1
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
2
|
K Amma I, Ingrole RSJ, Venkatesa Prabhu GK, Dominquez R, Kong D, Mangalara SCH, Mckenna GB, Gill HS. Di-Tyrosine Cross-Linking of Elastin-Like Polypeptides through Ruthenium Photoreaction To Form Scaffolds: Fine Tuning Mechanical Properties and Improving Cytocompatibility. Biomacromolecules 2025; 26:1580-1594. [PMID: 39968939 DOI: 10.1021/acs.biomac.4c01376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Ensuring that the mechanical properties of tissue engineering scaffolds align with those of the target tissues is crucial for their successful integration and functional performance. Tyrosine-tyrosine cross-links are found in nature in numerous proteins including resilin that exhibit enhanced toughness and energy storage capacity. Herein, we investigated the potential of tuning the mechanical properties of scaffolds made from elastin-like polypeptides (ELPs) containing tyrosine residues. Ruthenium-based photoreaction was used to form tyrosine cross-links. To enhance the cytocompatibility of the ELP scaffold, a continuous mode of washing was developed to remove residual ruthenium from the scaffolds. The continuous mode of washing was significantly superior in removing ruthenium and did so in a significantly shorter time as compared to batch washing and the conventional semibatch washing (also called dialysis washing). The range of storage moduli of the fabricated scaffolds spanned tens of Pa to hundreds of kPa. Human fibroblast cells were found to grow in the scaffolds and proliferate. Overall, this work offers a rationale for further developing tyrosine cross-linked ELPs for a broad range of tissue engineering applications.
Collapse
Affiliation(s)
- Iyeswaria K Amma
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ghanesh Kesav Venkatesa Prabhu
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Raul Dominquez
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Dejie Kong
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Gregory B Mckenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Luo S, Yin J, Zhang J, Li P, Wen T, Li K, Tang J, Wang X, Li A, Chen L. Genetically Predicted Leucine Level Mediates Association Between CD4/CD8br T Lymphocytes and Insomnia. Cell Mol Neurobiol 2025; 45:15. [PMID: 39841266 PMCID: PMC11754360 DOI: 10.1007/s10571-025-01533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Immune and metabolic factors play an important role in the onset and development of insomnia. This study aimed to investigate the causal relationship between insomnia and immune cells and metabolites. Data for 731 immune cell phenotypes, 1400 metabolites, and insomnia in this study were obtained from the GWAS open-access database. Two-way Mendelian randomization was used to (1) detect the causal relationship between immune cells and insomnia and (2) identify potential mediating metabolites. Mendelian randomization analysis identified eight immune cell phenotypes with a causal relationship to insomnia, and two immune cell phenotypes were protective factors for insomnia, namely CD8br %T cells and CD80 on CD62L + myeloid dendritic cells. The other six immune cell phenotypes were risk factors for insomnia, i.e., CD4/CD8br, CD16-CD56 on NKT, CCR2 on myeloid dendritic cells, CD40 on monocytes, CD38 on CD3-CD19-, and CD25 on CD45RA + CD4 not Treg. Further Mendelian randomization revealed 11 metabolites that were causally related to insomnia. Five metabolites were protective factors for insomnia, i.e., 3-hydroxy-3-methylglutarate, cholate, dodecanedioate, N-formylmethionine, and x-26054. Six metabolites were risk factors for insomnia, 3-amino-2-piperidone, 6-oxopiperdine-2-carboxylate, caffeine to theophylline ratio, leucine, maltose, and x-24736. In addition, our analysis showed that leucine mediated the association between CD4/CD8br and insomnia. From genetic information, we confirmed the causal relationship between insomnia, eight immune cell phenotypes, and eleven metabolite levels. Notably, we found a relationship between leucine-mediated CD4/CD8br and insomnia, providing evidence supporting the causal relationship between immune cell and insomnia, with plasma metabolites serving as mediators.
Collapse
Affiliation(s)
- Sumei Luo
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Jianyin Yin
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Jie Zhang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Pan Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Tao Wen
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Ke Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Jing Tang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Xiaohong Wang
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Aiyuan Li
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Liang Chen
- Department of Anesthesiology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China.
| |
Collapse
|
4
|
Lobanov MY, Surin AA, Galzitskaya OV. What Can Be Learned by Knowing Only the Amino Acid Composition of Proteins? Int J Mol Sci 2024; 25:13680. [PMID: 39769440 PMCID: PMC11676433 DOI: 10.3390/ijms252413680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The amino acid composition of proteins depends on many factors. It varies in organisms that are distant in taxonomic position. The amino acid composition of proteins depends on the localization of proteins in cells and tissues and the structure of proteins. The question arises: is it possible to separate different proteomes using only the amino acid composition of proteins? Is it possible to determine, considering only its amino acid composition, to what structural class the protein under study will belong? We have developed a method and a measure that maximally separate two sets of proteins. As a result, we assign each protein an R-value, positive values of which are more characteristic of the first set, and negative ones-of the second. By studying the distribution of R in two sets, we can determine how much these sets differ in composition. Also, when examining a new protein, we can determine if it is more similar to the first set or the second. In this paper, we show that using only amino acid composition, it is possible to separate sets of proteins belonging to different organisms, as well as proteins that differ in function or structure. In all cases, we assign to proteins a measure R that maximally separates the studied sets. This approach can be further used to annotate proteins with unknown functions.
Collapse
Affiliation(s)
- Michail Yu. Lobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Alexey A. Surin
- Faculty of Informatics and Computer Engineering, MIREA—Russian Technological University, 119454 Moscow, Russia;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
5
|
Li H, Qian X, Mohanram H, Han X, Qi H, Zou G, Yuan F, Miserez A, Liu T, Yang Q, Gao H, Yu J. Self-assembly of peptide nanocapsules by a solvent concentration gradient. NATURE NANOTECHNOLOGY 2024; 19:1141-1149. [PMID: 38671050 DOI: 10.1038/s41565-024-01654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Biological systems can create materials with intricate structures and specialized functions. In comparison, precise control of structures in human-made materials has been challenging. Here we report on insect cuticle peptides that spontaneously form nanocapsules through a single-step solvent exchange process, where the concentration gradient resulting from the mixing of water and acetone drives the localization and self-assembly of the peptides into hollow nanocapsules. The underlying driving force is found to be the intrinsic affinity of the peptides for a particular solvent concentration, while the diffusion of water and acetone creates a gradient interface that triggers peptide localization and self-assembly. This gradient-mediated self-assembly offers a transformative pathway towards simple generation of drug delivery systems based on peptide nanocapsules.
Collapse
Affiliation(s)
- Haopeng Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xuliang Qian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Harini Mohanram
- School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore, Singapore
| | - Xiao Han
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Huitang Qi
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Guijin Zou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- Institute of High Performance Computing, A*STAR, Singapore, Singapore
| | - Fenghou Yuan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Ali Miserez
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tian Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute of High Performance Computing, A*STAR, Singapore, Singapore.
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Huang Y, Mao Z, Zhang Y, Zhao J, Luan X, Wu K, Yun L, Yu J, Shi Z, Liao X, Ma H. Omics data analysis reveals the system-level constraint on cellular amino acid composition. Synth Syst Biotechnol 2024; 9:304-311. [PMID: 38510205 PMCID: PMC10951587 DOI: 10.1016/j.synbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins play a pivotal role in coordinating the functions of organisms, essentially governing their traits, as the dynamic arrangement of diverse amino acids leads to a multitude of folded configurations within peptide chains. Despite dynamic changes in amino acid composition of an individual protein (referred to as AAP) and great variance in protein expression levels under different conditions, our study, utilizing transcriptomics data from four model organisms uncovers surprising stability in the overall amino acid composition of the total cellular proteins (referred to as AACell). Although this value may vary between different species, we observed no significant differences among distinct strains of the same species. This indicates that organisms enforce system-level constraints to maintain a consistent AACell, even amid fluctuations in AAP and protein expression. Further exploration of this phenomenon promises insights into the intricate mechanisms orchestrating cellular protein expression and adaptation to varying environmental challenges.
