1
|
Pei J, Wang Z, Heng Y, Chen Z, Wang K, Xiao Q, Li J, Hu Z, He H, Cao Y, Ye X, Deng XW, Liu Z, Ma L. Selection of dysfunctional alleles of bHLH1 and MYB1 has produced white grain in the tribe Triticeae. PLANT COMMUNICATIONS 2025; 6:101265. [PMID: 39893516 PMCID: PMC12010413 DOI: 10.1016/j.xplc.2025.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Grain color is a key agronomic trait that greatly determines food quality. The molecular and evolutionary mechanisms that underlie grain-color regulation are also important questions in evolutionary biology and crop breeding. Here, we confirm that both bHLH and MYB genes have played a critical role in the evolution of grain color in Triticeae. Blue grain is the ancestral trait in Triticeae, whereas white grain caused by bHLH or MYB dysfunctions is the derived trait. HvbHLH1 and HvMYB1 have been the targets of selection in barley, and dysfunctions caused by deletion(s), insertion(s), and/or point mutation(s) in the vast majority of Triticeae species are accompanied by a change from blue grain to white grain. Wheat with white grains exhibits high seed vigor under stress. Artificial co-expression of ThbHLH1 and ThMYB1 in the wheat endosperm or aleurone layer can generate purple grains with health benefits and blue grains for use in a new hybrid breeding technology, respectively. Our study thus reveals that white grain may be a favorable derived trait retained through natural or artificial selection in Triticeae and that the ancient blue-grain trait could be regained and reused in molecular breeding of modern wheat.
Collapse
Affiliation(s)
- Jiawei Pei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Yanfang Heng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhuo Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingmeng Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhaorong Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
2
|
Kuroha T, Lombardo F, Iwasaki WM, Chechetka S, Kawahara Y, Yoshida A, Makino T, Yoshida H. Modification of TAWAWA1-mediated panicle architecture by genome editing of a downstream conserved noncoding sequence in rice. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40223364 DOI: 10.1111/pbi.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/29/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Affiliation(s)
- Takeshi Kuroha
- Institute of Agrobiological Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Fabien Lombardo
- Institute of Agrobiological Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Watal M Iwasaki
- Graduate School of Life Science, Tohoku University, Sendai, Miyagi, Japan
| | - Svetlana Chechetka
- Institute of Agrobiological Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | | | - Akiko Yoshida
- Graduate School of Life Science, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Makino
- Graduate School of Life Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Yoshida
- Institute of Agrobiological Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Xiao Y, Wang J. Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1160. [PMID: 40284048 PMCID: PMC12030055 DOI: 10.3390/plants14081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Transposon is the main component of the eukaryotic genome, and more and more plant genome data show that transposons are diverse in regulating genome structure, variation, function and evolution, with different transposition mechanisms in the genome. Hybridization and polyploidy play an important role in promoting plant speciation and evolution, and recent studies have shown that polyploidy is usually accompanied by the expansion of transposons, which affect the genome size and structure of polyploid plants. Transposons can insert into genes and intergenic regions, resulting in great differences in the overall genome structure of closely related plant species, and it can also capture gene segments in the genome to increase the copy number of genes. In addition, transposons influence the epigenetic modification state of the genome and regulate the expression of the gene, while plant phenotype, biological and abiotic stress response are also regulated by transposons. Overall, transposons play an important role in the plant genome, especially polyploid plant genome, adaptation and evolution.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
4
|
Romero AJ, Kolesnikova A, Ezard THG, Charles M, Gutaker RM, Osborne CP, Chapman MA. 'Domesticability': were some species predisposed for domestication? Trends Ecol Evol 2025; 40:356-363. [PMID: 39809625 DOI: 10.1016/j.tree.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Crop domestication arises from a coevolutionary process between plants and humans, resulting in predictable and improved resources for humans. Of the thousands of edible species, many were collected or cultivated for food, but only a few became domesticated and even fewer supply the bulk of the plant-based calories consumed by humans. Why so few species became fully domesticated is not understood. Here we propose three aspects of plant genomes and phenotypes that could have promoted the domestication of only a few wild species, namely differences in plasticity, trait linkage, and mutation rates. We can use contemporary biological knowledge to identify factors underlying why only some species are amenable to domestication. Such studies will facilitate future domestication and improvement efforts.
