1
|
Porfyris O, Detopoulou P, Adamantidi T, Tsoupras A, Papageorgiou D, Ioannidis A, Rojas Gil AP. Phytochemicals as Chemo-Preventive and Therapeutic Agents Against Bladder Cancer: A Comprehensive Review. Diseases 2025; 13:103. [PMID: 40277814 PMCID: PMC12026019 DOI: 10.3390/diseases13040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Bladder cancer has a high incidence worldwide and is characterized by a high recurrence rate, metastatic potential, and a significant socioeconomic burden. Conventional treatment modalities usually exhibit serious adverse complications, which also negatively affect patients' quality of life. In the context of exploring new treatment approaches with fewer side effects, the utilization of natural compounds as alternative and/or complementary therapeutic options seems appealing. In the present study, the potential use and effects of various bioactive phytochemicals, including curcumin, resveratrol, epigallocatechin, genistein, and several others, in bladder cancer treatment are thoroughly reviewed. A special focus is given to their potential to beneficially modulate important molecular signaling pathways and mechanisms affecting cell survival, proliferation, migration, and apoptosis, which play a crucial role in the pathogenesis of bladder cancer, such as the PI3K/AKT/mTOR, Ras/Raf/MEK/MAPK, Wnt/β-Catenin, Notch, Hedgehog, Hippo, JAK2/STAT3, and PAF/PAF-receptor pathways. Nevertheless, most studies have been conducted in cell cultures and animal models. Due to differences in genetics and metabolism, more clinical trials are needed to ensure the bio-efficacy of these phytochemicals in humans.
Collapse
Affiliation(s)
- Orestis Porfyris
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Paraskevi Detopoulou
- Department of Nutritional Science and Dietetics, Faculty of Health Sciences, University of Peloponnese, New Building, Antikalamos, 24100 Kalamata, Greece;
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece; (T.A.); (A.T.)
| | - Dimitris Papageorgiou
- Department of Nursing, Faculty of Health Sciences, University of Peloponnese Panarcadian Hospital of Tripoli, Red Cross Terminal (Administrative Services) 2nd Floor, 22100 Tripoli, Greece;
| | - Anastasios Ioannidis
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| | - Andrea Paola Rojas Gil
- Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of the Peloponnese, Akadimaikou GK, 3 Building OAED, 22100 Tripoli, Greece; (O.P.); (A.I.)
| |
Collapse
|
2
|
Abulsoud AI, Aly SH, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, El Tabaa MM, Rashed M, El-Shiekh RA, Doghish AS. Natural compounds as modulators of miRNAs: a new frontier in bladder cancer treatment. Med Oncol 2025; 42:56. [PMID: 39883227 DOI: 10.1007/s12032-025-02613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Bladder cancer (BC) is a major global health issue with a high recurrence rate and limited effective treatments. Over the past few years, it has become evident that miRNAs play a role in the carcinogenesis process, particularly in regulating genes that promote cancer cell proliferation and invasion. This review focuses on the extent to which natural products can act as potential miRNA modulators for the management of bladder cancer. Polyphenols, flavonoids, and other phytochemicals are natural compounds found to have inherent potential to modulate miRNAs and reform the oncogenic properties of bladder cancer cells regulating cell growth and death. In integration with the current cancer treatment regimes, such natural agents may safely substitute for the traditional chemical chemotherapeutic agents of the conventional approaches. To this end, this review presents the existing knowledge of natural compounds as regulators of miRNA, their mechanisms for the management of BC, the role of their nanoparticles, and future novel therapies. The use of these compounds is not only a therapeutic practice for the conditions of bladder cancer, but it also upholds new avenues for creativity.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, Km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
3
|
Wang Y, Wang S, Ma C, Qi W, Lv J, Zhang M, Wang S, Wang R, Lu Y, Qiu W. Nrf2 depletion enhanced curcumin therapy effect in gastric cancer by inducing the excessive accumulation of ROS. Sci Rep 2024; 14:30165. [PMID: 39627516 PMCID: PMC11615379 DOI: 10.1038/s41598-024-81375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Gastric cancer (GC) is the most common malignant tumor of the gastrointestinal tract and currently has a poor clinical outcome. Turmeric's rhizome contains a polyphenolic component called curcumin (Cur), which has been demonstrated to inhibit a variety of tumor cells, such as pancreatic, colon, lung and gastric cancers. However, it remains to be elucidated how Cur functions in GC and what molecular processes underlie it. Here, Cur showed a stronger inhibitory effect on GC cells AGS and HGC27. In addition, Cur's inhibition of GC cells growth was accompanied by increased ROS production, triggering of the Keap1-Nrf2 signaling pathway, and increased transcription of its downstream antioxidant genes HO-1, GCLM, and NQO1. However, when a ROS scavenger NAC was used, the inhibitory effect of Cur on GC cells was reversed. Nuclear factor erythroid 2-related factor 2 (Nrf2) is overexpressed or activated in cancers to shield cancer cells from oxidative damage by responding to oxidative stress (OS). Cur has been found to act as an activator of Nrf2. Notably, compared with Nrf2 knockdown and Cur alone, the combination of the two dramatically increased Cur-induced ROS overaccumulation and inhibition of GC cells proliferation, migration, and invasive abilities. Consistent with in vitro experiments, Cur combined with Nrf2 knockdown significantly inhibited tumor growth in nude mice transplanted with AGS cells. Therefore, we concluded that Nrf2 depletion enhanced Cur therapy effect in GC by inducing the excessive accumulation of ROS, indicating that this is a promising treatment strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of oncology, Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenchen Ma
- Spine Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Weiwei Qi
- Department of oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | - Rui Wang
- Qingdao University, Qingdao, China
| | | | - Wensheng Qiu
- Department of oncology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Mazaheri-Tehrani S, Rouzbahani S, Heidari-Beni M. The Association Between Anti-Neoplastic Effects of Curcumin and Urogenital Cancers: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9347381. [PMID: 39445208 PMCID: PMC11496585 DOI: 10.1155/2024/9347381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Background: Curcumin is a polyphenol compound with anticancer effects. We aimed to review the anti-neoplastic effects of curcumin on urogenital cancers, by regulating different microRNA expressions. Methods: A systematic search was conducted in Medline (PubMed), Embase, Scopus, and Web of Science up to the end of August 2024. All English, in vitro, and observational studies that evaluated the effect of curcumin on preventing or treating urogenital cancers through its impact on microRNA expression were included. In vivo or silico studies were excluded. Result: A total of 2549 records were found. Finally, 25 studies were included. Twelve studies assessed the effect of curcumin on prostate cancer, six studies on ovarian cancer, three studies on cervical cancer, three studies on bladder cancer, and one study on renal cancer. MicroRNAs are small noncoding RNAs that regulate the post-transcriptional pathways. They possess pivotal roles in different fundamental mechanisms in cells such as differentiation, migration, apoptosis, and proliferation. Curcumin exerts its anticancer effects on urogenital neoplasms by upregulating tumor suppressor microRNAs (miR-143, miR-145, miR-Let-7, miR-101, miR-3127, miR-3178, miR-1275, miR-3198, miR-1908, miR-770, miR-1247, miR-411, miR-34a, miR-383, miR-708, miR-483, miR-199a, miR-335, miR-503, miR-10b, miR-551a, miR-9, miR-203, miR-7110, miR-29b, and miR-126) and downregulating oncogenic microRNAs (miR-21, miR-210, miR-382, miR-654, miR-494, miR-193b, miR-671, miR-222, miR-23b, miR-664, miR-183, miR-214, miR-320a, miR-23a, miR-30a, miR-320d, miR-1285, miR-32, miR-181a, miR-205, miR-216a, miR-1246, and miR-106b). Conclusion: Cell proliferation is inhibited, and cell apoptosis is induced by curcumin in different urogenital cancers through suppressing oncogenic microRNAs or provoking tumor suppressor microRNAs.