Collapse
Affiliation(s)
- Yuanyuan Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhitao Mao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yue Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jianxiao Zhao
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Xiaodi Luan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Ke Wu
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Lili Yun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, 300308, China
| | - Jing Yu
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhenkun Shi
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaoping Liao
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
7
|
Viegas RG, Martins IBS, Leite VBP. Understanding the Energy Landscape of Intrinsically Disordered Protein Ensembles. J Chem Inf Model 2024; 64:4149-4157. [PMID: 38713459 DOI: 10.1021/acs.jcim.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A substantial portion of various organisms' proteomes comprises intrinsically disordered proteins (IDPs) that lack a defined three-dimensional structure. These IDPs exhibit a diverse array of conformations, displaying remarkable spatiotemporal heterogeneity and exceptional conformational flexibility. Characterizing the structure or structural ensemble of IDPs presents significant conceptual and methodological challenges owing to the absence of a well-defined native structure. While databases such as the Protein Ensemble Database (PED) provide IDP ensembles obtained through a combination of experimental data and molecular modeling, the absence of reaction coordinates poses challenges in comprehensively understanding pertinent aspects of the system. In this study, we leverage the energy landscape visualization method (JCTC, 6482, 2019) to scrutinize four IDP ensembles sourced from PED. ELViM, a methodology that circumvents the need for a priori reaction coordinates, aids in analyzing the ensembles. The specific IDP ensembles investigated are as follows: two fragments of nucleoporin (NUL: 884-993 and NUS: 1313-1390), yeast sic 1 N-terminal (1-90), and the N-terminal SH3 domain of Drk (1-59). Utilizing ELViM enables the comprehensive validation of ensembles, facilitating the detection of potential inconsistencies in the sampling process. Additionally, it allows for identifying and characterizing the most prevalent conformations within an ensemble. Moreover, ELViM facilitates the comparative analysis of ensembles obtained under diverse conditions, thereby providing a powerful tool for investigating the functional mechanisms of IDPs.
Collapse
Affiliation(s)
- Rafael G Viegas
- Federal Institute of Education, Science and Technology of São Paulo (IFSP), Catanduva, São Paulo 15.808-305, Brazil
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Ingrid B S Martins
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
8
|
Bohl V, Hollmann NM, Melzer T, Katikaridis P, Meins L, Simon B, Flemming D, Sinning I, Hennig J, Mogk A. The Listeria monocytogenes persistence factor ClpL is a potent stand-alone disaggregase. eLife 2024; 12:RP92746. [PMID: 38598269 PMCID: PMC11006417 DOI: 10.7554/elife.92746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.
Collapse
Affiliation(s)
- Valentin Bohl
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Nele Merret Hollmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Tobias Melzer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Lena Meins
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
- Chair of Biochemistry IV, Biophysical Chemistry, University of BayreuthBayreuthGermany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| |
Collapse
|
9
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
10
|
Kinateder T, Mayer C, Nazet J, Sterner R. Improving enzyme functional annotation by integrating in vitro and in silico approaches: The example of histidinol phosphate phosphatases. Protein Sci 2024; 33:e4899. [PMID: 38284491 PMCID: PMC10804674 DOI: 10.1002/pro.4899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024]
Abstract
Advances in sequencing technologies have led to a rapid growth of public protein sequence databases, whereby the fraction of proteins with experimentally verified function continuously decreases. This problem is currently addressed by automated functional annotations with computational tools, which however lack the accuracy of experimental approaches and are susceptible to error propagation. Here, we present an approach that combines the efficiency of functional annotation by in silico methods with the rigor of enzyme characterization in vitro. First, a thorough experimental analysis of a representative enzyme of a group of homologues is performed which includes a focused alanine scan of the active site to determine a fingerprint of function-determining residues. In a second step, this fingerprint is used in combination with a sequence similarity network to identify putative isofunctional enzymes among the homologues. Using this approach in a proof-of-principle study, homologues of the histidinol phosphate phosphatase (HolPase) from Pseudomonas aeruginosa, many of which were annotated as phosphoserine phosphatases, were predicted to be HolPases. This functional annotation of the homologues was verified by in vitro testing of several representatives and an analysis of the occurrence of annotated HolPases in the corresponding phylogenetic groups. Moreover, the application of the same approach to the homologues of the HolPase from the archaeon Nitrosopumilus maritimus, which is not related to the HolPase from P. aeruginosa and was newly discovered in the course of this work, led to the annotation of the putative HolPase from various archaeal species.
Collapse
Affiliation(s)
- Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Carina Mayer
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Julian Nazet
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry & Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Carlucci R, Lisa MN, Labadie GR. 1,2,3-Triazoles in Biomolecular Crystallography: A Geometrical Data-Mining Approach. J Med Chem 2023; 66:14377-14390. [PMID: 37903297 DOI: 10.1021/acs.jmedchem.3c01097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The 1,2,3-triazole scaffold has become very attractive to identify new chemical entities in drug discovery projects. Despite the widespread use of click chemistry to synthesize numerous 123Ts, there are few drugs on the market that incorporate this scaffold as a substructure. To investigate the true potential of 123Ts in protein-ligand interactions, we examined the noncovalent interactions between the 1,2,3-triazole ring and amino acids in protein-ligand cocrystals using a geometrical approach. For this purpose, we constructed a nonredundant database of 220 PDB IDs from available 123T-protein cocrystal structures. Subsequently, using the Protein Ligand Interaction Profiler web platform (PLIP), we determined whether 1,2,3-triazoles primarily act as linkers or if they can be considered interactive scaffolds. We then manually analyzed the geometrical descriptors from 333 interactions between 1,4-disubstituted 123T rings and amino acid residues in proteins. This study demonstrates that 1,2,3-triazoles exhibit diverse preferred interactions with amino acids, which contribute to protein-ligand binding.
Collapse
Affiliation(s)
- Renzo Carlucci
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
| | - María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
- Plataforma de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario 2000, ARGENTINA
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET; Suipacha 531, S2002LRK, Rosario, ARGENTINA
- Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, ARGENTINA
| |
Collapse
|
12
|
Nowakowska AW, Wojciechowski JW, Szulc N, Kotulska M. The role of tandem repeats in bacterial functional amyloids. J Struct Biol 2023; 215:108002. [PMID: 37482232 DOI: 10.1016/j.jsb.2023.108002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Repetitivity and modularity of proteins are two related notions incorporated into multiple evolutionary concepts. We discuss whether they may also be essential for functional amyloids. Amyloids are proteins that create very regular and usually highly insoluble fibrils, which are often associated with neurodegeneration. However, recent discoveries showed that amyloid structure of a protein could also be beneficial and desired, e.g., to promote cell adhesion. Functional amyloids are proteins which differ in their characteristics from pathological amyloids, so that the fibril formation could be more under control of an organism. We propose that repeats in the sequence could regulate the aggregation propensity of these proteins. The inclusion of multiple symmetric interactions, due to the presence of the repeats, could be supporting and strengthening the desirable structural properties of functional amyloids. Our results show that tandem repeats in bacterial functional amyloids have a distinct characteristic. The pattern of repeats supports the appropriate level of fibril formation and better controllability of fibril stability. The repeats tend to be more imperfect, which attenuates excessive aggregation propensity. Their desired structure and function are also reinforced by their amino acid profile. Although in the study we focused on bacterial functional amyloids, due to their importance in biofilm formation, we propose that similar mechanisms could be employed in other functional amyloids which are designed by evolution to aggregate in a desirable manner, but not necessarily in pathological amyloids.
