1
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Te Vrugt M, Wittkowski R. Metareview: a survey of active matter reviews. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2025; 48:12. [PMID: 40035927 PMCID: PMC11880143 DOI: 10.1140/epje/s10189-024-00466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025]
Abstract
In the past years, the amount of research on active matter has grown extremely rapidly, a fact that is reflected in particular by the existence of more than 1000 reviews on this topic. Moreover, the field has become very diverse, ranging from theoretical studies of the statistical mechanics of active particles to applied work on medical applications of microrobots and from biological systems to artificial swimmers. This makes it very difficult to get an overview over the field as a whole. Here, we provide such an overview in the form of a metareview article that surveys the existing review articles and books on active matter. Thereby, this article provides a useful starting point for finding literature about a specific topic.
Collapse
Affiliation(s)
- Michael Te Vrugt
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
3
|
Qiu Y, Cai X, Bian X, Hu G. Design of a magnetically responsive artificial cilia array platform for microsphere transport. LAB ON A CHIP 2025; 25:330-342. [PMID: 39676634 DOI: 10.1039/d4lc00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We present an innovative platform designed to mimic the mucociliary clearance system, an essential defense mechanism in the respiratory tract. Our system utilizes PDMS and iron powder to fabricate micro-ciliary arrays that dynamically respond to alternating magnetic fields. The cilia exhibit an asymmetric beating pattern under a cyclically varying magnetic field, which propels microspheres directionally in a fluid medium, simulating the movement of mucus. We use both experimental setups and numerical simulations to investigate factors that influence the efficiency of particle transport, such as cilia beating frequency, microsphere size, cilia density, and fluid viscosity. Our results elucidate the role of artificial cilia in surface cleaning processes and provide insights that enhance our understanding of mucociliary clearance. This novel experimental platform holds great promise for advancing research in respiratory health and microchannel cleaning technologies, and contributes to our ability to model and study human respiratory function in vitro.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Xinwei Cai
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Xin Bian
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
4
|
He T, Liu S, Yang Y, Chen X. Application of Micro/Nanomotors in Environmental Remediation: A Review. MICROMACHINES 2024; 15:1443. [PMID: 39770197 PMCID: PMC11679765 DOI: 10.3390/mi15121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The advent of self-propelled micro/nanomotors represents a paradigm shift in the field of environmental remediation, offering a significant enhancement in the efficiency of conventional operations through the exploitation of the material phenomenon of active motion. Despite the considerable promise of micro/nanomotors for applications in environmental remediation, there has been a paucity of reviews that have focused on this area. This review identifies the current opportunities and challenges in utilizing micro/nanomotors to enhance contaminant degradation and removal, accelerate bacterial death, or enable dynamic environmental monitoring. It illustrates how mobile reactors or receptors can dramatically increase the speed and efficiency of environmental remediation processes. These studies exemplify the wide range of environmental applications of dynamic micro/nanomotors associated with their continuous motion, force, and function. Finally, the review discusses the challenges of transferring these exciting advances from the experimental scale to larger-scale field applications.
Collapse
Affiliation(s)
| | | | | | - Xuebo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (T.H.); (S.L.); (Y.Y.)
| |
Collapse
|
5
|
Lozon C, Cornet A, Reculusa S, Garrigue P, Kuhn A, Salinas G. Chemically-Driven Autonomous Janus Electromagnets as Magnetotactic Swimmers. Angew Chem Int Ed Engl 2024; 63:e202408198. [PMID: 38924323 DOI: 10.1002/anie.202408198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
An electromagnet is a particular device that takes advantage of electrical currents to produce concentrated magnetic fields. The most well-known example is a conventional solenoid, having the form of an elongated coil and creating a strong magnetic field through its center when it is connected to a current source. Spontaneous redox reactions located at opposite ends of an anisotropic Janus swimmer can effectively mimic a standard power source, due to their ability to wirelessly generate a local electric current. Herein, we propose the coupling of thermodynamically spontaneous redox reactions occurring at the extremities of a hybrid Mg/Pt Janus swimmer with a solenoidal geometry to generate significant magnetic fields. These chemically driven electromagnets spontaneously transform the redox-induced electric current into a magnetic field with a strength in the range of μT upon contact with an acidic medium. Such on-board magnetization allows them to perform compass-like rotational motion and magnetotactic displacement in the presence of external magnetic field gradients, without the need of using ferromagnetic materials for the swimmer design. The torque force experienced by the swimmer is proportional to the internal redox current, and by varying the composition of the solution, it is possible to fine-tune its angular velocity.
Collapse
Affiliation(s)
- Cara Lozon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Antoine Cornet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Stephane Reculusa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| |
Collapse
|
6
|
Chen J, Hu J, Kapral R. Chemical Logic Gates on Active Colloids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305695. [PMID: 38450886 PMCID: PMC11095161 DOI: 10.1002/advs.202305695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/28/2023] [Indexed: 03/08/2024]
Abstract
Recent studies have shown that active colloidal motors using enzymatic reactions for propulsion hold special promise for applications in fields ranging from biology to material science. It will be desirable to have active colloids with capability of computation so that they can act autonomously to sense their surroundings and alter their own dynamics. It is shown how small chemical networks that make use of enzymatic chemical reactions on the colloid surface can be used to construct motor-based chemical logic gates. The basic features of coupled enzymatic reactions that are responsible for propulsion and underlie the construction and function of chemical gates are described using continuum theory and molecular simulation. Examples are given that show how colloids with specific chemical logic gates, can perform simple sensing tasks. Due to the diverse functions of different enzyme gates, operating alone or in circuits, the work presented here supports the suggestion that synthetic motors using such gates could be designed to operate in an autonomous way in order to complete complicated tasks.
Collapse
Affiliation(s)
- Jiang‐Xing Chen
- Department of PhysicsHangzhou Normal UniversityHangzhou311121China
| | - Jia‐Qi Hu
- Department of PhysicsHangzhou Normal UniversityHangzhou311121China
| | - Raymond Kapral
- Chemical Physics Theory GroupDepartment of ChemistryUniversity of TorontoTorontoOntarioM5S 3H6Canada
| |
Collapse
|
7
|
Khatri N, Kapral R. Clustering of chemically propelled nanomotors in chemically active environments. CHAOS (WOODBURY, N.Y.) 2024; 34:033103. [PMID: 38427933 DOI: 10.1063/5.0188624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Synthetic nanomotors powered by chemical reactions have been designed to act as vehicles for active cargo transport, drug delivery, and a variety of other uses. Collections of such motors, acting in consort, can self-assemble to form swarms or clusters, providing opportunities for applications on various length scales. While such collective behavior has been studied when the motors move in a chemically inactive fluid environment, when the medium in which they move is a chemical network that supports complex spatial and temporal patterns, through simulation and theoretical analysis we show that collective behavior changes. Spatial patterns in the environment can guide and control motor collective states, and interactions of the motors with their environment can give rise to distinctive spatiotemporal motor patterns. The results are illustrated by studies of the motor dynamics in systems that support Turing patterns and spiral waves. This work is relevant for potential applications that involve many active nanomotors moving in complex chemical or biological environments.
