collapse
Affiliation(s)
- José Rafael Bordin
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96001-970, Pelotas, RS, Brazil.
| |
Collapse
|
21
|
Loubet NA, Verde AR, Lockhart JA, Appignanesi GA. Turning an energy-based defect detector into a multi-molecule structural indicator for water. J Chem Phys 2023; 159:064512. [PMID: 37578063 DOI: 10.1063/5.0159060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Recent studies have provided conclusive evidence for the existence of a liquid-liquid critical point in numerical models of water. Such a scenario implies the competition between two local molecular arrangements of different densities: a high-density liquid (HDL) and a low-density liquid (LDL). Within this context, the development of accurate structural indicators to properly characterize the two interconverting local structures is demanded. In a previous study, we introduced a reliable energy-based structural descriptor that properly discriminates water molecules into tetrahedrally arranged molecules (T molecules) and distorted molecules (D molecules). The latter constitute defects in terms of hydrogen bond (HB) coordination and have been shown to represent a minority component, even at high temperatures above the melting point. In addition, the D molecules tend to form high-quality HBs with three T molecules and to be surrounded by T and D molecules at further distances. Thus, it became evident that, while the LDL state might consist of a virtually pure T state, the HDL state would comprise mixed molecular arrangements including the D molecules. Such a need to abandon the single-molecule description requires the investigation of the degree of structural information to be incorporated in order to build an appropriate multi-molecule indicator. Hence, in this work, we shall study the effect of the local structural constraints on the water molecules in order to discriminate the different molecular arrangements into two disjoint classes. This will enable us to build a multi-molecule structural indicator for water whose performance will then be investigated within the water's supercooled regime.
Collapse
Affiliation(s)
- Nicolás A Loubet
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Alejandro R Verde
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Jano A Lockhart
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
22
|
Perin L, Gallo P. Phase Diagram of Aqueous Solutions of LiCl: a Study of Concentration Effects on the Anomalies of Water. J Phys Chem B 2023; 127:4613-4622. [PMID: 37167579 DOI: 10.1021/acs.jpcb.3c00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We perform molecular dynamics simulations in order to study thermodynamics and the structure of supercooled aqueous solutions of lithium chloride (LiCl) at concentrations c = 0.678 and 2.034 mol/kg. We model the solvent using the TIP4P/2005 potential and the ions using the Madrid-2019 force field, a force field particularly suited for studying this solution. We find that, for c = 0.678 mol/kg, the behavior of the equation of state, studied in the P-T plane, indicates the presence of a liquid-liquid phase transition, similar to what was previously found for bulk water. We estimate the position of the liquid-liquid critical point to be at Tc ≈ 174 K, Pc ≈ 1775 bar, and ρc ≈ 1.065 g/cm3. When the concentration is tripled to c = 2.034 mol/kg, no critical point is observed, indicating its possible disappearance at this concentration. We also study the water-water and water-ions structure in the two solutions, and we find that at the concentrations examined the effect of ions on the water-water structure is not strong, and all the features found in bulk water are preserved. We also calculate the hydration number of the Li and Cl ions, and in line with experiments, we find the value of 4 for Li+ and between 5.5 and 6 for Cl-, confirming the good performances of the Madrid-2019 force field.
Collapse
Affiliation(s)
- Leonardo Perin
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Paola Gallo
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| |
Collapse
|
23
|
Guidarelli Mattioli F, Sciortino F, Russo J. Are Neural Network Potentials Trained on Liquid States Transferable to Crystal Nucleation? A Test on Ice Nucleation in the mW Water Model. J Phys Chem B 2023; 127:3894-3901. [PMID: 37075256 PMCID: PMC10165654 DOI: 10.1021/acs.jpcb.3c00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Neural network potentials (NNPs) are increasingly being used to study processes that happen on long time scales. A typical example is crystal nucleation, which rate is controlled by the occurrence of a rare fluctuation, i.e., the appearance of the critical nucleus. Because the properties of this nucleus are far from those of the bulk crystal, it is yet unclear whether NN potentials trained on equilibrium liquid states can accurately describe nucleation processes. So far, nucleation studies on NNPs have been limited to ab initio models whose nucleation properties are unknown, preventing an accurate comparison. Here we train a NN potential on the mW model of water─a classical three-body potential whose nucleation time scale is accessible in standard simulations. We show that a NNP trained only on a small number of liquid state points can reproduce with great accuracy the nucleation rates and free energy barriers of the original model, computed from both spontaneous and biased trajectories, strongly supporting the use of NNPs to study nucleation events.