Collapse
Affiliation(s)
- Anne J Romero
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Anastasia Kolesnikova
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Thomas H G Ezard
- Ocean and Earth Science, University of Southampton Waterfront Campus, National Oceanography Centre Southampton, Southampton, SO17 3ZH, UK
| | - Michael Charles
- School of Archaeology, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Rafal M Gutaker
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, UK.
| |
Collapse
|
5
|
Gilbertson L, Puchta H, Slotkin RK. The future of genome editing in plants. NATURE PLANTS 2025; 11:680-685. [PMID: 40169873 DOI: 10.1038/s41477-025-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
The future of genome editing in plants differs from how it is used today. For both research and product development, we need to think beyond the creation of simple single-nucleotide polymorphisms and short deletions in genes. We believe that the future of genome editing in plants involves mimicking the natural evolutionary processes that have shaped plant genomes and been the target of artificial selection during crop domestication and improvement. This includes programming large structural variations (insertions, duplications, deletions, inversions and translocations) and controlling plant recombination and endogenous transposable elements that naturally reshape plant genomes. The key is that genome editing will be used to reshape plant genomes in a manner that could have happened naturally, but now these changes can be directed rapidly in the laboratory.
Collapse
Affiliation(s)
| | - Holger Puchta
- Department of Molecular Biology, Joseph Gottlieb Kölreuter Institute for Plant Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Zhai X, Yan J, Liu W, Li Z, Cao Z, Deng Y, Mo R, Wang B, Cheng X, Xie D, Jiang B. Map-based cloning revealed BhAPRR2 gene regulating the black peel formation of mature fruit in wax gourd (Benincasa hispida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:3. [PMID: 39658692 DOI: 10.1007/s00122-024-04796-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
KEY MESSAGE Map-based cloning revealed BhAPRR2, encoding a two-component response-regulating protein that regulates the black peel formation of mature fruit in wax gourd. Wax gourd is an economically significant vegetable crop, and peel color is a crucial agronomic trait that influences its commercial value. Although genes controlling light green or white peel have been cloned in wax gourd, the genetic basis and molecular mechanism underlying black peel remain unclear. Here, we confirmed that the peel color of wax gourd is a qualitative trait governed by single gene, with black being dominant over green. Through bulked segregant analysis sequencing (BSA-seq) and map-based cloning, we identified Bh.pf3chr5g483 as the candidate gene. This gene encodes a two-component response-regulating protein and is homologous to APRR2, referred to as BhAPRR2. Compared to P170, the BhAPRR2 in YD1 exhibits multiple mutations in both its coding and promoter regions. Notably, the mutations in the coding region do not affect its nuclear localization or transcriptional activation activity. However, the mutations in the promoter region substantially increase its expression in the peel of YD1, potentially contributing to the black peel phenotype observed in this variety. Furthermore, we developed an insertion/deletion (InDel) marker based on a 93-base pair (bp) insertion/deletion mutation in the promoter region of BhAPRR2, which achieved up to 95.8% phenotypic accuracy in a natural population comprising 165 wax gourd germplasms. In summary, our findings suggest that mutations in the promoter region of BhAPRR2 may contribute to the development of black peel in wax gourd. This discovery provides new insights into the molecular and genetic mechanisms underlying peel color diversity and offers a valuable molecular marker for wax gourd breeding efforts.