Collapse
Affiliation(s)
- Sadegh Mazaheri-Tehrani
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rouzbahani
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Motahar Heidari-Beni
- Department of Nutrition, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Pandey C, Tiwari P. Differential microRNAs Expression during Cancer Development, and Chemoprevention by Natural Compounds: A Comprehensive Review. J Environ Pathol Toxicol Oncol 2024; 43:65-80. [PMID: 39016142 DOI: 10.1615/jenvironpatholtoxicoloncol.2024050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
MicroRNAs are short non-coding RNAs that inhibit gene expression at the post-transcriptional level. Abnormal microRNA expression has been associated with different human diseases, including cancer. Epigenetic changes, mutation, transcriptional deregulation, DNA copy number abnormalities, and defects in the biogenesis machinery play an important role in abnormal microRNA expression. Modulation of microRNAs by natural agents has emerged to enhance the efficacy of conventional chemotherapy through combinatorial therapeutic approach. This review summarizes the current understanding of abnormal microRNA expression in cancer, the different cellular mechanisms of microRNA, and their prevention by natural compounds. Understanding microRNA expression patterns during cancer development may help to identify stage-specific molecular markers. Natural compounds that exert regulatory effects by modulating microRNAs can be used in better cancer chemopreventive strategies by directly targeting microRNAs or as a way to increase sensitivity to existing chemotherapy regimens.
Collapse
Affiliation(s)
- Chhaya Pandey
- School of Environmental Biology, Awadhesh Pratap Singh University, Rewa-486001, Madhya Pradesh, India
| | | |
Collapse
|
6
|
Imran M, Saeed F, Alsagaby SA, Imran A, Ahmad I, El Ghorab AH, Abdelgawad MA, Qaisrani TB, Mehmood T, Umar M, Mumtaz MA, Sajid A, Manzoor Q, Hussain M, Al Abdulmonem W, Al Jbawi E. Curcumin: recent updates on gastrointestinal cancers. CYTA - JOURNAL OF FOOD 2023; 21:502-513. [DOI: 10.1080/19476337.2023.2245009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/26/2023] [Indexed: 01/04/2025]
Affiliation(s)
- Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ali Imran
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ishtiaque Ahmad
- Department of Dairy Technology, FAPT, Ravi Campus, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Ahmad H. El Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Tahira Batool Qaisrani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Tahir Mehmood
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | | | - Arfaa Sajid
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Qaisar Manzoor
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | |
Collapse
|
7
|
Hsu FT, Liu WL, Lee SR, Jeng LB, Chen JH. Unveiling nature's potential weapon: Magnolol's role in combating bladder cancer by upregulating the miR-124 and inactivating PKC-δ/ERK axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154947. [PMID: 37549536 DOI: 10.1016/j.phymed.2023.154947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Bladder cancer (BC) is a challenging disease to manage. Researchers have been investigating the potential of magnolol, a compound derived from Magnolia officinalis, as an anti-cancer agent. However, the exact regulatory mechanism of magnolol and its impact on the NF-κB signaling pathway in BC remain unclear. MATERIALS To comprehensively evaluate its therapeutic potential, the researchers conducted a series of experiments using BC cell lines (TSGH8301, T24, and MB49) and in vivo animal models. RESULTS The results of the study demonstrated that magnolol exhibits cytotoxic effects on BC cells by activating both the extrinsic and intrinsic apoptosis signaling pathways. Additionally, the expression of anti-apoptotic genes was downregulated by magnolol treatment. The researchers also uncovered the regulatory role of PKCδ/ERK and miR-124-3p in the NF-κB pathway, which may be influenced by magnolol. Treatment with magnolol led to the inactivation of PKCδ/ERK and an increase in miR-124-3p expression, effectively inhibiting NF-κB-mediated progression of BC. Importantly, the administration of magnolol did not result in significant toxicity in normal tissues, highlighting its potential as a safe adjunctive therapy with minimal adverse effects. CONCLUSION These findings position magnolol as a promising therapeutic agent for the treatment of BC. By activating apoptosis signaling pathways and inhibiting NF-κB pathway through the upregulation of miR-124-3p and downregulation of PKCδ/ERK activation, magnolol holds promise for suppressing tumor progression and improving patient outcomes in BC. Further research and clinical trials are warranted to explore the full potential of magnolol in the future.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Wei-Lin Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan, R.O.C
| | - Sin-Rong Lee
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan, R.O.C; Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Jiann-Hwa Chen
- Department of Emergency Medicine, Cathay General Hospital, Taipei, Taiwan, R.O.C; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, R.O.C.
| |
Collapse
|
8
|
Wang W, Li M, Wang L, Chen L, Goh BC. Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges. Cancer Lett 2023; 570:216332. [PMID: 37541540 DOI: 10.1016/j.canlet.2023.216332] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cancer poses a significant global health burden, necessitating the widespread use of chemotherapy and radiotherapy as conventional frontline interventions. Although targeted therapy and immunotherapy have shown remarkable advancements, the challenges of resistance development and severe side effects persist in cancer treatment. Consequently, researchers have actively sought more effective alternatives with improved safety profiles. In recent years, curcumin, a natural polyphenolic phytoalexin, has garnered considerable attention due to its broad spectrum of biological effects. This concise review provides valuable insights into the role of curcumin in cancer therapy, with a focus on elucidating its molecular mechanisms in inducing programmed cell death of tumor cells and suppressing tumor cell metastasis potential. Additionally, we discuss the challenges associated with the clinical application of curcumin and explore current endeavors aimed at overcoming these limitations. By shedding light on the promising potential of curcumin, this review contributes to the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mingqin Li
- Department of Medical Cardiology, Zhongxiang TCM Hospital of Hubei, Zhongxiang, 431900, China
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; National University Cancer Institute, National University of Singapore, 119074, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Boon-Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; National University Cancer Institute, National University of Singapore, 119074, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Hospital, National University Health System, Singapore, Singapore
| |
Collapse
|
9
|
Jiang JY, Wen H, Jiang M, Tian J, Dong LX, Shi ZC, Zhou T, Lu X, Liang HW. Dietary Curcumin Supplementation Could Improve Muscle Quality, Antioxidant Enzyme Activities and the Gut Microbiota Structure of Pelodiscus sinensis. Animals (Basel) 2023; 13:2626. [PMID: 37627417 PMCID: PMC10451759 DOI: 10.3390/ani13162626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This experiment aimed to assess the impact of different dietary curcumin (CM) levels on growth, muscle quality, serum-biochemical parameters, antioxidant-enzyme activities, gut microbiome, and liver transcriptome in Chinese soft-shelled turtles (Pelodiscus sinensis). Five experimental diets were formulated to include graded levels of curcumin at 0 (control, CM0), 0.5 (CM0.5), 1 (CM1), 2 (CM2) and 4 g/kg (CM4). Each diet was randomly distributed to quadruplicate groups of turtles (164.33 ± 5.5 g) for 6 weeks. Our findings indicated that dietary curcumin supplementation did not have a significant influence on growth performance (p > 0.05); however, it significantly improved the muscular texture profiles (p < 0.05). Serum total superoxide dismutase (SOD), liver catalase (CAT), and total antioxidant capacity (T-AOC) activities increased significantly as dietary curcumin levels rose from 0.5 to 4 g/kg (p < 0.05). Dietary curcumin supplementation improved gut microbiota composition, as evidenced by an increase in the proportion of dominant bacteria such as Lactobacillus and Flavobacterium. Liver transcriptome analysis revealed that curcumin altered metabolic pathways in the liver. In conclusion, based on the evaluation of the activities of SOD in serum and CAT in liver under current experimental design, it was determined that the appropriate dietary curcumin supplementation for Chinese soft-shelled turtles is approximately 3.9 g/kg.