Collapse
Affiliation(s)
| | | | - John Russo
- Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
24
|
Bellido-Peralta R, Leoni F, Calero C, Franzese G. Size-Pore-Dependent Methanol Sequestration from Water-Methanol Mixtures by an Embedded Graphene Slit. Molecules 2023; 28:molecules28093697. [PMID: 37175107 PMCID: PMC10179872 DOI: 10.3390/molecules28093697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The separation of liquid mixture components is relevant to many applications-ranging from water purification to biofuel production-and is a growing concern related to the UN Sustainable Development Goals (SDGs), such as "Clean water and Sanitation" and "Affordable and clean energy". One promising technique is using graphene slit-pores as filters, or sponges, because the confinement potentially affects the properties of the mixture components in different ways, favoring their separation. However, no systematic study has shown how the size of a pore changes the thermodynamics of the surrounding mixture. Here, we focus on water-methanol mixtures and explore, using Molecular Dynamics simulations, the effects of a graphene pore, with size ranging from 6.5 to 13 Å, for three compositions: pure water, 90%-10%, and 75%-25% water-methanol. We show that tuning the pore size can change the mixture pressure, density and composition in bulk due to the size-dependent methanol sequestration within the pore. Our results can help in optimizing the graphene pore size for filtering applications.
Collapse
Affiliation(s)
- Roger Bellido-Peralta
- Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Fabio Leoni
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària, Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
25
|
Verde AR, Alarcón LM, Appignanesi GA. Correlations between defect propensity and dynamical heterogeneities in supercooled water. J Chem Phys 2023; 158:114502. [PMID: 36948825 DOI: 10.1063/5.0139118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
A salient feature of supercooled liquids consists in the dramatic dynamical slowdown they undergo as temperature decreases while no significant structural change is evident. These systems also present dynamical heterogeneities (DH): certain molecules, spatially arranged in clusters, relax various orders of magnitude faster than the others. However, again, no static quantity (such as structural or energetic measures) shows strong direct correlations with such fast-moving molecules. In turn, the dynamic propensity approach, an indirect measure that quantifies the tendency of the molecules to move in a given structural configuration, has revealed that dynamical constraints, indeed, originate from the initial structure. Nevertheless, this approach is not able to elicit which structural quantity is, in fact, responsible for such a behavior. In an effort to remove dynamics from its definition in favor of a static quantity, an energy-based propensity has also been developed for supercooled water, but it could only find positive correlations between the lowest-energy and the least-mobile molecules, while no correlations could be found for those more relevant mobile molecules involved in the DH clusters responsible for the system's structural relaxation. Thus, in this work, we shall define a defect propensity measure based on a recently introduced structural index that accurately characterizes water structural defects. We shall show that this defect propensity measure provides positive correlations with dynamic propensity, being also able to account for the fast-moving molecules responsible for the structural relaxation. Moreover, time dependent correlations will show that defect propensity represents an appropriate early-time predictor of the long-time dynamical heterogeneity.