Collapse
Affiliation(s)
- Xuling Zhai
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Jinqiang Yan
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Wenrui Liu
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenqiang Cao
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Ying Deng
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences/ Horticultural Engineering Technology Research Center of Guizhou, Guiyang, 550006, China
| | - Renlian Mo
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Baochen Wang
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Xiaoxin Cheng
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Dasen Xie
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Biao Jiang
- Institute of Vegetable Research, Guangdong Academy of Agricultural Sciences/, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Kim T, Alvarez JC, Rana D, Preciado J, Liu T, Begcy K. Evolution of NAC transcription factors from early land plants to domesticated crops. PLANT & CELL PHYSIOLOGY 2024:pcae133. [PMID: 39720999 DOI: 10.1093/pcp/pcae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/26/2024]
Abstract
NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR 1/2 (ATAF1/2), and CUP-SHAPED COTYLEDON (CUC2)] transcription factors are key regulators of plant growth, development, and stress responses but were also crucial players during land plant adaptation and crop domestication. Using representative members of green algae, bryophytes, lycophytes, gymnosperms, and angiosperms, we expanded the evolutionary history of NAC transcription factors to unveil the relationships among members of this gene family. We found a massive increase in the number of NAC transcription factors from green algae to lycophytes and an even larger increase in flowering plants. Many of the NAC clades arose later during evolution since we found eudicot- and monocot-specific clades. Cis-elements analysis in NAC promoters showed the presence of abiotic and biotic stress as well as hormonal response elements, which indicate the ancestral function of NAC transcription factor genes in response to environmental stimuli and in plant development. At the transcriptional level, the expression of NAC transcription factors was low or absent in male reproduction, particularly mature pollen, across the plant kingdom. We also identified NAC genes with conserved expression patterns in response to heat stress in Marchantia polymorpha and Oryza sativa. Our study provides further evidence that transcriptional mechanisms associated with stress responses and development emerged early during plant land adaptation and are still conserved in flowering plants and domesticated crops.
Collapse
Affiliation(s)
- Taehoon Kim
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Javier C Alvarez
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- School of Applied Sciences and Engineering, EAFIT University, PO Box 98873, Medellin 050022, Colombia
| | - Divya Rana
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Jesus Preciado
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| | - Tie Liu
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Horticultural Sciences Department, University of Florida, PO Box 110690, Gainesville, FL 32611, USA
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, PO Box 110670, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Tada Y, Shimizu A. Vascular bundle cell-specific expression of a phosphate transporter improves phosphate use efficiency of transgenic Arabidopsis without detrimental effects. Sci Rep 2024; 14:26713. [PMID: 39496723 PMCID: PMC11535314 DOI: 10.1038/s41598-024-78500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/31/2024] [Indexed: 11/06/2024] Open
Abstract
Constitutive overexpression of phosphate (Pi) transporter family 1 often results in the accumulation of toxic levels of Pi, which causes growth retardation in plants. In contrast, we had previously reported that root epidermis-specific overexpression of the phosphate transporter TaPT2 in Arabidopsis leads to improved growth and Pi use efficiency. In the present study, we used promoters AtHKT1;1 and SKOR, which are predominantly expressed in the vascular bundle tissues, to overexpress TaPT2. Transgenic lines exhibited increased shoot growth compared to wild type plants under normal- and low-Pi conditions, along with elevated root Pi and total P content, and higher xylem sap Pi concentration, specifically under low-Pi conditions. This was attributed to moderate Pi accumulation in the xylem parenchyma cells, enhancing the Pi uploading capacity to the xylem. SKOR-TaPT2, however, did not complement pho1 mutant, which was defective in uploading Pi to the xylem. The transcriptional levels of VPT1 and VPT3, which are responsible for transporting excess Pi into a vacuole, were upregulated in SKOR promoter lines under normal-Pi conditions. Our results suggested that root vascular bundle-specific expression of TaPT2 is another promising strategy for increasing biomass production, Pi uptake, and Pi use efficiency while preventing growth retardation in transgenic plants.