Collapse
Affiliation(s)
- Narender Khatri
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
8
|
McGovern AD, Huang MJ, Wang J, Kapral R, Aranson IS. Multifunctional Chiral Chemically-Powered Micropropellers for Cargo Transport and Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304773. [PMID: 37936335 DOI: 10.1002/smll.202304773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/03/2023] [Indexed: 11/09/2023]
Abstract
Practical applications of synthetic self-propelled nano and microparticles for microrobotics, targeted drug delivery, and manipulation at the nanoscale are rapidly expanding. However, fabrication limitations often hinder progress, resulting in relatively simple shapes and limited functionality. Here, taking advantage of 3D nanoscale printing, chiral micropropellers powered by the hydrogen peroxide reduction reaction are fabricated. Due to their chirality, the propellers exhibit multifunctional behavior controlled by an applied magnetic field: spinning in place (loitering), directed migration in the prescribed direction, capture, and transport of polymer cargo particles. Design parameters of the propellers are optimized by computation modeling based on mesoscale molecular dynamics. It is predicted by computer simulations, and confirmed experimentally, that clockwise rotating propellers attract each other and counterclockwise repel. These results shed light on how chirality and shape optimization enhance the functionality of synthetic autonomous micromachines.
Collapse
Affiliation(s)
- Ashlee D McGovern
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Jiyuan Wang
- School of Electrical and Control Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, P. R. China
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Igor S Aranson
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Mathematics, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Fraxedas J, Reguera D, Esplandiu MJ. Collective motion of Nafion-based micromotors in water. Faraday Discuss 2024; 249:424-439. [PMID: 37779462 DOI: 10.1039/d3fd00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Ion exchange is one of the most interesting processes occurring at the interface between aqueous solutions and polymers, such as the well-known Nafion. If the exchanged ions have different diffusion coefficients, this interchange generates local electric fields which can be harnessed to drive fluid motion. In this work, we show how it is possible to design and fabricate self-propelling microswimmers based on Nafion, driven by ion-exchange, and fueled by innocuous salts. These Nafion micromotors are made using colloidal lithography by micro/nanostructuring Nafion in the form of asymmetric rods. These microswimmers exhibit fascinating collective motion in water driven by the interplay of their self-generated chemical/electric fields and their capability to pump matter nearby towards the collective motile structure. The pumping activity of the microswimmers induces the formation of growing mobile clusters, whose velocity increases with size. Such dynamic structures are able to trap nearby micro/nano-objects while purifying the liquid, which acts both as the transport media and as fuel. Such phenomenology opens the door to potential applications in water remediation that are currently under development.
Collapse
Affiliation(s)
- Jordi Fraxedas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - David Reguera
- Departament de Física de la Matèria Condensada and Institute of Complex Systems (UBICS), Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
| | - María José Esplandiu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
10
|
Kach JI, Walker LM, Khair AS. Nonequilibrium structure formation in electrohydrodynamic emulsions. SOFT MATTER 2023; 19:9179-9194. [PMID: 37997174 DOI: 10.1039/d3sm01110k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Application of an electric field across the interface of two fluids with low, but non-zero, conductivities gives rise to a sustained electrohydrodynamic (EHD) fluid flow. In the presence of neighboring drops, drops interact via the EHD flows of their neighbors, as well as through a dielectrophoretic (DEP) force, a consequence of drops encountering disturbance electric fields around their neighbors. We explore the collective dynamics of emulsions with drops undergoing EHD and DEP interactions. The interplay between EHD and DEP results in a rich set of emergent behaviors. We simulate the collective behavior of large numbers of drops; in two dimensions, where drops are confined to a plane; and three dimensions. In monodisperse emulsions, drops in two dimensions cluster or crystallize depending on the relative strengths of EHD and DEP, and form spaced clusters when EHD and DEP balance. In three dimensions, chain formation observed under DEP alone is suppressed by EHD, and lost entirely when EHD dominates. When a second population of drops are introduced, such that the electrical conductivity, permittivity, or viscosity are different from the first population of drops, the interaction between the drops becomes non-reciprocal, an apparent violation of Newton's Third Law. The breadth of consequences due to these non-reciprocal interactions are vast: we show selected cases in two dimensions, where drops cluster into active dimers, trimers, and larger clusters that continue to translate and rotate over long timescales; and three dimensions, where drops form stratified chains, or combine into a single dynamic sheet.
Collapse
Affiliation(s)
- Jeremy I Kach
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Lynn M Walker
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
11
|
Wang Q, Yang S, Zhang L. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform. NANO-MICRO LETTERS 2023; 16:40. [PMID: 38032461 PMCID: PMC10689342 DOI: 10.1007/s40820-023-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities. Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems, enabling in situ detection of substances that traditional sensing methods struggle to achieve. Over the past decade of development, significant research progress has been made in designing sensing strategies based on micro/nanorobots, employing various coordinated control and sensing approaches. This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots, robot behavior, microrobotic manipulation, and robot-environment interactions. Providing recent studies and relevant applications in remote sensing, we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments, translating lab research achievements into widespread real applications.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
12
|
Shivalkar S, Roy A, Chaudhary S, Samanta SK, Chowdhary P, Sahoo AK. Strategies in design of self-propelling hybrid micro/nanobots for bioengineering applications. Biomed Mater 2023; 18:062003. [PMID: 37703889 DOI: 10.1088/1748-605x/acf975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Micro/nanobots are integrated devices developed from engineered nanomaterials that have evolved significantly over the past decades. They can potentially be pre-programmed to operate robustly at numerous hard-to-reach organ/tissues/cellular sites for multiple bioengineering applications such as early disease diagnosis, precision surgeries, targeted drug delivery, cancer therapeutics, bio-imaging, biomolecules isolation, detoxification, bio-sensing, and clearing up clogged arteries with high soaring effectiveness and minimal exhaustion of power. Several techniques have been introduced in recent years to develop programmable, biocompatible, and energy-efficient micro/nanobots. Therefore, the primary focus of most of these techniques is to develop hybrid micro/nanobots that are an optimized combination of purely synthetic or biodegradable bots suitable for the execution of user-defined tasks more precisely and efficiently. Recent progress has been illustrated here as an overview of a few of the achievable construction principles to be used to make biomedical micro/nanobots and explores the pivotal ventures of nanotechnology-moderated development of catalytic autonomous bots. Furthermore, it is also foregrounding their advancement offering an insight into the recent trends and subsequent prospects, opportunities, and challenges involved in the accomplishments of the effective multifarious bioengineering applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Pallabi Chowdhary
- Department of Biotechnology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| |
Collapse
|
13
|
Li J, Zhou H, Liu C, Zhang S, Du R, Deng Y, Zou X. Biomembrane‐inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. AGGREGATE 2023; 4. [DOI: 10.1002/agt2.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMicro/nanorobots are promising for a wide range of biomedical applications (such as targeted tumor, thrombus, and infection therapies in hard‐to‐reach body sites) because of their tiny size and high maneuverability through the actuation of external fields (e.g., magnetic field, light, ultrasound, electric field, and/or heat). However, fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes. To address this issue, researchers have attempted to develop various cytomembrane‐camouflaged micro/nanorobots by two means: (1) direct coating of micro/nanorobots with cytomembranes derived from living cells and (2) the swallowing of micro/nanorobots by living immunocytes via phagocytosis. The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis, but also endows them with new characteristics or functionalities, such as prolonging propulsion in biofluids, targeting diseased areas, or neutralizing bacterial toxins. In this review, we comprehensively summarize the recent advances and developments of cytomembrane‐camouflaged medical micro/nanorobots. We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials, and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots. We aim to bridge the gap between cytomembrane‐cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane‐camouflaged micro/nanorobots.