Collapse
Affiliation(s)
- Alejandro R Verde
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Laureano M Alarcón
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
26
|
Hu K, Shirakashi R. Molecular dynamics study of water rotational relaxation in saccharide solution for the development of bioprotective agent. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
27
|
Absorption of pressurized methane in normal and supercooled p-xylene revealed via high-resolution neutron imaging. Sci Rep 2023; 13:136. [PMID: 36599907 DOI: 10.1038/s41598-022-27142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Supercooling of liquids leads to peculiarities which are scarcely studied under high-pressure conditions. Here, we report the surface tension, solubility, diffusivity, and partial molar volume for normal and supercooled liquid solutions of methane with p-xylene. Liquid bodies of perdeuterated p-xylene (p-C8D10), and, for comparison, o-xylene (o-C8D10), were exposed to pressurized methane (CH4, up to 101 bar) at temperatures ranging 7.0-30.0 °C and observed at high spatial resolution (pixel size 20.3 μm) using a non-tactile neutron imaging method. Supercooling led to the increase of diffusivity and partial molar volume of methane. Solubility and surface tension were insensitive to supercooling, the latter substantially depended on methane pressure. Overall, neutron imaging enabled to reveal and quantify multiple phenomena occurring in supercooled liquid p-xylene solutions of methane under pressures relevant to the freeze-out in the production of liquefied natural gas.
Collapse
|
28
|
Hu R, Liu X, Zhang X. Experimental study on supercooled water release supercooled state for generating ice crystals. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Škvára J, Nezbeda I. Thermodynamics and structure of supercooled water. II. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Fardis M, Karagianni M, Gkoura L, Papavassiliou G. Self-Diffusion in Confined Water: A Comparison between the Dynamics of Supercooled Water in Hydrophobic Carbon Nanotubes and Hydrophilic Porous Silica. Int J Mol Sci 2022; 23:ijms232214432. [PMID: 36430907 PMCID: PMC9697084 DOI: 10.3390/ijms232214432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Confined liquids are model systems for the study of the metastable supercooled state, especially for bulk water, in which the onset of crystallization below 230 K hinders the application of experimental techniques. Nevertheless, in addition to suppressing crystallization, confinement at the nanoscale drastically alters the properties of water. Evidently, the behavior of confined water depends critically on the nature of the confining environment and the interactions of confined water molecules with the confining matrix. A comparative study of the dynamics of water under hydrophobic and hydrophilic confinement could therefore help to clarify the underlying interactions. As we demonstrate in this work using a few representative results from the relevant literature, the accurate assessment of the translational mobility of water molecules, especially in the supercooled state, can unmistakably distinguish between the hydrophilic and hydrophobic nature of the confining environments. Among the numerous experimental methods currently available, we selected nuclear magnetic resonance (NMR) in a field gradient, which directly measures the macroscopic translational self-diffusion coefficient, and quasi-elastic neutron scattering (QENS), which can determine the microscopic translational dynamics of the water molecules. Dielectric relaxation, which probes the re-orientational degrees of freedom, are also discussed.
Collapse
|
31
|
Mondal A, Ramesh G, Singh RS. Manifestations of the structural origin of supercooled water’s anomalies in the heterogeneous relaxation on the potential energy landscape. J Chem Phys 2022; 157:184503. [DOI: 10.1063/5.0124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Liquid water is well-known for its intriguing thermodynamic anomalies in the supercooled state. The phenomenological two-state models—based on the assumption of the existence of two types of competing local states (or, structures) in liquid water—have been extremely successful in describing water’s thermodynamic anomalies. However, the precise structural features of these competing local states in liquid water still remain elusive. Here, we have employed a predefined structural order parameter-free approach to unambiguously identify two types of competing local states—entropically and energetically favored—with significantly