Collapse
Affiliation(s)
- Alicja W Nowakowska
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland.
| | - Jakub W Wojciechowski
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland
| | - Natalia Szulc
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland; Wrocław University of Environmental and Life Sciences, Department of Physics and Biophysics, Poland; LPCT, CNRS, Universite de Lorraine, F-54000 Nancy, France
| | - Malgorzata Kotulska
- Wrocław University of Science and Technology, Department of Biomedical Engineering, Poland.
| |
Collapse
|
13
|
Broni E, Miller WA. Computational Analysis Predicts Correlations among Amino Acids in SARS-CoV-2 Proteomes. Biomedicines 2023; 11:512. [PMID: 36831052 PMCID: PMC9953644 DOI: 10.3390/biomedicines11020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious global challenge requiring urgent and permanent therapeutic solutions. These solutions can only be engineered if the patterns and rate of mutations of the virus can be elucidated. Predicting mutations and the structure of proteins based on these mutations have become necessary for early drug and vaccine design purposes in anticipation of future viral mutations. The amino acid composition (AAC) of proteomes and individual viral proteins provide avenues for exploitation since AACs have been previously used to predict structure, shape and evolutionary rates. Herein, the frequency of amino acid residues found in 1637 complete proteomes belonging to 11 SARS-CoV-2 variants/lineages were analyzed. Leucine is the most abundant amino acid residue in the SARS-CoV-2 with an average AAC of 9.658% while tryptophan had the least abundance of 1.11%. The AAC and ranking of lysine and glycine varied in the proteome. For some variants, glycine had higher frequency and AAC than lysine and vice versa in other variants. Tryptophan was also observed to be the most intolerant to mutation in the various proteomes for the variants used. A correlogram revealed a very strong correlation of 0.999992 between B.1.525 (Eta) and B.1.526 (Iota) variants. Furthermore, isoleucine and threonine were observed to have a very strong negative correlation of -0.912, while cysteine and isoleucine had a very strong positive correlation of 0.835 at p < 0.001. Shapiro-Wilk normality test revealed that AAC values for all the amino acid residues except methionine showed no evidence of non-normality at p < 0.05. Thus, AACs of SARS-CoV-2 variants can be predicted using probability and z-scores. AACs may be beneficial in classifying viral strains, predicting viral disease types, members of protein families, protein interactions and for diagnostic purposes. They may also be used as a feature along with other crucial factors in machine-learning based algorithms to predict viral mutations. These mutation-predicting algorithms may help in developing effective therapeutics and vaccines for SARS-CoV-2.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
14
|
Arg/Lys-containing IDRs are cryptic binding domains for ATP and nucleic acids that interplay to modulate LLPS. Commun Biol 2022; 5:1315. [PMID: 36450893 PMCID: PMC9712531 DOI: 10.1038/s42003-022-04293-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Most membrane-less organelles (MLOs) formed by LLPS contain both nucleic acids and IDR-rich proteins. Currently while IDRs are well-recognized to drive LLPS, nucleic acids are thought to exert non-specific electrostatic/salt effects. TDP-43 functions by binding RNA/ssDNA and its LLPS was characterized without nucleic acids to be driven mainly by PLD-oligomerization, which may further transit into aggregation characteristic of various neurodegenerative diseases. Here by NMR, we discovered unexpectedly for TDP-43 PLD: 1) ssDNAs drive and then dissolve LLPS by multivalently and specifically binding Arg/Lys. 2) LLPS is driven by nucleic-acid-binding coupled with PLD-oligomerization. 3) ATP and nucleic acids universally interplay in modulating LLPS by competing for binding Arg/Lys. However, the unique hydrophobic region within PLD renders LLPS to exaggerate into aggregation. The study not only unveils the first residue-resolution mechanism of the nucleic-acid-driven LLPS of TDP-43 PLD, but also decodes a general principle that not just TDP-43 PLD, all Arg/Lys-containing IDRs are cryptic nucleic-acid-binding domains that may phase separate upon binding nucleic acids. Strikingly, ATP shares a common mechanism with nucleic acids in binding IDRs, thus emerging as a universal mediator for interactions between IDRs and nucleic acids, which may underlie previously-unrecognized roles of ATP at mM in physiology and pathology.
Collapse
|
15
|
Alves R, Pazos-Gil M, Medina-Carbonero M, Sanz-Alcázar A, Delaspre F, Tamarit J. Evolution of an Iron-Detoxifying Protein: Eukaryotic and Rickettsia Frataxins Contain a Conserved Site Which Is Not Present in Their Bacterial Homologues. Int J Mol Sci 2022; 23:13151. [PMID: 36361939 PMCID: PMC9658677 DOI: 10.3390/ijms232113151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 01/07/2024] Open
Abstract
Friedreich's ataxia is a neurodegenerative disease caused by mutations in the frataxin gene. Frataxin homologues, including bacterial CyaY proteins, can be found in most species and play a fundamental role in mitochondrial iron homeostasis, either promoting iron assembly into metaloproteins or contributing to iron detoxification. While several lines of evidence suggest that eukaryotic frataxins are more effective than bacterial ones in iron detoxification, the residues involved in this gain of function are unknown. In this work, we analyze conservation of amino acid sequence and protein structure among frataxins and CyaY proteins to identify four highly conserved residue clusters and group them into potential functional clusters. Clusters 1, 2, and 4 are present in eukaryotic frataxins and bacterial CyaY proteins. Cluster 3, containing two serines, a tyrosine, and a glutamate, is only present in eukaryotic frataxins and on CyaY proteins from the Rickettsia genus. Residues from cluster 3 are blocking a small cavity of about 40 Å present in E. coli's CyaY. The function of this cluster is unknown, but we hypothesize that its tyrosine may contribute to prevent formation of reactive oxygen species during iron detoxification. This cluster provides an example of gain of function during evolution in a protein involved in iron homeostasis, as our results suggests that Cluster 3 was present in the endosymbiont ancestor of mitochondria and was conserved in eukaryotic frataxins.
Collapse
Affiliation(s)
| | | | | | | | | | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, IRBLleida, Universitat de Lleida, 25001 Lleida, Spain
| |
Collapse
|
16
|
Cortés‐Quezada M, Parada AM, Videla X, Valdés JA, Gonzalez‐Catrilelbún S, Aspée A, Nario A, Rivas‐Aravena A. Labelling fish diets with 15 N -Leucine for monitoring feed consumption and bio-distribution in Atlantic salmon. Vet Med Sci 2022; 8:1096-1103. [PMID: 35348306 PMCID: PMC9122439 DOI: 10.1002/vms3.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Feeding represents 50-70% of the cost of production in salmon farming, higher than any other animal farm. The improvement of this percentage is challenging as the food is thrown into the fish tank, there is no quantification of the amount of food that is consumed by the fish. In consequence, it is difficult to adjust the food composition making it more nutritive or promoting food consumption by fish. In this study, to investigate food consumption, bio-distribution and food residues, leucine containing 15 N (a stable isotope of nitrogen) was used to label the fish food. Atlantic salmon (Salmo salar) weighing 100-120 g were maintained in 30 L tanks at a density of 14 kg/m3 . Fishes were fed daily at 1% of the fish weight with pellet labelled with 15 N-leucine. The 15 N incorporation was determined 14 hours after the feeding in all the fish organs. Results showed that 14 hours after the administration of a single dose of labelled food to Atlantic salmon enables the detection of the tracer in the whole organism allowing determining the food consumption. Through the analysis of nitrogen use efficiency (NUE), we showed that the trunk, pyloric caeca and head incorporate the highest level of the marker (72.7, 8.7 and 5.7%, respectively). This methodology would permit monitoring feeding to minimize food loss, improve administration methodologies or select the preferred foods for the fish, among others to reduce production costs.