Collapse
Affiliation(s)
- Jinhua Li
- School of Medical Technology Beijing Institute of Technology Beijing China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Chun Liu
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shuailong Zhang
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Ran Du
- School of Materials Science & Engineering Key Laboratory of High Energy Density Materials of the Ministry of Education Beijing Institute of Technology Beijing China
| | - Yulin Deng
- School of Life Science Beijing Institute of Technology Beijing China
| | - Xuenong Zou
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
14
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
15
|
Popescu MN, Gáspár S. Analyte Sensing with Catalytic Micromotors. BIOSENSORS 2022; 13:45. [PMID: 36671880 PMCID: PMC9856142 DOI: 10.3390/bios13010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Catalytic micromotors can be used to detect molecules of interest in several ways. The straightforward approach is to use such motors as sensors of their "fuel" (i.e., of the species consumed for self-propulsion). Another way is in the detection of species which are not fuel but still modulate the catalytic processes facilitating self-propulsion. Both of these require analysis of the motion of the micromotors because the speed (or the diffusion coefficient) of the micromotors is the analytical signal. Alternatively, catalytic micromotors can be used as the means to enhance mass transport, and thus increase the probability of specific recognition events in the sample. This latter approach is based on "classic" (e.g., electrochemical) analytical signals and does not require an analysis of the motion of the micromotors. Together with a discussion of the current limitations faced by sensing concepts based on the speed (or diffusion coefficient) of catalytic micromotors, we review the findings of the studies devoted to the analytical performances of catalytic micromotor sensors. We conclude that the qualitative (rather than quantitative) analysis of small samples, in resource poor environments, is the most promising niche for the catalytic micromotors in analytical chemistry.
Collapse
Affiliation(s)
- Mihail N. Popescu
- Física Teórica, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain
| | - Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
16
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209098. [DOI: 10.1002/anie.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Serena Arnaboldi
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
- Dip. Di Chimica Univ. degli Studi di Milano 20133 Milan Italy
| | - Gerardo Salinas
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Patrick Garrigue
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Roberto Cirilli
- Istituto Superiore di Sanità Centro Nazionale per il Controllo e la Valutazione dei Farmaci 00161 Rome Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Alexander Kuhn
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| |
Collapse
|
17
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Serena Arnaboldi
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Di Chimica ITALY
| | - Gerardo Salinas
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Giorgia Bonetti
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di Scienza e Alta Tecnologia ITALY
| | - Patrick Garrigue
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Roberto Cirilli
- Instituto superiore di santa Centro nazionale per il controlo e la valutazione dei Farmaci ITALY
| | - Tiziana Benincori
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di chimica ITALY
| | - Alexander Kuhn
- Bordeaux INP Chemistry ENSCBP 16 avenue Pey Berland 33607 Pessac FRANCE
| |
Collapse
|
18
|
Mondal D, Prabhune AG, Ramaswamy S, Sharma P. Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing. eLife 2021; 10:e67663. [PMID: 34806977 PMCID: PMC8758135 DOI: 10.7554/elife.67663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Microorganisms swimming through viscous fluids imprint their propulsion mechanisms in the flow fields they generate. Extreme confinement of these swimmers between rigid boundaries often arises in natural and technological contexts, yet measurements of their mechanics in this regime are absent. Here, we show that strongly confining the microalga Chlamydomonas between two parallel plates not only inhibits its motility through contact friction with the walls but also leads, for purely mechanical reasons, to inversion of the surrounding vortex flows. Insights from the experiment lead to a simplified theoretical description of flow fields based on a quasi-2D Brinkman approximation to the Stokes equation rather than the usual method of images. We argue that this vortex flow inversion provides the advantage of enhanced fluid mixing despite higher friction. Overall, our results offer a comprehensive framework for analyzing the collective flows of strongly confined swimmers.
Collapse
Affiliation(s)
- Debasmita Mondal
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Ameya G Prabhune
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of ScienceBangaloreIndia
| | - Prerna Sharma
- Department of Physics, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
19
|
Krist KT, Sen A, Noid WG. A simple theory for molecular chemotaxis driven by specific binding interactions. J Chem Phys 2021; 155:164902. [PMID: 34717356 DOI: 10.1063/5.0061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent experiments have suggested that enzymes and other small molecules chemotax toward their substrates. However, the physical forces driving this chemotaxis are currently debated. In this work, we consider a simple thermodynamic theory for molecular chemotaxis that is based on the McMillan-Mayer theory of dilute solutions and Schellman's theory for macromolecular binding. Even in the absence of direct interactions, the chemical binding equilibrium introduces a coupling term into the relevant free energy, which then reduces the chemical potential of both enzymes and their substrates. Assuming a local thermodynamic equilibrium, this binding contribution to the chemical potential generates an effective thermodynamic force that promotes chemotaxis by driving each solute toward its binding partner. Our numerical simulations demonstrate that, although small, this thermodynamic force is qualitatively consistent with several experimental studies. Thus, our study may provide additional insight into the role of the thermodynamic binding free energy for molecular chemotaxis.
Collapse
Affiliation(s)
- Kathleen T Krist
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
20
|
Zhang K, Ren Y, Jiang T, Jiang H. Flexible fabrication of lipophilic-hydrophilic micromotors by off-chip photopolymerization of three-phase immiscible flow induced Janus droplet templates. Anal Chim Acta 2021; 1182:338955. [PMID: 34602209 DOI: 10.1016/j.aca.2021.338955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Self-propelled microparticles are promising for lots of applications ranging from analytical detection to water treatment. Herein, we present an effective approach to fabricate lipophilic-hydrophilic micromotors via the photocuring of three-phase immiscible flow induced droplet templates. In the microfluidic system, two immiscible inner fluids, the lipophilic 1, 6-Hexanediol diacrylate (HDDA), and the hydrophilic poly (ethylene glycol) diacrylate (PEGDA), are simultaneously injected into a theta-shaped cylindrical capillary from two separate inlets, and they are emulsified into Janus drops when encountering the outer immiscible silicone oil. Because of the immiscible feature of droplet templates, off-chip photopolymerization strategy has been used, which can significantly decrease the blocking chance of microdevice. And also, the lipophilic-hydrophilic structure of droplets is convenient for the loading of cargos with different characteristics. More importantly, the size and configuration of droplet templates can be flexibly regulated by changing the flow rates of three different phases. Accordingly, multifunctional micromotors can be fabricated by adding different nanoparticles and materials into the HDDA or PEGDA phase first and then photocuring the droplets. Taking the bubble-propelled micromotors for example, we prepare microswimmers by loading Ag, TiO2 and Fe3O4 nanoparticles into the PEGDA phase. The swimming behaviors of micromotors in H2O2 solution are systematically investigated, finding that the proportion of PEGDA phase and the concentration of H2O2 both positively affect the moving speed. Furthermore, the applicability of motor particles on water treatment is successfully demonstrated by using neutral red solution as the model pollutant. And the micromotors can be recycled using magnets after the catalytic degradation process. Therefore, this micromotor generation technique and this kind of micromotor can be attractive for many applications.
Collapse
Affiliation(s)
- Kailiang Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China.