Collapse
Affiliation(s)
- Yuichi Tada
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
- Center for the Future of Food and Agriculture, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan.
| | - Aoi Shimizu
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
9
|
Cao S, Chen ZJ. Transgenerational epigenetic inheritance during plant evolution and breeding. TRENDS IN PLANT SCIENCE 2024; 29:1203-1223. [PMID: 38806375 PMCID: PMC11560745 DOI: 10.1016/j.tplants.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Plants can program and reprogram their genomes to create genetic variation and epigenetic modifications, leading to phenotypic plasticity. Although consequences of genetic changes are comprehensible, the basis for transgenerational inheritance of epigenetic variation is elusive. This review addresses contributions of external (environmental) and internal (genomic) factors to the establishment and maintenance of epigenetic memory during plant evolution, crop domestication, and modern breeding. Dynamic and pervasive changes in DNA methylation and chromatin modifications provide a diverse repertoire of epigenetic variation potentially for transgenerational inheritance. Elucidating and harnessing epigenetic inheritance will help us develop innovative breeding strategies and biotechnological tools to improve crop yield and resilience in the face of environmental challenges. Beyond plants, epigenetic principles are shared across sexually reproducing organisms including humans with relevance to medicine and public health.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Cheng F, Wang X, Qian W. Pan-genome analysis of 13 Spinacia accessions reveals structural variations associated with sex chromosome evolution and domestication traits in spinach. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3102-3117. [PMID: 39095952 PMCID: PMC11501001 DOI: 10.1111/pbi.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Structural variations (SVs) are major genetic variants that can be involved in the origin, adaptation and domestication of species. However, the identification and characterization of SVs in Spinacia species are rare due to the lack of a pan-genome. Here, we report eight chromosome-scale assemblies of cultivated spinach and its two wild species. After integration with five existing assemblies, we constructed a comprehensive Spinacia pan-genome and identified 193 661 pan-SVs, which were genotyped in 452 Spinacia accessions. Our pan-SVs enabled genome-wide association study identified signals associated with sex and clarified the evolutionary direction of spinach. Most sex-linked SVs (86%) were biased to occur on the Y chromosome during the evolution of the sex-linked region, resulting in reduced Y-linked gene expression. The frequency of pan-SVs among Spinacia accessions further illustrated the contribution of these SVs to domestication, such as bolting time and seed dormancy. Furthermore, compared with SNPs, pan-SVs act as efficient variants in genomic selection (GS) because of their ability to capture missing heritability information and higher prediction accuracy. Overall, this study provides a valuable resource for spinach genomics and highlights the potential utility of pan-SV in crop improvement and breeding programmes.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Helong Zhang
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jian Wu
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Feng Cheng
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowu Wang
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wei Qian
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
- Zhongyuan Research Center, Chinese Academy of Agricultural SciencesXinxiangChina
| |
Collapse
|
11
|
Li R, Yao J, Cai S, Fu Y, Lai C, Zhu X, Cui L, Li Y. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements in Barley ( Hordeum vulgare). FRONTIERS IN PLANT SCIENCE 2024; 15:1474846. [PMID: 39544535 PMCID: PMC11560428 DOI: 10.3389/fpls.2024.1474846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Miniature inverted-repeat transposable elements (MITEs) constitute a class of class II transposable elements (TEs) that are abundant in plant genomes, playing a crucial role in their evolution and diversity. Barley (Hordeum vulgare), the fourth-most important cereal crop globally, is widely used for brewing, animal feed, and human consumption. However, despite their significance, the mechanisms underlying the insertion or amplification of MITEs and their contributions to barley genome evolution and diversity remain poorly understood. Through our comprehensive analysis, we identified 32,258 full-length MITEs belonging to 2,992 distinct families, accounting for approximately 0.17% of the barley genome. These MITE families can be grouped into four well-known superfamilies (Tc1/Mariner-like, PIF/Harbinger-like, hAT-like, and Mutator-like) and one unidentified superfamily. Notably, we observed two major expansion events in the barley MITE population, occurring approximately 12-13 million years ago (Mya) and 2-3 Mya. Our investigation revealed a strong preference of MITEs for gene-related regions, particularly in promoters, suggesting their potential involvement in regulating host gene expression. Additionally, we discovered that 7.73% miRNAs are derived from MITEs, thereby influencing the origin of certain miRNAs and potentially exerting a significant impact on post-transcriptional gene expression control. Evolutionary analysis demonstrated that MITEs exhibit lower conservation compared to genes, consistent with their dynamic mobility. We also identified a series of MITE insertions or deletions associated with domestication, highlighting these regions as promising targets for crop improvement strategies. These findings significantly advance our understanding of the fundamental characteristics and evolutionary patterns of MITEs in the barley genome. Moreover, they contribute to our knowledge of gene regulatory networks and provide valuable insights for crop improvement endeavors.
