1
|
Saint-Georges Z, MacDonald J, Al-Khalili R, Hamati R, Solmi M, Keshavan MS, Tuominen L, Guimond S. Cholinergic system in schizophrenia: A systematic review and meta-analysis. Mol Psychiatry 2025:10.1038/s41380-025-03023-y. [PMID: 40394282 DOI: 10.1038/s41380-025-03023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND/OBJECTIVES Studies have shown widespread alterations in different components of the cholinergic system in schizophrenia, but to date the evidence has not been systematically reviewed and summarized. Here, we systematically review imaging and post-mortem studies on the central cholinergic system in schizophrenia/schizoaffective disorder. SUBJECTS/METHODS Searches were performed in Embase and Medline. Study designs included cross-sectional case control studies comparing individuals with schizophrenia/schizoaffective disorder to control population. Risk of bias was assessed with the NIH/NHLBI tool for Quality Assessment of Case-Control Studies. The current study followed the PRISMA 2020 guidelines (PROSPERO: CRD42023402126). RESULTS A total of 3259 studies were screened and 61 met eligibility criteria for the systematic review, including 8 in vivo neuroimaging and 53 post-mortem studies. About 74% of these studies described significant alterations, most often reductions in either muscarinic or nicotinic receptor levels in schizophrenia. We also conducted 3 meta-analyses showing reductions in M1/M4 muscarinic receptors in the striatum (g = -0.809, k = 3, n = 108), hippocampus (g = -0.872, k = 3, n = 84), and fronto-cingulate cortex (g = -0.438, k = 4, n = 295). Six neuroimaging studies reported associations with clinical symptom severity measures, and four investigations with cognitive dysfunction. CONCLUSIONS Our review demonstrates a widespread decrease in muscarinic and nicotinic receptor levels in schizophrenia, evident in both neuroimaging and post-mortem studies. Our meta-analyses show large to moderate effects for the reductions in M1/M4 muscarinic receptors in the striatum, hippocampus, and fronto-cingulate cortex. Limitations and future directions for the field are discussed.
Collapse
Affiliation(s)
- Zacharie Saint-Georges
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julia MacDonald
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Roya Al-Khalili
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
| | - Rami Hamati
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marco Solmi
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Lauri Tuominen
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada.
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
| | - Synthia Guimond
- The University of Ottawa Institute of Mental Health Research at the Royal, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
- Department of Psychoeducation and Psychology, University of Quebec in Outaouais, Gatineau, QC, Canada.
| |
Collapse
|
2
|
Kumar G, Goyal N, Mukherjee A, Sharma P, Ramamoorthy D. Efficacy of Adjunctive High-Frequency Deep Transcranial Magnetic Stimulation for Improving Negative Symptoms in Schizophrenia: A Feasibility Study. J ECT 2025:00124509-990000000-00272. [PMID: 40085786 DOI: 10.1097/yct.0000000000001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
BACKGROUND Negative symptoms of schizophrenia are disabling and respond inadequately to antipsychotic treatment. Hypofunctioning of cortical areas such as anterior cingulate cortex and medial prefrontal cortex has been implicated in negative symptoms. Repetitive transcranial magnetic stimulation is efficacious for the negative symptoms. Deep transcranial magnetic stimulation (dTMS) has the benefits of repetitive transcranial magnetic stimulation with the advantage of stimulating deeper brain targets. OBJECTIVE The aim of the study was to explore the efficacy of high-frequency dTMS for improving negative symptoms in schizophrenia. METHODS This was a sham-controlled, rater, and subject-blinded study. Forty-six patients were randomly assigned into active and sham groups. Ten sessions of high-frequency dTMS at 10 Hz were given at 100% of resting motor threshold using H7 coil over 2 weeks. The Positive and Negative Syndrome Scale, Scale for Assessment of Negative Symptoms, and Clinical Global Impressions were assessed at baseline, at 2 weeks, and at 4 weeks after completion of dTMS. RESULT Forty-three patients completed the study. Although both active and sham groups shown improvement over the time, active dTMS group showed significant improvement in negative symptoms as indicated by significant improvement in the Scale for Assessment of Negative Symptoms score as compared to sham dTMS group (P = 0.003, η2 = 0.158), further substantiated by improvement in negative subscale of Positive and Negative Syndrome Scale (P = 0.044, η2 = 0.079). DISCUSSION Findings from our study suggest that adjunctive high-frequency dTMS significantly improves negative symptoms and severity of illness among patients with schizophrenia. Future studies with larger sample sizes will add our knowledge in the beneficial effects of this newer modality of noninvasive brain stimulation.
Collapse
Affiliation(s)
- Gulesh Kumar
- From the Speciality Doctor in General Adult Psychiatry, St. Cadoc Hospital, Aneurin Bevan University Health Board, NHS Wales, UK
| | - Nishant Goyal
- Central Institute of Psychiatry, Kanke, Ranchi, Jharkhand, India
| | | | | | | |
Collapse
|
3
|
Zhou S, Kuang Q, Huang H, She S, Zheng Y, Li X. Resting-state degree centrality and Granger causality analysis in relation to facial working memory in patients with first-episode schizophrenia. BMC Psychiatry 2025; 25:147. [PMID: 39972263 PMCID: PMC11841165 DOI: 10.1186/s12888-025-06535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND This study focused on the relationship between facial working memory and resting-state brain function abnormalities in patients with schizophrenia. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 28 first-episode schizophrenia (FSZ) patients and 33 healthy controls (HCs). Degree centrality (DC) and Granger causality analysis (GCA) were used to assess brain region connectivity. A delayed matching-to-sample task was used to examine visual working memory for faces and houses. Correlations between DC and facial working memory accuracy were analysed. Brain regions were selected as regions of interest (ROIs) and subjected to further GCA. MRI signals of the DC or GCA were extracted and analysed for correlation with clinical symptom scores. RESULT The results revealed that FSZ patients presented facial working memory impairments at high loads (t = 2.21, P = 0.03). DC values of the right middle frontal gyrus (MFG) were linked to facial working memory accuracy (P < 0.05, false discovery rate (FDR) correction). GCA indicated inhibited connectivity from the right MFG to the right inferior frontal gyrus (IFG) and right thalamus and from the right postcentral gyrus to the right MFG in FSZ patients (P < 0.05, FDR correction). The DC values of the right thalamus were correlated with negative symptom scores (r = -0.44, P = 0.02) and affective symptom scores (r = -0.57, P < 0.01). CONCLUSIONS Our findings suggest that FSZ patients may have impaired facial working memory ability, which may be associated with altered functions in multiple brain regions. Some of these functions are associated with clinical symptoms, which may provide insight into the underlying neural mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Sumiao Zhou
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China
| | - Qijie Kuang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China
| | - Huaqin Huang
- Department of Psychiatry, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510000, China
| | - Shenglin She
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Xuanzi Li
- School of Mental Health, Guangzhou Medical University, Guangzhou, 510370, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Song Y, Zhu H, Wu Z, Hu W, Zhang S, Zhou Y, Peng Y, Yang Y, Li W, Shi H, Yang G, Zhang Y, Lv L. Functional connectivity changes in the prefrontal-thalamic-cerebellar circuit in adolescents with first-episode Schizophrenia. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02656-2. [PMID: 39928122 DOI: 10.1007/s00787-025-02656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The role of functional connectivity (FC) changes in the prefrontal-thalamic-cerebellar circuit in schizophrenia has received widespread attention. Currently, domestic and international studies on this circuit have focused on adults, while the FC of this circuit in the brains of adolescent patients with schizophrenia (AOS) has been less reported. METHODS We recruited 124 subjects who underwent resting-state functional magnetic resonance imaging scans at baseline, using key brain regions in the prefrontal-thalamic-cerebellar circuit as seed regions, to investigate the FC in AOS versus healthy controls. The FC of this loop was compared with that of the whole brain in healthy controls. RESULTS Compared to healthy controls, patients with AOS had reduced FC between the medial prefrontal cortex (mPFC) and precuneus (PCu) and between the posterior cerebellar lobe and middle temporal gyrus. Reduced FC between the left mPFC and the left PCu in patients with AOS was associated with positive symptom scores on the PANSS and was positively correlated with the Symbolic Encoding Scale, the Maze Scale, and the Category Fluency Test Scale. Reduced FC between the right posterior cerebellar lobe and the right middle temporal gyrus is positively correlated with the simple visuospatial memory test in AOS patients. CONCLUSIONS There are FC abnormalities in the prefrontal-thalamic-cerebellar circuit, precuneus, and temporal lobe in AOS. These abnormalities appear in the early stages of schizophrenia, independent of medication, and are characteristic of the disorder.
Collapse
Affiliation(s)
- Yichen Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
| | - HanYu Zhu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
| | - Zhaoyang Wu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
| | - Wenyan Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
| | - Sen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, 453002, China
| | - Youqi Zhou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
| | - Yue Peng
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, 453002, China
| | - Han Shi
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, 453002, China
| | - Ge Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
- Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, 453002, China
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China.
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China.
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China.
- Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, 453002, China.
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, 453002, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan of Xinxiang Medical University, Xinxiang, 453002, China.
- Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang, 453002, China.
- Xinxiang Key Laboratory of Child and Adolescent Psychiatry, Xinxiang, 453002, China.
- Brain Institute, Henan Academy of Innovations in Medical Science, Xinxiang, 453002, China.