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
21
|
Direct dynamic read-out of molecular chirality with autonomous enzyme-driven swimmers. Nat Chem 2021; 13:1241-1247. [PMID: 34650234 DOI: 10.1038/s41557-021-00798-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022]
Abstract
A key approach for designing bioinspired machines is to transfer concepts from nature to man-made structures by integrating biomolecules into artificial mechanical systems. This strategy allows the conversion of molecular information into macroscopic action. Here, we describe the design and dynamic behaviour of hybrid bioelectrochemical swimmers that move spontaneously at the air-water interface. Their motion is governed by the diastereomeric interactions between immobilized enantiopure oligomers and the enantiomers of a chiral probe molecule present in solution. These dynamic bipolar systems are able to convert chiral information present at the molecular level into enantiospecific macroscopic trajectories. Depending on the enantiomer in solution, the swimmers will move clockwise or anticlockwise; the concept can also be used for the direct visualization of the degree of enantiomeric excess by analysing the curvature of the trajectories. Deciphering in such a straightforward way the enantiomeric ratio could be useful for biomedical applications, for the read-out of food quality or as a more general analogue of polarimetric measurements.
Collapse
|
22
|
Han WC, Sim GW, Kim YB, Kim DS. Reversible Curvature Reversal of Monolithic Liquid Crystal Elastomer Film and Its Smart Valve Application. Macromol Rapid Commun 2021; 42:e2100404. [PMID: 34418205 DOI: 10.1002/marc.202100404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Indexed: 11/11/2022]
Abstract
Beyond a traditional stimuli-responsive soft actuator that shows a single motion by a stimulus, multidirectional actuation reversal with a single stimulus is highly required in applications such as shape morphing sensors and soft robotics. Liquid crystal elastomers (LCEs) are one of the most attractive candidates for the soft actuator due to their capability of stimuli-responsive shape changing in 3D, which is programmable with local orientation of LC mesogens. Here, a simple but effective method to fabricate monolithic LCE actuators that are capable of reversible curvature reversal in bending and twisting deformation by a single stimulus-heat-is reported. The curvature reversal of the LCE film can be programmed by means of asymmetric crosslinking density along the thickness and the orientation of the LC mesogens. The curvature reversal of the monolithic LCE film exhibits highly reversible (more than 100 times) and fast actuation (≈3-5 s) by heating and cooling, allowing new concept of a practical application using LCE material: a self-regulated smart valve that is capable of qualitatively sorting liquids by temperature. It is believed that this system is potentially applied to a self-regulated sorting platform for various endothermic and exothermic chemical or biological reactions.
Collapse
Affiliation(s)
- Woong Chan Han
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Gun Woo Sim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Young Been Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Dae Seok Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| |
Collapse
|
23
|
Salinas G, Tieriekhov K, Garrigue P, Sojic N, Bouffier L, Kuhn A. Lorentz Force-Driven Autonomous Janus Swimmers. J Am Chem Soc 2021; 143:12708-12714. [PMID: 34343427 DOI: 10.1021/jacs.1c05589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autonomous swimmers have been intensively studied in recent years due to their numerous potential applications in many areas ranging from biomedicine to environmental remediation. Their motion is based either on different self-propulsion mechanisms or on the use of various external stimuli. Herein, the synergy between the ion flux around self-electrophoretic Mg/Pt Janus swimmers and an external magnetic field is proposed as an efficient alternative mechanism to power swimmers on the basis of the resulting Lorentz force. A strong magnetohydrodynamic effect is observed due to the orthogonal combination of magnetic field and spontaneous ionic currents, leading to an increase of the swimmer speed by up to 2 orders of magnitude. Furthermore, the trajectory of the self-propelled swimmers can be controlled by the orientation of the magnetic field, due to the presence of an additional torque force caused by a horizontal cation flux along the swimmer edges, resulting in predictable clockwise or anticlockwise motion. In addition, this effect is independent of the swimmer size, since a similar type of rotational motion is observed for macro- and microscale objects.
Collapse
Affiliation(s)
- Gerardo Salinas
- Bordeaux INP, ISM, UMR 5255, University of Bordeaux, CNRS, F-33607 Pessac, France
| | | | - Patrick Garrigue
- Bordeaux INP, ISM, UMR 5255, University of Bordeaux, CNRS, F-33607 Pessac, France
| | - Neso Sojic
- Bordeaux INP, ISM, UMR 5255, University of Bordeaux, CNRS, F-33607 Pessac, France
| | - Laurent Bouffier
- Bordeaux INP, ISM, UMR 5255, University of Bordeaux, CNRS, F-33607 Pessac, France
| | - Alexander Kuhn
- Bordeaux INP, ISM, UMR 5255, University of Bordeaux, CNRS, F-33607 Pessac, France
| |
Collapse
|
24
|
A Review on the Some Issues of Multiphase Flow with Self-Driven Particles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiphase flow with self-driven particles is ubiquitous and complex. Exploring the flow properties has both important academic meaning and engineering value. This review emphasizes some recent studies on multiphase flow with self-driven particles: the hydrodynamic interactions between self-propelled/self-rotary particles and passive particles; the aggregation, phase separation and sedimentation of squirmers; the influence of rheological properties on its motion; and the kinematic characteristics of axisymmetric squirmers. Finally, some open problems, challenges, and future directions are highlighted.
Collapse
|
25
|
Tan H, Banerjee A, Shi N, Tang X, Abdel-Fattah A, Squires TM. A two-step strategy for delivering particles to targets hidden within microfabricated porous media. SCIENCE ADVANCES 2021; 7:7/33/eabh0638. [PMID: 34389540 PMCID: PMC8363150 DOI: 10.1126/sciadv.abh0638] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/25/2021] [Indexed: 06/01/2023]
Abstract
The delivery of small particles into porous environments remains highly challenging because of the low permeability to the fluids that carry these colloids. Even more challenging is that the specific location of targets in the porous environment usually is not known and cannot be determined from the outside. Here, we demonstrate a two-step strategy to deliver suspended colloids to targets that are "hidden" within closed porous media. The first step serves to automatically convert any hidden targets into soluto-inertial "beacons," capable of sustaining long-lived solute outfluxes. The second step introduces the deliverable objects, which are designed to autonomously migrate against the solute fluxes emitted by the targets, thereby following chemical trails that lead to the target. Experimental and theoretical demonstrations of the strategy lay out the design elements required for the solute and the deliverable objects, suggesting routes to delivering colloidal objects to hidden targets in various environments and technologies.
Collapse
Affiliation(s)
- Huanshu Tan
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, USA.
| | - Anirudha Banerjee
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, USA
| | - Nan Shi
- Saudi Aramco, EXPEC Advanced Research Center, Dhahran 31311, Saudi Arabia
| | - Xiaoyu Tang
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, USA
| | - Amr Abdel-Fattah
- Saudi Aramco, EXPEC Advanced Research Center, Dhahran 31311, Saudi Arabia
| | - Todd M Squires
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, USA.
| |
Collapse
|
26
|
Ahmed S, Perez-Mercader J. Autonomous Low-Reynolds-Number Soft Robots with Structurally Encoded Motion and Their Thermodynamic Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8148-8156. [PMID: 34185996 DOI: 10.1021/acs.langmuir.1c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soft low-Reynolds-number robotics hold the potential to significantly impact numerous fields including drug delivery, sensing, and diagnostics. Realizing this potential is predicated upon the ability to design soft robots tailored to their intended function. In this work, we identify the effect of different geometric and symmetry parameters on the motion of soft, autonomous robots that operate in the low-Reynolds-number regime and use organic fuel. The ability to power low-Reynolds-number soft robots using an organic fuel would provide a new avenue for their potential use in biomedical applications, as is the use of a polymeric biocompatible material as is done here. We introduce a simple and cost-effective 3D-printer-assisted method to fabricate robots of different shapes that is scalable and widely applicable for a variety of materials. The efficiency of chemical energy to mechanical energy conversion is measured in soft low-Reynolds-number robots for the first time, and their mechanism of motion is assessed. Motion is a result of a periodic and oscillatory change in the charge state of the gel. This work lays the groundwork for the structure-function design of soft, chemically operated, and autonomous low-Reynolds-number robots.