Collapse
Affiliation(s)
| | - Ana María Parada
- Departamento de Tecnologías NuclearesComisión Chilena de Energía NuclearLas CondesChile
| | - Ximena Videla
- Departamento de Tecnologías NuclearesComisión Chilena de Energía NuclearLas CondesChile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la VidaLaboratorio de Biotecnología MolecularUniversidad Andrés BelloSantiagoChile
| | | | - Alexis Aspée
- Facultad de Química y BiologíaDepartamento de Ciencias del AmbienteUniversidad de Santiago de ChileSantiagoChile
| | - Adriana Nario
- Departamento de Tecnologías NuclearesComisión Chilena de Energía NuclearLas CondesChile
| | | |
Collapse
|
17
|
Kulkarni P, Bhattacharya S, Achuthan S, Behal A, Jolly MK, Kotnala S, Mohanty A, Rangarajan G, Salgia R, Uversky V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem Rev 2022; 122:6614-6633. [PMID: 35170314 PMCID: PMC9250291 DOI: 10.1021/acs.chemrev.1c00848] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the wealth of knowledge gained about intrinsically disordered proteins (IDPs) since their discovery, there are several aspects that remain unexplored and, hence, poorly understood. A living cell is a complex adaptive system that can be described as a wetware─a metaphor used to describe the cell as a computer comprising both hardware and software and attuned to logic gates─capable of "making" decisions. In this focused Review, we discuss how IDPs, as critical components of the wetware, influence cell-fate decisions by wiring protein interaction networks to keep them minimally frustrated. Because IDPs lie between order and chaos, we explore the possibility that they can be modeled as attractors. Further, we discuss how the conformational dynamics of IDPs manifests itself as conformational noise, which can potentially amplify transcriptional noise to stochastically switch cellular phenotypes. Finally, we explore the potential role of IDPs in prebiotic evolution, in forming proteinaceous membrane-less organelles, in the origin of multicellularity, and in protein conformation-based transgenerational inheritance of acquired characteristics. Together, these ideas provide a new conceptual framework to discern how IDPs may perform critical biological functions despite their lack of structure.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Srisairam Achuthan
- Division of Research Informatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Amita Behal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sourabh Kotnala
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, Moscow region 141700, Russia
| |
Collapse
|
18
|
Yerukala Sathipati S, Shukla SK, Ho SY. Tracking the amino acid changes of spike proteins across diverse host species of severe acute respiratory syndrome coronavirus 2. iScience 2022; 25:103560. [PMID: 34877480 PMCID: PMC8638202 DOI: 10.1016/j.isci.2021.103560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Knowledge of the host-specific properties of the spike protein is of crucial importance to understand the adaptability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to infect multiple species and alter transmissibility, particularly in humans. Here, we propose a spike protein predictor SPIKES incorporating with an inheritable bi-objective combinatorial genetic algorithm to identify the biochemical properties of spike proteins and determine their specificity to human hosts. SPIKES identified 20 informative physicochemical properties of the spike protein, including information measures for alpha helix and relative mutability, and amino acid and dipeptide compositions, which have shown compositional difference at the amino acid sequence level between human and diverse animal coronaviruses. We suggest that alterations of these amino acids between human and animal coronaviruses may provide insights into the development and transmission of SARS-CoV-2 in human and other species and support the discovery of targeted antiviral therapies. Differences exist in the amino acids within the S protein of diverse host species CoVs We developed SPIKES to identify informative properties of S protein SARS-CoV-2 variants have amino acid changes that alter infection and transmission The SPIKES identified changes in S protein properties from animal to human host CoVs
Collapse
Affiliation(s)
- Srinivasulu Yerukala Sathipati
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
- Corresponding author
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for intelligent Drug Systems and Smart Bio-Devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
19
|
Tamburrini KC, Pesce G, Nilsson J, Gondelaud F, Kajava AV, Berrin JG, Longhi S. Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods Mol Biol 2022; 2449:95-147. [PMID: 35507260 DOI: 10.1007/978-1-0716-2095-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last two decades it has become increasingly evident that a large number of proteins adopt either a fully or a partially disordered conformation. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded by the amino acid sequence, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting protein disorder and identifying intrinsically disordered binding sites.
Collapse
Affiliation(s)
- Ketty C Tamburrini
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Giulia Pesce
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Juliet Nilsson
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Frank Gondelaud
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, Montpellier, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Sonia Longhi
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France.
| |
Collapse
|
20
|
Lefevre M, Ederth T, Masai T, Wattiez R, Leclère P, Flammang P, Hennebert E. Disentangling the Roles of Functional Domains in the Aggregation and Adsorption of the Multimodular Sea Star Adhesive Protein Sfp1. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:724-735. [PMID: 34528162 DOI: 10.1007/s10126-021-10059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Sea stars can adhere to various underwater substrata using an adhesive secretion of which Sfp1 is a major component. Sfp1 is a multimodular protein composed of four subunits (Sfp1 Alpha, Beta, Delta, and Gamma) displaying different functional domains. We recombinantly produced two fragments of Sfp1 comprising most of its functional domains: the C-terminal part of the Beta subunit (rSfp1 Beta C-term) and the Delta subunit (rSfp1 Delta). Surface plasmon resonance analyses of protein adsorption onto different model surfaces showed that rSfp1 Beta C-term exhibits a significantly higher adsorption than the fibrinogen control on hydrophobic, hydrophilic protein-resistant, and charged self-assembled monolayers, while rSfp1 Delta adsorbed more on negatively charged and on protein-resistant surfaces compared to fibrinogen. Truncated recombinant rSfp1 Beta C-term proteins were produced in order to investigate the role of the different functional domains in the adsorption of this protein. The analysis of their adsorption capacities on glass showed that two mechanisms are involved in rSfp1 Beta C-term adsorption: (1) one mediated by the EGF-like domain and involving Ca2+ and Mg2+ ions, and (2) one mediated by the sequence of Sfp1 Beta with no homology with known functional domain in databases, in the presence of Na+, Ca2+ and Mg2+ ions.
Collapse
Affiliation(s)
- Mathilde Lefevre
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials, University of Mons, 7000, Mons, Belgium
| | - Thomas Ederth
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Thibault Masai
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, 7000, Mons, Belgium
| | - Philippe Leclère
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials, University of Mons, 7000, Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, 7000, Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium.
| |
Collapse
|
21
|
Saito A, Shofa M, Ode H, Yumiya M, Hirano J, Okamoto T, Yoshimura SH. How Do Flaviviruses Hijack Host Cell Functions by Phase Separation? Viruses 2021; 13:v13081479. [PMID: 34452345 PMCID: PMC8402827 DOI: 10.3390/v13081479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Viral proteins interact with different sets of host cell components throughout the viral life cycle and are known to localize to the intracellular membraneless organelles (MLOs) of the host cell, where formation/dissolution is regulated by phase separation of intrinsically disordered proteins and regions (IDPs/IDRs). Viral proteins are rich in IDRs, implying that viruses utilize IDRs to regulate phase separation of the host cell organelles and augment replication by commandeering the functions of the organelles and/or sneaking into the organelles to evade the host immune response. This review aims to integrate current knowledge of the structural properties and intracellular localizations of viral IDPs to understand viral strategies in the host cell. First, the properties of viral IDRs are reviewed and similarities and differences with those of eukaryotes are described. The higher IDR content in viruses with smaller genomes suggests that IDRs are essential characteristics of viral proteins. Then, the interactions of the IDRs of flaviviruses with the MLOs of the host cell are investigated with emphasis on the viral proteins localized in the nucleoli and stress granules. Finally, the possible roles of viral IDRs in regulation of the phase separation of organelles and future possibilities for antiviral drug development are discussed.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya 460-0001, Japan;
| | - Maho Yumiya
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
| | - Junki Hirano
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
| | - Toru Okamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (M.Y.); (J.H.)
