1
|
Abbas G, Alibrahim F, Kankouni R, Al-Belushi S, Al-Mutairi DA, Tovmasyan A, Batinic-Haberle I, Benov L. Effect of the nature of the chelated metal on the photodynamic activity of metalloporphyrins. Free Radic Res 2023; 57:487-499. [PMID: 38035627 DOI: 10.1080/10715762.2023.2288997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
Coordination of metal ions by the tetrapyrrolic macrocyclic ring of porphyrin-based photosensitizers (PSs) affects their photophysical properties and consequently, their photodynamic activity. Diamagnetic metals increase the singlet oxygen quantum yield while paramagnetic metals have the opposite effect. Since singlet oxygen is considered the main cell-damaging species in photodynamic therapy (PDT), the nature of the chelated cation would directly affect PDT efficacy. This expectation, however, is not always supported by experimental results and numerous exceptions have been reported. Understanding the effect of the chelated metal is hindered because different chelators were used. The aim of this work was to investigate the effect of the nature of chelated cation on the photophysical and photodynamic properties of metalloporphyrins, using the same tetrapyrrole core as a chelator of Ag(II), Cu(II), Fe(III), In(III), Mn(III), or Zn(II). Results demonstrated that with the exception of Ag(II), all paramagnetic metalloporphyrins were inefficient as generators of singlet oxygen and did not act as PSs. In contrast, the coordination of diamagnetic ions produced highly efficient PSs. The unexpected photodynamic activity of the Ag(II)-containing porphyrin was attributed to reduction of the chelated Ag(II) to Ag(I) or to demetallation of the complex, caused by cellular reductants and/or by exposure to light. Our results indicate that in biological systems, where PSs localize to various organelles and are subjected to the action of enzymes, reactive metabolites, and reducing or oxidizing agents, their physicochemical and photosensitizing properties change. Consequently, the photophysical properties alone cannot predict the anticancer efficacy of a PS.
Collapse
Affiliation(s)
- Ghadeer Abbas
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fatemah Alibrahim
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Rawan Kankouni
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Sara Al-Belushi
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Dalal A Al-Mutairi
- Department of Pathology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Artak Tovmasyan
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Ludmil Benov
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
2
|
Khanlarkhani S, Akbarzadeh AR, Rahimi R. A retrospective-prospective survey of porphyrinoid fluorophores: towards new architectures as an electron transfer systems promoter. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Sannikova NE, Timofeev IO, Chubarov AS, Lebedeva NS, Semeikin AS, Kirilyuk IA, Tsentalovich YP, Fedin MV, Bagryanskaya EG, Krumkacheva OA. Application of EPR to porphyrin-protein agents for photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 211:112008. [PMID: 32932136 DOI: 10.1016/j.jphotobiol.2020.112008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Recently, a new type of spin labels based on photoexcited triplet molecules was proposed for nanometer scale distance measurements by pulsed dipolar electron paramagnetic resonance (PD EPR). However, such molecules are also actively used within biological complexes as photosensitizers for photodynamic therapy (PDT) of cancer. Up to date, the idea of using the photoexcited triplets simultaneously as PDT agents and as spin labels for PD EPR has never been employed. In this work, we demonstrate that PD EPR in conjunction with other methods provides valuable information on the structure and function of PDT candidate complexes, exemplified here with porphyrins bound to human serum albumin (HSA). Two distinct porphyrins with different properties were used: amphiphilic meso-tetrakis(4-hydroxyphenyl)porphyrin (mTHPP) and water soluble cationic meso-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4); HSA was singly nitroxide-labeled to provide a second tag for PD EPR measurements. We found that TMPyP4 locates in a cavity at the center of the four-helix bundle of HSA subdomain IB, close to the interface with solvent, thus being readily accessible to oxygen. As a result, the photolysis of the complex leads to photooxidation of HSA by generated singlet oxygen and causes structural perturbation of the protein. Contrary, in case of mTHPP porphyrin, the binding occurs at the proton-rich pocket of HSA subdomain IIIA, where the access of oxygen to a photosensitizer is hindered. Structural data of PD EPR were supported by other EPR techniques, laser flash photolysis and protein photocleavage studies. Therefore, pulsed EPR on complexes of proteins with photoexcited triplets is a promising approach for gaining structural and functional insights into such PDT agents.
Collapse
Affiliation(s)
| | - Ivan O Timofeev
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia
| | | | | | - Igor A Kirilyuk
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | | | - Matvey V Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia.