| |
Collapse
|
5
|
Chen X, Zhang X, Qin B, Huang D, Luo C, Huang H, Zhou Q, Chen Z, Zheng J. Differential alterations of structural network in temporal lobe epilepsy with different seizure types are associated with cognitive and psychiatric status. Epilepsy Behav 2025; 163:110228. [PMID: 39729685 DOI: 10.1016/j.yebeh.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/22/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND The fundamental pathophysiologic understanding of different seizure types in Temporal lobe epilepsy (TLE) remains unclear. This study aimed to assess the distinct alterations of structural network in TLE patients with different seizure types and their relationships with cognitive and psychiatric symptoms. METHODS Seventy-three patients with unilateral TLE, including 25 with uncontrolled focal to bilateral tonic-clonic seizures (FBTCS), 25 with controlled FBTCS and 23 with focal impaired awareness seizures (FIAS), as well as 26 healthy controls (HC), underwent the diffusion tensor imaging (DTI) scan. Network-based statistic (NBS) and graph theory analyses were employed to investigate the structural network and its topological properties. Partial correlation analyses were conducted to examine the relationships between clinical variables and disrupted network characteristics. Additionally, the support vector machine (SVM) algorithm was utilized for the classification of controlled and uncontrolled FBTCS. RESULTS Compared to HC, TLE seizure type subgroups presented differently aberrant SC within the frontostriatal network. Additionally, alterations in the rich club organization and global network metrics were observed only in FBTCS. Notably, a significant decrease in all nodal metrics of the right amygdala were observed within the uncontrolled FBTCS group compared to the other three groups. Additionally, the disrupted nodal properties were significantly correlated with the age of onset, duration of epilepsy and psychiatric symptoms in FBTCS. Furthermore, the classifier achieved notably high accuracy (98%) in distinguishing between controlled and uncontrolled FBTCS. CONCLUSIONS Our findings may contribute to elucidating the neuropathological mechanisms of different seizure types in TLE and their impacts on cognitive and psychiatric status. SVM algorithm combined with nodal properties holds promise for predicting the poor seizure control of FBTCS.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bailing Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongying Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cuimi Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huachun Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qin Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zirong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
6
|
Wei X, Cao H, Luo C, Zhao Q, Xia C, Li Z, Liu Z, Zhang W, Gong Q, Lui S. Altered cerebellar effective connectivity in first-episode schizophrenia and long-term changes after treatment. Psychiatry Clin Neurosci 2024; 78:605-611. [PMID: 39072968 DOI: 10.1111/pcn.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
AIM Cerebello-cortical functional dysconnectivity plays a key role in the pathology of schizophrenia (SZ). We aimed to investigate the changes in cerebello-cortical directional connectivity in patients with SZ. METHODS A total of 180 drug-naïve patients with first-episode SZ (54 reassessed after 1 year of treatment) and 166 healthy controls (HCs) were included. Resting-state functional magnetic resonance imaging was used to perform Granger causal analysis, in which each of the nine cerebellar functional systems was defined as a seed. The observed effective connectivity (EC) alterations at baseline were further assessed at follow-up and were associated with changes in psychotic symptom. RESULTS We observed increased bottom-up EC in first-episode SZ from the cerebellum to the cerebrum (e.g. from the cerebellar attention and cingulo-opercular systems to the bilateral angular gyri, and from the cerebellar cingulo-opercular system to the right inferior frontal gyrus). In contrast, decreased top-down EC in the first-episode SZ was mainly from the cerebrum to the cerebellum (e.g. from the right inferior temporal gyrus, left middle temporal gyrus, left putamen, and right angular gyrus to the cerebellar language system). After 1 year of antipsychotic treatment, information projections from the cerebrum to the cerebellum were partly restored and positively related to symptom remission. CONCLUSION These findings suggest that decreased top-down EC during the acute phase of SZ may be a state-dependent alteration related to symptoms and medication. However, increased bottom-up EC may reflect a persistent pathological trait.
Collapse
Affiliation(s)
- Xia Wei
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hengyi Cao
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, New York, USA
| | - Chunyan Luo
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiannan Zhao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ziyu Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhiqin Liu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
7
|
Jiang C, Lin B, Ye X, Yu Y, Xu P, Peng C, Mou T, Yu X, Zhao H, Zhao M, Li Y, Zhang S, Chen X, Pan F, Shang D, Jin K, Lu J, Chen J, Yin J, Huang M. Graph convolutional network with attention mechanism improve major depressive depression diagnosis based on plasma biomarkers and neuroimaging data. J Affect Disord 2024; 360:336-344. [PMID: 38824965 DOI: 10.1016/j.jad.2024.05.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking. METHODS In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance. RESULTS Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %. LIMITATIONS This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability. CONCLUSIONS In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.
Collapse
Affiliation(s)
- Chaonan Jiang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bo Lin
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China; School of Software Technology, Zhejiang University, Ningbo 315048, China
| | - Xinyi Ye
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Yiran Yu
- Management of Science with Artificial Intelligence, University of Nottingham Ningbo China, 315048, China
| | - Pengfeng Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Chenxu Peng
- Department of Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xinjian Yu
- Quantitative and Computational Biosciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haoyang Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Miaomiao Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shiyi Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Xuanqiang Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Fen Pan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Desheng Shang
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianwei Yin
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310003, China
| | - Manli Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
8
|
Kong L, Zhang Y, Wu XM, Wang XX, Wu HS, Li SB, Chu MY, Wang Y, Lui SSY, Lv QY, Yi ZH, Chan RCK. The network characteristics in schizophrenia with prominent negative symptoms: a multimodal fusion study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:10. [PMID: 38233433 PMCID: PMC10851703 DOI: 10.1038/s41537-023-00408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/26/2023] [Indexed: 01/19/2024]
Abstract
Previous studies on putative neural mechanisms of negative symptoms in schizophrenia mainly used single modal imaging data, and seldom utilized schizophrenia patients with prominent negative symptoms (PNS).This study adopted the multimodal fusion method and recruited a homogeneous sample with PNS. We aimed to identify negative symptoms-related structural and functional neural correlates of schizophrenia. Structural magnetic resonance imaging (sMRI) and resting-state functional MRI (rs-fMRI) were performed in 31 schizophrenia patients with PNS and 33 demographically matched healthy controls.Compared to healthy controls, schizophrenia patients with PNS exhibited significantly altered functional activations in the default mode network (DMN) and had structural gray matter volume (GMV) alterations in the cerebello-thalamo-cortical network. Correlational analyses showed that negative symptoms severity was significantly correlated with the cerebello-thalamo-cortical structural network, but not with the DMN network in schizophrenia patients with PNS.Our findings highlight the important role of the cerebello-thalamo-cortical structural network underpinning the neuropathology of negative symptoms in schizophrenia. Future research should recruit a large sample and schizophrenia patients without PNS, and apply adjustments for multiple comparison, to verify our preliminary findings.
Collapse
Affiliation(s)
- Li Kong
- Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Yao Zhang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu-Ming Wu
- Nantong Fourth People's Hospital, Nantong, China
| | - Xiao-Xiao Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Hai-Su Wu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai-Biao Li
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Chu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qin-Yu Lv
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng-Hui Yi
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, China.
- Institute of Mental Health, Fudan University, Shanghai, China.
| | - Raymond C K Chan
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Zhu T, Wang Z, Wu W, Ling Y, Wang Z, Zhou C, Fang X, Huang C, Xie C, Chen J, Zhang X. Altered brain functional networks in schizophrenia with persistent negative symptoms: an activation likelihood estimation meta-analysis. Front Hum Neurosci 2023; 17:1204632. [PMID: 37954938 PMCID: PMC10637389 DOI: 10.3389/fnhum.2023.1204632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To investigate brain structural and functional characteristics of three brain functional networks including default mode network (DMN), central executive network (CEN), and salience network (SN) in persistent negative symptoms (PNS) patients. Methods We performed an activation likelihood estimation (ALE) meta-analysis of functional connectivity (FC) studies and voxel-based morphometry (VBM) studies to detect specific structural and functional alterations of brain networks between PNS patients and healthy controls. Results Seventeen VBM studies and twenty FC studies were included. In the DMN, PNS patients showed decreased gray matter in the bilateral medial frontal gyrus and left anterior cingulate gyrus and a significant reduction of FC in the right precuneus. Also, PNS patients had a decrease of gray matter in the left inferior parietal lobules and medial frontal gyrus, and a significant reduction of FC in the bilateral superior frontal gyrus in the CEN. In comparison with healthy controls, PNS patients exhibited reduced gray matter in the bilateral insula, anterior cingulate gyrus, left precentral gyrus and right claustrum and lower FC in these brain areas in the SN, including the left insula, claustrum, inferior frontal gyrus and extra-nuclear. Conclusion This meta-analysis reveals brain structural and functional imaging alterations in the three networks and the interaction among these networks in PNS patients, which provides neuroscientific evidence for more personalized treatment.Systematic Review RegistrationThe PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, registration number: CRD42022335962).
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Psychiatry, The Third People’s Hospital of Huai’an, Huaian, Jiangsu, China
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zengxiu Wang
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Wu
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuru Ling
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Psychiatry, The Third People’s Hospital of Huai’an, Huaian, Jiangsu, China
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine Southeast University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
10
|
Zhang E, Hauson AO, Pollard AA, Meis B, Lackey NS, Carson B, Khayat S, Fortea L, Radua J. Lateralized grey matter volume changes in adolescents versus adults with major depression: SDM-PSI meta-analysis. Psychiatry Res Neuroimaging 2023; 335:111691. [PMID: 37837793 DOI: 10.1016/j.pscychresns.2023.111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 07/19/2023] [Indexed: 10/16/2023]
Abstract
The current study is the first meta-analysis to examine grey matter volume (GMV) changes in adolescents and across the lifespan in major depressive disorder (MDD). Seed-based d mapping-with permutation of subject images (SDM-PSI) has advantages over previous coordinate-based meta-analytical methods (CBMA), such as reducing bias (via the MetaNSUE algorithm) and including non-statistically significant unreported effects. SDM-PSI was used to analyze 105 whole-brain GMV voxel-based morphometry (VBM) studies comparing 6,530 individuals with MDD versus 6,821 age-matched healthy controls (HC). A laterality effect was observed in which adults with MDD showed lower GMV than adult HC in left fronto-temporo-parietal structures (superior temporal gyrus, insula, Rolandic operculum, and inferior frontal gyrus). However, these abnormalities were not statistically significant for adolescent MDD versus adolescent HC. Instead, adolescent MDD showed lower GMV than adult MDD in right temporo-parietal structures (angular gyrus and middle temporal gyrus). These regional differences may be used as potential biomarkers to predict and monitor treatment outcomes as well as to choose the most effective treatments in adolescents versus adults. Finally, due to the paucity of youth, older adult, and longitudinal studies, future studies should attempt to replicate these GMV findings and examine whether they correlate with treatment response and illness severity.
Collapse
Affiliation(s)
- Emily Zhang
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Alexander O Hauson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America; Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America.
| | - Anna A Pollard
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Benjamin Meis
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Nicholas S Lackey
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Bryce Carson
- California School of Professional Psychology, Clinical Psychology Ph.D. Program, San Diego, CA, United States of America; Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Sarah Khayat
- Institute of Brain Research and Integrated Neuropsychological Services (iBRAINs.org), San Diego, CA, United States of America
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain; Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Huang H, Rong B, Chen C, Wan Q, Liu Z, Zhou Y, Wang G, Wang H. Common and Distinct Functional Connectivity of the Orbitofrontal Cortex in Depression and Schizophrenia. Brain Sci 2023; 13:997. [PMID: 37508929 PMCID: PMC10377532 DOI: 10.3390/brainsci13070997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Schizophrenia and depression are psychiatric disorders with overlapping clinical and biological features. This study aimed to identify common and distinct neuropathological mechanisms in schizophrenia and depression patients using resting-state functional magnetic resonance imaging (fMRI). The study included 28 patients with depression (DEP), 29 patients with schizophrenia (SCH), and 30 healthy control subjects (HC). Intrinsic connectivity contrast (ICC) was used to identify functional connectivity (FC) changes at the whole-brain level, and significant ICC differences were found in the bilateral orbitofrontal cortex (OFC) across all three groups. Further seed-based FC analysis indicated that compared to the DEP and HC groups, the FC between bilateral OFC and medial prefrontal cortex (MPFC), right anterior insula, and right middle frontal gyrus were significantly lower in the SCH group. Additionally, the FC between right OFC and left thalamus was decreased in both patient groups compared to the HC group. Correlation analysis showed that the FC between OFC and MPFC was positively correlated with cognitive function in the SCH group. These findings suggest that OFC connectivity plays a critical role in the pathophysiology of schizophrenia and depression and may provide new insights into the potential neural mechanisms underlying these two disorders.