Collapse
Affiliation(s)
- Suzanne Ahmed
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Juan Perez-Mercader
- Department of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States
- Santa Fe Institute, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
27
|
Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix. Proc Natl Acad Sci U S A 2021; 118:2101807118. [PMID: 34183394 DOI: 10.1073/pnas.2101807118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.
Collapse
|
28
|
Fu D, Wang Z, Tu Y, Peng F. Interactions between Biomedical Micro-/Nano-Motors and the Immune Molecules, Immune Cells, and the Immune System: Challenges and Opportunities. Adv Healthc Mater 2021; 10:e2001788. [PMID: 33506650 DOI: 10.1002/adhm.202001788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Mobile micro- and nano-motors (MNMs) emerge as revolutionary platforms for biomedical applications, including drug delivery, biosensing, non-invasive surgery, and cancer therapy. While for applications in biomedical fields and practical clinical translation, the interactions of these untethered tiny machines with the immune system is an essential issue to be considered. This review highlights the recent approaches of surpassing immune barriers to prevent foreign motors from triggering immune responses. In addition to trials focusing on the function preservation of MNMs, examples of versatile MNMs working with the immune components (immune molecules, immune cells and the whole system) to achieve cancer immunotherapy, immunoassay, and detoxification are outlined. The immune interference part provides researchers an idea about what is the limit presented by the immune components. The coworking part suggests ways to bypass or even utilize the limit. With interdisciplinary cooperation of nanoengineering, materials science, and immunology field, the rationally designed functional MNMs are expected to provide novel opportunities for the biomedical field.
Collapse
Affiliation(s)
- Dongmei Fu
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Zhen Wang
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical Science Southern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
29
|
Möller N, Liebchen B, Palberg T. Shaping the gradients driving phoretic micro-swimmers: influence of swimming speed, budget of carbonic acid and environment. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:41. [PMID: 33759011 PMCID: PMC7987694 DOI: 10.1140/epje/s10189-021-00026-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/22/2021] [Indexed: 05/07/2023]
Abstract
pH gradient-driven modular micro-swimmers are investigated as a model for a large variety of quasi-two-dimensional chemi-phoretic self-propelled entities. Using three-channel micro-photometry, we obtain a precise large field mapping of pH at a spatial resolution of a few microns and a pH resolution of [Formula: see text] units for swimmers of different velocities propelling on two differently charged substrates. We model our results in terms of solutions of the three-dimensional advection-diffusion equation for a 1:1 electrolyte, i.e. carbonic acid, which is produced by ion exchange and consumed by equilibration with dissolved [Formula: see text]. We demonstrate the dependence of gradient shape and steepness on swimmer speed, diffusivity of chemicals, as well as the fuel budget. Moreover, we experimentally observe a subtle, but significant feedback of the swimmer's immediate environment in terms of a substrate charge-mediated solvent convection. We discuss our findings in view of different recent results from other micro-fluidic or active matter investigations. We anticipate that they are relevant for quantitative modelling and targeted applications of diffusio-phoretic flows in general and artificial micro-swimmers in particular.
Collapse
Affiliation(s)
- Nadir Möller
- Institute of Condensed Matter Physics, Johannes Gutenberg Universität, Staudinger Weg 7, 55128, Mainz, Germany.
- Max Planck Graduade Center, Institute of Physics, Johannes Gutenberg Universität, Staudinger Weg 7, 55128, Mainz, Germany.
| | - Benno Liebchen
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 8, 64289, Darmstadt, Germany
| | - Thomas Palberg
- Institute of Condensed Matter Physics, Johannes Gutenberg Universität, Staudinger Weg 7, 55128, Mainz, Germany
| |
Collapse
|
30
|
Sindhu RK, Kaur H, Kumar M, Sofat M, Yapar EA, Esenturk I, Kara BA, Kumar P, Keshavarzi Z. The ameliorating approach of nanorobotics in the novel drug delivery systems: a mechanistic review. J Drug Target 2021; 29:822-833. [PMID: 33641551 DOI: 10.1080/1061186x.2021.1892122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanoscale robotics have the ability that it can productively transform multiple energy sources into motion and strength which reflects an expeditiously appearing and captivating area for research of robotics. In today's plethora, biomedical nanorobotics played an intricate character with numerous units of robots working at the pathological site in a coordinated manner. The synergistic action of the several nanorobotics has been employed for the fulfilment of the task such as large-scale detoxification, delivery of the large pharmacological/therapeutic efficacious payloads, etc. that is nearly unfeasible or unalterable practically by using single nanorobot. The collective intelligence of the nanorobot is advancing progressively at the nanoscale to reinforce their precision treatment potentially. Conclusively, after obtaining certain consideration regarding the nanorobotics sciences, many professionals are compendiously involving in the emerging highly efficacious therapeutic technology that encourages the scientist or designing of the tissues specific for the site-specific nanorobotic diagnostic devices. As a result, the closed and professional type between the field of Nanotechnology and Medical Sciences will provide another new highly oriented level to the domain of nanorobotics.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Moksha Sofat
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Evren Algın Yapar
- Analysis and Control Laboratories Department, Turkish Medicines and Medical Devices Agency, MoH, Ankara, Turkey
| | - Imren Esenturk
- Hamidiye Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences Turkey, Istanbul, Turkey
| | | | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
31
|
Lippera K, Benzaquen M, Michelin S. Alignment and scattering of colliding active droplets. SOFT MATTER 2021; 17:365-375. [PMID: 33169775 DOI: 10.1039/d0sm01285h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Active droplets emit a chemical solute at their surface that modifies their local interfacial tension. They exploit the nonlinear coupling of the convective transport of solute to the resulting Marangoni flows in order to self-propel. Such swimming droplets are by nature anti-chemotactic and are repelled by their own chemical wake or their neighbours. The rebound dynamics resulting from pairwise droplet interactions was recently analysed in detail for purely head-on collisions using a specific bispherical approach. Here, we extend this analysis and propose a reduced model of a generic collision to characterise the alignment and scattering properties of oblique droplet collisions and their potential impact on collective droplet dynamics. A systematic alignment of the droplets' trajectories is observed for symmetric collisions, when the droplets interact directly, and arises from the finite-time rearrangement of the droplets' chemical wake during the collision. For more generic collisions, complex and diverse dynamical regimes are observed, whether the droplets interact directly or through their chemical wake, resulting in a significant scattering.
Collapse
Affiliation(s)
- Kevin Lippera
- LadHyX - Département de Mécanique, CNRS - Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - Michael Benzaquen
- LadHyX - Département de Mécanique, CNRS - Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - Sébastien Michelin
- LadHyX - Département de Mécanique, CNRS - Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| |
Collapse
|
32
|
Engineering Janus micromotors with WS2 and affinity peptides for turn-on fluorescent sensing of bacterial lipopolysaccharides. Biosens Bioelectron 2020; 165:112286. [DOI: 10.1016/j.bios.2020.112286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022]
|
33
|
Yuan K, Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A. Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Mikrochim Acta 2020; 187:581. [PMID: 32979095 DOI: 10.1007/s00604-020-04541-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/30/2020] [Indexed: 02/05/2023]
Abstract
The aim of this conceptual review is to cover recent developments of light-propelled micromotors for analytical (bio)-sensing. Challenges of self-propelled light-driven micromotors in complex (biological) media and potential solutions from material aspects and propulsion mechanism to achieve final analytical detection for in vivo and in vitro applications will be comprehensively covered. Graphical abstract.