Collapse
Affiliation(s)
- Jia-Yuan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Li-Xue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Ze-Chao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Xing Lu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| | - Hong-Wei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (J.-Y.J.); (H.W.); (M.J.); (J.T.); (L.-X.D.); (Z.-C.S.); (T.Z.)
| |
Collapse
|
10
|
Moazzami B, Chaichian S, Nikfar B, Arbabi Bidgoli S. Modulation of microRNAs expression and cellular signaling pathways through curcumin as a potential therapeutical approach against ovarian cancer: A review. Pathol Res Pract 2023; 247:154527. [PMID: 37235907 DOI: 10.1016/j.prp.2023.154527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Short non-coding RNAs called microRNAs (miRNAs) control gene expression by either inhibiting translation or degrading messenger RNA. MiRNAs are crucial for many biological functions, and the deregulation of their expression is strongly linked to the emergence of cancer. A single miRNA controls several gene expressions, allowing it to simultaneously control a number of cellular signaling pathways. As a result, miRNAs may be used as therapeutic targets as well as biomarkers for the prognosis and diagnosis of different cancers. Recent research has shown that natural compounds like curcumin, resveratrol and quercetin exert their pro-apoptotic and/or anti-proliferative impacts by modulating one and/or more miRNAs, which inhibits the growth of cancer cells, induces apoptosis, or increases the effectiveness of conventional cancer therapies. Here, we summarize the most recent developments in curcumin's control over the expression of miRNAs and emphasize the significance of these herbal remedies as a viable strategy in the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Bahram Moazzami
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University, Tehran, Iran
| |
Collapse
|
11
|
Curcumin: An epigenetic regulator and its application in cancer. Biomed Pharmacother 2022; 156:113956. [DOI: 10.1016/j.biopha.2022.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
12
|
Hayakawa S, Ohishi T, Oishi Y, Isemura M, Miyoshi N. Contribution of Non-Coding RNAs to Anticancer Effects of Dietary Polyphenols: Chlorogenic Acid, Curcumin, Epigallocatechin-3-Gallate, Genistein, Quercetin and Resveratrol. Antioxidants (Basel) 2022; 11:antiox11122352. [PMID: 36552560 PMCID: PMC9774417 DOI: 10.3390/antiox11122352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Growing evidence has been accumulated to show the anticancer effects of daily consumption of polyphenols. These dietary polyphenols include chlorogenic acid, curcumin, epigallocatechin-3-O-gallate, genistein, quercetin, and resveratrol. These polyphenols have similar chemical and biological properties in that they can act as antioxidants and exert the anticancer effects via cell signaling pathways involving their reactive oxygen species (ROS)-scavenging activity. These polyphenols may also act as pro-oxidants under certain conditions, especially at high concentrations. Epigenetic modifications, including dysregulation of noncoding RNAs (ncRNAs) such as microRNAs, long noncoding RNAs, and circular RNAs are now known to be involved in the anticancer effects of polyphenols. These polyphenols can modulate the expression/activity of the component molecules in ROS-scavenger-triggered anticancer pathways (RSTAPs) by increasing the expression of tumor-suppressive ncRNAs and decreasing the expression of oncogenic ncRNAs in general. Multiple ncRNAs are similarly modulated by multiple polyphenols. Many of the targets of ncRNAs affected by these polyphenols are components of RSTAPs. Therefore, ncRNA modulation may enhance the anticancer effects of polyphenols via RSTAPs in an additive or synergistic manner, although other mechanisms may be operating as well.
Collapse
Affiliation(s)
- Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yumiko Oishi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Correspondence: (S.H.); (N.M.); Tel.: +81-3-3822-2131 (S.H.); +81-54-264-5531 (N.M.)
| |
Collapse
|
13
|
Zhai W, Hu Y, Zhang Y, Zhang G, Chen H, Tan X, Zheng Y, Gao W, Wei Y, Wu J. A systematic review of phytochemicals from Chinese herbal medicines for non-coding RNAs-mediated cancer prevention and treatment: From molecular mechanisms to potential clinical applications. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Hashemi M, Mirzaei S, Barati M, Hejazi ES, Kakavand A, Entezari M, Salimimoghadam S, Kalbasi A, Rashidi M, Taheriazam A, Sethi G. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sci 2022; 309:120984. [PMID: 36150461 DOI: 10.1016/j.lfs.2022.120984] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Urological cancers include bladder, prostate and renal cancers that can cause death in males and females. Patients with urological cancers are mainly diagnosed at an advanced disease stage when they also develop resistance to therapy or poor response. The use of natural products in the treatment of urological cancers has shown a significant increase. Curcumin has been widely used in cancer treatment due to its ability to trigger cell death and suppress metastasis. The beneficial effects of curcumin in the treatment of urological cancers is the focus of current review. Curcumin can induce apoptosis in the three types of urological cancers limiting their proliferative potential. Furthermore, curcumin can suppress invasion of urological cancers through EMT inhibition. Notably, curcumin decreases the expression of MMPs, therefore interfering with urological cancer metastasis. When used in combination with chemotherapy agents, curcumin displays synergistic effects in suppressing cancer progression. It can also be used as a chemosensitizer. Based on pre-clinical studies, curcumin administration is beneficial in the treatment of urological cancers and future clinical applications might be considered upon solving problems related to the poor bioavailability of the compound. To improve the bioavailability of curcumin and increase its therapeutic index in urological cancer suppression, nanostructures have been developed to favor targeted delivery.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maryamsadat Barati
- Department of Biology, Faculty of Basic (Fundamental) Science, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
15
|
Effects and Mechanisms of Curcumin for the Prevention and Management of Cancers: An Updated Review. Antioxidants (Basel) 2022; 11:antiox11081481. [PMID: 36009200 PMCID: PMC9405286 DOI: 10.3390/antiox11081481] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is the leading cause of death in the world. Curcumin is the main ingredient in turmeric (Curcuma longa L.), and is widely used in the food industry. It shows anticancer properties on different types of cancers, and the underlying mechanisms of action include inhibiting cell proliferation, suppressing invasion and migration, promoting cell apoptosis, inducing autophagy, decreasing cancer stemness, increasing reactive oxygen species production, reducing inflammation, triggering ferroptosis, regulating gut microbiota, and adjuvant therapy. In addition, the anticancer action of curcumin is demonstrated in clinical trials. Moreover, the poor water solubility and low bioavailability of curcumin can be improved by a variety of nanotechnologies, which will promote its clinical effects. Furthermore, although curcumin shows some adverse effects, such as diarrhea and nausea, it is generally safe and tolerable. This paper is an updated review of the prevention and management of cancers by curcumin with a special attention to its mechanisms of action.