- Center for Infectious Diseases Education and Research, Osaka University, Osaka 565-0871, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| | - Shige H. Yoshimura
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: (A.S.); (T.O.); (S.H.Y.)
| |
Collapse
|
22
|
Ragonis-Bachar P, Landau M. Functional and pathological amyloid structures in the eyes of 2020 cryo-EM. Curr Opin Struct Biol 2021; 68:184-193. [PMID: 33631463 DOI: 10.1016/j.sbi.2021.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022]
Abstract
The amyloid state of protein aggregation is associated with neurodegenerative and systemic diseases but can play physiological roles in many organisms, including as stress granules and virulence determinants. The recent resolution revolution in cryogenic electron microscopy (cryo-EM) has significantly expanded the repertoire of high-resolution amyloid structures, to include, for the first-time, fibrils extracted ex vivo in addition to those formed, or seeded, in vitro. Here, we review recently solved cryo-EM amyloid structures, and compare amino acid prevalence, in efforts to systematically distinguish between pathological and functional amyloids, even though such structural classification is hindered by extensive polymorphism even among fibrils of the same protein, and by dual functioning of some human amyloids in both physiological activities and disease mechanisms. Forthcoming structures of bacterial amyloids may expose specific, evolutionary-designed properties specific to functional fibrils.
Collapse
Affiliation(s)
- Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany.
| |
Collapse
|
23
|
Arva A, Kasu YAT, Duncan J, Alkhatatbeh MA, Brower CS. The Ligand of Ate1 is intrinsically disordered and participates in nucleolar phase separation regulated by Jumonji Domain Containing 6. Proc Natl Acad Sci U S A 2021; 118:e2015887118. [PMID: 33443146 PMCID: PMC7817205 DOI: 10.1073/pnas.2015887118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Ligand of Ate1 (Liat1) is a protein of unknown function that was originally discovered through its interaction with arginyl-tRNA protein transferase 1 (Ate1), a component of the Arg/N-degron pathway of protein degradation. Here, we characterized the functional domains of mouse Liat1 and found that its N-terminal half comprises an intrinsically disordered region (IDR) that facilitates its liquid-liquid phase separation (LLPS) in the nucleolus. Using bimolecular fluorescence complementation and immunocytochemistry, we found that Liat1 is targeted to the nucleolus by a low-complexity poly-K region within its IDR. We also found that the lysyl-hydroxylase activity of Jumonji Domain Containing 6 (Jmjd6) modifies Liat1, in a manner that requires the Liat1 poly-K region, and inhibits its nucleolar targeting and potential functions. In sum, this study reveals that Liat1 participates in nucleolar LLPS regulated by Jmjd6.
Collapse
Affiliation(s)
- Akshaya Arva
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | | | - Jennifer Duncan
- Department of Biology, Texas Woman's University, Denton, TX 76204
| | | | | |
Collapse
|
24
|
Cross TJ, Takahashi GR, Diessner EM, Crosby MG, Farahmand V, Zhuang S, Butts CT, Martin RW. Sequence Characterization and Molecular Modeling of Clinically Relevant Variants of the SARS-CoV-2 Main Protease. Biochemistry 2020; 59:3741-3756. [PMID: 32931703 PMCID: PMC7518256 DOI: 10.1021/acs.biochem.0c00462] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/12/2020] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mpro mutations arising over time. Identification and structural characterization of Mpro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mpro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.
Collapse
Affiliation(s)
- Thomas J Cross
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Gemma R Takahashi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Elizabeth M Diessner
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- California Institute for Telecommunications and Information Technology, University of California, Irvine, California 92697-3900, United States
| | - Marquise G Crosby
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Vesta Farahmand
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Shannon Zhuang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Carter T Butts
- California Institute for Telecommunications and Information Technology, University of California, Irvine, California 92697-3900, United States
- Departments of Sociology, Statistics, Computer Science, and Electrical Engineering and Computer Science, University of California, Irvine, California 92697-3900, United States
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
25
|
Moghaddasi H, Rezaei S, Darooneh AH, Heshmati E, Khalifeh K. A comparative analysis of dipeptides distribution in eukaryotes and prokaryotes by statistical mechanics. PHYSICA A: STATISTICAL MECHANICS AND ITS APPLICATIONS 2020; 555:124567. [DOI: 10.1016/j.physa.2020.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
26
|
Krause T, Röckendorf N, Meckelein B, Sinnecker H, Schwager C, Möckel S, Jappe U, Frey A. IgE Epitope Profiling for Allergy Diagnosis and Therapy - Parallel Analysis of a Multitude of Potential Linear Epitopes Using a High Throughput Screening Platform. Front Immunol 2020; 11:565243. [PMID: 33117349 PMCID: PMC7561404 DOI: 10.3389/fimmu.2020.565243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Immunoglobulin E (IgE) is pivotal for manifestation and persistence of most immediate-type allergies and some asthma phenotypes. Consequently, IgE represents a crucial target for both, diagnostic purposes as well as therapeutic approaches. In fact, allergen-specific immunotherapy – aiming to re-route an IgE-based inflammatory response into an innocuous immune reaction against the allergen – is the only curative approach for IgE-mediated allergic diseases known so far. However, this requires the cognate allergen to be known. Unfortunately, even in well-characterized allergics or asthmatics, often just a small fraction of total IgE can be assigned to specific target allergens. To overcome this knowledge gap, we have devised an analytical platform for unbiased IgE target epitope detection. The system relies on chemically produced random peptide libraries immobilized on polystyrene beads (“one-bead-one-compound (OBOC) libraries”) capable to present millions of different peptide motifs simultaneously to immunoglobulins from biological samples. Beads binding IgE are highlighted with a fluorophore-labeled anti-IgE antibody allowing fluorescence-based detection and isolation of positives, which then can be characterized by peptide sequencing. Setting-up this platform required an elaborate optimization process including proper choice of background suppressants, secondary antibody and fluorophore label as well as incubation conditions. For optimal performance our procedure involves a sophisticated pre-adsorption step to eliminate beads that react nonspecifically with anti-IgE secondary antibodies. This step turned out to be important for minimizing detection of “false positive” motifs that otherwise would erroneously be classified as IgE epitopes. In validation studies we were able to retrieve artificial test-peptide beads spiked into our library by using IgE directed against those test-peptides at physiological concentrations (≤20 IU/ml of specific IgE), and disease-relevant bead-bound epitopes of the major peanut allergen Ara h 2 by screening with sera from peanut allergics. Thus, we established a platform with which one can find and validate new immunoglobulin targets using patient material which displays a largely unknown immunoglobulin repertoire.
Collapse
Affiliation(s)
- Thorsten Krause
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Niels Röckendorf
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Meckelein
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Heike Sinnecker
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Christian Schwager
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Clinical Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Stefanie Möckel
- Flow Cytometry Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Uta Jappe
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Clinical Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
27
|
Cross TJ, Takahashi GR, Diessner EM, Crosby MG, Farahmand V, Zhuang S, Butts CT, Martin RW. Sequence characterization and molecular modeling of clinically relevant variants of the SARS-CoV-2 main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.15.097493. [PMID: 32511408 PMCID: PMC7263555 DOI: 10.1101/2020.05.15.097493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant selection pressure, with new M pro mutations arising over time. Identification and structural characterization of M pro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine M pro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.
