1
|
Ekong MB, Bassey OO, Pessu NA, Kpobari GV, Okuku EI, Bassey RB, Johnson EI, Peter AI, Okokon JE, Akpanabiatu MI. Tetrapleura tetraptera fruit extracts ameliorate pentylenetetrazol-induced seizures as well as ensuing cognitive deficit and oxidative stress. Metab Brain Dis 2025; 40:143. [PMID: 40072755 DOI: 10.1007/s11011-025-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Kindling is an experimental-induced seizure consistent with epilepsy disease, a chronic neurological disorder characterised by spontaneous and repeated seizures. This disease is associated with oxidative stress, and most therapeutic strategies against epilepsy aim at improving the antioxidant defence mechanism in the brain. However, prolonged usage and associated adverse side effects limit antiepileptics, warranting natural antioxidant patronage. The present study investigated the behavioural and antioxidant actions of Tetrapleura tetraptera fruit extracts (TT) against pentylenetetrazol (PTZ)-kindling rats. Twenty-five male Wistar rats (150-180 g) were assigned into five groups (1-5, n = 5): Control (normal saline, 5 ml/kg body weight, b.w.), PTZ-only (40 mg/kg/b.w. i.p.), and groups 3-5 administered PTZ (40 mg/kg/b.w. i.p.) after, respectively, receiving oral TT (500 mg/kg/b.w.), TT flavonoid (fTT, 50 mg/kg/b.w.), and sodium valproate (SV, 15 mg/kg/b.w.). All administrations were carried out 48 hourly for 21 days. In the end, buried food, novel object recognition (NOR), Y-maze, elevated plus maze (EPM), and beam walk tests were done, and the rats were sacrificed. Whole brains were processed for antioxidant assays. The results showed a high (p <.05) seizure score and buried food test latency, preference for the familiar object in the NOR test, aversion to open-arm and reduced grooming in the EPM, reduced beam walk latency, elevated brain malondialdehyde (MDA), and decreased superoxide dismutase (SOD) in the PTZ group. The TT, fTT, and SV suppressed seizure, decreased buried food latency, `preference for the novel object and open-arm, increased grooming, decreased brain MDA, and elevated SOD. In conclusion, TT extracts protected against PTZ-induced cognitive deficits and brain oxidative stress, with results similar to those of the standard anticonvulsant drug, SV.
Collapse
Affiliation(s)
- Moses B Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria.
| | - Okokon O Bassey
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Nelly A Pessu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Godslove V Kpobari
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Ekereobong I Okuku
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Rosemary B Bassey
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, USA
| | - Ekemini I Johnson
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Aniekan I Peter
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Jude E Okokon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Nigeria
| | - Monday I Akpanabiatu
- Department of Biochemistry, Faculty of Sciences, University of Uyo, Uyo, Nigeria
| |
Collapse
|
2
|
Ekong MB, Bassey OO, Ebeh DI, Usukuma GD, Samuel DC, Bassey RB, Peter AI, Mbadugha CC, Okokon JE, Akpanabiatu MI. Rauvolfia vomitoria phenol extract relieves pentylenetetrazol-induced seizures in Swiss mice and protects some temporal lobe structures. ACTA EPILEPTOLOGICA 2024; 6:35. [PMID: 40217363 PMCID: PMC11960394 DOI: 10.1186/s42494-024-00183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Rauvolfia vomitoria (R. vomitoria) is a plant of economic importance due to its diverse ethnomedicinal properties, including the anticonvulsant effect. In this study, we studied the antiseizure and neuroprotective potentials of R. vomitoria extracts against pentylenetetrazol (PTZ)-induced kindling. METHODS Twenty-five adult Swiss mice (25-30 g) were assigned to five groups (n = 5): control group, PTZ treatment group, and PTZ treatment after receiving oral R. vomitoria crude extract (100 mg/kg), R. vomitoria phenol extract (50 mg/kg) or sodium valproate (15 mg/kg) every 48 h for 28 days. Seizure scores, cognitive behavioral tests including novel object test, Y-maze test, and the elevated plus maze test, as well as brain neurochemicals and histomorphology studies, were performed. RESULTS Compared with the control group, the PTZ group showed comparable body weight and durations in closed and open arms (P > 0.05), but preference for familiar objects, significant (P < 0.05) spontaneous alternation, increased monoamine oxidase activity and nitric oxide level, and Nissl chromatolysis in the temporal lobe structures including the cortex, hippocampus, and amygdala. R. vomitoria phenol extract pretreatment significantly (P < 0.05) reduced seizures, prevented adverse cognitive behaviors, decreased the nitric oxide level, and reduced the temporal lobe Nissl chromatolysis compared with the R. vomitoria crude extract pretreatment group and the sodium valproate pretreatment groups. CONCLUSIONS Thus, R. vomitoria phenol extract showed promising results against seizures and potential for general brain protection, suggesting that the anticonvulsant property of R. vomitoria may be attributed to its phenol constituent. More studies are needed to delineate the mechanisms of its action.