different structural and energetic features in the TIP4P/2005 liquid water. This identification is based on the heterogeneous structural relaxation of the system in the potential energy landscape (PEL) during the steepest-descent energy minimization. This heterogeneous relaxation is characterized using order parameters inspired by the spin-glass transition in frustrated magnetic systems. We have further established a direct relationship between the population fluctuation of the two states and the anomalous behavior of the heat capacity in supercooled water. The composition-dependent spatial distribution of the entropically favored local states shows an interesting crossover from a spanning network-like single cluster to the spatially delocalized clusters in the close vicinity of the Widom line. Additionally, this study establishes a direct relationship between the topographic features of the PEL and the water’s thermodynamic anomalies in the supercooled state and provides alternate markers (in addition to the locus of maxima of thermodynamic response functions) for the Widom line in the phase plane.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Gadha Ramesh
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| | - Rakesh S. Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
32
|
Nezbeda I. On a molecular origin of properties of water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Cerdeiriña CA. Water's Unusual Thermodynamics in the Realm of Physical Chemistry. J Phys Chem B 2022; 126:6608-6613. [PMID: 36001372 PMCID: PMC9797112 DOI: 10.1021/acs.jpcb.2c05274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Indexed: 12/31/2022]
Abstract
While it is known since the early work by Edsall, Frank and Evans, Kauzmann, and others that the thermodynamics of solvation of nonpolar solutes in water is unusual and has implications for the thermodynamics of protein folding, only recently have its connections with the unusual temperature dependence of the density of solvent water been illuminated. Such density behavior is, in turn, one of the manifestations of a nonstandard thermodynamic pattern contemplating a second, liquid-liquid critical point at conditions of temperature and pressure at which water exists as a deeply supercooled liquid. Recent experimental and computational work unambiguously points toward the existence of such a critical point, thereby providing concrete answers to the questions posed by the 1976 pioneering experiments by Speedy and Angell and the associated "liquid-liquid transition hypothesis" posited in 1992 by Stanley and co-workers. Challenges of this phenomenology to the branch of Statistical Mechanics remain.
Collapse
Affiliation(s)
- Claudio A. Cerdeiriña
- Departamento de Física Aplicada, Universidad de Vigo—Campus del Agua, Ourense 32004, Spain
| |
Collapse
|
34
|
Sanchez-Burgos I, Tejedor AR, Vega C, Conde MM, Sanz E, Ramirez J, Espinosa JR. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations. J Chem Phys 2022; 157:094503. [DOI: 10.1063/5.0101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water freezing is the most common liquid-to-crystal phase transition on Earth, however, despite its critical implications on climate change and cryopreservation among other disciplines, its characterization through experimental and computational techniques remains elusive. In this work, we make use of computer simulations to measure the nucleation rate (J) of water at normal pressure under different supercooling conditions, ranging from 215 to 240K. We employ two different water models, mW, a coarse-grained potential for water, and TIP4P/ICE, an atomistic non-polarizable water model that provides one of the most accurate representations of the different ice phases. To evaluate J, we apply the Lattice Mold technique, a computational method based on the use of molds to induce the nucleus formation from the metastable liquid under conditions at which observing spontaneous nucleation would be unfeasible. With this method, we obtain estimates of the nucleation rate for ice Ih, Ic and a stacking mixture of ice Ih/Ic; reaching consensus with most of the previously reported rates, although differing with some others. Furthermore, we confirm that the predicted nucleation rates by the TIP4P/ICE model are in better agreement with experimental data than those obtained through the mW potential. Taken together, our study provides a reliable methodology to measure nucleation rates in a simple and computationally efficient manner which contributes to benchmarking the freezing behaviour of two popular water models.