Collapse
Affiliation(s)
- Ruiying Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ju Yao
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Shaoshuai Cai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yi Fu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chongde Lai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- The Public Instrument Platform of Jiangxi Agricultural University, Jiangxi Agricultural University, Nanchang, China
| | - Xiangdong Zhu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Song W, Xie Y, Liu B, Huang Y, Cheng Z, Zhao Z, Tian D, Geng Y, Guo J, Li C, She D, Zhong Y, Li M, Liu L, Chen J, Sun C, Zhang X, Zhou Z, Lai J, Xin M, Yan L, Zhao J, Zhang X. Single nucleotide polymorphisms in SEPALLATA 2 underlie fruit length variation in cucurbits. THE PLANT CELL 2024; 36:4607-4621. [PMID: 39133577 PMCID: PMC11448892 DOI: 10.1093/plcell/koae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 10/05/2024]
Abstract
Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.
Collapse
Affiliation(s)
- Weiyuan Song
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yang Xie
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Yuxiang Huang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Zilong Zhao
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Di Tian
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yan Geng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jingyu Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chuang Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Daixi She
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Yanting Zhong
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Min Li
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Liu Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jiacai Chen
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Chengzhen Sun
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, P. R.China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Jinsheng Lai
- Department of Plant Genetics and Breeding, State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, P. R. China
| | - Ming Xin
- College of Horticulture and Landscape Architecture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Northeast Agricultural University, Harbin 150030, P. R.China
| | - Liying Yan
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Hebei Normal University of Science & Technology, Qinhuangdao 066004, P. R.China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, P. R.China
| |
Collapse
|
13
|
Matilla AJ. Current Insights into Weak Seed Dormancy and Pre-Harvest Sprouting in Crop Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2559. [PMID: 39339534 PMCID: PMC11434978 DOI: 10.3390/plants13182559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024]
Abstract
During the domestication of crops, seed dormancy has been reduced or eliminated to encourage faster and more consistent germination. This alteration makes cultivated crops particularly vulnerable to pre-harvest sprouting, which occurs when mature crops are subjected to adverse environmental conditions, such as excessive rainfall or high humidity. Consequently, some seeds may bypass the normal dormancy period and begin to germinate while still attached to the mother plant before harvest. Grains affected by pre-harvest sprouting are characterized by increased levels of α-amylase activity, resulting in poor processing quality and immediate grain downgrading. In the agriculture industry, pre-harvest sprouting causes annual economic losses exceeding USD 1 billion worldwide. This premature germination is influenced by a complex interplay of genetic, biochemical, and molecular factors closely linked to environmental conditions like rainfall. However, the exact mechanism behind this process is still unclear. Unlike pre-harvest sprouting, vivipary refers to the germination process and the activation of α-amylase during the soft dough stage, when the grains are still immature. Mature seeds with reduced levels of ABA or impaired ABA signaling (weak dormancy) are more susceptible to pre-harvest sprouting. While high seed dormancy can enhance resistance to pre-harvest sprouting, it can lead to undesirable outcomes for most crops, such as non-uniform seedling establishment after sowing. Thus, resistance to pre-harvest sprouting is crucial to ensuring productivity and sustainability and is an agronomically important trait affecting yield and grain quality. On the other hand, seed color is linked to sprouting resistance; however, the genetic relationship between both characteristics remains unresolved. The identification of mitogen-activated protein kinase kinase-3 (MKK3) as the gene responsible for pre-harvest sprouting-1 (Phs-1) represents a significant advancement in our understanding of how sprouting in wheat is controlled at the molecular and genetic levels. In seed maturation, Viviparous-1 (Vp-1) plays a crucial role in managing pre-harvest sprouting by regulating seed maturation and inhibiting germination through the suppression of α-amylase and proteases. Vp-1 is a key player in ABA signaling and is essential for the activation of the seed maturation program. Mutants of Vp-1 exhibit an unpigmented aleurone cell layer and exhibit precocious germination due to decreased sensitivity to ABA. Recent research has also revealed that TaSRO-1 interacts with TaVp-1, contributing to the regulation of seed dormancy and resistance to pre-harvest sprouting in wheat. The goal of this review is to emphasize the latest research on pre-harvest sprouting in crops and to suggest possible directions for future studies.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Liu L, Zhan J, Yan J. Engineering the future cereal crops with big biological data: toward intelligence-driven breeding by design. J Genet Genomics 2024; 51:781-789. [PMID: 38531485 DOI: 10.1016/j.jgg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops. This review focuses on the major cereal crops, including rice, maize, and wheat, to explain how intelligence-driven breeding by design is becoming a reality.