Collapse
Affiliation(s)
- Moses B Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria.
| | - Okokon O Bassey
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Deborah I Ebeh
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Godslove D Usukuma
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Darlington C Samuel
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Rosemary B Bassey
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, Hempstead, NY, 11549, USA
| | - Aniekan I Peter
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Christopher C Mbadugha
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Jude E Okokon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, PMB 1017, Uyo, Nigeria
| | - Monday I Akpanabiatu
- Department of Biochemistry, Faculty of Sciences, University of Uyo, PMB 1017, Uyo, Nigeria
| |
Collapse
|
3
|
Akingbade GT, Ijomone OM, Imam A, Aschner M, Ajao MS. D-Ribose-LCysteine attenuates manganese-induced cognitive and motor deficit, oxidative damage, and reactive microglia activation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103872. [PMID: 35513219 DOI: 10.1016/j.etap.2022.103872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/21/2023]
Abstract
Due to overexposure, manganese (Mn) accumulation in the brain can trigger the inhibition of glutathione synthesis and lead to increased generation of reactive oxygen species (ROS) and oxidative stress. D-Ribose-L-Cysteine (RibCys) has been demonstrated to effectively support glutathione synthesis to scavenge ROS and protect cells from oxidative damage. In the present study, we examined the effects of RibCys on weight changes, cognitive and motor associated activities, oxidative stress markers, striatal and cortical histology, and microglia activation following Mn exposure. Rats were exposed to either saline, Mn or/and RibCys for two weeks. The Mn exposed rats received RibCys either as pre-, co-, or post-treatments. Mn caused a significant decrease in weight, memory and motor activities, increased lactate dehydrogenase level, overexpression of IBA1 reflecting microglia activation, and distortion of the neuronal cytoarchitecture of the striatum and motor cortex, respectively. Interventions with RibCys mitigated Mn-induced neurotoxic events. Our novel study demonstrates that RibCys effectively ameliorates the neurotoxicity following Mn treatment and maybe a therapeutic strategy against the neurological consequences of Mn overexposurec.
Collapse
Affiliation(s)
- Grace T Akingbade
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria; The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Nigeria; Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA.
| | - Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Nigeria; Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, NY, USA
| | - Moyosore S Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Nigeria.