Collapse
Affiliation(s)
| | | | - Carlos Vega
- Departamento de Quimica Fisica, Universidad Complutense de Madrid Facultad de Ciencias Químicas, Spain
| | - Maria M. Conde
- Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales, Spain
| | | | - Jorge Ramirez
- Chemical Engineering, Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales, Spain
| | | |
Collapse
|
35
|
Bachler J, Giebelmann J, Amann-Winkel K, Loerting T. Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition. J Chem Phys 2022; 157:064502. [DOI: 10.1063/5.0100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In previous work, water's second glass transition was investigated based on an amorphous sample made from crystalline ice (Amann-Winkel et al., Proc. Natl. Acad. Sci. U.S.A. 110 (44) 17720-17725). In the present work, we investigate water's second glass transition based on the genuine glassy state of high-density water as prepared from micron-sized liquid water droplets, avoiding crystallinity at all stages. All the calorimetric features of water's second glass transition observed in the previous work are also observed here on the genuine glassy samples. This suggests that the glass transition indeed thermodynamically links amorphous ices continuously with deeply supercooled water. We proceed to extend the earlier study by investigating the effect of preparation history on the calorimetric glass transition temperature. The best samples prepared here feature both a lower glass transition temperature Tg,2 and a higher polyamorphic transition temperature Tons, thereby extending the range of thermal stability in which the deeply supercooled liquid can be observed by about 4 K. Just before the polyamorphic transition, we observe a spike-like increase of heat capacity that we interpret in terms of nucleation of low-density water. Without this spike, the width of water's second glass transition is 15 K, and the Δcp amounts to 3{plus minus}1 J K-1 mol-1, making the case for HDL being a strong liquid. We suggest that samples annealed at 1.9 GPa to 175 K and decompressed at 140 K to {greater than or equal to}0.10 GPa are free from such nuclei and represent the most ideal HDA glasses.
Collapse
Affiliation(s)
- Johannes Bachler
- University of Innsbruck Institute of Physical Chemistry, Austria
| | | | | | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Austria
| |
Collapse
|
36
|
Using Car-Parrinello simulations and microscopic order descriptors to reveal two locally favored structures with distinct molecular dipole moments and dynamics in ambient liquid water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Kwan V, Maiti SR, Saika-Voivod I, Consta S. Salt Enrichment and Dynamics in the Interface of Supercooled Aqueous Droplets. J Am Chem Soc 2022; 144:11148-11158. [PMID: 35715222 DOI: 10.1021/jacs.2c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interconversion reaction of NaCl between the contact-ion pair (CIP) and the solvent-separated ion pair (SSIP) as well as the free-ion state in cold droplets has not yet been investigated. We report direct computational evidence that the lower is the temperature, the closer to the surface the ion interconversion reaction takes place. In supercooled droplets the enrichment of the subsurface in salt becomes more evident. The stability of the SSIP relative to the CIP increases as the ion-pairing is transferred toward the droplet's outer layers. In the free-ion state, where the ions diffuse independently in the solution, the number density of Cl- shows a broad maximum in the interior in addition to the well-known maximum in the surface. In the study of the reaction dynamics, we find a weak coupling between the interionic NaCl distance reaction coordinate and the solvent degrees of freedom, which contrasts with the diffusive crossing of the free energy barrier found in bulk solution modeling. The H2O self-diffusion coefficient is found to be at least an order of magnitude larger than that in the bulk solution. We propose to exploit the enhanced surface ion concentration at low temperature to eliminate salts from droplets in native mass spectrometry ionization methods.
Collapse
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Shoubhik R Maiti
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
38
|
Buratti E, Tavagnacco L, Zanatta M, Chiessi E, Buoso S, Franco S, Ruzicka B, Angelini R, Orecchini A, Bertoldo M, Zaccarelli E. The role of polymer structure on water confinement in poly(N-isopropylacrylamide) dispersions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Sedano LF, Blazquez S, Noya EG, Vega C, Troncoso J. Maximum in density of electrolyte solutions: Learning about ion-water interactions and testing the Madrid-2019 force field. J Chem Phys 2022; 156:154502. [PMID: 35459318 DOI: 10.1063/5.0087679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we studied the effect of Li+, Na+, K+, Mg2+, and Ca2+ chlorides and sulfates on the temperature of maximum density (TMD) of aqueous solutions at room pressure. Experiments at 1 molal salt concentration were carried out to determine the TMD of these solutions. We also performed molecular dynamics simulations to estimate the TMD at 1 and 2 m with the Madrid-2019 force field, which uses the TIP4P/2005 water model and scaled charges for the ions, finding an excellent agreement between experiment and simulation. All the salts studied in this work shift the TMD of the solution to lower temperatures and flatten the density vs temperature curves (when compared to pure water) with increasing salt concentration. The shift in the TMD depends strongly on the nature of the electrolyte. In order to explore this dependence, we have evaluated the contribution of each ion to the shift in the TMD concluding that Na+, Ca2+, and SO4 2- seem to induce the largest changes among the studied ions. The volume of the system has been analyzed for salts with the same anion and different cations. These curves provide insight into the effect of different ions upon the structure of water. We claim that the TMD of electrolyte solutions entails interesting physics regarding ion-water and water-water interactions and should, therefore, be considered as a test property when developing force fields for electrolytes. This matter has been rather unnoticed for almost a century now and we believe it is time to revisit it.