Collapse
Affiliation(s)
- Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
15
|
Cai Y, Chen L, Liu X, Yao W, Hou W. GmNF-YC4 delays soybean flowering and maturation by directly repressing GmFT2a and GmFT5a expression. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1370-1384. [PMID: 38695656 DOI: 10.1111/jipb.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 07/12/2024]
Abstract
Flowering time and growth period are key agronomic traits which directly affect soybean (Glycine max (L.) Merr.) adaptation to diverse latitudes and farming systems. The FLOWERING LOCUS T (FT) homologs GmFT2a and GmFT5a integrate multiple flowering regulation pathways and significantly advance flowering and maturity in soybean. Pinpointing the genes responsible for regulating GmFT2a and GmFT5a will improve our understanding of the molecular mechanisms governing growth period in soybean. In this study, we identified the Nuclear Factor Y-C (NFY-C) protein GmNF-YC4 as a novel flowering suppressor in soybean under long-day (LD) conditions. GmNF-YC4 delays flowering and maturation by directly repressing the expression of GmFT2a and GmFT5a. In addition, we found that a strong selective sweep event occurred in the chromosomal region harboring the GmNF-YC4 gene during soybean domestication. The GmNF-YC4Hap3 allele was mainly found in wild soybean (Glycine soja Siebold & Zucc.) and has been eliminated from G. max landraces and improved cultivars, which predominantly contain the GmNF-YC4Hap1 allele. Furthermore, the Gmnf-yc4 mutants displayed notably accelerated flowering and maturation under LD conditions. These alleles may prove to be valuable genetic resources for enhancing soybean adaptability to higher latitudes.
Collapse
Affiliation(s)
- Yupeng Cai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqian Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Yao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wensheng Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
16
|
Wang W, Duan J, Wang X, Feng X, Chen L, Clark CB, Swarm SA, Wang J, Lin S, Nelson RL, Meyers BC, Feng X, Ma J. Long noncoding RNAs underlie multiple domestication traits and leafhopper resistance in soybean. Nat Genet 2024; 56:1270-1277. [PMID: 38684899 DOI: 10.1038/s41588-024-01738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The origin and functionality of long noncoding RNA (lncRNA) remain poorly understood. Here, we show that multiple quantitative trait loci modulating distinct domestication traits in soybeans are pleiotropic effects of a locus composed of two tandem lncRNA genes. These lncRNA genes, each containing two inverted repeats, originating from coding sequences of the MYB genes, function in wild soybeans by generating clusters of small RNA (sRNA) species that inhibit the expression of their MYB gene relatives through post-transcriptional regulation. By contrast, the expression of lncRNA genes in cultivated soybeans is severely repressed, and, consequently, the corresponding MYB genes are highly expressed, shaping multiple distinct domestication traits as well as leafhopper resistance. The inverted repeats were formed before the divergence of the Glycine genus from the Phaseolus-Vigna lineage and exhibit strong structure-function constraints. This study exemplifies a type of target for selection during plant domestication and identifies mechanisms of lncRNA formation and action.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jingbo Duan
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingxing Feng
- Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Stephen A Swarm
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beck's Hybrids, Atlanta, IN, USA
| | - Jinbin Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Sen Lin
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Randall L Nelson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Blake C Meyers
- Genome Center and Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Xianzhong Feng
- Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
17
|