| |
Collapse
|
4
|
Ijomone OM, Aluko OM, Okoh COA, Ebokaiwe AP. N ω-nitro-L-arginine, a nitric oxide synthase inhibitor, attenuates nickel-induced neurotoxicity. Drug Chem Toxicol 2021; 45:2202-2211. [PMID: 34013798 DOI: 10.1080/01480545.2021.1917382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The various mediums of exposure to nickel (Ni) compounds have raised enormous public health concerns, as it has been illustrated to exert toxic effects in biological organs, including the brain. We have previously implicated the involvement of elevated nitric oxide (NO) in Ni-induced oxidative stress in the brain. Hence, the present study investigated the ameliorative potential of Nω-nitro-L-arginine (L-NA), a NO synthase inhibitor, following Ni-induced neurotoxicity. Adult male rats were divided into four groups; control (normal saline), 10 mg/kg Ni chloride (NiCl2) only, 1 mg/kg L-NA, or 2 mg/kg L-NA co-administered with NiCl2. The administration was via daily intraperitoneal injections for three weeks. Neurobehavioural assessments performed thereafter ascertained short-term spatial memory and anxiety. Furthermore, histological evaluations of the cortex, hippocampus, and striatum were carried out using routine hematoxylin and eosin technique, while the phosphotungstic acid hematoxylin method was used to express the degree of astrogliosis. Biochemical analysis of NO levels was examined along with other oxidative stress markers (superoxide dismutase, catalase, glutathione, glutathione S transferase, glutathione peroxidase, myeloperoxidase, and lipid peroxidation). The results illustrated altered behavioral responses, a higher population of degenerating neurons, and astrocytes in the NiCl2 group. There was also an elevation in the NO level and a corresponding reduction in antioxidant activities. However, these debilitating changes were ameliorated in the L-NA treated groups. These results demonstrate an association between alterations in NO synthesis pathway and Ni neurotoxicity, which may render neuronal cells susceptible to damage by oxidative stress. This may yet be another mechanism and useful therapeutic marker in deciphering Ni-induced neurotoxicity.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Oritoke M Aluko
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Comfort O A Okoh
- The Neuro-Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Azubuike P Ebokaiwe
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Abakaliki, Nigeria
| |
Collapse
|
5
|
Chu J, Wang J, Cui L, Liu S, An N, Han J, Che X, Wu C, Yang J. Pseudoginsenoside-F11 ameliorates okadiac acid-induced learning and memory impairment in rats via modulating protein phosphatase 2A. Mech Ageing Dev 2021; 197:111496. [PMID: 33957218 DOI: 10.1016/j.mad.2021.111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
We have reported that pseudoginsenoside-F11 (PF11) can significantly improve the cognitive impairments in several Alzheimer's disease (AD) models, but the mechanism has not been fully elucidated. In the present study, the effects of PF11 on AD, in particular the underlying mechanisms related with protein phosphatase 2A (PP2A), were investigated in a rat model induced by okadaic acid (OA), a selective inhibitor of PP2A. The results showed that PF11 treatment dose-dependently improved the learning and memory impairments in OA-induced AD rats. PF11 could significantly inhibit OA-induced tau hyperphosphorylation, suppress the activation of glial cells, alleviate neuroinflammation, thus rescue the neuronal and synaptic damage. Further investigation revealed that PF11 could regulate the protein expression of methyl modifying enzymes (leucine carboxyl methyltransferase-1 and protein phosphatase methylesterase-1) in the brain, thus increase methyl-PP2A protein expression and indirectly increase the activity of PP2A. Molecular docking analysis, structural alignment and in vitro results showed that PF11 was similar in the shape and electrostatic field feature to a known activator of PP2A, and could directly bind and activate PP2A. In conclusion, the present data indicate that PF11 can ameliorate OA-induced learning and memory impairment in rats via modulating PP2A.