Collapse
Affiliation(s)
- L F Sedano
- Depto. Química Física I (Unidad Asociada de I+D+i al CSIC), Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Blazquez
- Depto. Química Física I (Unidad Asociada de I+D+i al CSIC), Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - E G Noya
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - C Vega
- Depto. Química Física I (Unidad Asociada de I+D+i al CSIC), Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J Troncoso
- Departamento de Física Aplicada, Universidad de Vigo, Facultad de Ciencias del Campus de Ourense, E 32004 Ourense, Spain
| |
Collapse
|
40
|
Hoffmann L, Beerwerth J, Adjei-Körner M, Fuentes-Landete V, Tonauer CM, Loerting T, Böhmer R. Oxygen NMR of high-density and low-density amorphous ice. J Chem Phys 2022; 156:084503. [DOI: 10.1063/5.0080333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using oxygen-17 as a nuclear probe, spin relaxometry was applied to study the high-density and low-density states of amorphous ice, covering temperatures below and somewhat above their glass transitions. These findings are put in perspective with results from deuteron nuclear magnetic resonance and with calculations based on dielectrically detected correlation times. This comparison reveals the presence of a wide distribution of correlation times. Furthermore, oxygen-17 central-transition echo spectra were recorded for wide ranges of temperature and pulse spacing. The spectra cannot be described by a single set of quadrupolar parameters, suggesting a distribution of H–O–H opening angles that is broader for high-density than for low-density amorphous ice. Simulations of the pulse separation dependent spin-echo spectra for various scenarios demonstrate that a small-step frequency diffusion process, assigned to the presence of homonuclear oxygen–oxygen interactions, determines the shape evolution of the pulse-separation-dependent spectra.
Collapse
Affiliation(s)
- Lars Hoffmann
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | | | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Christina M. Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
41
|
de Almeida Ribeiro I, de Koning M, Molinero V. Is It Possible to Follow the Structural Evolution of Water in "No-Man's Land" Using a Pulsed-Heating Procedure? J Phys Chem Lett 2022; 13:1085-1089. [PMID: 35080178 DOI: 10.1021/acs.jpclett.1c04106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The anomalous increase in compressibility and heat capacity of supercooled water has been attributed to its structural transformation of into a four-coordinated liquid. Experiments revealed that κT and Cp peak at TWthermo ≈ 229 K [Kim et al. Science 2017, 358, 1589; Pathak et al. Proc. Natl. Acad. Sci. 2021, 118, e2018379118]. Recently, a pulsed heating procedure (PHP) was employed to interrogate the structure of water, reporting a steep increase in tetrahedrality around TWPHP = 210 ± 3 K [Kringle et al. Science 2020, 369, 1490]. This discrepancy questions whether water structure and thermodynamics are decoupled, or if the shift in TW is an artifact of PHP. Here we implement PHP in molecular simulations. We find that the stationary states captured at the bottom of the pulse are not representative of the thermalized liquid or its inherent structure. Our analysis reveals a temperature-dependent distortion that shifts TWPHP to ∼20 K below TWthermo. We conclude that 2 orders of magnitude faster rates are required to sample water's inherent structure with PHP.
Collapse
Affiliation(s)
- Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, São Paulo, Brazil
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|