Collapse
|
16
|
Liu S, Liu J, He L, Liu L, Cheng B, Zhou F, Cao D, He Y. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144400. [PMID: 35889273 PMCID: PMC9319031 DOI: 10.3390/molecules27144400] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/03/2022]
Abstract
Curcumin is the most important active component in turmeric extracts. Curcumin, a natural monomer from plants has received a considerable attention as a dietary supplement, exhibiting evident activity in a wide range of human pathological conditions. In general, curcumin is beneficial to human health, demonstrating pharmacological activities of anti-inflammation and antioxidation, as well as antitumor and immune regulation activities. Curcumin also presents therapeutic potential in neurodegenerative, cardiovascular and cerebrovascular diseases. In this review article, we summarize the advancements made in recent years with respect to curcumin as a biologically active agent in malignant tumors, Alzheimer’s disease (AD), hematological diseases and viral infectious diseases. We also focus on problems associated with curcumin from basic research to clinical translation, such as its low solubility, leading to poor bioavailability, as well as the controversy surrounding the association between curcumin purity and effect. Through a review and summary of the clinical research on curcumin and case reports of adverse effects, we found that the clinical transformation of curcumin is not successful, and excessive intake of curcumin may have adverse effects on the kidneys, heart, liver, blood and immune system, which leads us to warn that curcumin has a long way to go from basic research to application transformation.
Collapse
Affiliation(s)
- Siyu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Jie Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Lan He
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Liu Liu
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
| | - Bo Cheng
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China; (L.H.); (B.C.)
| | - Fangliang Zhou
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Deliang Cao
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Correspondence: (D.C.); (Y.H.)
| | - Yingchun He
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China; (S.L.); (J.L.); (L.L.); (F.Z.)
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Correspondence: (D.C.); (Y.H.)
| |
Collapse
|
17
|
Curcumin Inhibits the Growth and Metastasis of Melanoma via miR-222-3p/SOX10/Notch Axis. DISEASE MARKERS 2022; 2022:3129781. [PMID: 35585935 PMCID: PMC9110126 DOI: 10.1155/2022/3129781] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
Background The aim of this study was to investigate the effect of curcumin on melanoma and its mechanism. Methods Curcumin (0, 0.125, 0.25, or 0.5 mg/ml) was utilized to treat A375 and HT144 cell lines. The MTT analysis was used to confirm the proliferation ability. Wound healing and transwell analysis showed the migration and invasion ability. Immunofluorescence assay was used to demonstrate the effect of curcumin on SOX10 expression. Multiple bioinformatic analysis to confirm the SOX10 associated miRNA. The correlation of miR-222-3p and SOX10 was detected by Luciferase reporter assays. qRT-PCR showed the miR-222-3p level. Western blot analyzed the expression of SOX10, Notch1, and HES1 in melanoma cell treated with or without miR-222-3p inhibitor. Results Curcumin could inhibit the proliferation, migration, and invasion of melanoma cells. Furthermore, curcumin repress the expression of SOX10, Notch1, and HES-1, and increase the expression of miR-222-3p. And the miR-222-3p could directly target to SOX10 mRNA to inhibit its expression. In addition, inhibition of miR-222-3p expression reversed the inhibitory effect of curcumin the growth of melanoma cells. Conclusion Curcumin enhances the miR-222-3p level to reduce SOX10 expression, and ultimately inactivates the Notch pathway in repressing melanoma proliferation, migration, and invasion.
Collapse
|
18
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
19
|
Li S, Zhang L, Li S, Zhao H, Chen Y. Curcumin suppresses the progression of gastric cancer by regulating circ_0056618/miR-194-5p axis. Open Life Sci 2021; 16:937-949. [PMID: 34553074 PMCID: PMC8422978 DOI: 10.1515/biol-2021-0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin has been demonstrated to be an anti-tumor agent in many types of cancers, including gastric cancer (GC). However, the molecular mechanisms by which curcumin performs its anti-tumor effects remain elusive. circ_0056618 and miR-194-5p are reported to be involved in GC progression, but their relationships with curcumin are unclear. In this study, circ_0056618 was elevated, and miR-194-5p was reduced in GC tissues and cells. Curcumin treatment led to a decrease in circ_0056618 level in GC cells. Overexpression of circ_0056618 promoted cell proliferation, migration, and invasion and suppressed cell cycle arrest and apoptosis in curcumin-treated GC cells. Moreover, miR-194-5p was identified as the target of circ_0056618, and its expression in GC cells increased after curcumin treatment. Overexpression of miR-194-5p reversed the promotional effect of circ_0056618 on cell progression in curcumin-treated GC cells. Additionally, curcumin treatment repressed the tumorigenesis of GC in vivo through regulating circ_0056618. Curcumin treatment delayed the development of GC partly through decreasing circ_0056618 and increasing miR-194-5p.
Collapse
Affiliation(s)
- Shan Li
- Department of Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lihai Zhang
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Shuhua Li
- Department of Drug, Medical Apparatus Supply, Zhongyuan Oilfield General Hospital, Puyang, China
| | - Hengyi Zhao
- Department of Clinical Pharmacy, Xuzhou Central Hospital, No. 199, Jiefang South Road, Xuzhou 221009, China
| | - Yonggang Chen
- Department of Clinical Pharmacy, Xuzhou Central Hospital, No. 199, Jiefang South Road, Xuzhou 221009, China
| |
Collapse
|
20
|
Shah D, Gandhi M, Kumar A, Cruz-Martins N, Sharma R, Nair S. Current insights into epigenetics, noncoding RNA interactome and clinical pharmacokinetics of dietary polyphenols in cancer chemoprevention. Crit Rev Food Sci Nutr 2021; 63:1755-1791. [PMID: 34433338 DOI: 10.1080/10408398.2021.1968786] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several studies have reported the health-beneficial effects of dietary phytochemicals, namely polyphenols, to prevent various diseases, including cancer. Polyphenols, like (-)-epigallocatechin-3-gallate (EGCG) from green tea, curcumin from turmeric, and ellagic acid from pomegranate are known to act by modulating antioxidant, anti-inflammatory and apoptotic signal transduction pathways in the tumor milieu. The evolving literature underscores the role of epigenetic regulation of genes associated with cancer by these polyphenols, primarily via non-coding RNAs (ncRNAs), such as microRNAs (miRNA) and long noncoding RNA (lncRNA). However, there is little clarity on the exact role(s) played by these ncRNAs and their interactions with other ncRNAs, or with their protein targets, in response to modulation by these dietary polyphenols. Here, we review ncRNA interactions and functional networks of the complex ncRNA interactome with their targets in preclinical studies along with the role of epigenetics as well as key aspects of pharmacokinetics and phytochemistry of dietary polyphenols. We also summarize the current state of clinical trials with these dietary polyphenols. Taken together, this synthetic review provides insights into the molecular aspects underlying the anticancer chemopreventive effects of dietary polyphenols as well as summarizes data on novel biomarkers modulated by these polyphenols for preventive or therapeutic purposes in various types of cancer.