Collapse
|
28
|
Yokoyama T, Miyazaki S, Ikawa S, Nakashima Y, Kitano K. Kinetics Analysis of the Reactions between Peroxynitric Acid and Amino Acids. Chem Res Toxicol 2020; 33:1633-1643. [PMID: 32298095 DOI: 10.1021/acs.chemrestox.9b00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasma disinfection using low-temperature atmospheric pressure plasma is widely studied in many applications, and the use of plasma-treated water (PTW) for disinfection is being developed by many researchers. Exposing plasma to water supplies and preserves reactive oxygen and nitrogen species (RONS) in the water, and this PTW exhibits bactericidal activity. In our previous study, it was revealed that peroxynitric acid (O2NOOH, PNA) was the dominant bactericidal component in PTW. PNA can be easily synthesized without plasma treatment, and the physicochemical properties of PNA have been well-analyzed. As the application of PNA in fields related to medicine and biology has not been reported, a basic study on the behavior of PNA is required. In this study, the bactericidal activity of PNA and its reactivities with 20 naturally occurring amino acids were evaluated to understand its reaction mechanism with biomolecules. Interestingly, PNA exhibited 10-6 times lower reactivities with amino acids when compared with hypochlorous acid and other RONS, although its bactericidal activity was 310 times higher than that of sodium hypochlorite. In addition, the reactivity of PNA with methionine was over 100 times higher than that with other amino acids, indicating that the reactions of PNA with amino acids are highly specific. No other oxidants have been reported to react selectively with only methionine. As methionine is involved in specific activities in cells, the unique reaction profile of PNA was examined in the context of biological systems.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shinya Miyazaki
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Ikawa
- Osaka Research Institute of Industrial Science and Technology, 2-7-1, Ayumino, Izumi, Osaka 594-1157, Japan
| | - Yoichi Nakashima
- Osaka Research Institute of Industrial Science and Technology, 2-7-1, Ayumino, Izumi, Osaka 594-1157, Japan
| | - Katsuhisa Kitano
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Pierini F, Lenz TL. Divergent Allele Advantage at Human MHC Genes: Signatures of Past and Ongoing Selection. Mol Biol Evol 2020; 35:2145-2158. [PMID: 29893875 PMCID: PMC6106954 DOI: 10.1093/molbev/msy116] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The highly polymorphic genes of the major histocompatibility complex (MHC) play a key role in adaptive immunity. Divergent allele advantage, a mechanism of balancing selection, is proposed to contribute to their exceptional polymorphism. It assumes that MHC genotypes with more divergent alleles allow for broader antigen-presentation to immune effector cells, by that increasing immunocompetence. However, the direct correlation between pairwise sequence divergence and the corresponding repertoire of bound peptides has not been studied systematically across different MHC genes. Here, we investigated this relationship for five key classical human MHC genes (human leukocyte antigen; HLA-A, -B, -C, -DRB1, and -DQB1), using allele-specific computational binding prediction to 118,097 peptides derived from a broad range of human pathogens. For all five human MHC genes, the genetic distance between two alleles of a heterozygous genotype was positively correlated with the total number of peptides bound by these two alleles. In accordance with the major antigen-presentation pathway of MHC class I molecules, HLA-B and HLA-C alleles showed particularly strong correlations for peptides derived from intracellular pathogens. Intriguingly, this bias coincides with distinct protein compositions between intra- and extracellular pathogens, possibly suggesting adaptation of MHC I molecules to present specifically intracellular peptides. Eventually, we observed significant positive correlations between an allele’s average divergence and its population frequency. Overall, our results support the divergent allele advantage as a meaningful quantitative mechanism through which pathogen-mediated selection leads to the evolution of MHC diversity.
Collapse
Affiliation(s)
- Federica Pierini
- Research Group for Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
30
|
Pollack JD, Gerard D, Makhatadze GI, Pearl DK. Evolutionary conservation and structural localizations suggest a physical trace of metabolism’s progressive geochronological emergence. J Biomol Struct Dyn 2019; 38:3700-3719. [DOI: 10.1080/07391102.2019.1679666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- J. Dennis Pollack
- Department of Molecular Virology, Immunology and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - David Gerard
- Department of Mathematics and Statistics, American University, Washington, DC, USA
| | - George I. Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Dennis K. Pearl
- Department of Statistics, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
31
|
Abstract
Tryptophan (TRP), an essential amino acid in mammals, is involved in several physiological processes including neuronal function, immunity, and gut homeostasis. In humans, TRP is metabolized via the kynurenine and serotonin pathways, leading to the generation of biologically active compounds, such as serotonin, melatonin and niacin. In addition to endogenous TRP metabolism, resident gut microbiota also contributes to the production of specific TRP metabolites and indirectly influences host physiology. The variety of physiologic functions regulated by TRP reflects the complex pattern of diseases associated with altered homeostasis. Indeed, an imbalance in the synthesis of TRP metabolites has been associated with pathophysiologic mechanisms occurring in neurologic and psychiatric disorders, in chronic immune activation and in the immune escape of cancer. In this chapter, the role of TRP metabolism in health and disease is presented. Disorders involving the central nervous system, malignancy, inflammatory bowel and cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Martina Brughera
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Padua, Italy.
| |
Collapse
|
32
|
Ziesack M, Gibson T, Oliver JKW, Shumaker AM, Hsu BB, Riglar DT, Giessen TW, DiBenedetto NV, Bry L, Way JC, Silver PA, Gerber GK. Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium. mSystems 2019; 4:e00352-19. [PMID: 31409662 PMCID: PMC6697442 DOI: 10.1128/msystems.00352-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/23/2019] [Indexed: 01/15/2023] Open
Abstract
In nature, microbes interact antagonistically, neutrally, or beneficially. To shed light on the effects of positive interactions in microbial consortia, we introduced metabolic dependencies and metabolite overproduction into four bacterial species. While antagonistic interactions govern the wild-type consortium behavior, the genetic modifications alleviated antagonistic interactions and resulted in beneficial interactions. Engineered cross-feeding increased population evenness, a component of ecological diversity, in different environments, including in a more complex gnotobiotic mouse gut environment. Our findings suggest that metabolite cross-feeding could be used as a tool for intentionally shaping microbial consortia in complex environments.IMPORTANCE Microbial communities are ubiquitous in nature. Bacterial consortia live in and on our body and in our environment, and more recently, biotechnology is applying microbial consortia for bioproduction. As part of our body, bacterial consortia influence us in health and disease. Microbial consortium function is determined by its composition, which in turn is driven by the interactions between species. Further understanding of microbial interactions will help us in deciphering how consortia function in complex environments and may enable us to modify microbial consortia for health and environmental benefits.
Collapse
Affiliation(s)
- Marika Ziesack
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, USA
| | - Travis Gibson
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John K W Oliver
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew M Shumaker
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, USA
| | - Bryan B Hsu
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - David T Riglar
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias W Giessen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas V DiBenedetto
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, USA
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Georg K Gerber
- Massachusetts Host-Microbiome Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Maiti S, Acharya B, Boorla VS, Manna B, Ghosh A, De S. Dynamic Studies on Intrinsically Disordered Regions of Two Paralogous Transcription Factors Reveal Rigid Segments with Important Biological Functions. J Mol Biol 2019; 431:1353-1369. [PMID: 30802457 DOI: 10.1016/j.jmb.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Long stretches of intrinsically disordered regions (IDRs) are abundantly present in eukaryotic transcription factors. Although their biological significance is well appreciated, the underlying structural and dynamic mechanisms of their function are still not clear. Using solution NMR spectroscopy, we have studied the structural and dynamic features of two paralogous HOX transcription factors, SCR and DFD, from Drosophila. Both proteins have a conserved DNA-binding homeodomain and a long stretch of functionally important IDR. Using NMR dynamics, we determined flexibility of each residue in these proteins. The flexibility of the residues in the disordered region is not uniform. In both proteins, the IDRs have short stretches of consecutive residues with relatively less flexibility, that is, higher rigidity. We show that one such rigid segment is specifically recognized by another co-transcription factor, thus highlighting the importance of these rigid segments in IDR-mediated protein-protein interactions. Using molecular dynamics simulation, we further show that the rigid segments sample less conformations compared to the rest of the residues in the disordered region. The restrained conformational sampling of these rigid residues should lower the loss in conformational entropy during their interactions with binding partners resulting in sequence specific binding. This work provides experimental evidence of a "rigid-segment" model of IDRs, where functionally important rigid segments are connected by highly flexible linkers. Furthermore, a comparative study of IDRs in paralogous proteins reveals that in spite of low-sequence conservation, the rigid and flexible segments are sequentially maintained to preserve related functions and regulations of these proteins.