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
4
|
Fuse S, Moriya W, Sato S, Nakamura H. Investigation into the influence of an acrylic acid acceptor in organic D-π-A sensitizers against phototoxicity. Bioorg Med Chem 2020; 28:115558. [PMID: 32546300 DOI: 10.1016/j.bmc.2020.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/19/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive, selective, and cost-effective cancer therapy. We previously reported that thiophene-based organic D-π-A sensitizers consist of an electron-donating (D) moiety, a π-conjugated bridge (π) moiety, and an electron-accepting (A) moiety, and are readily accessible and stable templates for photosensitizers that could be used in PDT. In addition, acrylic acid acceptor-containing photosensitizers exert a high level of phototoxicity. This study was an investigation into 1) the possibility of increasing phototoxicity by introducing another carboxyl group or by replacing a carboxyl group with a pyridinium group, and 2) the importance of an alkene in the acrylic acid acceptor for phototoxicity. A review of the design, synthesis, and evaluation of sensitizers revealed that neither dicarboxylic acid nor pyridinium photosensitizers enhance phototoxicity. An evaluation of a photosensitizer without an alkene in the acrylic acid moiety revealed that the alkene was not indispensable in the pursuit of phototoxicity. The obtained results provided new insight into the design of ideal D-π-A photosensitizers for PDT.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Wataru Moriya
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichi Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
5
|
Sannikova N, Timofeev I, Bagryanskaya E, Bowman M, Fedin M, Krumkacheva O. Electron Spin Relaxation of Photoexcited Porphyrin in Water-Glycerol Glass. Molecules 2020; 25:E2677. [PMID: 32527023 PMCID: PMC7321249 DOI: 10.3390/molecules25112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the photoexcited triplet state of porphyrin was proposed as a promising spin-label for pulsed dipolar electron paramagnetic resonance (EPR). Herein, we report the factors that determine the electron spin echo dephasing of the photoexcited porphyrin in a water-glycerol matrix. The electron spin relaxation of a water-soluble porphyrin was measured by Q-band EPR, and the temperature dependence and the effect of solvent deuteration on the relaxation times were studied. The phase memory relaxation rate (1/Tm) is noticeably affected by solvent nuclei and is substantially faster in protonated solvents than in deuterated solvents. The Tm is as large as 13-17 μs in deuterated solvent, potentially expanding the range of distances available for measurement by dipole spectroscopy with photoexcited porphyrin. The 1/Tm depends linearly on the degree of solvent deuteration and can be used to probe the environment of a porphyrin in or near a biopolymer, including the solvent accessibility of porphyrins used in photodynamic therapy. We characterized the noncovalent binding of porphyrin to human serum albumin (HSA) from 1/Tm and electron spin echo envelope modulation (ESEEM) and found that porphyrin is quite exposed to solvent on the surface of HSA. The 1/Tm and ESEEM are equally effective and provide complementary methods to determine the solvent accessibility of a porphyrin bound to protein or to determine the location of the porphyrin.
Collapse
Affiliation(s)
- Natalya Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Ivan Timofeev
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Elena Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Michael Bowman
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Matvey Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| |
Collapse
|
6
|
Chaves OA, Acunha TV, Iglesias BA, Jesus CS, Serpa C. Effect of peripheral platinum(II) bipyridyl complexes on the interaction of tetra-cationic porphyrins with human serum albumin. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Fuse S, Takizawa M, Sato S, Okazaki S, Nakamura H. Elucidating the mode of action for thiophene-based organic D-π-A sensitizers for use in photodynamic therapy. Bioorg Med Chem 2019; 27:315-321. [PMID: 30554971 DOI: 10.1016/j.bmc.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive, selective, and cost-effective cancer therapy. The development of readily accessible templates that allow rapid structural modification for further improvement of PDT remains important. We previously reported thiophene-based organic D-π-A sensitizers consisted of an electron-donating (D) moiety, a π-conjugated bridge (π) moiety, and an electron-accepting (A) moiety as valuable templates for a photosensitizer that can be used in PDT. Our preliminary structure-activity relationship study revealed that the structure of the A moiety significantly influences its phototoxicity. In this study, we evaluated the photoabsorptive, cellular uptake, and photo-oxidizing abilities of D-π-A sensitizers that contained different A moieties. The level of phototoxicity of the D-π-A sensitizers was rationalized by considering those three abilities. In addition, we observed the ability of amphiphilic sensitizers containing either a carboxylic acid or an amide in an A moiety to form aggregates that penetrate cells mainly via endocytosis.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | - Miori Takizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Shinichi Sato
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Shigetoshi Okazaki
- Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
8
|
The design, synthesis, and evaluation of organic dithienopyrrole-based D-π-A dyes for use as sensitizers in photodynamic therapy. Bioorg Med Chem Lett 2018; 28:3099-3104. [PMID: 30055886 DOI: 10.1016/j.bmcl.2018.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/22/2022]
Abstract
Dithienopyrrole-based organic dyes that combine an electron-donating moiety (D), a π-conjugated bridge moiety (π), and an electron-accepting moiety (A) were designed and synthesized in short steps by previously developed one-pot Suzuki-Miyaura coupling approach. Absorption wavelengths of the dyes were readily tuned by altering the D and A moieties. The use of a strongly electron-withdrawing cyanopyridone acceptor enabled NIR absorption. A synthesized sensitizer, 2j, exerted potent phototoxicity mainly via a Type I mechanism in cells. A nitrogen atom in the dithienopyrrole ring serves as a connecting point for the introduction of functional building blocks that can improve the properties of sensitizers, which makes this D-π-A sensitizer a valuable template for the further development of sensitizers.