Collapse
Affiliation(s)
- Kaisong Yuan
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain.,Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Javier Bujalance-Fernández
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain. .,Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28871, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares, 28871, Madrid, Spain. .,Chemical Research Institute "Andrés M. del Río", University of Alcala, Alcala de Henares, 28871, Madrid, Spain.
| |
Collapse
|
34
|
Abstract
Suspensions of chemically powered self-propelled colloidal particles are examples of active matter systems with interesting properties. While simple spherical Janus particles are often studied, it is known that geometry is important and recent experiments have shown that chemically active torus-shaped colloids behave differently from spherical colloids. In this paper, coarse-grained microscopic simulations of the dynamics of self-diffusiophoretic torus colloids are carried out in bulk solution in order to study how torus geometric factors influence their active motion. The concentration and velocity fields are key ingredients in self-diffusiophoretic propulsion, and the forms that these fields take in the colloid vicinity are shown to be strong functions of torus geometric parameters such as the torus hole size and thickness of the torus tube. This work utilizes a method where self-diffusiophoretic torus colloids with various geometric and dynamical characteristics can be built and studied in fluid media that include chemical reactions and fluid flows. The model can be used to investigate the collective properties of these colloids and their dynamics in confined systems, topics that are of general importance for applications that use colloidal motors with complex geometries.
Collapse
Affiliation(s)
- Jiyuan Wang
- School of Electrical and Control Engineering, Heilongjiang University of Science and Technology, Harbin 150022, People's Republic of China
| | - Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
35
|
Kong L, Mayorga-Martinez CC, Guan J, Pumera M. Photocatalytic Micromotors Activated by UV to Visible Light for Environmental Remediation, Micropumps, Reversible Assembly, Transportation, and Biomimicry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903179. [PMID: 31402632 DOI: 10.1002/smll.201903179] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Photocatalytic micromotors are light-induced, chemically powered micromachines based on photocatalytic materials, activated by light illumination, and have redox reactions with environmental solutions to produce chemical gradients and bubbles that propel the micromachines through self-diffusiophoresis, self-electrophoresis, and bubble recoil. Due to the fact that excitation light relates largely to the bandgaps of selected materials, the development of photocatalytic micromotors has experienced an evolution from ultraviolet-light-activated to visible-light-activated and potentially biocompatible systems. Furthermore, due to the strong redox capacity and physical effects caused by the products or product gradients, photocatalytic micromotors have applications in environmental remediation, micropumps, reversible assembly, transportation, and biomimicry.
Collapse
Affiliation(s)
- Lei Kong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi road, Wuhan, 430070, P. R. China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, CZ-616 00, Brno, Czech Republic
| |
Collapse
|
36
|
Salinas G, Dauphin AL, Voci S, Bouffier L, Sojic N, Kuhn A. Asymmetry controlled dynamic behavior of autonomous chemiluminescent Janus microswimmers. Chem Sci 2020; 11:7438-7443. [PMID: 34123025 PMCID: PMC8159428 DOI: 10.1039/d0sc02431g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asymmetrically modified Janus microparticles are presented as autonomous light emitting swimmers. The localized dissolution of hybrid magnesium/polymer objects allows combining chemiluminescence with the spontaneous production of H2 bubbles, and thus generating directed motion. These light-emitting microswimmers are synthesized by using a straightforward methodology based on bipolar electromilling, followed by indirect bipolar electrodeposition of an electrophoretic paint. An optimization of the experimental parameters enables in the first step the formation of well-defined isotropic or anisotropic Mg microparticles. Subsequently, they are asymmetrically modified by wireless deposition of an anodic paint. The degree of asymmetry of the resulting Janus particles can be fine-tuned, leading to a controlled directional motion due to anisotropic gas formation. This autonomous motion is coupled with the emission of bright orange light when Ru(bpy)32+ and S2O82− are present in the solution as chemiluminescent reagents. The light emission is based on an original process of interfacial redox-induced chemiluminescence, thus allowing an easy visualization of the swimmer trajectories. Asymmetrically modified Janus microparticles are presented as autonomous light emitting swimmers with shape-controlled trajectories.![]()
Collapse
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Alice L Dauphin
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Silvia Voci
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Laurent Bouffier
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP 33607 Pessac France
| |
Collapse
|
37
|
Xie L, Pang X, Yan X, Dai Q, Lin H, Ye J, Cheng Y, Zhao Q, Ma X, Zhang X, Liu G, Chen X. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS NANO 2020; 14:2880-2893. [PMID: 32125820 DOI: 10.1021/acsnano.9b06731] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Micro/nanorobots have been extensively explored as a tetherless small-scale robotic biodevice to perform minimally invasive interventions in hard-to-reach regions. Despite the emergence of versatile micro/nanorobots in recent years, matched in vivo development remains challenging, limited by unsatisfactory integration of core functions. Herein, we report a polydopamine (PDA)-coated magnetic microswimmer consisting of a magnetized Spirulina (MSP) matrix and PDA surface. Apart from the properties of the existing MSP (e.g., robust propulsion, natural fluorescence, tailored biodegradation, and selective cytotoxicity), the introduced PDA coating enhances the photoacoustic (PA) signal and photothermal effect of the MSP, thus making PA image tracking and photothermal therapy possible. Meanwhile, the PDA's innate fluorescence quenching and diverse surface reactivity allows an off-on fluorescence diagnosis with fluorescence probes (e.g., coumarin 7). As a proof of concept, real-time image tracking (by PA imaging) and desired theranostic capabilities of PDA-MSP microswimmer swarms are demonstrated for the treatment of pathogenic bacterial infection. Our study suggests a feasible antibacterial microrobot for in vivo development and a facile yet versatile functionalization strategy of micro/nanorobots.
Collapse
Affiliation(s)
- Lisi Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Jing Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
38
|
Michelin S, Game S, Lauga E, Keaveny E, Papageorgiou D. Spontaneous onset of convection in a uniform phoretic channel. SOFT MATTER 2020; 16:1259-1269. [PMID: 31913392 DOI: 10.1039/c9sm02173f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phoretic mechanisms, whereby gradients of chemical solutes induce surface-driven flows, have recently been used to generate directed propulsion of patterned colloidal particles. When the chemical solutes diffuse slowly, an instability further provides active isotropic particles with a route to self-propulsion by spontaneously breaking the symmetry of the solute distribution. Here we show theoretically that, in a mechanism analogous to Bénard-Marangoni convection, phoretic phenomena can create spontaneous and self-sustained wall-driven mixing flows within a straight, chemically-uniform active channel. Such spontaneous flows do not result in any net pumping for a uniform channel but greatly modify the distribution and transport of the chemical solute. The instability is predicted to occur for a solute Péclet number above a critical value and for a band of finite perturbation wavenumbers. We solve the perturbation problem analytically to characterize the instability, and use both steady and unsteady numerical computations of the full nonlinear transport problem to capture the long-time coupled dynamics of the solute and flow within the channel.