Collapse
Affiliation(s)
- Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qirong Wan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Hubei Institute of Neurology and Psychiatry Research, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Psychiatry, Zhongxiang Hospital of Renmin Hospital of Wuhan University, Zhongxiang 431900, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
12
|
Alexandros Lalousis P, Wood S, Reniers R, Schmaal L, Azam H, Mazziota A, Saeed H, Wragg C, Upthegrove R. Transdiagnostic structural neuroimaging features in depression and psychosis: A systematic review. Neuroimage Clin 2023; 38:103388. [PMID: 37031636 PMCID: PMC10120394 DOI: 10.1016/j.nicl.2023.103388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Previous research suggests that there may be similarities in structural brain changes seen in patients with depression and psychosis compared to healthy controls. However, there is yet no systematic review collating studies comparing structural brain changes in depression and psychosis. Establishing shared and specific neuroanatomical features could aid the investigation of underlying biological processes. AIMS To identify structural neuroimaging similarities and differences between patients with depression and psychosis. METHOD We searched PubMed, PsychInfo, Embase, NICE Evidence, Medline and the Cochrane Library were searched from inception to 30/06/2021 using relevant subject headings (controlled vocabularies) and search syntax. Papers were assessed for quality using the Newcastle-Ottawa Scale. RESULTS Five-hundred and twenty papers were retrieved, seven met inclusion criteria. In narrative collation of results, grey matter volume (GMV) reductions were found in the medial frontal gyrus (MFG), hippocampus and left-sided posterior subgenual prefrontal cortex in both psychosis and depression. GMV reductions affected more brain regions in psychosis, including in the insula and thalamus. White matter volume (WMV) decline was found in both depression and psychosis. Reduced fractional anisotropy (FA) was more commonly seen in depression. CONCLUSIONS Our results suggest potential transdiagnostic patterns of GMV and WMV reductions in areas including the MFG, hippocampus, and left-sided posterior subgenual prefrontal cortex. These could be investigated as a future biomarker of transdiagnostic signature across mental illnesses. However, due to the limited number and poor quality of studies future research in large samples and harmonised imaging data is first needed.
Collapse
Affiliation(s)
- Paris Alexandros Lalousis
- Institute for Mental Health, University of Birmingham, Birmingham B15 2SA, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham B15 2SA, United Kingdom.
| | - Stephen Wood
- Institute for Mental Health, University of Birmingham, Birmingham B15 2SA, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham B15 2SA, United Kingdom; Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Renate Reniers
- Institute for Mental Health, University of Birmingham, Birmingham B15 2SA, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Lianne Schmaal
- Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
| | - Hannah Azam
- Institute for Mental Health, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Antonella Mazziota
- Institute for Mental Health, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Hasson Saeed
- Institute for Mental Health, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Charlotte Wragg
- Institute for Mental Health, University of Birmingham, Birmingham B15 2SA, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham B15 2SA, United Kingdom; Centre for Human Brain Health, University of Birmingham, Birmingham B15 2SA, United Kingdom
| |
Collapse
|
13
|
Choi SY, Ha M, Choi S, Moon SY, Park S, Kim M, Kwon JS. Altered intrinsic cerebellar-cerebral functional connectivity is related to negative symptoms in patients with first-episode psychosis. Schizophr Res 2023; 252:56-63. [PMID: 36628869 DOI: 10.1016/j.schres.2022.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Negative symptoms in schizophrenia include cognitive and affective dysfunction, such as diminished expression and amotivation. Although the cerebellar posterior hemisphere and vermis are involved in cognitive and affective functioning, previous studies on the neural mechanism of negative symptoms have mostly been confined to the cerebral cortex. This study aimed to investigate whether resting-state cerebellar-cerebral functional connectivity (FC) is altered in first-episode psychosis (FEP) patients and whether this connectivity is related to negative symptoms. METHODS Resting-state functional magnetic resonance images were obtained from 38 FEP patients and 100 healthy controls (HCs). Using the posterior hemisphere and vermis of the cerebellum as seeds, whole-brain FC was compared between FEP patients and HCs. As cerebellar-parietal cortex connectivity is associated with negative symptoms and sociocognitive dysfunctions in schizophrenia patients, its correlation with negative symptoms was explored in FEP patients. RESULTS FEP patients showed hyperconnectivity between the cerebellum and bilateral frontal pole (FP), occipital pole, fusiform gyrus, right lingual gyrus, central opercular cortex, anterior middle temporal gyrus, precuneus, and subcallosal cortex. Hypoconnectivity was found between the cerebellum and left FP, right anterior supramarginal gyrus (aSMG), and cerebellum crus I. FC between the left crus II and right aSMG was negatively correlated with the severity of negative symptoms and diminished expression. CONCLUSIONS Altered FC between the cerebellum and cerebral regions related to cognitive, affective, and sensory processing was found in FEP patients and was connected to negative symptoms. These results suggest that the cerebellum plays a role in the pathophysiology of negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Soo Yun Choi
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minji Ha
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Sun-Young Moon
- Department of Psychiatry, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Sunghyun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
14
|
Dong D, Yao D, Wang Y, Hong SJ, Genon S, Xin F, Jung K, He H, Chang X, Duan M, Bernhardt BC, Margulies DS, Sepulcre J, Eickhoff SB, Luo C. Compressed sensorimotor-to-transmodal hierarchical organization in schizophrenia. Psychol Med 2023; 53:771-784. [PMID: 34100349 DOI: 10.1017/s0033291721002129] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. METHODS We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients v. 122 controls). RESULTS We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal-parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected, p < 0.05). CONCLUSIONS The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory-motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.
Collapse
Affiliation(s)
- Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Vrije Universiteit Brussel, Belgium
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Belgium
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, NY, USA
- Department of Biomedical Engineering, Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, South Korea
| | - Sarah Genon
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Fei Xin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
| | - Kyesam Jung
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Xuebin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
| | - Mingjun Duan
- Department of Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS) UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Jorge Sepulcre
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, China
- Department of Neurology, Brain Disorders and Brain Function Key Laboratory, First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
15
|
Zhou J, Guo X, Liu X, Luo Y, Chang X, He H, Duan M, Li S, Li Q, Tan Y, Yao G, Yao D, Luo C. Intrinsic Therapeutic Link between Recuperative Cerebellar Con-Nectivity and Psychiatry Symptom in Schizophrenia Patients with Comorbidity of Metabolic Syndrome. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010144. [PMID: 36676092 PMCID: PMC9863013 DOI: 10.3390/life13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Components of metabolic syndrome might be predictors of the therapeutic outcome of psychiatric symptom in schizophrenia, whereas clinical results are inconsistent and an intrinsic therapeutic link between weaker psychiatric symptoms and emergent metabolic syndrome remains unclear. This study aims to reveal the relationship and illustrate potential mechanism by exploring the alteration of cerebellar functional connectivity (FC) in schizophrenia patients with comorbidity metabolic syndrome. Thirty-six schizophrenia patients with comorbidity of metabolic syndrome (SCZ-MetS), 45 schizophrenia patients without metabolic syndrome (SCZ-nMetS) and 39 healthy controls (HC) were recruited in this study. We constructed FC map of cerebello-cortical circuit and used moderation effect analysis to reveal complicated relationship among FC, psychiatric symptom and metabolic disturbance. Components of metabolic syndrome were significantly correlated with positive symptom score and negative symptom score. Importantly, the dysconnectivity between cognitive module of cerebellum and left middle frontal gyrus in SCZ-nMetS was recuperative increased in SCZ-MetS, and was significantly correlated with general symptom score. Finally, we observed significant moderation effect of body mass index on this correlation. The present findings further supported the potential relationship between emergence of metabolic syndrome and weaker psychiatric symptom, and provided neuroimaging evidence. The mechanism of intrinsic therapeutic link involved functional change of cerebello-cortical circuit.
Collapse
Affiliation(s)
- Jingyu Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Xiao Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Xiaoli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Yuling Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Shicai Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Qifu Li
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Ying Tan
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610093, China
- Research Unit of Neuroinformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu 610072, China
- Correspondence: (Y.T.); (G.Y.); (C.L.)
| | - Gang Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Psychiatry, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610056, China
- Correspondence: (Y.T.); (G.Y.); (C.L.)
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
- Research Unit of Neuroinformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
- Research Unit of Neuroinformation (2019RU035), Chinese Academy of Medical Sciences, Chengdu 610072, China
- Correspondence: (Y.T.); (G.Y.); (C.L.)
| |
Collapse
|
16
|
Choi HL, Yang K, Han K, Kim B, Chang WH, Kwon S, Jung W, Yoo JE, Jeon HJ, Shin DW. Increased Risk of Developing Depression in Disability after Stroke: A Korean Nationwide Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:842. [PMID: 36613164 PMCID: PMC9819798 DOI: 10.3390/ijerph20010842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Stroke is a leading cause of mortality and a major cause of disability worldwide. A significant number of stroke survivors suffer from depression, impeding the activities of daily living and rehabilitation. Here, we examined the risk of depression among stroke survivors according to the severity of disabilities and compared its incidence with a matched control group. We included data from the Korean National Health Insurance Service of 207,678 stroke survivors. Cox proportional hazard models were used to calculate the risk of depression among stroke survivors. Stroke survivors had a greater risk of developing depression than the matched control group with an adjusted hazard ratio of 2.12 (95% confidence interval 2.09-2.15). Stroke survivors with more severe disabilities were associated with a higher risk of depression than those with mild disabilities. The risk of developing depression was prominently high within the first year after a stroke. Males and younger people (<65 years) were independent risk factors for depression in stroke survivors. This study demonstrated an increased risk of developing depression in stroke survivors compared to control subjects, and a higher risk of depression was associated with a more severe degree of disability. Clinicians should be aware of the risk of depression developing in stroke survivors, especially those with disabilities.
Collapse
Affiliation(s)
- Hea Lim Choi
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kyojin Yang
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Bongsung Kim
- Department of Medical Statistics, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Soonwook Kwon
- Department of Neurology, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Wonyoung Jung
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jung Eun Yoo
- Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 06236, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
| |
Collapse
|
17
|
Yang C, Xiao K, Ao Y, Cui Q, Jing X, Wang Y. The thalamus is the causal hub of intervention in patients with major depressive disorder: Evidence from the Granger causality analysis. Neuroimage Clin 2023; 37:103295. [PMID: 36549233 PMCID: PMC9795532 DOI: 10.1016/j.nicl.2022.103295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Major depressive disorder (MDD) is the leading mental disorder and afflicts more than 350 million people worldwide. The underlying neural mechanisms of MDD remain unclear, hindering the accurate treatment. Recent brain imaging studies have observed functional abnormalities in multiple brain regions in patients with MDD, identifying core brain regions is the key to locating potential therapeutic targets for MDD. The Granger causality analysis (GCA) measures directional effects between brain regions and, therefore, can track causal hubs as potential intervention targets for MDD. We reviewed literature employing GCA to investigate abnormal brain connections in patients with MDD. The total degree of effective connections in the thalamus (THA) is more than twice that in traditional targets such as the superior frontal gyrus and anterior cingulate cortex. Altered causal connections in patients with MDD mainly included enhanced bottom-up connections from the thalamus to various cortical and subcortical regions and reduced top-down connections from these regions to the THA, indicating excessive uplink sensory information and insufficient downlink suppression information for negative emotions. We suggest that the thalamus is the most crucial causal hub for MDD, which may serve as the downstream target for non-invasive brain stimulation and medication approaches in MDD treatment.