Collapse
Affiliation(s)
| | | | - Arun Kumar
- Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Timarpur Delhi, India
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, Portugal
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
21
|
Wigner P, Bijak M, Saluk-Bijak J. The Green Anti-Cancer Weapon. The Role of Natural Compounds in Bladder Cancer Treatment. Int J Mol Sci 2021; 22:7787. [PMID: 34360552 PMCID: PMC8346071 DOI: 10.3390/ijms22157787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the second most common genitourinary cancer. In 2018, 550,000 people in the world were diagnosed with BC, and the number of new cases continues to rise. BC is also characterized by high recurrence risk, despite therapies. Although in the last few years, the range of BC therapy has considerably widened, it is associated with severe side effects and the development of drug resistance, which is hampering treatment success. Thus, patients are increasingly choosing products of natural origin as an alternative or complementary therapeutic options. Therefore, in this article, we aim to elucidate, using the available literature, the role of natural substances such as curcumin, sulforaphane, resveratrol, quercetin, 6-gingerol, delphinidin, epigallocatechin-3-gallate and gossypol in the BC treatment. Numerous clinical and preclinical studies point to their role in the modulation of the signaling pathways, such as cell proliferation, cell survival, apoptosis and cell death.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-136 Lodz, Poland;
| |
Collapse
|
22
|
Liu Y, Hua F, Zhan Y, Yang Y, Xie J, Cheng Y, Li F. Carcinoma associated fibroblasts small extracellular vesicles with low miR-7641 promotes breast cancer stemness and glycolysis by HIF-1α. Cell Death Discov 2021; 7:176. [PMID: 34238918 PMCID: PMC8266840 DOI: 10.1038/s41420-021-00524-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts play an important role in cancer development and progression. Small extracellular vesicles (sEVs) are one type of extracellular vesicles, which mediate the interaction between cancer-associated fibroblasts and cancer cells by transferring their contents. However, the roles of sEVs from cancer-associated fibroblasts on breast cancer stem cell properties are largely unraveled. The purpose of this study was to explore the roles of sEVs from cancer-associated fibroblasts on breast cancer progression. The miRNA array data showed a different miRNA profile between CAFs sEVs and normal fibroblasts sEVs. By verification using real-time RT-PCR, the data analysis indicated that miR-7641 levels were lower in sEVs from CAFs compared with NFs. The cellular functions were assayed and the results indicated that CAFs derived sEVs with low miR-7641 levels suppressed breast cancer cell survival, glycolysis, and stem cell properties via the HIF-1α pathway. Collectively, these findings indicated that sEVs from CAFs promoted breast cancer stem cell properties and glycolysis via miR-7641/HIF-1α, which was a possible new way for targeting breast cancer.
Collapse
Affiliation(s)
- Yonglei Liu
- Research Center, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanfei Yang
- Research Center, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Jianfang Xie
- Research Center, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China. .,Research Center, Zhongshan Hospital, Fudan University, Shanghai, China. .,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Feng Li
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China. .,Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Ashrafizadeh M, Yaribeygi H, Sahebkar A. Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways. Anticancer Agents Med Chem 2021; 20:667-677. [PMID: 32013836 DOI: 10.2174/1871520620666200203143803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
Abstract
There are concerns about the increased incidence of cancer both in developing and developed countries. In spite of recent progress in cancer therapy, this disease is still one of the leading causes of death worldwide. Consequently, there have been rigorous attempts to improve cancer therapy by looking at nature as a rich source of naturally occurring anti-tumor drugs. Curcumin is a well-known plant-derived polyphenol found in turmeric. This compound has numerous pharmacological effects such as antioxidant, anti-inflammatory, antidiabetic and anti-tumor properties. Curcumin is capable of suppressing the growth of a variety of cancer cells including those of bladder cancer. Given the involvement of various signaling pathways such as PI3K, Akt, mTOR and VEGF in the progression and malignancy of bladder cancer, and considering the potential of curcumin in targeting signaling pathways, it seems that curcumin can be considered as a promising candidate in bladder cancer therapy. In the present review, we describe the molecular signaling pathways through which curcumin inhibits invasion and metastasis of bladder cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. Targeting microRNAs by curcumin: implication for cancer therapy. Crit Rev Food Sci Nutr 2021; 62:7718-7729. [PMID: 33905266 DOI: 10.1080/10408398.2021.1916876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In spite of all the investigations in the past 20 years that established a great body of knowledge in cancer therapy, utilizing some elderly methods such as plant compound administration might still be useful. Curcumin is a bioactive polyphenol, which has many anticancer properties but its capability in modulating miRNA expression has opened new doors in the field of cancer-targeted therapy. MiRNAs are a class of small noncoding RNAs that are able to regulate gene expression and signaling. In addition, some other effects of these RNAs such as modulating cell differentiation and regulation of cell cycle have made miRNAs great candidates for personalized cancer treatment. In this review, we try to find some answers to the questions on how curcumin exerts its impacts on cancer hallmarks through miRNAs and whether chemotherapy can be replaced by this beneficial plant compound.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Pourhanifeh MH, Mottaghi R, Razavi ZS, Shafiee A, Hajighadimi S, Mirzaei H. Therapeutic Applications of Curcumin and its Novel Formulations in the Treatment of Bladder Cancer: A Review of Current Evidence. Anticancer Agents Med Chem 2021; 21:587-596. [PMID: 32767956 DOI: 10.2174/1871520620666200807223832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/26/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Bladder cancer, a life-threatening serious disease, is responsible for thousands of cancer-associated deaths worldwide. Similar to other malignancies, standard treatments of bladder cancer, such as Chemoradiotherapy, are not efficient enough in the affected patients. It means that, according to recent reports in the case of life quality as well as the survival time of bladder cancer patients, there is a critical requirement for exploring effective treatments. Recently, numerous investigations have been carried out to search for appropriate complementary treatments or adjuvants for bladder cancer therapy. Curcumin, a phenolic component with a wide spectrum of biological activities, has recently been introduced as a potential anti-cancer agent. It has been shown that this agent exerts its therapeutic effects via targeting a wide range of cellular and molecular pathways involved in bladder cancer. Herein, the current data on curcumin therapy for bladder cancer are summarized.