Collapse
Affiliation(s)
- Sébastien Michelin
- LadHyX - Département de Mécanique, CNRS - Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | | | | | | | | |
Collapse
|
39
|
Yang Y, Bevan MA. Cargo capture and transport by colloidal swarms. SCIENCE ADVANCES 2020; 6:eaay7679. [PMID: 32042903 PMCID: PMC6981086 DOI: 10.1126/sciadv.aay7679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/20/2019] [Indexed: 05/08/2023]
Abstract
Controlling active colloidal particle swarms could enable useful microscopic functions in emerging applications at the interface of nanotechnology and robotics. Here, we present a computational study of controlling self-propelled colloidal particle propulsion speeds to cooperatively capture and transport cargo particles, which otherwise produce random dispersions. By sensing swarm and cargo coordinates, each particle's speed is actuated according to a control policy based on multiagent assignment and path planning strategies that navigate stochastic particle trajectories to targets around cargo. Colloidal swarms are shown to dynamically cage cargo at their center via inward radial forces while simultaneously translating via directional forces. Speed, power, and efficiency of swarm tasks display emergent coupled dependences on swarm size and pair interactions and approach asymptotic limits indicating near-optimal performance. This scheme exploits unique interactions and stochastic dynamics in colloidal swarms to capture and transport microscopic cargo in a robust, stable, error-tolerant, and dynamic manner.
Collapse
|
40
|
Somasundar A, Ghosh S, Mohajerani F, Massenburg LN, Yang T, Cremer PS, Velegol D, Sen A. Positive and negative chemotaxis of enzyme-coated liposome motors. NATURE NANOTECHNOLOGY 2019; 14:1129-1134. [PMID: 31740796 DOI: 10.1038/s41565-019-0578-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The ability of cells or cell components to move in response to chemical signals is critical for the survival of living systems. This motion arises from harnessing free energy from enzymatic catalysis. Artificial model protocells derived from phospholipids and other amphiphiles have been made and their enzymatic-driven motion has been observed. However, control of directionality based on chemical cues (chemotaxis) has been difficult to achieve. Here we show both positive or negative chemotaxis of liposomal protocells. The protocells move autonomously by interacting with concentration gradients of either substrates or products in enzyme catalysis, or Hofmeister salts. We hypothesize that the propulsion mechanism is based on the interplay between enzyme-catalysis-induced positive chemotaxis and solute-phospholipid-based negative chemotaxis. Controlling the extent and direction of chemotaxis holds considerable potential for designing cell mimics and delivery vehicles that can reconfigure their motion in response to environmental conditions.
Collapse
Affiliation(s)
- Ambika Somasundar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Subhadip Ghosh
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Farzad Mohajerani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Lynnicia N Massenburg
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tinglu Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| | - Darrell Velegol
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
41
|
Liu X, Wu Y, Xu X, Li Y, Zhang Y, Li B. Bidirectional Transport of Nanoparticles and Cells with a Bio-Conveyor Belt. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905209. [PMID: 31631563 DOI: 10.1002/smll.201905209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The bidirectional transport of nanoparticles and biological cells is of great significance in efficient biological assays and precision cell screening, and can be achieved with optical conveyor belts in a noncontact and noninvasive manner. However, implantation of these belts into biological systems can present significant challenges owing to the incompatibility of the artificial materials. In this work, an optical conveyor belt assembled from natural biological cells is proposed. The diameter of the belt (500 nm) is smaller than the laser wavelength (980 nm) and, therefore, the evanescent wave stably traps the nanoparticles and cells on the belt surface. By adjusting the relative power of the lasers injected into the belt, the particles or cells can be bidirectionally transported along the bio-conveyor belt. The experimental results are numerically interpreted and the transport velocities are investigated based on simulations. Further experiments show that the bio-conveyor belt can also be assembled with mammalian cells and then applied to dynamic cell transport in vivo. The bio-conveyor belt might provide a noninvasive and biocompatible tool for biomedical assays, drug delivery, and biological nanoarchitectonics.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - You Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
42
|
Brosseau Q, Usabiaga FB, Lushi E, Wu Y, Ristroph L, Zhang J, Ward M, Shelley MJ. Relating Rheotaxis and Hydrodynamic Actuation using Asymmetric Gold-Platinum Phoretic Rods. PHYSICAL REVIEW LETTERS 2019; 123:178004. [PMID: 31702241 DOI: 10.1103/physrevlett.123.178004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/20/2019] [Indexed: 06/10/2023]
Abstract
We explore the behavior of micron-scale autophoretic Janus (Au/Pt) rods, having various Au/Pt length ratios, swimming near a wall in an imposed background flow. We find that their ability to robustly orient and move upstream, i.e., to rheotax, depends strongly on the Au/Pt ratio, which is easily tunable in synthesis. Numerical simulations of swimming rods actuated by a surface slip show a similar rheotactic tunability when varying the location of the surface slip versus surface drag. The slip location determines whether swimmers are pushers (rear actuated), pullers (front actuated), or in between. Our simulations and modeling show that pullers rheotax most robustly due to their larger tilt angle to the wall, which makes them responsive to flow gradients. Thus, rheotactic response infers the nature of difficult to measure flow fields of an active particle, establishes its dependence on swimmer type, and shows how Janus rods can be tuned for flow responsiveness.
Collapse
Affiliation(s)
- Quentin Brosseau
- Courant Institute, New York University, New York, New York 10012, USA
| | | | - Enkeleida Lushi
- Department of Mathematics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Yang Wu
- Department of Chemistry, New York University, New York, New York 10012, USA
| | - Leif Ristroph
- Courant Institute, New York University, New York, New York 10012, USA
| | - Jun Zhang
- Courant Institute, New York University, New York, New York 10012, USA
- Department of Physics, New York University, New York, New York 10003, USA
- New York University-East China Normal University Institute of Physics, New York University Shanghai, Shanghai 200062, China
| | - Michael Ward
- Department of Chemistry, New York University, New York, New York 10012, USA
| | - Michael J Shelley
- Courant Institute, New York University, New York, New York 10012, USA
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| |
Collapse
|
43
|
Ji Y, Lin X, Wu Z, Wu Y, Gao W, He Q. Macroscale Chemotaxis from a Swarm of Bacteria‐Mimicking Nanoswimmers. Angew Chem Int Ed Engl 2019; 58:12200-12205. [DOI: 10.1002/anie.201907733] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Yuxing Ji
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| | - Yingjie Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| | - Wei Gao
- Division of Engineering and Applied ScienceCalifornia Institute of Technology 1200 East California Boulevard Pasadena CA 91125 USA
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| |
Collapse
|
44
|
Neuville S. Selective Carbon Material Engineering for Improved MEMS and NEMS. MICROMACHINES 2019; 10:E539. [PMID: 31426401 PMCID: PMC6723477 DOI: 10.3390/mi10080539] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
The development of micro and nano electromechanical systems and achievement of higher performances with increased quality and life time is confronted to searching and mastering of material with superior properties and quality. Those can affect many aspects of the MEMS, NEMS and MOMS design including geometric tolerances and reproducibility of many specific solid-state structures and properties. Among those: Mechanical, adhesion, thermal and chemical stability, electrical and heat conductance, optical, optoelectronic and semiconducting properties, porosity, bulk and surface properties. They can be affected by different kinds of phase transformations and degrading, which greatly depends on the conditions of use and the way the materials have been selected, elaborated, modified and assembled. Distribution of these properties cover several orders of magnitude and depend on the design, actually achieved structure, type and number of defects. It is then essential to be well aware about all these, and to distinguish and characterize all features that are able to affect the results. For this achievement, we point out and discuss the necessity to take into account several recently revisited fundamentals on carbon atomic rearrangement and revised carbon Raman spectroscopy characterizing in addition to several other aspects we will briefly describe. Correctly selected and implemented, these carbon materials can then open new routes for many new and more performing microsystems including improved energy generation, storage and conversion, 2D superconductivity, light switches, light pipes and quantum devices and with new improved sensor and mechanical functions and biomedical applications.