Collapse
Affiliation(s)
- Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Kunchen Xiao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu 610052, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
18
|
Fu Y, Niu M, Gao Y, Dong S, Huang Y, Zhang Z, Zhuo C. Altered nonlinear Granger causality interactions in the large-scale brain networks of patients with schizophrenia. J Neural Eng 2022; 19. [PMID: 36579785 DOI: 10.1088/1741-2552/acabe7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Objective.It has been demonstrated that schizophrenia (SZ) is characterized by functional dysconnectivity involving extensive brain networks. However, the majority of previous studies utilizing resting-state functional magnetic resonance imaging (fMRI) to infer abnormal functional connectivity (FC) in patients with SZ have focused on the linear correlation that one brain region may influence another, ignoring the inherently nonlinear properties of fMRI signals.Approach. In this paper, we present a neural Granger causality (NGC) technique for examining the changes in SZ's nonlinear causal couplings. We develop static and dynamic NGC-based analyses of large-scale brain networks at several network levels, estimating complicated temporal and causal relationships in SZ patients.Main results. We find that the NGC-based FC matrices can detect large and significant differences between the SZ and healthy control groups at both the regional and subnetwork scales. These differences are persistent and significantly overlapped at various network sparsities regardless of whether the brain networks were built using static or dynamic techniques. In addition, compared to controls, patients with SZ exhibited extensive NGC confusion patterns throughout the entire brain.Significance. These findings imply that the NGC-based FCs may be a useful method for quantifying the abnormalities in the causal influences of patients with SZ, hence shedding fresh light on the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuanhang Gao
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Shunjie Dong
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Yanyan Huang
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou, People's Republic of China.,Institute of Brain Science, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Cheng Zhuo
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
19
|
Linking cerebellar functional gradients to transdiagnostic behavioral dimensions of psychopathology. Neuroimage Clin 2022; 36:103176. [PMID: 36063759 PMCID: PMC9450332 DOI: 10.1016/j.nicl.2022.103176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
High co-morbidity and substantial overlap across psychiatric disorders encourage a transition in psychiatry research from categorical to dimensional approaches that integrate neuroscience and psychopathology. Converging evidence suggests that the cerebellum is involved in a wide range of cognitive functions and mental disorders. An important question thus centers on the extent to which cerebellar function can be linked to transdiagnostic dimensions of psychopathology. To address this question, we used a multivariate data-driven statistical technique (partial least squares) to identify latent dimensions linking human cerebellar connectome as assessed by functional MRI to a large set of clinical, cognitive, and trait measures across 198 participants, including healthy controls (n = 92) as well as patients diagnosed with attention-deficit/hyperactivity disorder (n = 35), bipolar disorder (n = 36), and schizophrenia (n = 35). Macroscale spatial gradients of connectivity at voxel level were used to characterize cerebellar connectome properties, which provide a low-dimensional representation of cerebellar connectivity, i.e., a sensorimotor-supramodal hierarchical organization. This multivariate analysis revealed significant correlated patterns of cerebellar connectivity gradients and behavioral measures that could be represented into four latent dimensions: general psychopathology, impulsivity and mood, internalizing symptoms and executive dysfunction. Each dimension was associated with a unique spatial pattern of cerebellar connectivity gradients across all participants. Multiple control analyses and 10-fold cross-validation confirmed the robustness and generalizability of the yielded four dimensions. These findings highlight the relevance of cerebellar connectivity as a necessity for the study and classification of transdiagnostic dimensions of psychopathology and call on researcher to pay more attention to the role of cerebellum in the dimensions of psychopathology, not just within the cerebral cortex.
Collapse
|
20
|
Doricchi F, Lasaponara S, Pazzaglia M, Silvetti M. Left and right temporal-parietal junctions (TPJs) as "match/mismatch" hedonic machines: A unifying account of TPJ function. Phys Life Rev 2022; 42:56-92. [PMID: 35901654 DOI: 10.1016/j.plrev.2022.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Experimental and theoretical studies have tried to gain insights into the involvement of the Temporal Parietal Junction (TPJ) in a broad range of cognitive functions like memory, attention, language, self-agency and theory of mind. Recent investigations have demonstrated the partition of the TPJ in discrete subsectors. Nonetheless, whether these subsectors play different roles or implement an overarching function remains debated. Here, based on a review of available evidence, we propose that the left TPJ codes both matches and mismatches between expected and actual sensory, motor, or cognitive events while the right TPJ codes mismatches. These operations help keeping track of statistical contingencies in personal, environmental, and conceptual space. We show that this hypothesis can account for the participation of the TPJ in disparate cognitive functions, including "humour", and explain: a) the higher incidence of spatial neglect in right brain damage; b) the different emotional reactions that follow left and right brain damage; c) the hemispheric lateralisation of optimistic bias mechanisms; d) the lateralisation of mechanisms that regulate routine and novelty behaviours. We propose that match and mismatch operations are aimed at approximating "free energy", in terms of the free energy principle of decision-making. By approximating "free energy", the match/mismatch TPJ system supports both information seeking to update one's own beliefs and the pleasure of being right in one's own' current choices. This renewed view of the TPJ has relevant clinical implications because the misfunctioning of TPJ-related "match" and "mismatch" circuits in unilateral brain damage can produce low-dimensional deficits of active-inference and predictive coding that can be associated with different neuropsychological disorders.
Collapse
Affiliation(s)
- Fabrizio Doricchi
- Dipartimento di Psicologia 39, Università degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy.
| | - Stefano Lasaponara
- Dipartimento di Psicologia 39, Università degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia 39, Università degli Studi di Roma 'La Sapienza', Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Lab (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council (CNR), Rome, Italy
| |
Collapse
|
21
|
Resting-state functional connectivity of salience network in schizophrenia and depression. Sci Rep 2022; 12:11204. [PMID: 35778603 PMCID: PMC9249853 DOI: 10.1038/s41598-022-15489-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
To explore the salience network (SN) functional alterations in schizophrenia and depression, resting-state functional magnetic resonance imaging (rs-fMRI) data from 29 patients with schizophrenia (SCH), 28 patients with depression (DEP) and 30 healthy controls (HC) were obtained. The SN was derived from data-driven group independent component analysis (gICA). ANCOVA and post hoc tests were performed to discover the FC differences of SN between groups. The ANCOVA demonstrated a significant group effect in FC with right inferior and middle temporal gyrus (ITG and MTG), left caudate, and right precentral gyrus. Post-hoc analyses revealed an opposite altered FC pattern between SN and right ITG and MTG for both patient groups. The DEP group showed a reduced FC between SN and right ITG and MTG compared with HC whereas the SCH group showed an increased FC. In addition, the SCH group showed decreased FC between SN and left caudate, and enhanced FC between SN and right precentral gyrus compared to the other two groups. Our findings suggest distinct FC of SN in schizophrenia and depression, supporting that the resting-state FC pattern of SN may be a transdiagnostic difference between depression and schizophrenia and may play a critical role in the pathogenesis of these two disorders.
Collapse
|
22
|
Gray matter microstructural alterations in manganese-exposed welders: a preliminary neuroimaging study. Eur Radiol 2022; 32:8649-8658. [PMID: 35739284 DOI: 10.1007/s00330-022-08908-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Chronic occupational manganese (Mn) exposure is characterized by motor and cognitive dysfunction. This study aimed to investigate structural abnormalities in Mn-exposed welders compared to healthy controls (HCs). METHODS Thirty-five HCs and forty Mn-exposed welders underwent magnetic resonance imaging (MRI) scans in this study. Based on T1-weighted MRI, the voxel-based morphometry (VBM), structural covariance, and receiver operating characteristic (ROC) curve were applied to examine whole-brain structural changes in Mn-exposed welders. RESULTS Compared to HCs, Mn-exposed welders had altered gray matter volume (GMV) mainly in the medial prefrontal cortex, lentiform nucleus, hippocampus, and parahippocampus. ROC analysis indicated the potential highest classification power of the hippocampus/parahippocampus. Moreover, distinct structural covariance patterns in the two groups were associated with regions, mainly including the thalamus, insula, amygdala, sensorimotor area, and middle temporal gyrus. No significant relationships were found between the findings and clinical characteristics. CONCLUSIONS Our findings showed Mn-exposed welders had changed GMV and structural covariance patterns in some regions, which implicated in motivative response, cognitive control, and emotional regulation. These results might provide preliminary evidence for understanding the pathophysiology of Mn overexposure. KEY POINTS • Chronic Mn exposure might be related to abnormal brain structural neural mechanisms. • Mn-exposed welders had morphological changes in brain regions implicated in emotional modulation, cognitive control, and motor-related response. • Altered gray matter volume in the hippocampus/parahippocampus and putamen might serve as potential biomarkers for Mn overexposure.
Collapse
|
23
|
Jiang Y, Yao D, Zhou J, Tan Y, Huang H, Wang M, Chang X, Duan M, Luo C. Characteristics of disrupted topological organization in white matter functional connectome in schizophrenia. Psychol Med 2022; 52:1333-1343. [PMID: 32880241 DOI: 10.1017/s0033291720003141] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neuroimaging characteristics have demonstrated disrupted functional organization in schizophrenia (SZ), involving large-scale networks within grey matter (GM). However, previous studies have ignored the role of white matter (WM) in supporting brain function. METHODS Using resting-state functional MRI and graph theoretical approaches, we investigated global topological disruptions of large-scale WM and GM networks in 93 SZ patients and 122 controls. Six global properties [clustering coefficient (Cp), shortest path length (Lp), local efficiency (Eloc), small-worldness (σ), hierarchy (β) and synchronization (S) and three nodal metrics [nodal degree (Knodal), nodal efficiency (Enodal) and nodal betweenness (Bnodal)] were utilized to quantify the topological organization in both WM and GM networks. RESULTS At the network level, both WM and GM networks exhibited reductions in Eloc, Cp and S in SZ. The SZ group showed reduced σ and β only for the WM network. Furthermore, the Cp, Eloc and S of the WM network were negatively correlated with negative symptoms in SZ. At the nodal level, the SZ showed nodal disturbances in the corpus callosum, optic radiation, posterior corona radiata and tempo-occipital WM tracts. For GM, the SZ manifested increased nodal centralities in frontoparietal regions and decreased nodal centralities in temporal regions. CONCLUSIONS These findings provide the first evidence for abnormal global topological properties in SZ from the perspective of a substantial whole brain, including GM and WM. Nodal centralities enhance GM areas, along with a reduction in adjacent WM, suggest that WM functional alterations may be compensated for adjacent GM impairments in SZ.