Wang F, Han T, Jeffrey Chen Z. Circadian and photoperiodic regulation of the vegetative to reproductive transition in plants. Commun Biol 2024; 7:579. [PMID: 38755402 PMCID: PMC11098820 DOI: 10.1038/s42003-024-06275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
As sessile organisms, plants must respond constantly to ever-changing environments to complete their life cycle; this includes the transition from vegetative growth to reproductive development. This process is mediated by photoperiodic response to sensing the length of night or day through circadian regulation of light-signaling molecules, such as phytochromes, to measure the length of night to initiate flowering. Flowering time is the most important trait to optimize crop performance in adaptive regions. In this review, we focus on interplays between circadian and light signaling pathways that allow plants to optimize timing for flowering and seed production in Arabidopsis, rice, soybean, and cotton. Many crops are polyploids and domesticated under natural selection and breeding. In response to adaptation and polyploidization, circadian and flowering pathway genes are epigenetically reprogrammed. Understanding the genetic and epigenetic bases for photoperiodic flowering will help improve crop yield and resilience in response to climate change.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongwen Han
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
18
|
Hu G, Grover CE, Vera DL, Lung PY, Girimurugan SB, Miller ER, Conover JL, Ou S, Xiong X, Zhu D, Li D, Gallagher JP, Udall JA, Sui X, Zhang J, Bass HW, Wendel JF. Evolutionary Dynamics of Chromatin Structure and Duplicate Gene Expression in Diploid and Allopolyploid Cotton. Mol Biol Evol 2024; 41:msae095. [PMID: 38758089 PMCID: PMC11140268 DOI: 10.1093/molbev/msae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.
Collapse
Affiliation(s)
- Guanjing Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated, Chinese Academy of Agricultural Sciences, Institute of Cotton Research, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Daniel L Vera
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | | | - Emma R Miller
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Shujun Ou
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - De Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Dongming Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Joseph P Gallagher
- Forage Seed and Cereal Research Unit, USDA/Agricultural Research Service, Corvallis, OR 97331, USA
| | - Joshua A Udall
- Crop Germplasm Research Unit, USDA/Agricultural Research Service, College Station, TX 77845, USA
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
19
|
Guo N, Tang S, Wang Y, Chen W, An R, Ren Z, Hu S, Tang S, Wei X, Shao G, Jiao G, Xie L, Wang L, Chen Y, Zhao F, Sheng Z, Hu P. A mediator of OsbZIP46 deactivation and degradation negatively regulates seed dormancy in rice. Nat Commun 2024; 15:1134. [PMID: 38326370 PMCID: PMC10850359 DOI: 10.1038/s41467-024-45402-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Preharvest sprouting (PHS) is a deleterious phenotype that occurs frequently in rice-growing regions where the temperature and precipitation are high. It negatively affects yield, quality, and downstream grain processing. Seed dormancy is a trait related to PHS. Longer seed dormancy is preferred for rice production as it can prevent PHS. Here, we map QTLs associated with rice seed dormancy and clone Seed Dormancy 3.1 (SDR3.1) underlying one major QTL. SDR3.1 encodes a mediator of OsbZIP46 deactivation and degradation (MODD). We show that SDR3.1 negatively regulates seed dormancy by inhibiting the transcriptional activity of ABIs. In addition, we reveal two critical amino acids of SDR3.1 that are critical for the differences in seed dormancy between the Xian/indica and Geng/japonica cultivars. Further, SDR3.1 has been artificially selected during rice domestication. We propose a two-line model for the process of rice seed dormancy domestication from wild rice to modern cultivars. We believe the candidate gene and germplasm studied in this study would be beneficial for the genetic improvement of rice seed dormancy.