Collapse
|
9
|
Makarska-Bialokoz M. Comparative study of binding interactions between porphyrin systems and aromatic compounds of biological importance by multiple spectroscopic techniques: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:263-274. [PMID: 29694930 DOI: 10.1016/j.saa.2018.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The specific spectroscopic and redox properties of porphyrins predestine them to fulfill the role of sensors during interacting with different biologically active substances. Monitoring of binding interactions in the systems porphyrin-biologically active compound is a key question not only in the field of physiological functions of living organisms, but also in environmental protection, notably in the light of the rapidly growing drug consumption and concurrently the production of drug effluents. Not always beneficial action of drugs on natural porphyrin systems induces to further studies, with commercially available porphyrins as the model systems. Therefore the binding process between several water-soluble porphyrins and a series of biologically active compounds (e.g. caffeine, guanine, theophylline, theobromine, xanthine, uric acid) has been studied in different aqueous solutions analyzing their absorption and steady-state fluorescence spectra, the porphyrin fluorescence lifetimes and their quantum yields. The magnitude of the binding and fluorescence quenching constants values for particular quenchers decreases in a series: uric acid > guanine > caffeine > theophylline > theobromine > xanthine. In all the systems studied there are characters of static quenching, as a consequence of the π-π-stacked non-covalent and non-fluorescent complexes formation between porphyrins and interacting compounds, accompanied simultaneously by the additional specific binding interactions. The porphyrin fluorescence quenching can be explain by the photoinduced intermolecular electron transfer from aromatic compound to the center of the porphyrin molecule, playing the role of the binding site. Presented results can be valuable for designing of new fluorescent porphyrin chemosensors or monitoring of drug traces in aqueous solutions. The obtained outcomes have also the toxicological and medical importance, providing insight into the interactions of the water-soluble porphyrins with biologically active substances.
Collapse
Affiliation(s)
- Magdalena Makarska-Bialokoz
- Department of Inorganic Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 2, 20-031 Lublin, Poland.
| |
Collapse
|
10
|
Lebedeva NS, Yurina ES, Gubarev YA, Lyubimtsev AV, Syrbu SA. Effect of irradiation spectral range on porphyrin—Protein complexes. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Photosensitized enzyme deactivation and protein oxidation by axial-substituted phosphorus(V) tetraphenylporphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:125-131. [DOI: 10.1016/j.jphotobiol.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/17/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022]
|
12
|
Fuse S, Takizawa M, Matsumura K, Sato S, Okazaki S, Nakamura H. Thiophene-Based Organic D-π-A Dyes as Potent Sensitizers for Photodynamic Therapy. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shinichiro Fuse
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho 226-8503 Midori-ku, Yokohama Japan
| | - Miori Takizawa
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho 226-8503 Midori-ku, Yokohama Japan
| | - Keisuke Matsumura
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho 226-8503 Midori-ku, Yokohama Japan
| | - Shinichi Sato
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho 226-8503 Midori-ku, Yokohama Japan
| | - Shigetoshi Okazaki
- Preeminent Medical Photonics Education & Research Center; Hamamatsu University School of Medicine; 1-20-1 Handayama Higashi-ku 431-3192 Hamamatsu, Shizuoka Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho 226-8503 Midori-ku, Yokohama Japan
| |
Collapse
|
13
|
Wang SJ, Peng YL, Zhang CG, Ma QP, Peng XX, Ren LL. Synthesis of Tailed Metalloporphyrins Modified with 2-Chloronicotinic Acid and Interactions with Human Serum Albumin. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shu Jun Wang
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Yu Ling Peng
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Cheng Gen Zhang
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Qi Peng Ma
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Xiao Xia Peng
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| | - Li Lei Ren
- College of Chemistry and Materials Science; Langfang Teachers University; Langfang 065000 China
| |
Collapse
|