Collapse
Affiliation(s)
- Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou, P. R. China
| | - Jingyu Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yue Tan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - MeiLin Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Department of Psychiatry, Chengdu Mental Health Center, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, P. R. China
| |
Collapse
|
24
|
Guo P, Hu S, Jiang X, Zheng H, Mo D, Cao X, Zhu J, Zhong H. Associations of Neurocognition and Social Cognition With Brain Structure and Function in Early-Onset Schizophrenia. Front Psychiatry 2022; 13:798105. [PMID: 35222115 PMCID: PMC8866448 DOI: 10.3389/fpsyt.2022.798105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cognitive impairment is a core feature of schizophrenia that is more serious in patients with early-onset schizophrenia (EOS). However, the neuroimaging basis of cognitive functions, including neurocognition and social cognition, remains unclear in patients with EOS. METHODS Forty-three patients with EOS underwent structural and resting state functional magnetic resonance imaging scans. Brain structure and function were evaluated through the analysis of brain gray matter volume (GMV) and amplitude of low-frequency fluctuations (ALFF). They underwent comprehensive assessments for neurocognition (verbal memory, verbal expression, attention, and executive function) and social cognition (theory of mind and attributional bias). Correlation analyses were conducted to detect the potential link between cognitive function indices and brain imaging parameters. RESULTS First, neurocognition was linked to brain structure characterized by higher immediate recall scores associated with increased GMV in the left temporal pole, higher verbal fluency scores associated with increased GMV in the left temporal pole: middle temporal gyrus, and higher Stroop-word scores associated with increased GMV in the right middle frontal gyrus. Second, social cognition was related to brain function characterized by lower sense of reality scores associated with increased ALFF in the left precentral gyrus, higher scores of accidental hostility bias associated with increased ALFF in the right middle temporal gyrus, and higher scores of accidental aggression bias associated with increased ALFF in the left precentral gyrus. CONCLUSION These findings may add to the existing knowledge about the cognitive function-brain relationship. They may have clinical significance for studying the mechanism of neurocognitive and social cognitive impairment in patients with EOS and providing potential neural targets for their treatment and intervention.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Shuwen Hu
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Xiaolu Jiang
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Hongyu Zheng
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Daming Mo
- Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| | - Xiaomei Cao
- Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| |
Collapse
|
25
|
Zhu T, Wang Z, Zhou C, Fang X, Huang C, Xie C, Ge H, Yan Z, Zhang X, Chen J. Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent negative symptoms using activation likelihood estimation. Front Psychiatry 2022; 13:957685. [PMID: 36238945 PMCID: PMC9552970 DOI: 10.3389/fpsyt.2022.957685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Persistent negative symptoms (PNS) include both primary and secondary negative symptoms that persist after adequate treatment, and represent an unmet therapeutic need. Published magnetic resonance imaging (MRI) evidence of structural and resting-state functional brain abnormalities in schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-analysis is to identify abnormalities in structural and functional brain regions in patients with PNS compared to healthy controls. METHODS We systematically searched PubMed, Web of Science, and Embase for structural and functional imaging studies based on five research methods, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional connectivity (FC), the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-analysis by using the activation likelihood estimation algorithm. RESULTS Twenty-five structural MRI studies and thirty-two functional MRI studies were included in the meta-analyses. Our analysis revealed the presence of structural alterations in patients with PNS in some brain regions including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus, left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate gyrus and middle temporal gyrus, as well as functional differences in some brain regions including the bilateral precuneus, thalamus, left lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and superior frontal gyrus. CONCLUSION Our study suggests that structural brain abnormalities are consistently located in the prefrontal, temporal, limbic and subcortical regions, and functional alterations are concentrated in the thalamo-cortical circuits and the default mode network (DMN). This study provides new insights for targeted treatment and intervention to delay further progression of negative symptoms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022338669].
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Third People's Hospital of Huai'an, Huaian, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Wang Y, Jiang Y, Liu D, Zhang J, Yao D, Luo C, Wang J. Atypical Antipsychotics Mediate Dynamics of Intrinsic Brain Activity in Early-Stage Schizophrenia? A Preliminary Study. Psychiatry Investig 2021; 18:1205-1212. [PMID: 34965706 PMCID: PMC8721296 DOI: 10.30773/pi.2020.0418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Abnormalities of static brain activity have been reported in schizophrenia, but it remains to be clarified the temporal variability of intrinsic brain activities in schizophrenia and how atypical antipsychotics affect it. METHODS We employed a resting-state functional magnetic resonance imaging (rs-fMRI) and a sliding-window analysis of dynamic amplitude of low-frequency fluctuation (dALFF) to evaluate the dynamic brain activities in schizophrenia (SZ) patients before and after 8-week antipsychotic treatment. Twenty-six schizophrenia individuals and 26 matched healthy controls (HC) were included in this study. RESULTS Compared with HC, SZ showed stronger dALFF in the right inferior temporal gyrus (ITG.R) at baseline. After medication, the SZ group exhibited reduced dALFF in the right middle occipital gyrus (MOG.R) and increased dALFF in the left superior frontal gyrus (SFG.L), right middle frontal gyrus (MFG.R), and right inferior parietal lobule (IPL.R). Dynamic ALFF in IPL.R was found to significant negative correlate with the Scale for the Assessment of Negative Symptoms (SANS) scores at baseline. CONCLUSION Our results showed dynamic intrinsic brain activities altered in schizophrenia after short term antipsychotic treatment. The findings of this study support and expand the application of dALFF method in the study of the pathological mechanism in psychosis in the future.
Collapse
Affiliation(s)
- Yingchan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dengtang Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianye Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China.,Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Wang Y, Jiang Y, Collin G, Liu D, Su W, Xu L, Wei Y, Tang Y, Zhang T, Tang X, Hu Y, Zhang J, Cui H, Wang J, Yao D, Luo C, Wang J. The effects of antipsychotics on interactions of dynamic functional connectivity in the triple-network in first episode schizophrenia. Schizophr Res 2021; 236:29-37. [PMID: 34365083 DOI: 10.1016/j.schres.2021.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/08/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain dynamics abnormalities in the triple-network, which involves the salience network (SN), the default mode network (DMN) and the central executive network (CEN), have been reported in schizophrenia. However, it remains to be clarified how antipsychotics affect dynamic functional connectivity (DFC) within the triple-network and whether differences in clinical outcomes are associated with varying levels of network model dysfunction. METHODS Resting-state functional magnetic resonance imaging scans were obtained from 64 first-episode schizophrenia patients (SZ) and 67 healthy controls (HC). All patients were scanned before and after 12-week antipsychotic treatment and the HC were scanned only at baseline. RESULTS At baseline, SZ participants showed significantly reduced dynamic functional interactions across the triple-network compared to HC. The SZ group displayed a pattern of reduction in resting-state DFC among the triple-network compared with HC. After medication, the mean dynamic network interaction index (dNII) value was improved. A significant quadratic relation was observed between longitudinal change of mean dNII and the reduction ratio of PANSS total score within the SZ group. The DFC within inter-network (between DMN and SN, and between DMN and CEN) and intra-network connections of DMN were significantly higher relative to baseline. Intra-SN DFC, intra-DMN DFC and DFC between SN and DMN were found to be predictive of clinical features at baseline. Intra-CEN DFC and DFC between DMN and CEN were predictive of treatment response. CONCLUSIONS Aberrant brain dynamics in the triple-network could be regulated with medication. DFC organization in the triple network was found to predict the clinical outcome.
Collapse
Affiliation(s)
- Yingchan Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Guusje Collin
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Dengtang Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Yegang Hu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Jianye Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Jinhong Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China.
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, PR China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai 200031, PR China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
28
|
Cao H, Wei X, Hu N, Zhang W, Xiao Y, Zeng J, Sweeney JA, Lencer R, Lui S, Gong Q. Cerebello-Thalamo-Cortical Hyperconnectivity Classifies Patients and Predicts Long-Term Treatment Outcome in First-Episode Schizophrenia. Schizophr Bull 2021; 48:505-513. [PMID: 34525195 PMCID: PMC8886592 DOI: 10.1093/schbul/sbab112] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has previously been shown that cerebello-thalamo-cortical (CTC) hyperconnectivity is likely a state-independent neural signature for psychosis. However, the potential clinical utility of this change has not yet been evaluated. Here, using fMRI and clinical data acquired from 214 untreated first-episode patients with schizophrenia (62 of whom were clinically followed-up at least once at the 12th and 24th months after treatment initiation) and 179 healthy controls, we investigated whether CTC hyperconnectivity would serve as an individualized biomarker for diagnostic classification and prediction of long-term treatment outcome. Cross-validated LASSO regression was conducted to estimate the accuracy of baseline CTC connectivity for patient-control classification, with the generalizability of classification performance tested in an independent sample including 42 untreated first-episode patients and 65 controls. Associations between baseline CTC connectivity and clinical outcomes were evaluated using linear mixed model and leave-one-out cross validation. We found significantly increased baseline CTC connectivity in patients (P = .01), which remained stable after treatment. Measures of CTC connectivity discriminated patients from controls with moderate classification accuracy (AUC = 0.68, P < .001), and the classification model had good generalizability in the independent sample (AUC = 0.70, P < .001). Higher CTC connectivity at baseline significantly predicted poorer long-term symptom reduction in negative symptoms (R = 0.31, P = .01) but not positive or general symptoms. These findings provide initial evidence for the putative "CTC hyperconnectivity" anomaly as an individualized diagnostic and prognostic biomarker for schizophrenia, and highlight the potential of this measure in precision psychiatry.
Collapse
Affiliation(s)
- Hengyi Cao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Xia Wei
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxin Zeng
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - John A Sweeney
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China,Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Su Lui
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China,To whom correspondence should be addressed; Huaxi MR Research Center, West China Hospital of Sichuan University, 37 Guo Xuexiang, 610041 Chengdu, China; tel/fax: +86-28-85423960, e-mail:
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Li X, Jiang Y, Li W, Qin Y, Li Z, Chen Y, Tong X, Xiao F, Zuo X, Gong Q, Zhou D, Yao D, An D, Luo C. Disrupted functional connectivity in white matter resting-state networks in unilateral temporal lobe epilepsy. Brain Imaging Behav 2021; 16:324-335. [PMID: 34478055 DOI: 10.1007/s11682-021-00506-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Unilateral temporal lobe epilepsy (TLE) is the most common type of focal epilepsy characterized by foci in the unilateral temporal lobe grey matters of regions such as the hippocampus. However, it remains unclear how the functional features of white matter are altered in TLE. In the current study, resting-state functional magnetic resonance imaging (fMRI) was performed on 71 left TLE (LTLE) patients, 79 right TLE (RTLE) patients and 47 healthy controls (HC). Clustering analysis was used to identify fourteen white matter networks (WMN). The functional connectivity (FC) was calculated among WMNs and between WMNs and grey matter. Furthermore, the FC laterality of hemispheric WMNs was assessed. First, both patient groups showed decreased FCs among WMNs. Specifically, cerebellar white matter illustrated decreased FCs with the cerebral superficial WMNs, implying a dysfunctional interaction between the cerebellum and the cerebral cortex in TLE. Second, the FCs between WMNs and the ipsilateral hippocampus (grey matter foci) were also reduced in patient groups, which may suggest insufficient functional integration in unilateral TLE. Interestingly, RTLE showed more severe abnormalities of white matter FCs, including links to the bilateral hippocampi and temporal white matter, than LTLE. Taken together, these findings provide functional evidence of white matter abnormalities, extending the understanding of the pathological mechanism of white matter impairments in unilateral TLE.