Collapse
Affiliation(s)
- Jinxiu Chu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Clinical and Basic Research on Chronic Diseases, College of Elementary Medicine, North China University of Science and Technology, Tangshan 063210, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lijuan Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuai Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Nina An
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jian Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
6
|
Ogunlade B, Fidelis OP, Afolayan OO, Agie JA. Neurotherapeutic and antioxidant response of D-ribose-L-Cysteine nutritional dietary supplements on Alzheimer-type hippocampal neurodegeneration induced by cuprizone in adult male wistar rat model. Food Chem Toxicol 2020; 147:111862. [PMID: 33217524 DOI: 10.1016/j.fct.2020.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Cuprizone is a neurotoxicant causing neurodegeneration through enzymes inhibition and oxidative stress. D-Ribose-L-Cysteine (DRLC) is a powerful antioxidant with neuroprotective properties. This study explored the antioxidant response of DRLC against cuprizone-induced behavioral alterations, biochemical imbalance and hippocampal neuronal damage in adult wistar rats. MATERIALS AND METHODS Thirty two (32) adult male wistar rats (150-200g) were divided into four groups (n = 8). Group A received normal saline only as placebo; Group B received 0.5% cuprizone diet only; Group C received a combination of 0.5% cuprizone diet and 100 mg/kg bw of DRLC and Group D received 100 mg/kg bw of DRLC only. The administration was done through oral gavage once daily for 45 days. After the last treatment, neurobehavioral tests (Morris Water Maze and Y maze) was conducted; animals sacrificed and brain harvested for histological analysis and biochemical estimations of levels of antioxidants, oxidative stress markers, neurotransmitters and enzyme activitties. RESULTS The results showed significant memory decline, hippocampal alterations, decrease levels of antioxidant markers, enzyme and neurotransmitters activities with concomitant increase in norepinephrine and oxidative stress markers in cuprizone induced rats relative to normal but was attenuated with DRLC administration. CONCLUSION Cuprizone causes cognitive impairment and neurodegeneration through oxidative stress; however, administration of DRLC ameliorated neuropathological alteration induced by cuprizone.
Collapse
Affiliation(s)
- B Ogunlade
- Neurobehavioral and Aging Lab, Human Anatomy Department, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - O P Fidelis
- Department of Biomedical Technology, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - O O Afolayan
- Anatomy Department, College of Medicine, University of Lagos, Lagos State, Nigeria.
| | - J A Agie
- Neurobehavioral and Aging Lab, Human Anatomy Department, Federal University of Technology, Akure, Ondo State, Nigeria.
| |
Collapse
|
7
|
Liu L, Vollmer MK, Kelly MG, Fernandez VM, Fernandez TG, Kim H, Doré S. Reactive Gliosis Contributes to Nrf2-Dependent Neuroprotection by Pretreatment with Dimethyl Fumarate or Korean Red Ginseng Against Hypoxic-Ischemia: Focus on Hippocampal Injury. Mol Neurobiol 2020; 57:105-117. [PMID: 31494826 PMCID: PMC6980429 DOI: 10.1007/s12035-019-01760-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023]
Abstract
Recently, dimethyl fumarate (DMF) and Korean red ginseng (ginseng), based on their purported antioxidative and anti-inflammatory properties, have exhibited protective potential in various neurological conditions. Their effects on cerebral ischemia and underlying mechanisms remain inconclusive; however, increasing evidence indicates the involvement of the transcriptional factor Nrf2. This study evaluated the preventive effects of DMF and ginseng on hippocampal neuronal damage following hypoxia-ischemia (HI) and assessed the contributions of reactive gliosis and the Nrf2 pathway. Adult wild type (WT) and Nrf2-/- mice were pretreated with DMF or ginseng for 7 days prior to HI. At 24 h after HI, DMF or ginseng significantly reduced infarct volume (52.5 ± 12.3% and 47.8 ± 10.7%), brain edema (61.5 ± 17.4% and 39.3 ± 12.8%), and hippocampal CA1 neuronal degeneration, and induced expressions of Nrf2 target proteins in WT, but not Nrf2-/-, mice. Such hippocampal neuroprotective benefits were also observed at 6 h and 7 days after HI. The dynamic attenuation of reactive gliosis in microglia and astrocytes correlated well with this sustained neuroprotection in an Nrf2-dependent manner. In both early and late stages of HI, astrocytic dysfunctions in extracellular glutamate clearance and water transport, as indicated by glutamine synthetase and aquaporin 4, were also attenuated after HI in WT, but not Nrf2-/-, mice treated with DMF or ginseng. Together, DMF and ginseng confer robust and prolonged Nrf2-dependent neuroprotection against ischemic hippocampal damage. The salutary Nrf2-dependent attenuation of reactive gliosis may contribute to this neuroprotection, offering new insight into the cellular basis of an Nrf2-targeting strategy for stroke prevention or treatment.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Mary K Vollmer
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Marie G Kelly
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Victoria M Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Tyler G Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.
- Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Liu L, Vollmer MK, Ahmad AS, Fernandez VM, Kim H, Doré S. Pretreatment with Korean red ginseng or dimethyl fumarate attenuates reactive gliosis and confers sustained neuroprotection against cerebral hypoxic-ischemic damage by an Nrf2-dependent mechanism. Free Radic Biol Med 2019; 131:98-114. [PMID: 30458277 PMCID: PMC6362849 DOI: 10.1016/j.freeradbiomed.2018.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
The transcriptional factor Nrf2, a master regulator of oxidative stress and inflammation that are tightly linked to the development and progression of cerebral ischemia pathology, plays a vital role in inducing the endogenous neuroprotective process. Here, hypoxic-ischemia (HI) was performed in adult Nrf2 knockout and wildtype mice that were orally pretreated either with standardized Korean red ginseng extract (Ginseng) or dimethyl fumarate (DMF), two candidate Nrf2 inducers, to determine whether the putative protection was through an Nrf2-dependent mechanism involving the attenuation of reactive gliosis. Results show that Nrf2 target cytoprotective genes were distinctly elevated following HI. Pretreatment with Ginseng or DMF elicited robust neuroprotection against the deterioration of acute cerebral ischemia damage in an Nrf2-dependent manner as revealed by the reductions of neurological deficits score, infarct volume and brain edema, as well as enhanced expression levels of Nrf2 target antioxidant proteins and anti-inflammation mediators. In both ischemic striatum and cortex, the dynamic pattern of attenuated reactive gliosis in astrocytes and microglia, including affected astrocytic dysfunction in glutamate metabolism and water homeostasis, correlated well with the Nrf2-dependent neuroprotection by Ginseng or DMF. Furthermore, such neuroprotective benefits extended to the late phase of ischemic brain damage after HI, as evidenced by improvements in neurobehavioral outcomes, infarct volume and brain edema. Overall, pretreatment with Ginseng or DMF identically attenuates reactive gliosis and confers long-lasting neuroprotective efficacy against ischemic brain damage through an Nrf2-dependent mechanism. This study also provides new insight into the profitable contribution of reactive gliosis in the Nrf2-dependent neuroprotection in acute brain injury.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Mary K Vollmer
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Abdullah S Ahmad
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Victoria M Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Departments of Neurology, Psychiatry, Pharmaceutics, Psychology, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Liu L, Vollmer MK, Fernandez VM, Dweik Y, Kim H, Doré S. Korean Red Ginseng Pretreatment Protects Against Long-Term Sensorimotor Deficits After Ischemic Stroke Likely Through Nrf2. Front Cell Neurosci 2018; 12:74. [PMID: 29628876 PMCID: PMC5876314 DOI: 10.3389/fncel.2018.00074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/02/2018] [Indexed: 12/15/2022] Open
Abstract
Endogenous neuroprotective mechanisms by which the brain protects itself against noxious stimuli and recovers from ischemic damage are key targets of stroke research, ultimately facilitating functional recovery. Transcriptional factor Nrf2, enriched in astrocytes, is a master regulator of endogenous defense systems against oxidative stress and inflammation. Korean Red Ginseng (Ginseng), one most widely used herbal medicine, has exhibited promising potentials in neuroprotection. Our study aimed to determine whether the standardized Ginseng extract pretreatment could attenuate acute sensorimotor deficits and improve long-term functional recovery after