Collapse
|
45
|
Michelin S, Lauga E. Universal optimal geometry of minimal phoretic pumps. Sci Rep 2019; 9:10788. [PMID: 31346194 PMCID: PMC6658517 DOI: 10.1038/s41598-019-46953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Unlike pressure-driven flows, surface-mediated phoretic flows provide efficient means to drive fluid motion on very small scales. Colloidal particles covered with chemically-active patches with nonzero phoretic mobility (e.g. Janus particles) swim using self-generated gradients, and similar physics can be exploited to create phoretic pumps. Here we analyse in detail the design principles of phoretic pumps and show that for a minimal phoretic pump, consisting of 3 distinct chemical patches, the optimal arrangement of the patches maximizing the flow rate is universal and independent of chemistry.
Collapse
Affiliation(s)
- Sébastien Michelin
- LadHyX - Département de Mécanique, Ecole Polytechnique - CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, United Kingdom.
| |
Collapse
|
46
|
Ji Y, Lin X, Wu Z, Wu Y, Gao W, He Q. Macroscale Chemotaxis from a Swarm of Bacteria‐Mimicking Nanoswimmers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuxing Ji
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| | - Zhiguang Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| | - Yingjie Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| | - Wei Gao
- Division of Engineering and Applied ScienceCalifornia Institute of Technology 1200 East California Boulevard Pasadena CA 91125 USA
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education)School of Chemistry and Chemical EngineeringHarbin Institute of Technology Yi kuang jie 2 Harbin 150080 China
| |
Collapse
|
47
|
Chang X, Tang W, Feng Y, Yu H, Wu Z, Xu T, Dong H, Li T. Coexisting Cooperative Cognitive Micro‐/Nanorobots. Chem Asian J 2019; 14:2357-2368. [DOI: 10.1002/asia.201900286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/10/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaocong Chang
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Wentian Tang
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Yiwen Feng
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Hao Yu
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Zhiguang Wu
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
- Institute of PharmacySechenov University Moscow 119991 Russia
| | - Tailin Xu
- Research Center for Bioengineering and Sensing TechnologyUniversity of Science and Technology Beijing Beijing 100083 China
| | - Huijuan Dong
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Tianlong Li
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
- Institute of PharmacySechenov University Moscow 119991 Russia
| |
Collapse
|
48
|
Halder A, Sun Y. Biocompatible propulsion for biomedical micro/nano robotics. Biosens Bioelectron 2019; 139:111334. [PMID: 31128479 DOI: 10.1016/j.bios.2019.111334] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
Micro/Nano robots have shown enormous potential for diverse biomedical applications, such as targeted delivery, in vivo biosensing, minimally invasive surgery and cell manipulation through extending their area of operation to various previously inaccessible locations. The motion of these small-scale robots can be either self-propelled or remotely controlled by some external power sources. However, in order to use them for biomedical applications, optimization of biocompatible propulsion and precise controllability are highly desirable. In this article, the recent progress about the biocompatible propulsion (e.g. self-propulsion, external stimuli based propulsion and bio-hybrid propulsion) techniques for these micro/nano robotic devices are summarized along with their applications, with a special focus on the advantages and disadvantages of different propulsion techniques. The current challenges and future perspectives of these small-scale devices are discussed in the final section.
Collapse
Affiliation(s)
- Arnab Halder
- Department of Health Technology, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark.
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
49
|
Abstract
Controlling the navigation of self-propelled, Brownian colloids in complex microstructured environments ( e.g., porous media and tumor vasculature) is important to emerging applications ( e.g., enhanced oil recovery and drug delivery). Here, we report a feedback control strategy by which to navigate self-propelled colloids through free space and increasingly complex mazes. Colloid rod position and orientation within mazes is sensed in real time, and instantaneous propulsion along the rod long axis can be actuated via light intensity. However, because uncontrolled rod rotational diffusion determines the propulsion direction, feedback control based on a policy is required to decide how to actuate propulsion magnitude versus colloid position and orientation within mazes. By considering stochastic rod dynamics including self-propulsion, translational-rotational diffusion, and rod-maze interactions, a Markov decision process framework is used to determine optimal control policies to navigate between start and end points in minimal time. The free-space navigation optimal policy effectively reduces to a simple heuristic in which propulsion is actuated only when particles point toward the target. The emergent structure of optimal control policies in mazes is based on the practice of globally following the shortest geometric paths; however, locally, propulsion is actuated to either follow paths toward the target or to produce collisions with maze features as part of generating more-favorable positions and orientations. Findings show how the coupled effects of maze size, propulsion speed, control update time, and relative particle translational and rotational diffusivities influence navigation performance.
Collapse
Affiliation(s)
- Yuguang Yang
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Michael A Bevan
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
50
|
Abstract
Microorganisms use chemotaxis, regulated by internal complex chemical pathways, to swim along chemical gradients to find better living conditions. Artificial microswimmers can mimic such a strategy by a pure physical process called diffusiophoresis, where they drift and orient along the gradient in a chemical density field. Similarly, for other forms of taxis in nature such as photo- or thermotaxis the phoretic counterpart exists. In this Account, we concentrate on the chemotaxis of self-phoretic active colloids. They are driven by self-electro- and diffusiophoresis at the particle surface and thereby acquire a swimming speed. During this process, they also produce nonuniform chemical fields in their surroundings through which they interact with other colloids by translational and rotational diffusiophoresis. In combination with active motion, this gives rise to effective phoretic attraction and repulsion and thereby to diverse emergent collective behavior. A particular appealing example is dynamic clustering in dilute suspensions first reported by a group from Lyon. A subtle balance of attraction and repulsion causes very dynamic clusters, which form and resolve again. This is in stark contrast to the relatively static clusters of motility-induced phase separation at larger densities. To treat chemotaxis in active colloids confined to a plane, we formulate two Langevin equations for position and orientation, which include translational and rotational diffusiophoretic drift velocities. The colloids are chemical sinks and develop their long-range chemical profiles instantaneously. For dense packings, we include screening of the chemical fields. We present a state diagram in the two diffusiophoretic parameters governing translational, as well as rotational, drift and, thereby, explore the full range of phoretic attraction and repulsion. The identified states range from a gaslike phase over dynamic clustering states 1 and 2, which we distinguish through their cluster size distributions, to different types of collapsed states. The latter include a full chemotactic collapse for translational phoretic attraction. Turning it into an effective repulsion, with increasing strength first the collapsed cluster starts to fluctuate at the rim, then oscillates, and ultimately becomes a static collapsed cloud. We also present a state diagram without screening. Finally, we summarize how the famous Keller-Segel model derives from our Langevin equations through a multipole expansion of the full one-particle distribution function in position and orientation. The Keller-Segel model gives a continuum equation for treating chemotaxis of microorganisms on the level of their spatial density. Our theory is extensible to mixtures of active and passive particles and allows to include a dipolar correction to the chemical field resulting from the dipolar symmetry of Janus colloids.
Collapse
Affiliation(s)
- Holger Stark
- Technische Universität Berlin, Institute of Theoretical Physics, Hardenbergstrasse 36, D-10623 Berlin, Germany
| |
Collapse
|