Collapse
Affiliation(s)
- Xuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yuchao Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Wei Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Yingjie Qin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Zhiliang Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Yan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Xin Tong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Fenglai Xiao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Xiaojun Zuo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Dongmei An
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610054, People's Republic of China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Second North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
30
|
Olejarczyk E, Jozwik A, Valiulis V, Dapsys K, Gerulskis G, Germanavicius A. Statistical Analysis of Graph-Theoretic Indices to Study EEG-TMS Connectivity in Patients With Depression. Front Neuroinform 2021; 15:651082. [PMID: 33897399 PMCID: PMC8060557 DOI: 10.3389/fninf.2021.651082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Aim The objective of this work was to demonstrate the usefulness of a novel statistical method to study the impact of transcranial magnetic stimulation (TMS) on brain connectivity in patients with depression using different stimulation protocols, i.e., 1 Hz repetitive TMS over the right dorsolateral prefrontal cortex (DLPFC) (protocol G1), 10 Hz repetitive TMS over the left DLPFC (G2), and intermittent theta burst stimulation (iTBS) consisting of three 50 Hz burst bundle repeated at 5 Hz frequency (G3). Methods Electroencephalography (EEG) connectivity analysis was performed using Directed Transfer Function (DTF) and a set of 21 indices based on graph theory. The statistical analysis of graph-theoretic indices consisted of a combination of the k-NN rule, the leave-one-out method, and a statistical test using a 2 × 2 contingency table. Results Our new statistical approach allowed for selection of the best set of graph-based indices derived from DTF, and for differentiation between conditions (i.e., before and after TMS) and between TMS protocols. The effects of TMS was found to differ based on frequency band. Conclusion A set of four brain asymmetry measures were particularly useful to study protocol- and frequency-dependent effects of TMS on brain connectivity. Significance The new approach would allow for better evaluation of the therapeutic effects of TMS and choice of the most appropriate stimulation protocol.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Jozwik
- Faculty of Physics and Applied Informatics, University in Łódź, Łódź, Poland
| | - Vladas Valiulis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Kastytis Dapsys
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Giedrius Gerulskis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Arunas Germanavicius
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| |
Collapse
|
31
|
He H, Cao H, Huang B, He M, Ma C, Yao D, Luo C, Yao G, Duan M. Functional abnormalities of striatum are related to the season-specific effect on schizophrenia. Brain Imaging Behav 2021; 15:2347-2355. [PMID: 33398777 DOI: 10.1007/s11682-020-00430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a syndrome that is typically accompanied by delusions, hallucinations and cognitive impairments. Specifically, abundant evidences support the notion that more people diagnosed with schizophrenia are born during fall-winter than spring-summer. Although pathophysiological of schizophrenia might be associated with abnormal brain functional network, little is currently known the relationship between season and deficient brain functional network of schizophrenia. To investigate this issue, in this study 51 schizophrenic subjects and 72 healthy controls underwent MRI scanning to detect the brain functional mapping, each at spring-summer and fall-winter season throughout the year. The data-driven method was used to measure the blood oxygen metabolism variability (BOMV). Decreased BOMV in spring-summer while increased in fall-winter were observed within dopaminergic network of schizophrenic subjects, including striatum, thalamus, and hippocampus. The post hoc analysis exploring the coupling among changed BOMV regions, confirmed that a positive relationship, between pallidum and hippocampus existed in fall-winter healthy controls, but not in fall-winter schizophrenic subjects. These findings identified that seasonal effect on striatum might be associated with modulation of striatum-hippocampus. Our results provide a new insight into the role of season in understanding the pathophysiological of schizophrenia.
Collapse
Affiliation(s)
- Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Huan Cao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Binxin Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Manxi He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Chi Ma
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China. .,High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Gang Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China.
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
32
|
Ma M, Zhang Y, Zhang X, Yan H, Zhang D, Yue W. Common and Distinct Alterations of Cognitive Function and Brain Structure in Schizophrenia and Major Depressive Disorder: A Pilot Study. Front Psychiatry 2021; 12:705998. [PMID: 34354618 PMCID: PMC8329352 DOI: 10.3389/fpsyt.2021.705998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: Numerous studies indicate that schizophrenia (SCZ) and major depressive disorder (MDD) share pathophysiological characteristics. Investigating the neurobiological features of psychiatric-affective disorders may facilitate the diagnosis of psychiatric disorders. Hence, we aimed to explore whether patients with SCZ and patients with MDD had the similar or distinct cognitive impairments and GMV alterations to further understand their underlying pathophysiological mechanisms. Methods: We recruited a total of 52 MDD patients, 64 SCZ patients, and 65 healthy controls (HCs). The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery was used to assess cognitive functions. In addition, voxel-based morphometry (VBM) analysis was used to evaluate the gray matter volume (GMV) by using MRI scanning. One-way ANOVA and post-hoc tests were used to find the differences among the MDD, SCZ, and HCs. Finally, we explored the correlation between structural alterations and cognitive functions. Results: Compared with that of HCs, processing speed was impaired in both patients with SCZ and patients with MDD (F = 49.505, p < 0.001). SCZ patients displayed impaired cognitive performance in all dimensions of cognitive functions compared with HCs (p < 0.001, except social cognition, p = 0.043, Bonferroni corrected). Whole-brain VBM analysis showed that both SCZ and MDD groups had reductions of GMV in the medial superior frontal cortex (cluster-level FWE p < 0.05). Patients with SCZ exhibited declining GMV in the anterior cingulate cortex and right middle frontal cortex (MFC) compared with HCs and MDD patients (cluster-level FWE p < 0.05). The mean values of GMV in the right MFC had a positive correlation with the attention/vigilance function in patients with MDD (p = 0.014, partial. r = 0.349, without Bonferroni correction). Conclusions: In total, our study found that MDD and SCZ groups had common cognitive impairments and brain structural alterations, but the SCZ group exhibited more severe impairment than the MDD group in both fields. The above findings may provide a potential support for recognizing the convergent and divergent brain neural pathophysiological mechanisms between MDD and SCZ.
Collapse
Affiliation(s)
- Mengying Ma
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Yuyanan Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Xiao Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Hao Yan
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, The Sixth Hospital, Peking University, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
33
|
Yao C, Hu N, Cao H, Tang B, Zhang W, Xiao Y, Zhao Y, Gong Q, Lui S. A Multimodal Fusion Analysis of Pretreatment Anatomical and Functional Cortical Abnormalities in Responsive and Non-responsive Schizophrenia. Front Psychiatry 2021; 12:737179. [PMID: 34925087 PMCID: PMC8671303 DOI: 10.3389/fpsyt.2021.737179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Antipsychotic medications provide limited long-term benefit to ~30% of schizophrenia patients. Multimodal magnetic resonance imaging (MRI) data have been used to investigate brain features between responders and nonresponders to antipsychotic treatment; however, these analytical techniques are unable to weigh the interrelationships between modalities. Here, we used multiset canonical correlation and joint independent component analysis (mCCA + jICA) to fuse MRI data to examine the shared and specific multimodal features between the patients and healthy controls (HCs) and between the responders and non-responders. Method: Resting-state functional and structural MRI data were collected from 55 patients with drug-naïve first-episode schizophrenia (FES) and demographically matched HCs. Based on the decrease in Positive and Negative Syndrome Scale scores from baseline to the 1-year follow-up, FES patients were divided into a responder group (RG) and a non-responder group (NRG). Gray matter volume (GMV), fractional amplitude of low-frequency fluctuation (fALFF), and regional homogeneity (ReHo) maps were used as features in mCCA + jICA. Results: Between FES patients and HCs, there were three modality-specific discriminative independent components (ICs) showing the difference in mixing coefficients (GMV-IC7, GMV-IC8, and fALFF-IC5). The fusion analysis indicated one modality-shared IC (GMV-IC2 and ReHo-IC2) and three modality-specific ICs (GMV-IC1, GMV-IC3, and GMV-IC6) between the RG and NRG. The right postcentral gyrus showed a significant difference in GMV features between FES patients and HCs and modality-shared features (GMV and ReHo) between responders and nonresponders. The modality-shared component findings were highlighted by GMV, mainly in the bilateral temporal gyrus and the right cerebellum associated with ReHo in the right postcentral gyrus. Conclusions: This study suggests that joint anatomical and functional features of the cortices may reflect an early pathophysiological mechanism that is related to a 1-year treatment response.
Collapse
Affiliation(s)
- Chenyang Yao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Imaging Medicine, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Na Hu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Cao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States.,Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, United States
| | - Biqiu Tang
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi Magnetic Resonance Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Hu F, Wang H, Wang Q, Feng N, Chen J, Zhang T. Acrophobia Quantified by EEG Based on CNN Incorporating Granger Causality. Int J Neural Syst 2020; 31:2050069. [PMID: 33357152 DOI: 10.1142/s0129065720500690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study is to quantify acrophobia and provide safety advices for high-altitude workers. Considering that acrophobia is a fuzzy quantity that cannot be accurately evaluated by conventional detection methods, we propose a comprehensive solution to quantify acrophobia. Specifically, this study simulates a virtual reality environment called High-altitude Plank Walking Challenge, which provides a safe and controlled experimental environment for subjects. Besides, a method named Granger Causality Convolutional Neural Network (GCCNN) combining convolutional neural network and Granger causality functional brain network is proposed to analyze the subjects' noninvasive scalp EEG signals. Here, the GCCNN method is used to distinguish the subjects with severe acrophobia, moderate acrophobia, and no acrophobia in a three-class classification task or no acrophobia and acrophobia in a two-class classification task. Compared with the mainstream methods, the GCCNN method achieves better classification performance, with an accuracy of 98.74% for the two-class classification task (no acrophobia versus acrophobia) and of 98.47% for the three-class classification task (no acrophobia versus moderate acrophobia versus severe acrophobia). Consequently, our proposed GCCNN method can provide more accurate quantitative results than the comparative methods, making it to be more competitive in further practical applications.
Collapse
Affiliation(s)
- Fo Hu
- Department of Mechanical Engineering and Automation, Northeastern University, Heping District, Shenyang, Liaoning 110819, P. R. China
| | - Hong Wang
- Department of Mechanical Engineering and Automation, Northeastern University, Heping District, Shenyang, Liaoning 110819, P. R. China
| | - Qiaoxiu Wang
- Department of Mechanical Engineering and Automation, Northeastern University, Heping District, Shenyang, Liaoning 110819, P. R. China
| | - Naishi Feng
- Department of Mechanical Engineering and Automation, Northeastern University, Heping District, Shenyang, Liaoning 110819, P. R. China
| | - Jichi Chen
- Department of Mechanical Engineering and Automation, Northeastern University, Heping District, Shenyang, Liaoning 110819, P. R. China
| | - Tao Zhang
- Department of Mechanical Engineering and Automation, Northeastern University, Heping District, Shenyang, Liaoning 110819, P. R. China
| |
Collapse
|
35
|
Zhu Y, Wang X, Mathiak K, Toiviainen P, Ristaniemi T, Xu J, Chang Y, Cong F. Altered EEG Oscillatory Brain Networks During Music-Listening in Major Depression. Int J Neural Syst 2020; 31:2150001. [PMID: 33353528 DOI: 10.1142/s0129065721500015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing. It was then applied to healthy subjects and subjects with major depressive disorder (MDD). The music-induced oscillatory brain patterns were determined by permutation correlation analysis between individual time courses of Fourier-ICA components and musical features. We found that (1) three components, including a beta sensorimotor network, a beta auditory network and an alpha medial visual network, were involved in music processing among most healthy subjects; and that (2) one alpha lateral component located in the left angular gyrus was engaged in music perception in most individuals with MDD. The proposed method allowed the statistical group comparison, and we found that: (1) the alpha lateral component was activated more strongly in healthy subjects than in the MDD individuals, and that (2) the derived frequency-dependent networks of musical feature processing seemed to be altered in MDD participants compared to healthy subjects. The proposed pipeline appears to be valuable for studying disrupted brain oscillations in psychiatric disorders during naturalistic paradigms.