Collapse
Affiliation(s)
- Snigdha Maiti
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Bidisha Acharya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Veda Sheersh Boorla
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Bharat Manna
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
34
|
Brüne D, Andrade-Navarro MA, Mier P. Proteome-wide comparison between the amino acid composition of domains and linkers. BMC Res Notes 2018; 11:117. [PMID: 29426365 PMCID: PMC5807739 DOI: 10.1186/s13104-018-3221-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/01/2018] [Indexed: 02/01/2023] Open
Abstract
Objective Amino acid composition is a sequence feature that has been extensively used to characterize proteomes of many species and protein families. Yet the analysis of amino acid composition of protein domains and the linkers connecting them has received less attention. Here, we perform both a comprehensive full-proteome amino acid composition analysis and a similar analysis focusing on domains and linkers, to uncover domain- or linker-specific differential amino acid usage patterns. Results The amino acid composition in the 38 proteomes studied showcase the greater variability found in archaea and bacteria species compared to eukaryotes. When focusing on domains and linkers, we describe the preferential use of polar residues in linkers and hydrophobic residues in domains. To let any user perform this analysis on a given domain (or set of them), we developed a dedicated R script called RACCOON, which can be easily used and can provide interesting insights into the compositional differences between a domain and its surrounding linkers. Electronic supplementary material The online version of this article (10.1186/s13104-018-3221-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Brüne
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University Heidelberg, 69120, Heidelberg, Germany
| | | | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128, Mainz, Germany.
| |
Collapse
|
35
|
Panichkin VB, Livshits VA, Biryukova IV, Mashko SV. Metabolic engineering of Escherichia coli for L-tryptophan production. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683816090052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Lieutaud P, Ferron F, Uversky AV, Kurgan L, Uversky VN, Longhi S. How disordered is my protein and what is its disorder for? A guide through the "dark side" of the protein universe. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1259708. [PMID: 28232901 DOI: 10.1080/21690707.2016.1259708] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
In the last 2 decades it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins lack a stable 3D structure, are ubiquitous and fulfill essential biological functions. Their conformational heterogeneity is encoded in their amino acid sequences, thereby allowing intrinsically disordered proteins or regions to be recognized based on properties of these sequences. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to structural determination with X-ray crystallization. This article discusses a comprehensive selection of databases and methods currently employed to disseminate experimental and putative annotations of disorder, predict disorder and identify regions involved in induced folding. It also provides a set of detailed instructions that should be followed to perform computational analysis of disorder.
Collapse
Affiliation(s)
- Philippe Lieutaud
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| | - François Ferron
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| | - Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University , Philadelphia, PA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University , Richmond, VA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sonia Longhi
- Aix-Marseille Université, AFMB UMR, Marseille, France; CNRS, AFMB UMR, Marseille, France
| |
Collapse
|
37
|
Thorvaldsen S. A Mutation Model from First Principles of the Genetic Code. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2016; 13:878-886. [PMID: 26485722 DOI: 10.1109/tcbb.2015.2489641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The paper presents a neutral Codons Probability Mutations (CPM) model of molecular evolution and genetic decay of an organism. The CPM model uses a Markov process with a 20-dimensional state space of probability distributions over amino acids. The transition matrix of the Markov process includes the mutation rate and those single point mutations compatible with the genetic code. This is an alternative to the standard Point Accepted Mutation (PAM) and BLOcks of amino acid SUbstitution Matrix (BLOSUM). Genetic decay is quantified as a similarity between the amino acid distribution of proteins from a (group of) species on one hand, and the equilibrium distribution of the Markov chain on the other. Amino acid data for the eukaryote, bacterium, and archaea families are used to illustrate how both the CPM and PAM models predict their genetic decay towards the equilibrium value of 1. A family of bacteria is studied in more detail. It is found that warm environment organisms on average have a higher degree of genetic decay compared to those species that live in cold environments. The paper addresses a new codon-based approach to quantify genetic decay due to single point mutations compatible with the genetic code. The present work may be seen as a first approach to use codon-based Markov models to study how genetic entropy increases with time in an effectively neutral biological regime. Various extensions of the model are also discussed.
Collapse
|
38
|
Abstract
In the last two decades, it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded at the amino acid sequence level, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting disorder and identifying regions involved in induced folding.
Collapse
Affiliation(s)
- Philippe Lieutaud
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - François Ferron
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Sonia Longhi
- AFMB UMR 7257, Aix-Marseille Université, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
- AFMB UMR 7257, CNRS, 163, avenue de Luminy, Case 932, 13288, Marseille Cedex 09, France.
| |
Collapse
|
39
|
Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections. Nat Commun 2015; 6:8775. [PMID: 26531182 PMCID: PMC4659947 DOI: 10.1038/ncomms9775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/29/2015] [Indexed: 01/29/2023] Open
Abstract
The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. Malaria parasites obtain amino acids primarily from the host, but possess a gene encoding a putative asparagine synthetase. Here, the authors show that this enzyme is functional and that asparagine is crucial for the development of the parasite's sexual stages in mosquitoes and liver stages in mice.
Collapse
|
40
|
How Common Is Disorder? Occurrence of Disordered Residues in Four Domains of Life. Int J Mol Sci 2015; 16:19490-507. [PMID: 26295225 PMCID: PMC4581309 DOI: 10.3390/ijms160819490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
Disordered regions play important roles in protein adaptation to challenging environmental conditions. Flexible and disordered residues have the highest propensities to alter the protein packing. Therefore, identification of disordered/flexible regions is important for structural and functional analysis of proteins. We used the IsUnstruct program to predict the ordered or disordered status of residues in 122 proteomes, including 97 eukaryotic and 25 large bacterial proteomes larger than 2,500,000 residues. We found that bacterial and eukaryotic proteomes contain comparable fraction of disordered residues, which was 0.31 in the bacterial and 0.38 in the eukaryotic proteomes. Additional analysis of the total of 1540 bacterial proteomes of various sizes yielded a smaller fraction of disordered residues, which was only 0.26. Together, the results showed that the larger is the size of the proteome, the larger is the fraction of the disordered residues. A continuous dependence of the fraction of disordered residues on the size of the proteome is observed for four domains of life: Eukaryota, Bacteria, Archaea, and Viruses. Furthermore, our analysis of 122 proteomes showed that the fraction of disordered residues increased with increasing the length of homo-repeats for polar, charged, and small residues, and decreased for hydrophobic residues. The maximal fraction of disordered residues was obtained for proteins containing lysine and arginine homo-repeats. The minimal fraction was found in valine and leucine homo-repeats. For 15-residue long homo-repeats these values were 0.2 (for Val and Leu) and 0.7 (for Lys and Arg).