ischemic stroke though Nrf2 pathway and whether reactive astrogliosis is associated with such effect. Adult Nrf2−/− and matched wildtype control (WT) mice were pretreated with Ginseng orally for 7 days prior to permanent distal middle cerebral artery occlusion (pdMCAO). Using an optimized method that can accurately assess either severe or mild pdMCAO-induced sensorimotor deficits, neurobehavioral tests were performed over 28 days. The progression of lesion volume and the evolution of astrocytic and microglial activation were determined in the acute stage of ischemic stroke after pdMCAO (0–3 days). Nrf2-downstream target antioxidant genes expression levels was assessed by Western blot. We found that Ginseng pretreatment ameliorated acute sensorimotor deficits and promoted long-term functional recovery, prevented the acute enlargement of lesion volume (36.37 ± 7.45% on day 3), attenuated reactive astroglial progression but not microglia activation, and enhanced the induction of Nrf2-downstream target proteins after ischemic insult in WT mice, an effect which was lost in Nrf2 knockouts. The spatiotemporal pattern of reactive astrogliosis evaluation correlated well with acute ischemic damage progression in an Nrf2-dependent fashion during the acute phase of ischemia. In contrast, Nrf2 deficiency mice exhibited exacerbated ischemic condition compared to WT controls. Together, Ginseng pretreatment protects against acute sensorimotor deficits and promotes its long-term recovery after pdMCAO, at least partly, through Nrf2 activation, highlighting the potential efficacy of oral consumption of Ginseng for stroke preventative intervention in patients who are at great risk of recurrent stroke or transient ischemic attack. The attenuated reactive astrogliosis contributes to the Nrf2 pathway related neuroprotection against acute ischemic outcome and substantially long-term sensorimotor deficits in the context of ischemic stroke under pdMCAO.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Mary K Vollmer
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Victoria M Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Yasmin Dweik
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, Psychology and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Ijomone OM, Okori SO, Ijomone OK, Ebokaiwe AP. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats' brain. Drug Chem Toxicol 2018; 41:377-384. [PMID: 29482365 DOI: 10.1080/01480545.2018.1437173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nickel (Ni) is a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for neurological symptoms in humans. The present study investigated the behavior and histomorphological alterations in brain of rats sub-acutely exposed to nickel chloride (NiCl2) and the possible involvement of oxidative stress. Rats were administered with 5, 10 or 20 mg/kg NiCl2 via intraperitoneal injections for 21 days. Neurobehavioral assessment was performed using the Y-maze and open field test (OFT). Histomorphological analyses of brain tissues, as well as biochemical determination of oxidative stress levels were performed. Results showed that Ni treatments significantly reduced body weight and food intake. Cognitive and motor behaviors on the Y-maze and OFT, respectively, were compromised following Ni treatments. Administration of Ni affected neuronal morphology in the brain and significantly reduced percentage of intact neurons in both hippocampus and striatum. Additionally, markers of oxidative stress levels and nitric oxide (NO) levels were significantly altered following Ni treatments. These data suggest that compromised behavior and brain histomorphology following Ni exposures is associated with increase in oxidative stress.