Collapse
Affiliation(s)
- Yongjie Zhu
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology 116024, Dalian, P. R. China.,Faculty of Information Technology, University of Jyväskylä 40014, Jyväskylä, Finland.,Department of Computer Science, University of Helsinki, Finland
| | - Xiaoyu Wang
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology 116024, Dalian, P. R. China
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Petri Toiviainen
- Department of Music, Art and Culture Studies, University of Jyväskylä 40014, Jyväskylä, Finland
| | - Tapani Ristaniemi
- Faculty of Information Technology, University of Jyväskylä 40014, Jyväskylä, Finland
| | - Jing Xu
- Department of Neurology and Psychiatry, First Affiliated Hospital, Dalian Medical University, Dalian, P. R. China
| | - Yi Chang
- Department of Neurology and Psychiatry, First Affiliated Hospital, Dalian Medical University, Dalian, P. R. China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology 116024, Dalian, P. R. China.,Faculty of Information Technology, University of Jyväskylä 40014, Jyväskylä, Finland.,School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, P. R. China.,Key Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|
36
|
Franklin GL, Camargo CHF, Meira AT, Lima NSC, Teive HAG. The Role of the Cerebellum in Huntington's Disease: a Systematic Review. THE CEREBELLUM 2020; 20:254-265. [PMID: 33029762 DOI: 10.1007/s12311-020-01198-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 11/25/2022]
Abstract
Huntington's disease (HD) is a rare neurological disorder characterized by progressive motor, cognitive, and psychiatric disturbances. Although striatum degeneration might justify most of the motor symptoms, there is an emerging evidence of involvement of extra-striatal structures, such as the cerebellum. To elucidate the cerebellar involvement and its afferences with motor, psychiatric, and cognitive symptoms in HD. A systematic search in the literature was performed in MEDLINE, LILACS, and Google Scholar databases. The research was broadened to include the screening of reference lists of review articles for additional studies. Studies available in the English language, dating from 1993 through May 2020, were included. Clinical presentation of patients with HD may not be considered as the result of an isolated primary striatal dysfunction. There is evidence that cerebellar involvement is an early event in HD and may occur independently of striatal degeneration. Also, the loss of the compensation role of the cerebellum in HD may be an explanation for the clinical onset of HD. Although more studies are needed to elucidate this association, the current literature supports that the cerebellum may integrate the natural history of neurodegeneration in HD.
Collapse
Affiliation(s)
- Gustavo L Franklin
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil.
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alex T Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
| | - Nayra S C Lima
- Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Rua General Carneiro 1103/102, Centro, Curitiba, Paraná, Brazil
- Neurological Diseases Group, Graduate Program in Internal Medicine, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
37
|
Dong D, Luo C, Guell X, Wang Y, He H, Duan M, Eickhoff SB, Yao D. Compression of Cerebellar Functional Gradients in Schizophrenia. Schizophr Bull 2020; 46:1282-1295. [PMID: 32144421 PMCID: PMC7505192 DOI: 10.1093/schbul/sbaa016] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our understanding of cerebellar involvement in brain disorders has evolved from motor processing to high-level cognitive and affective processing. Recent neuroscience progress has highlighted hierarchy as a fundamental principle for the brain organization. Despite substantial research on cerebellar dysfunction in schizophrenia, there is a need to establish a neurobiological framework to better understand the co-occurrence and interaction of low- and high-level functional abnormalities of cerebellum in schizophrenia. To help to establish such a framework, we investigated the abnormalities in the distribution of sensorimotor-supramodal hierarchical processing topography in the cerebellum and cerebellar-cerebral circuits in schizophrenia using a novel gradient-based resting-state functional connectivity (FC) analysis (96 patients with schizophrenia vs 120 healthy controls). We found schizophrenia patients showed a compression of the principal motor-to-supramodal gradient. Specifically, there were increased gradient values in sensorimotor regions and decreased gradient values in supramodal regions, resulting in a shorter distance (compression) between the sensorimotor and supramodal poles of this gradient. This pattern was observed in intra-cerebellar, cerebellar-cerebral, and cerebral-cerebellar FC. Further investigation revealed hyper-connectivity between sensorimotor and cognition areas within cerebellum, between cerebellar sensorimotor and cerebral cognition areas, and between cerebellar cognition and cerebral sensorimotor areas, possibly contributing to the observed compressed pattern. These findings present a novel mechanism that may underlie the co-occurrence and interaction of low- and high-level functional abnormalities of cerebellar and cerebro-cerebellar circuits in schizophrenia. Within this framework of abnormal motor-to-supramodal organization, a cascade of impairments stemming from disrupted low-level sensorimotor system may in part account for high-level cognitive cerebellar dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Debo Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Xavier Guell
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Hui He
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu, China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Duan
- Department of Psychiatry, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
38
|
Yao Y, He H, Duan M, Li S, Li C, Chen X, Yao G, Chang X, Shu H, Wang H, Luo C. The Effects of Music Intervention on Pallidum-DMN Circuit of Schizophrenia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4107065. [PMID: 33015164 PMCID: PMC7525302 DOI: 10.1155/2020/4107065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/04/2019] [Accepted: 12/03/2019] [Indexed: 11/20/2022]
Abstract
Music intervention has been applied to improve symptoms of schizophrenic subjects as a complementary treatment in medicine. Although the psychiatric symptoms, especially for motivation and emotion, could be increased in schizophrenia, the underlying neural mechanisms remain poorly understood. We employed a longitudinal study to measure the alteration of striatum functional networks in schizophrenic subjects undergoing Mozart music listening using resting-state functional magnetic resonance imaging (fMRI). Forty-five schizophrenic inpatients were recruited and randomly assigned to two groups. Under the standard care with antipsychotic medication, one group received music intervention for 1 month and the other group is set as control. Both schizophrenic groups were compared to healthy subjects. Resting-state fMRI was acquired from schizophrenic subjects at baseline and after one-month music intervention and from healthy subjects at baseline. Striatum network was assessed through seed-based static and dynamic functional connectivity (FC) analyses. After music intervention, increased static FC was observed between pallidum and ventral hippocampus in schizophrenic subjects. Increased dynamic FCs were also found between pallidus and subregions of default mode network (DMN), including cerebellum crus and posterior cingulate cortex. Moreover, static pallidus-hippocampus FC increment was positively correlated with the improvement of negative symptoms in schizophrenic subjects. Together, these findings provided evidence that music intervention might have an effect on the FC of the striatum-DMN circuit and might be related to the remission of symptoms of schizophrenia.
Collapse
Affiliation(s)
- Yutong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Mingjun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shicai Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Gang Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Chang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haifeng Shu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongming Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
39
|
Wang L, Li X, Zhu Y, Lin B, Bo Q, Li F, Wang C. Discriminative Analysis of Symptom Severity and Ultra-High Risk of Schizophrenia Using Intrinsic Functional Connectivity. Int J Neural Syst 2020; 30:2050047. [PMID: 32689843 DOI: 10.1142/s0129065720500471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Past studies have consistently shown functional dysconnectivity of large-scale brain networks in schizophrenia. In this study, we aimed to further assess whether multivariate pattern analysis (MVPA) could yield a sensitive predictor of patient symptoms, as well as identify ultra-high risk (UHR) stage of schizophrenia from intrinsic functional connectivity of whole-brain networks. We first combined rank-based feature selection and support vector machine methods to distinguish between 43 schizophrenia patients and 52 healthy controls. The constructed classifier was then applied to examine functional connectivity profiles of 18 UHR individuals. The classifier indicated reliable relationship between MVPA measures and symptom severity, with higher classification accuracy in more severely affected schizophrenia patients. The UHR subjects had classification scores falling between those of healthy controls and patients, suggesting an intermediate level of functional brain abnormalities. Moreover, UHR individuals with schizophrenia-like connectivity profiles at baseline presented higher rate of conversion to full-blown illness in the follow-up visits. Spatial maps of discriminative brain regions implicated increases of functional connectivity in the default mode network, whereas decreases of functional connectivity in the cerebellum, thalamus and visual areas in schizophrenia. The findings may have potential utility in the early diagnosis and intervention of schizophrenia.
Collapse
Affiliation(s)
- Lubin Wang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, P. R. China
| | - Xianbin Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, P. R. China
| | - Yuyang Zhu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, P. R. China
| | - Bei Lin
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, P. R. China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, P. R. China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, P. R. China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, P. R. China
| |
Collapse
|
40
|
Yan W, Zhang R, Zhou M, Lu S, Li W, Xie S, Zhang N. Relationships between abnormal neural activities and cognitive impairments in patients with drug-naive first-episode schizophrenia. BMC Psychiatry 2020; 20:283. [PMID: 32503481 PMCID: PMC7275517 DOI: 10.1186/s12888-020-02692-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/21/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Prior resting state functional Magnetic Resonance Imaging studies (rs-fMRI) via the regional homogeneity (ReHo) method have demonstrated inconsistent and conflicting results because of several confounding factors, such as small sample size, medicinal influence, and illness duration. Relationships between ReHo measures and cognitive impairments in patients with drug-naive First-Episode Schizophrenia (dn-FES) are rarely reported. This study was conducted to explore the correlations between ReHo measures and cognitive deficits and clinical symptoms in patients with dn-FES. METHODS A total of 69 patients with dn-FES and 74 healthy controls were recruited. MATRICS Consensus Cognitive Battery (MCCB), Wechsler Adult Intelligence Scale (WAIS), and Positive And Negative Syndrome Scale (PANSS) were used to assess cognitive function, Intelligence Quotient (IQ), and clinical symptoms, respectively. The correlations between ReHo maps and cognitive deficits and the severity of symptoms were examined using strict correlation analysis. RESULTS ReHo values in right Middle Frontal Gyrus (MFG) and Superior Frontal Gyrus (SFG) increased in dn-FES group, whereas ReHo values in right cuneus decreased. Correlation analysis showed that the ReHo values in right MFG positively correlated with attention/vigilance impairments, social cognition deficits, and the severity of clinical manifestations. CONCLUSIONS These findings suggested that abnormal spontaneous activities in right MFG reflect illness severity and cognitive deficits, which also serve as a basis for establishing objective diagnostic markers and might be a clinical intervention target for treating patients with schizophrenia.