Collapse
Affiliation(s)
| | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra S Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
26
|
Shen S, Song Y, Zhao B, Xu Y, Ren X, Zhou Y, Sun Q. Cancer-derived exosomal miR-7641 promotes breast cancer progression and metastasis. Cell Commun Signal 2021; 19:20. [PMID: 33618729 PMCID: PMC7898766 DOI: 10.1186/s12964-020-00700-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intercellular communication is crucial for breast cancer progression and metastasis. However, the role of cancer-derived exosomes and their crucial microRNA (miRNA) cargoes mediating intercellular communication requires further investigation. METHODS Cancer-derived exosomes were isolated using differential centrifugation and differentially expressed miRNAs were determined by microarrays and qRT-PCR analysis. Cell proliferation, wound-healing, Transwell invasion, and tumor xenograft assays were used for functional research. Plasma exosomal RNA was isolated to verify its role as a prognostic biomarker. RESULTS We found that the tumor-promoting capacity of the exosomes was positively related to their cells of origin. MiR-7641 was identified to be the most differentially expressed miRNA, both at endogenous and secretory levels in high-metastatic cancer cells. MiR-7641 could promote tumor cell progression and metastasis, and that these functions of miR-7641 could alter recipient cells via transportation of exosomes. Additionally, exosomal miR-7641 could promote tumor growth in vivo; and its levels were significantly elevated in the plasma of patients with distant metastasis. Bioinformatics analysis has suggested that miR-7641 is correlated with breast cancer survival, and several important cellular and biological processes are closely targeted by miR-7641. CONCLUSION The findings indicate miR-7641 to be an important component of the cancer exosomes in promoting tumor progression and metastasis via intercellular communication. Additionally, exosomal miR-7641 may serve as a promising non-invasive diagnostic biomarker and potential targetable candidate in breast cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Songjie Shen
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Yu Song
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Bin Zhao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Yali Xu
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yidong Zhou
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Qiang Sun
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
27
|
Jiang Q, Lei YH, Krishnadath DC, Zhu BY, Zhou XW. Curcumin regulates EZH2/Wnt/β-Catenin pathway in the mandible and femur of ovariectomized osteoporosis rats. Kaohsiung J Med Sci 2021; 37:513-519. [PMID: 33501725 DOI: 10.1002/kjm2.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/28/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022] Open
Abstract
Osteoporosis (OP) behaves in different manners in different parts of the skeleton. This study aims to investigate the effects of curcumin on bone mass of the mandibular and femur from ovariectomized OP rats and to validate whether enhancer of zeste homolog 2 (EZH2)/Wnt/β-Catenin pathway is involved in this process. Curcumin was administered intragastrically into ovariectomized rats for 12 weeks. The bone parameters and the morphology of the trabecular bone of the left mandible and left femur were assessed by micro-computed tomography assay. Morphological changes of the left mandible and left femur were evaluated by hematoxylin and eosin staining. The mRNA levels of EZH2, β-Catenin, and Runx2 in the right mandible and right femur were examined by quantitative real-time polymerase chain reaction. Immunohistochemistry was performed to assess EZH2 expression. Both the mandible and femur exhibited OP-like changes in ovariectomized rats, while the mandible bone resorption was less than the femur bone resorption. Curcumin intragastric administration improved bone microstructure and promoted bone formation in the mandible and femur. Curcumin inhibited EZH2 mRNA level and induced that of β-Catenin and Runx2 in the mandible and femur. Collectively, curcumin exerts protective effects against OP, possibly by regulating the EZH2/Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Hua Lei
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Dewi Chrystal Krishnadath
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Bing-Yu Zhu
- Department of Stomatology, Ningbo Yinzhou People's Hospital, Ningbo, China
| | - Xiong-Wen Zhou
- Department of Prosthodontics, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Khan K, Quispe C, Javed Z, Iqbal MJ, Sadia H, Raza S, Irshad A, Salehi B, Reiner Ž, Sharifi-Rad J. Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer. Cancer Cell Int 2020; 20:560. [PMID: 33292283 PMCID: PMC7685642 DOI: 10.1186/s12935-020-01660-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a leading cause of death among urothelial malignancies that more commonly affect male population. Poor prognosis and resistance to chemotherapy are the two most important characteristics of this disease. PI3K/Akt/mTOR signaling pathway has been considered pivotal in the regulation of proliferation, migration, invasiveness, and metastasis. Deregulation of PI3K/Akt/mTOR signaling has been found in 40% of bladder cancers. Several microRNAs (miRNAs) have been reported to interact with the PI3K/Akt/mTOR signaling pathway with a different possible role in proliferation and apoptosis in bladder cancer. Thus, miRNAs can be used as potential biomarkers for BC. Natural compounds have been in the spotlight for the past decade due to their effective anti-proliferative capabilities. However, little is known of its possible effects in bladder cancer. The aim of this review is to discuss the interplay between PI3K/Akt/mTOR, miRNAs, and natural compounds and emphasize the importance of miRNAs as biomarkers and resveratrol, curcumin and paclitaxel as a possible therapeutic approach against bladder cancer.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile
| | - Zeeshan Javed
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA Lahore Pakistan, Lahore, Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Punjab, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, BUITMS, Quetta, Pakistan
| | - Shahid Raza
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA Lahore Pakistan, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
30
|
Zhang B, Tian L, Xie J, Chen G, Wang F. Targeting miRNAs by natural products: A new way for cancer therapy. Biomed Pharmacother 2020; 130:110546. [PMID: 32721631 DOI: 10.1016/j.biopha.2020.110546] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression through mRNA degradation or translation inhibition. MiRNAs play important roles in a variety of biological processes, and dysregulation of miRNA expression is highly associated with cancer development. Individual miRNA regulates multiple gene expressions, enabling them to regulate multiple cellular signaling pathways simultaneously. Hence, miRNAs could be served as cancer biomarkers for diagnosis and prognosis, and also therapeutic targets. Recently, more and more evidences showed that natural products such as paclitaxel, curcumin, resveratrol, genistein or epigallocatechin-3-gallate exert their anti-proliferative and/or pro-apoptotic effects through regulating one or more miRNAs, leading to the inhibition of cancer cell growth, induction of apoptosis or enhancement of conventional cancer therapeutic efficacy. Herein, we outlined the recent advances in the regulation of miRNAs expression by the natural products and highlight the importance of these natural drugs as a potential strategy in cancer treatment. This review will help us better understand how natural products modulate miRNAs and contribute to the development of effective and safe natural drugs for therapeutic purposes.