Collapse
Affiliation(s)
- Omamuyovwi Meashack Ijomone
- a Department of Anatomical Sciences, School of Health and Health Technology , Federal University of Technology Akure , Nigeria.,b Department of Anatomy, Faculty of Basic Medical Sciences , Cross River University of Technology , Okuku Campus , Cross River , Nigeria
| | - Stephen Odey Okori
- b Department of Anatomy, Faculty of Basic Medical Sciences , Cross River University of Technology , Okuku Campus , Cross River , Nigeria
| | | | - Azubike Peter Ebokaiwe
- d Department of Chemistry/Biochemistry and Molecular Biology , Federal University Ndufu Alike-Ikwo , Ebonyi , Nigeria
| |
Collapse
|
11
|
Nurmasitoh T, Sari DCR, Partadiredja G. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem Toxicol 2017; 41:324-329. [DOI: 10.1080/01480545.2017.1414833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Titis Nurmasitoh
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Rakhunde PB, Saher S, Ali SA. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats. Indian J Pharmacol 2015; 46:617-21. [PMID: 25538333 PMCID: PMC4264077 DOI: 10.4103/0253-7613.144920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/08/2014] [Accepted: 10/13/2014] [Indexed: 11/08/2022] Open
Abstract
Objectives: Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. Materials and Methods: We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. Results: The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). Conclusion: These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation.
Collapse
Affiliation(s)
- Purushottam B Rakhunde
- Department of Pharmacology, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| | - Sana Saher
- Department of Pharmacology, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| | - Syed Ayaz Ali
- Department of Pharmacology, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| |
Collapse
|
13
|
Ijomone OM, Olaibi OK, Mba C, Biose IJ, Tete SA, Nwoha PU. Chronic nicotine administration does not alter cognitive or mood associated behavioural parameters. ACTA ACUST UNITED AC 2015; 22:57-63. [PMID: 25601213 DOI: 10.1016/j.pathophys.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/10/2014] [Accepted: 12/14/2014] [Indexed: 02/08/2023]
Abstract
Nicotine, the major specific alkaloid in tobacco smoke, exhibits widespread pharmacological effects and may contribute to deterioration in behaviour. The present study thus examined the effects of its chronic administration on some cognitive and mood associated behaviours. Adult rats weighing between 150 and 200g were randomly divided into 4 groups each of 5 females and 5 males. Three groups were administered graded doses of nicotine at 0.25, 2 and 4mg/kg body weight via subcutaneous injections. One group served as control and received normal saline (vehicle for nicotine). Behavioural tests were performed using the Y-maze, elevated-plus maze (EPM) and tail suspension tests (TST) at various time points. Nicotine produced no significant effect in spontaneous alternation on Y-maze, nor on six parameters scored on EPM (open arm entries, time spent in open arms, time per open arm entries, open/closed arm quotient, closed arm entries, and total arm entries), and also no significant effect on immobility time in TST. This lack of effects was observed to be independent of sex and dose administered. The study shows that nicotine does not produce long-term changes in some cognitive and mood associated behaviours, thus suggesting it could be well tolerated even following chronic administration.
Collapse
Affiliation(s)
- Omamuyovwi Meashack Ijomone
- Department of Anatomy and Cell Biology, Obafemi Awolowo University, Ile-Ife, Osun, Nigeria; Neuroscience Unit, Department of Human Anatomy, Cross River University of Technology, Okuku, Cross River, Nigeria.