Collapse
Affiliation(s)
- Wei Yan
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Rongrong Zhang
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Min Zhou
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Shuiping Lu
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Wenmei Li
- grid.453246.20000 0004 0369 3615School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, 210023 China ,grid.453246.20000 0004 0369 3615College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China ,Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing, 210023 China
| | - Shiping Xie
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Ning Zhang
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
41
|
Cerebello-cerebral connectivity in idiopathic generalized epilepsy. Eur Radiol 2020; 30:3924-3933. [DOI: 10.1007/s00330-020-06674-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
|
42
|
Hong W, Zhao Z, Wang D, Li M, Tang C, Li Z, Xu R, Chan CCH. Altered gray matter volumes in post-stroke depressive patients after subcortical stroke. NEUROIMAGE-CLINICAL 2020; 26:102224. [PMID: 32146322 PMCID: PMC7063237 DOI: 10.1016/j.nicl.2020.102224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Stroke survivors are known to suffer from post-stroke depression (PSD). However, the likelihood of structural changes in the brains of PSD patients has not been explored. This study aims to extract changes in the gray matter of these patients and test how these changes account for the PSD symptoms. High-resolution T1 weighted images were collected from 23 PSD patients diagnosed with subcortical stroke. Voxel-based morphometry and support vector machine analyses were used to analyze the data. The results were compared with those collected from 33 non-PSD patients. PSD group showed decreased gray matter volume (GMV) in the left middle frontal gyrus (MFG) when compared to the non-PSD patients. Together with the clinical and demographic variables, the MFG's GMV predictive model was able to distinguish PSD from the non-PSD patients (0•70 sensitivity and 0•88 specificity). The changes in the left inferior frontal gyrus (61%) and dorsolateral prefrontal cortex (39%) suggest that the somatic/affective symptoms in PSD is likely to be due to patients' problems with understanding and appraising negative emotional stimuli. The impact brought by the reduced prefrontal to limbic system connectivity needs further exploration. These findings indicate possible systemic involvement of the frontolimbic network resulting in PSD after brain lesions which is likely to be independent from the location of the lesion. The results inform specific clinical interventions to be provided for treating depressive symptoms in post-stroke patients.
Collapse
Affiliation(s)
- Wenjun Hong
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Dongmei Wang
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Chaozheng Tang
- State Key Laboratory of Cognitive Neuroscience and Leaning, Beijing Normal University, Beijing, China.
| | - Zheng Li
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Rong Xu
- Department of Rehabilitation Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
43
|
Combined Parietal-Insular-Striatal Cortex Stroke with New-Onset Hallucinations: Supporting the Salience Network Model of Schizophrenia. PSYCHIATRY JOURNAL 2020; 2020:4262050. [PMID: 32047802 PMCID: PMC7001672 DOI: 10.1155/2020/4262050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/26/2022]
Abstract
Brain imaging studies have identified multiple neuronal networks and circuits in the brain with altered functioning in patients with schizophrenia. These include the hippocampo-cerebello-cortical circuit, the prefrontal-thalamic-cerebellar circuit, functional integration in the bilateral caudate nucleus, and the salience network consisting of the insular cortex, parietal anterior cingulate cortex, and striatum, as well as limbic structures. Attributing psychotic symptoms to any of these networks in schizophrenia is confounded by the disruption of these networks in schizophrenic patients. Such attribution can be done with isolated dysfunction in any of these networks with concurrent psychotic symptoms. We present the case of a patient who presents with new-onset hallucinations and a stroke in brain regions similar to the salience network (insular cortex, parietal cortex, and striatum). The implication of these findings in isolating psychotic symptoms of the salience network is discussed.
Collapse
|
44
|
Chen X, Xu K, Yang Y, Wang Q, Jiang H, Guo X, Chen X, Yang J, Luo C. Altered Default Mode Network Dynamics in Civil Aviation Pilots. Front Neurosci 2020; 13:1406. [PMID: 31992967 PMCID: PMC6971098 DOI: 10.3389/fnins.2019.01406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Background Airlines occupy an increasingly important place in the economy of many countries. Because air disasters may cause substantial losses, comprehensive surveys of the psychophysiological mechanism of flying are needed; however, relatively few studies have focused on pilots. The default mode network (DMN) is an important intrinsic connectivity network involved in a range of functions related to flying. This study aimed to examine functional properties of the DMN in pilots. Method Resting-state functional magnetic resonance imaging data from 26 pilots and 24 controls were collected. Independent component analysis, a data-driven approach, was combined with functional connectivity analysis to investigate functional properties of the DMN in pilots. Results The pilot group exhibited increased functional integration in the precuneus/posterior cingulate cortex (PCC) and left middle occipital gyrus. Subsequent functional connectivity analysis identified enhanced functional connection between the precuneus/PCC and medial superior frontal gyrus. Conclusion The pilot group exhibited increased functional connections within the DMN. These findings highlight the importance of the DMN in the neurophysiological mechanism of flying.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Aviation Human Factors and Ergonomics, Department of Aviation Psychology, Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Kaijun Xu
- Institute of Aviation Human Factors and Ergonomics, Department of Aviation Psychology, Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Yong Yang
- Institute of Aviation Human Factors and Ergonomics, Department of Aviation Psychology, Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Quanchuan Wang
- Institute of Aviation Human Factors and Ergonomics, Department of Aviation Psychology, Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Hao Jiang
- Institute of Aviation Human Factors and Ergonomics, Department of Aviation Psychology, Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Xiangmei Guo
- Institute of Aviation Human Factors and Ergonomics, Department of Aviation Psychology, Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Xipeng Chen
- Institute of Aviation Human Factors and Ergonomics, Department of Aviation Psychology, Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Jiazhong Yang
- Institute of Aviation Human Factors and Ergonomics, Department of Aviation Psychology, Institute of Flight Technology, Civil Aviation Flight University of China, Guanghan, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
45
|
Qiu X, Miao J, Lan Y, Sun W, Chen Y, Cao Z, Li G, Zhao X, Zhu Z, Zhu S. Association of Cerebral Artery Stenosis With Post-stroke Depression at Discharge and 3 Months After Ischemic Stroke Onset. Front Psychiatry 2020; 11:585201. [PMID: 33324257 PMCID: PMC7723904 DOI: 10.3389/fpsyt.2020.585201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Post-stroke depression (PSD) is one of the most common complications after stroke, which seriously affects patients' recovery outcome. Although vascular depression has been extensively studied, the relationship between cerebral artery stenosis and PSD has not been clarified so far. Methods: Two hundred ninety-eight patients with ischemic stroke (72 women, 226 men) with computed tomography angiography (CTA) or magnetic resonance angiography (MRA) were included in this study. Cerebral artery stenosis ≥50% was used as the cut-off value. The DSM-V diagnostic criteria of PSD was met and the 17-item Hamilton Rating Scale for Depression (HAMD-17) score over 7 at discharge and 3 months after stroke onset was regarded as the primary outcome. The χ2-test, Mann-Whitney U-test, and t-test were used to check for statistical significance. Results: At discharge, Barthel index (p < 0.001), left middle cerebral artery stenosis (p = 0.019), drinking history (p = 0.048), basilar artery stenosis (p = 0.037) were significantly associated with PSD. At 3 months after ischemic stroke onset, Barthel index (p = 0.011), left middle cerebral artery stenosis (p = 0.012), female gender (p = 0.001) were significantly associated with PSD. Conclusions: The findings demonstrated that left middle cerebral artery and basilar artery stenosis are associated with PSD. It was suggested that cerebral artery stenosis was a risk factor of PSD and should be recognized and intervened early. Registration Number: ChiCTR-ROC-17013993.
Collapse
Affiliation(s)
- Xiuli Qiu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Lan
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhe Sun
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Chen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ziqin Cao
- Emory University, Emory University, Atlanta, GA, United States
| | - Guo Li
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zhu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Zhang X, Li X, Steffens DC, Guo H, Wang L. Dynamic changes in thalamic connectivity following stress and its association with future depression severity. Brain Behav 2019; 9:e01445. [PMID: 31651099 PMCID: PMC6908855 DOI: 10.1002/brb3.1445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Tracking stress-induced brain activity and connectivity dynamically and examining activity/connectivity-associated recovery ability after stress might be an effective way of detecting stress vulnerability. METHODS Using two widely used stress paradigms, a speech task (social stress) and a mathematical calculation task (mental loading stress), we examined common changes in regional homogeneity (ReHo) and functional connectivity (FC) before, during, and after the two stressful tasks in thirty-nine college students. A counting breath relaxation task was employed as a contrast task. ReHo and FC were compared between subjects with higher versus lower depression symptoms (assessed by the Beck Depression Inventory, BDI). We developed a recovery index (RI) based on dynamic changes of ReHo/FC to evaluate individuals' ability to recover from a stressful state. To assess RI's usefulness in predicting future depression severity, BDI was also measured at one-year follow-up. RESULTS Our results revealed a ReHo decrease after both stressful tasks and a ReHo increase after the relaxation task in bilateral thalamus. The ReHo decrease after both stressful tasks was more significant in the higher BDI than the lower BDI group. Higher ReHo RI of the right thalamus in the higher BDI groups was significantly correlated with lower BDI severity at one-year follow-up. Bilateral thalamus also showed increased FC with the default mode network and decreased FC with the executive control network after the stressful tasks. CONCLUSION These findings highlight the importance of tracking resting activity and connectivity of thalamus dynamically for detecting stress vulnerability.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University School of Medicine, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - David C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Hua Guo
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University School of Medicine, Beijing, China
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
47
|
Xu XM, Jiao Y, Tang TY, Lu CQ, Zhang J, Salvi R, Teng GJ. Altered Spatial and Temporal Brain Connectivity in the Salience Network of Sensorineural Hearing Loss and Tinnitus. Front Neurosci 2019; 13:246. [PMID: 30941010 PMCID: PMC6433888 DOI: 10.3389/fnins.2019.00246] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss (SNHL), sometimes accompanied with tinnitus, is associated with dysfunctions within and outside the classical auditory pathway. The salience network, which is anchored in bilateral anterior insula and dorsal anterior cingulate cortex, has been implicated in sensory integration. Partial auditory deprivation could alter the characteristics of the salience network and other related brain areas, thereby contributing to hearing impairments-induced neuropsychiatric symptoms. To test this hypothesis, we performed fMRI scanning and neuropsychological tests on 32 subjects with long-term bilateral hearing impairment and 30 well-matched Controls. Non-directional functional connectivity and directional Granger causality analysis were used to identify aberrant spatial and temporal patterns of connections targeting bilateral anterior insula and dorsal anterior cingulate cortex. We found that the left anterior insula showed decreased connectivity with right precentral gyrus and superior frontal gyrus. The connections between the dorsal anterior cingulate cortex and middle frontal gyrus, superior parietal gyrus and supplementary motor area (SMA) were also reduced. Relative to Controls, SNHL patients showed abnormal effective connectivity of the salience network, including inferior temporal gyrus, cerebellum lobule VI, lobule VIII, precentral gyrus, middle frontal gyrus and SMA. Furthermore, correlation analysis demonstrated that some of these atypical connectivity measures were correlated with performance of neuropsychiatric tests. These findings suggest that the inefficient modulation of the salience network might contribute to the neural basis of SNHL and tinnitus, as well as associated cognition and emotion deficits.
Collapse
Affiliation(s)
- Xiao-Min Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|