Collapse
Affiliation(s)
- Beilei Zhang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Ling Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Jinrong Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China.
| |
Collapse
|
31
|
Role of Curcumin and (-)-Epigallocatechin-3- O-Gallate in Bladder Cancer Treatment: A Review. Cancers (Basel) 2020; 12:cancers12071801. [PMID: 32635637 PMCID: PMC7408736 DOI: 10.3390/cancers12071801] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of bladder cancer (BC) is increasing, and although current therapeutic approaches are effective in many cases, recurrence of BC is common. Therefore, it seems necessary to search not only for novel therapeutic approaches, but also for new therapeutic agents. Natural polyphenols, such as curcumin (CUR) and epigallocatechin gallate (EGCG), possess remarkable antitumor activity. Their biochemical mechanisms of action include regulation of signaling pathways, modeling of proteins involved in apoptosis and cell cycle inhibition, angiogenesis, and the proliferation, migration and adhesion of tumor cells. Both compounds also present antioxidant, anti-inflammatory, antibacterial and antiviral properties. CUR has been considered a promising candidate for the treatment of cystic fibrosis, Alzheimer's disease or malaria, whereas EGCG can play a supportive role in the treatment of obesity, metabolic and neurodegenerative diseases. The review summarizes the latest research on the role of CUR and EGCG in the treatment of BC. In particular, the effects of CUR and EGCG, and their prospects for use in BC therapy, their inhibition of cancer development and their prevention of multidrug resistance, are described. The literature's data indicate the possibility of achieving the effect of synergism of both polyphenols in BC therapy, which has been observed so far in the treatment of ovarian, breast and prostate cancer.
Collapse
|
32
|
Rutz J, Janicova A, Woidacki K, Chun FKH, Blaheta RA, Relja B. Curcumin-A Viable Agent for Better Bladder Cancer Treatment. Int J Mol Sci 2020; 21:ijms21113761. [PMID: 32466578 PMCID: PMC7312715 DOI: 10.3390/ijms21113761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Although the therapeutic armamentarium for bladder cancer has considerably widened in the last few years, severe side effects and the development of resistance hamper long-term treatment success. Thus, patients turn to natural plant products as alternative or complementary therapeutic options. One of these is curcumin, the principal component of Curcuma longa that has shown chemopreventive effects in experimental cancer models. Clinical and preclinical studies point to its role as a chemosensitizer, and it has been shown to protect organs from toxicity induced by chemotherapy. These properties indicate that curcumin could hold promise as a candidate for additive cancer treatment. This review evaluates the relevance of curcumin as an integral part of therapy for bladder cancer.
Collapse
Affiliation(s)
- Jochen Rutz
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
| | - Andrea Janicova
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| | - Katja Woidacki
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
| | - Roman A. Blaheta
- Department of Urology, Goethe-University, 60438 Frankfurt am Main, Germany; (J.R.); (F.K.-H.C.)
- Correspondence:
| | - Borna Relja
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, 39106 Magdeburg, Germany; (A.J.); (K.W.); (B.R.)
| |
Collapse
|
33
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
34
|
Zhang P, Fang J, Zhang J, Ding S, Gan D. Curcumin Inhibited Podocyte Cell Apoptosis and Accelerated Cell Autophagy in Diabetic Nephropathy via Regulating Beclin1/UVRAG/Bcl2. Diabetes Metab Syndr Obes 2020; 13:641-652. [PMID: 32184643 PMCID: PMC7060797 DOI: 10.2147/dmso.s237451] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Curcumin has various biological properties including being anti-inflammatory and antidiabetic. Podocyte apoptosis and autophagy dysfunction have been found to be responsible for the development of diabetic nephropathy (DN). Thus, the aim of the study was to investigate the effects of curcumin on the podocyte apoptosis and autophagy in DN and clarify its potential mechanisms. METHODS The mice with DN induced by injection of streptozotocin were treated with curcumin by gavage at a dose of 200 mg/kg/day for 8 weeks. The serum lipid levels were detected by total cholesterol (TC) and triglyceride (TG) kits at different time points. Renal damage was assessed by detecting urine albumin, serum creatinine (Scr), HE staining and PAS staining. The renal impairment was detected by immunohistochemical staining and TUNEL staining. Western blot assay tested the expression of autophagy-related and apoptotic-related proteins in vivo and vitro. The viabilities and apoptosis of MPC5 cells exposed to high glucose (HG) or curcumin were respectively detected by CCK-8 assay and flow cytometry. RESULTS The results showed that curcumin significantly decreased the progress of DN possibly via increasing autophagy and inhibiting apoptosis of renal cell in DN mice. Besides, podocyte marker proteins (podocalyxin and nephrin) were markedly increased in DN mice by curcumin treatment. The autophagy-related proteins LC3, p62, Beclin1, UVRAG and ATG5 were significantly affected in DN mice by curcumin, along with reducing expression of pro-apoptotic protein Bax and caspase-3 and increasing anti-apoptotic protein Bcl-2. In vitro, curcumin increased the viabilities and inhibited apoptosis of MPC5 cells exposed to high glucose (HG). In addition, the podocyte autophagy was enhanced partly via regulating beclin1/UVRAG. DISCUSSION Together, the results showed that curcumin inhibited podocyte apoptosis and accelerated cell autophagy via regulating Beclin1/UVRAG/Bcl2. Thus, the study showed that curcumin exerted significantly protective effects in DN.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Jie Fang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Jianping Zhang
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Shuxia Ding
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| | - Dongmei Gan
- Department of Endocrinology, Ningbo Women and Children’s Hospital, Ningbo City, Zhejiang Province, People’s Republic of China
| |
Collapse
|
35
|
Chen L, Cao P, Huang C, Wu Q, Chen S, Chen F. Serum exosomal miR-7977 as a novel biomarker for lung adenocarcinoma. J Cell Biochem 2020; 121:3382-3391. [PMID: 31898829 DOI: 10.1002/jcb.29612] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
Exosomal microRNAs (miRNAs) have great potentials as a novel biomarker to predict lung cancer. We applied a miRNA microarray to identify aberrantly expressed serum exosomal miRNAs as candidate biomarkers for patients with lung adenocarcinoma (LUAD). Compared with the normal control, 31 exosomal miRNAs were found to be upregulated and 29 exosomal miRNAs were downregulated in the serum of LUAD respectively. Then, 10 dysregulated exosomal miRNAs expression levels in serum were further validated via qRT-polymerase chain reaction. Notably, exosomal miR-7977 was highest expressed and miR-98-3p was lowest expressed in the patients with LUAD, and exosomal miR-7977 showed significant correlation with the N stage and TNM stage with patients with LUAD (P < .05). Receiver operating characteristic curve showed that the abundant level of exosomal miR-7977 may predict LUAD with an area of under the curve (AUC) of 0.787. In comparison with exosomal miR-7977, exosomal miR-98-3p had a smaller area (0.719). The combination of exosomal miR-7977 and miR-98-3p improved the AUC to 0.816. Furthermore, in vitro experiments revealed that inhibition of miR-7977 enhanced the proliferation, invasion, and inhibited apoptosis in A549 cells, the opposite results were performed by miR-7977 mimics. In conclusion, exosomal miR-7977 was identified as a novel biomarker for patients with LUAD and may play as a tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China.,Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Pengju Cao
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China.,Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chunli Huang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qiumei Wu