| | - Olayemi Kafilat Olaibi
- Department of Anatomy and Cell Biology, Obafemi Awolowo University, Ile-Ife, Osun, Nigeria
| | - Christian Mba
- Neuroscience Unit, Department of Human Anatomy, Cross River University of Technology, Okuku, Cross River, Nigeria
| | - Ifechukwude Joachim Biose
- Neuroscience Unit, Department of Human Anatomy, Cross River University of Technology, Okuku, Cross River, Nigeria
| | - Samuel Anthony Tete
- Neuroscience Unit, Department of Human Anatomy, Cross River University of Technology, Okuku, Cross River, Nigeria
| | - Polycarp Umunna Nwoha
- Department of Anatomy and Cell Biology, Obafemi Awolowo University, Ile-Ife, Osun, Nigeria
| |
Collapse
|
14
|
Bu Y, Kwon S, Kim YT, Kim MY, Choi H, Kim JG, Jamarkattel-Pandit N, Doré S, Kim SH, Kim H. Neuroprotective effect of HT008-1, a prescription of traditional Korean medicine, on transient focal cerebral ischemia model in rats. Phytother Res 2010; 24:1207-12. [DOI: 10.1002/ptr.2908] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Yaghmaei P, Parivar K, Masoudi A, Darab M, Amini E. The effect of silybin on passive avoidance learning and pathological changes in hippocampal CA1 and DG regions in male Wistar rats offspring. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2009; 11:514-522. [PMID: 20183284 DOI: 10.1080/10286020902927864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Silybin, an extract from seeds of milk thistle (Silybum marianum), is known to have hepato-protective, anticarcinogenic, and estrogenic effects. Given that estrogen effects on memory have been reported, silybin may cause structural changes in the hippocampal CA1 and dentate gyrus (DG) neurons and as a result it may enhance learning and memory. Wistar rats were provided with silybin (from day 7 of gestational age up to 4 weeks after birth) with 2 dosages of 18 mg/kg in the experimental group 1 (Exp1) and 9 mg/kg in the experimental group 2 (Exp2). Offspring memory retention was compared by duration of step-through latency in passive avoidance apparatus. Furthermore, histological changes were investigated in experimental groups and control group (CG). Both the experimental groups showed significantly longer step-through latency than CG (p < 0.001 for Exp1 and p < 0.01 for Exp2). The average number of pyramidal cells in hippocampal CA1 and granular cells in hippocampal DG was remarkably higher in Exp1 and Exp2 compared with CG. The difference was significant between Exp1 and Exp2 for pyramidal cells (p < 0.05) but not for granular cells. Silybin administration during pregnancy resulted in histological changes in hippocampus and better memory function. These data may lay the ground work using silybin in memory impairment diseases.
Collapse
Affiliation(s)
- Parichehreh Yaghmaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | | | | | |
Collapse
|
16
|
Heo H, Shin Y, Cho W, Choi Y, Kim H, Kwon YK. Memory improvement in ibotenic acid induced model rats by extracts of Scutellaria baicalensis. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:20-27. [PMID: 19111602 DOI: 10.1016/j.jep.2008.11.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/23/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi (Labiatae) extracts have been used as traditional Korean medicine, to treat cerebral ischemia in addition to bacterial infection and inflammatory diseases. AIM OF THE STUDY The improvement effect on learning and memory by the administration of Scutellaria baicalensis extracts was evaluated and the underlying mechanisms were investigated. MATERIALS AND METHODS Memory behavior was tested by the passive avoidance test and Y-maze test. We also investigated the cells expressing neuronal markers related to memory processes by immunofluorescence staining analysis in memory deficient animal model (Ibo model) rats and in hippocampal progenitor cells. RESULTS We found neuronal cells immunoreactive to choline acetyltransferase (ChAT), a marker for cholinergic neurons were increased in the hippocampus, while cells producing GABA and glutamate were not after 30 mg/kg Scutellaria baicalensis administration. Futhermore, Scutellaria baicalensis extracts enhanced the survival of a hippocampal progenitor cell line, HiB5 and its differentiation to ChAT immunoreactive cells. The increased expression of memory related neurotransmitter, NMDA receptor and a reduction of activated microglia in the hippocampus were also observed in the Ibo model when administrated Scutellaria baicalensis extracts. CONCLUSIONS These results imply that Scutellaria baicalensis has significant neuroprotective effects in the Ibo model.
Collapse
Affiliation(s)
- Hwon Heo
- Department of Biology, Kyunghee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
KIM J, CHUNG S, PARK S, PARK J, BYUN S, HWANG M, OH D, CHOI H, KIM M, BU Y. Enhancing effect of HT008-1 on cognitive function and quality of life in cognitively declined healthy adults: A randomized, double-blind, placebo-controlled, trial. Pharmacol Biochem Behav 2008; 90:517-24. [DOI: 10.1016/j.pbb.2008.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 03/15/2008] [Accepted: 03/30/2008] [Indexed: 11/24/2022]
|