Collapse
|
41
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
42
|
Laskay ÜA, Lobas AA, Srzentić K, Gorshkov MV, Tsybin YO. Proteome Digestion Specificity Analysis for Rational Design of Extended Bottom-up and Middle-down Proteomics Experiments. J Proteome Res 2013; 12:5558-69. [DOI: 10.1021/pr400522h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ünige A. Laskay
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, 1015 Lausanne, Switzerland
| | - Anna A. Lobas
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskii Prospect 38, Bldg. 2,119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141707 Dolgoprudny, Moscow
Region, Russia
| | - Kristina Srzentić
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, 1015 Lausanne, Switzerland
| | - Mikhail V. Gorshkov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskii Prospect 38, Bldg. 2,119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141707 Dolgoprudny, Moscow
Region, Russia
| | - Yury O. Tsybin
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Cai G, Krychiw JF, Myers K, Fry WE, Hillman BI. A new virus from the plant pathogenic oomycete Phytophthora infestans with an 8 kb dsRNA genome: The sixth member of a proposed new virus genus. Virology 2013; 435:341-9. [DOI: 10.1016/j.virol.2012.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/25/2012] [Accepted: 10/06/2012] [Indexed: 12/18/2022]
|
44
|
Fedechkin SO, Brockerman J, Luna EJ, Lobanov MY, Galzitskaya OV, Smirnov SL. An N-terminal, 830 residues intrinsically disordered region of the cytoskeleton-regulatory protein supervillin contains Myosin II- and F-actin-binding sites. J Biomol Struct Dyn 2012; 31:1150-9. [PMID: 23075227 DOI: 10.1080/07391102.2012.726531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supervillin, the largest member of the villin/gelsolin family, is a cytoskeleton regulating, peripheral membrane protein. Supervillin increases cell motility and promotes invasive activity in tumors. Major cytoskeletal interactors, including filamentous actin and myosin II, bind within the unique supervillin amino terminus, amino acids 1-830. The structural features of this key region of the supervillin polypeptide are unknown. Here, we utilize circular dichroism and bioinformatics sequence analysis to demonstrate that the N-terminal part of supervillin forms an extended intrinsically disordered region (IDR). Our combined data indicate that the N-terminus of human and bovine supervillin sequences (positions 1-830) represents an IDR, which is the largest IDR known to date in the villin/gelsolin family. Moreover, this result suggests a potentially novel mechanism of regulation of myosin II and F-actin via the intrinsically disordered N-terminal region of hub protein supervillin.
Collapse
Affiliation(s)
- Stanislav O Fedechkin
- a Department of Chemistry , Western Washington University , MS-9150, 516 High Street , Bellingham , WA , 98225-9150 , USA
| | | | | | | | | | | |
Collapse
|
45
|
Lobanov MY, Sokolovskiy IV, Galzitskaya OV. IsUnstruct: prediction of the residue status to be ordered or disordered in the protein chain by a method based on the Ising model. J Biomol Struct Dyn 2012; 31:1034-43. [PMID: 22963167 DOI: 10.1080/07391102.2012.718529] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Michail Yu Lobanov
- a Institute of Protein Research of the Russian Academy of Sciences , 4 Institutskaya str., Pushchino , Moscow Region , 142290 , Russia
| | | | | |
Collapse
|
46
|
Kovačević JJ. Computational analysis of position-dependent disorder content in DisProt database. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:158-65. [PMID: 22917189 PMCID: PMC5056116 DOI: 10.1016/j.gpb.2012.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 11/27/2022]
Abstract
A bioinformatics analysis of disorder content of proteins from the DisProt database has been performed with respect to position of disordered residues. Each protein chain was divided into three parts: N- and C- terminal parts with each containing 30 amino acid (AA) residues and the middle region containing the remaining AA residues. The results show that in terminal parts, the percentage of disordered AA residues is higher than that of all AA residues (17% of disordered AA residues and 11% of all). We analyzed the percentage of disorder for each of 20 AA residues in the three parts of proteins with respect to their hydropathy and molecular weight. For each AA, the percentage of disorder in the middle part is lower than that in terminal parts which is comparable at the two termini. A new scale of AAs has been introduced according to their disorder content in the middle part of proteins: CIFWMLYHRNVTAGQDSKEP. All big hydrophobic AAs are less frequently disordered, while almost all small hydrophilic AAs are more frequently disordered. The results obtained may be useful for construction and improving predictors for protein disorder.
Collapse
|
47
|
Ángyán AF, Perczel A, Gáspári Z. Estimating intrinsic structural preferences of de novo emerging random-sequence proteins: is aggregation the main bottleneck? FEBS Lett 2012; 586:2468-72. [PMID: 22728433 DOI: 10.1016/j.febslet.2012.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 11/18/2022]
Abstract
Present-day proteins are believed to have evolved features to reduce the risk of aggregation. However, proteins can emerge de novo by translation of non-coding DNA segments. In this study we assess the aggregation, disorder and transmembrane propensity of protein sequences generated by translating random nucleotide sequences of varying GC-content. Potential de novo random-sequence proteins translated from regions with GC content between 40% and 60% do not show stronger aggregation propensity than existing ones and exhibit similar tendency to be disordered. We suggest that de novo emerging proteins do not mean an unavoidable aggregation threat to evolving organisms.
Collapse
Affiliation(s)
- Annamária F Ángyán
- Eötvös Loránd University, Institute of Chemistry, Pázmány Péter s. 1/A, H-1117 Budapest, Hungary
| | | | | |
Collapse
|
48
|
Lobanov MY, Galzitskaya OV. Occurrence of disordered patterns and homorepeats in eukaryotic and bacterial proteomes. ACTA ACUST UNITED AC 2012; 8:327-37. [DOI: 10.1039/c1mb05318c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Xu X, Sarbeng EB, Vorvis C, Kumar DP, Zhou L, Liu Q. Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity. J Biol Chem 2011; 287:5661-72. [PMID: 22157767 DOI: 10.1074/jbc.m111.275057] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone 70-kDa heat-shock proteins (Hsp70s) play essential roles in maintaining protein homeostasis. Hsp110, an Hsp70 homolog, is highly efficient in preventing protein aggregation but lacks the hallmark folding activity seen in Hsp70s. To understand the mechanistic differences between these two chaperones, we first characterized the distinct peptide substrate binding properties of Hsp110s. In contrast to Hsp70s, Hsp110s prefer aromatic residues in their substrates, and the substrate binding and release exhibit remarkably fast kinetics. Sequence and structure comparison revealed significant differences in the two peptide-binding loops: the length and properties are switched. When we swapped these two loops in an Hsp70, the peptide binding properties of this mutant Hsp70 were converted to Hsp110-like, and more impressively, it functionally behaved like an Hsp110. Thus, the peptide substrate binding properties implemented in the peptide-binding loops may determine the chaperone activity differences between Hsp70s and Hsp110s.
Collapse
Affiliation(s)
- Xinping Xu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
50
|
Galzitskaya OV, Bogatyreva NS, Glyakina AV. Bacterial proteins fold faster than eukaryotic proteins with simple folding kinetics. BIOCHEMISTRY (MOSCOW) 2011; 76:225-35. [PMID: 21568856 DOI: 10.1134/s000629791102009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein domain frequency and distribution among kingdoms was statistically analyzed using the SCOP structural database. It appeared that among chosen protein domains with the best resolution, eukaryotic proteins more often belong to α-helical and β-structural proteins, while proteins of bacterial origin belong to α/β structural class. Statistical analysis of folding rates of 73 proteins with known experimental data revealed that bacterial proteins with simple kinetics (23 proteins) exhibit a higher folding rate compared to eukaryotic proteins with simple folding kinetics (27 proteins). Analysis of protein domain amino acid composition showed that the frequency of amino acid residues in proteins of eukaryotic and bacterial origin is different for proteins with simple and complex folding kinetics.
Collapse
Affiliation(s)
- O V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|