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shaoting Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China.,Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China.,Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Yu Y, Sun J, Wang R, Liu J, Wang P, Wang C. Curcumin Management of Myocardial Fibrosis and its Mechanisms of Action: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1675-1710. [PMID: 31786946 DOI: 10.1142/s0192415x19500861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial fibrosis is implicated as a leading risk factor for heart failure, arrhythmia, and sudden death after cardiac injury, as the excessive interstitial extracellular matrix impedes heart contraction and electrical conduction. Complicated mechanisms involving oxidative stress, pro-inflammatory cytokines, chemokine families, NLRP3 inflammasomes, growth factors, and non-coding RNAs participate in cardiac fibrogenesis and make it difficult to designate specific and effective therapies. Oriental herbs have been popular for thousands of years in the health care of Asian residents, due to their multi-targeted, multi-faceted approaches and their multi-functional effects in fighting difficult and complicated diseases, including cardiovascular disorders such as myocardial fibrosis. Curcumin, a natural polyphenol and yellow pigment obtained from the spice turmeric, was found to have strong anti-oxidant and anti-inflammatory properties. Increasing evidence has shown that curcumin can be used to prevent and treat myocardial fibrosis, when the myocardium suffers pathological pro-fibrotic changes in vivo and in vitro. The present review focuses on recent studies elucidating the mechanisms of curcumin in treating different pathologic conditions, including ischemia, hypoxia/reoxygenation, pressure or volume overload, and hyperglycemia or high-fat-induced cardiac fibrosis. Novel analogs such as C66, B2BrBC, Y20, and J17 have been designed to maximize the therapeutic potentials of curcumin. These optimized curcumin analogs with improved bioavailability and pharmacokinetic profiles need to be clinically verified before curcumin could be recommended for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Yonghui Yu
- Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Jinghui Sun
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Ru Wang
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Jiangang Liu
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Peili Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Chenglong Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| |
Collapse
|
37
|
Samec M, Liskova A, Kubatka P, Uramova S, Zubor P, Samuel SM, Zulli A, Pec M, Bielik T, Biringer K, Kudela E, Benacka J, Adamek M, Rodrigo L, Ciccocioppo R, Kwon TK, Baranenko D, Kruzliak P, Büsselberg D. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression. J Cancer Res Clin Oncol 2019; 145:1665-1679. [PMID: 31127362 DOI: 10.1007/s00432-019-02940-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Phytochemicals are naturally occurring plant-derived compounds and some of them have the potential to serve as anticancer drugs. Based on recent evidence, aberrantly regulated expression of microRNAs (miRNAs) is closely associated with malignancy. MicroRNAs are characterized as small non-coding RNAs functioning as posttranscriptional regulators of gene expression. Accordingly, miRNAs regulate various target genes, some of which are involved in the process of carcinogenesis. RESULTS This comprehensive review emphasizes the anticancer potential of phytochemicals, either isolated or in combination, mediated by miRNAs. The ability to modulate the expression of miRNAs demonstrates their importance as regulators of tumorigenesis. Phytochemicals as anticancer agents targeting miRNAs are widely studied in preclinical in vitro and in vivo research. Unfortunately, their anticancer efficacy in targeting miRNAs is less investigated in clinical research. CONCLUSIONS Significant anticancer properties of phytochemicals as regulators of miRNA expression have been proven, but more studies investigating their clinical relevance are needed.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovak Republic.
- Division of Oncology, Department of Experimental Carcinogenesis, Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Sona Uramova
- Division of Oncology, Department of Experimental Carcinogenesis, Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 03601, Martin, Slovak Republic
| | - Tibor Bielik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jozef Benacka
- Faculty of Health Science and Social Work, Trnava University, Trnava, Slovakia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Luis Rodrigo
- Faculty of Medicine, Central University Hospital of Asturias (HUCA), University of Oviedo, Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi, University of Verona, Verona, Italy
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg, Russian Federation
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
- Department of Internal Medicine, Brothers of Mercy Hospital, Polni 553/3, 63900, Brno, Czech Republic.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
38
|
Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, Zhou M, Wang K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int J Biol Sci 2019; 15:1200-1214. [PMID: 31223280 PMCID: PMC6567807 DOI: 10.7150/ijbs.33710] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Despite significant progressions in treatment modalities over the last decade, either cancer incidence or mortality is continuously on the rise throughout the world. Current anticancer agents display limited efficacy, accompanied by severe side effects. In order to improve therapeutic outcomes in patients with cancer, it is crucial to identify novel, highly efficacious pharmacological agents. Curcumin, a hydrophobic polyphenol extracted from turmeric, has gained increasing attention due to its powerful anticancer properties. Curcumin can inhibit the growth, invasion and metastasis of various cancers. The anticancer mechanisms of curcumin have been extensively studied. The anticancer effects of curcumin are mainly mediated through its regulation of multiple cellular signaling pathways, including Wnt/β-catenin, PI3K/Akt, JAK/STAT, MAPK, p53 and NF-ĸB signaling pathways. Moreover, curcumin also orchestrates the expression and activity of oncogenic and tumor-suppressive miRNAs. In this review, we summarized the regulation of these signaling pathways by curcumin in different cancers. We also discussed the modulatory function of curcumin in the downregulation of oncogenic miRNAs and the upregulation of tumor-suppressive miRNAs. An in-depth understanding of the anticancer mechanisms of curcumin will be helpful for developing this promising compound as a therapeutic agent in clinical management of cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan 430071, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Meng Zhou
- Department of Dermatology, Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
39
|
Li Y, Tian L, Sun D, Yin D. Curcumin ameliorates atherosclerosis through upregulation of miR-126. J Cell Physiol 2019; 234:21049-21059. [PMID: 31016760 DOI: 10.1002/jcp.28708] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022]
Abstract
The potential usage of curcumin in diverse human diseases has been widely studied, including arteriosclerosis (AS). This study focused on investigating the relationship between curcumin and AS-associated microRNA, which may provide a better understanding of curcumin in a different mechanism. Human microvascular endothelial HMEC-1 cells were treated by curcumin alone or oxidized low-density lipoprotein (ox-LDL) plus curcumin, after which the following parameters were analyzed: cell viability, migration, and the expression of AS-associated factors. The regulatory effects of curcumin on miR-126 and signaling pathways involved in AS were then studied. Further, an animal model of AS was stimulated by feeding rabbits with 1% cholesterol diet. The effects of curcumin on the animal model were explored. We found that curcumin treatment significantly reduced HMEC-1 cells viability, migration, and the protein levels of MMP-2, MMP-9, and vascular endothelial growth factor (VEGF) in the presence or absence of ox-LDL. Meanwhile, the expression of VEGFR1 and VEGFR2 was repressed by curcumin. miR-126 was upregulated by curcumin. The abovementioned effects of curcumin on HMEC-1 cells were all attenuated when miR-126 was silenced. And also, VEGF was a target gene of miR-126, and curcumin could inhibit the activation of PI3K/AKT JAK2/STAT5 signaling pathways via miR-126. The effects of curcumin and its regulation on miR-126 and VEGF were confirmed in the animal model of AS. To sum up, curcumin exerted potent anti-AS property possibly via upregulating miR-126 and thereby inhibiting PI3K/AKT and JAK2/STAT5 signaling pathways.
Collapse
Affiliation(s)
- Yezhou Li
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Leilei Tian
- Operating Room, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dajun Sun
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|