Collapse
Affiliation(s)
- Naihui Guo
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, P. R. China
| | - Shengjia Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yakun Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
- National Nanfan Research Academy (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, P. R. China
| | - Wei Chen
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ruihu An
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zongliang Ren
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ling Wang
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Ying Chen
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Fengli Zhao
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China.
- Jiangxi Early-season Rice Research Center, Pingxiang, Jiangxi Province, 337000, P. R. China.
| | - Peisong Hu
- State Key Laboratory of Rice Biological Breeding/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice Improvement Centre/China National Rice Research Institute, Hangzhou, 310006, P. R. China.
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, P. R. China.
| |
Collapse
|
20
|
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PVV, Mir RA. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM CROPS & FOOD 2023; 14:1-20. [PMID: 36606637 PMCID: PMC9828793 DOI: 10.1080/21645698.2022.2146952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.
Collapse
Affiliation(s)
- Huwaida Yaqoob
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Arooj Tariq
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Kaisar Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Iqra Bashir Nehvi
- Department of Clinical Biochemistry, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China,Ali Raza College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India,CONTACT Rakeeb Ahmad MirDepartment of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
21
|
Moreno S, Bedada G, Rahimi Y, Ingvarsson PK, Westerbergh A, Lundquist PO. Response to Waterlogging Stress in Wild and Domesticated Accessions of Timothy ( Phleum pratense) and Its Relatives P. alpinum and P. nodosum. PLANTS (BASEL, SWITZERLAND) 2023; 12:4033. [PMID: 38068669 PMCID: PMC10708118 DOI: 10.3390/plants12234033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2024]
Abstract
Timothy (Phleum pratense) is a cool-season perennial forage grass widely grown for silage and hay production in northern regions. Climate change scenarios predict an increase in extreme weather events with fluctuating periods of high rainfall, requiring new varieties adapted to waterlogging (WL). Wild accessions could serve as germplasm for breeding, and we evaluated the responses of 11 wild and 8 domesticated accessions of timothy, P. nodosum and P. alpinum from different locations in northern Europe. Young plants at tillering stage were exposed to WL for 21 days in a greenhouse, and responses in growth allocation and root anatomy were studied. All accessions produced adventitious roots and changed allocation of growth between shoot and root as a response to WL, but the magnitude of these responses varied among species and among accessions. P. pratense responded less in these traits in response to WL than the other two species. The ability to form aerenchyma in the root cortex in response to WL was found for all species and also varied among species and among accessions, with the highest induction in P. pratense. Interestingly, some accessions were able to maintain and even increase root growth, producing more leaves and tillers, while others showed a reduction in the root system. Shoot dry weight (SDW) was not significantly affected by WL, but some accessions showed different and significant responses in the rate of production of leaves and tillers. Overall correlations between SDW and aerenchyma and between SDW and adventitious root formation were found. This study identified two wild timothy accessions and one wild P. nodosum accession based on shoot and root system growth, aerenchyma formation and having a root anatomy considered to be favorable for WL tolerance. These accessions are interesting genetic resources and candidates for development of climate-resilient timothy varieties.
Collapse
Affiliation(s)
| | | | | | | | | | - Per-Olof Lundquist
- Linnean Centre for Plant Biology, Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (S.M.); (G.B.); (Y.R.); (P.K.I.); (A.W.)
| |
Collapse
|
22
|
Swift JF, Migicovsky Z, Trello GE, Miller AJ. Grapevine bacterial communities display compartment-specific dynamics over space and time within the Central Valley of California. ENVIRONMENTAL MICROBIOME 2023; 18:84. [PMID: 37996903 PMCID: PMC10668525 DOI: 10.1186/s40793-023-00539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Plant organs (compartments) host distinct microbiota which shift in response to variation in both development and climate. Grapevines are woody perennial crops that are clonally propagated and cultivated across vast geographic areas, and as such, their microbial communities may also reflect site-specific influences. These site-specific influences along with microbial differences across sites compose 'terroir', the environmental influence on wine produced in a given region. Commercial grapevines are typically composed of a genetically distinct root (rootstock) grafted to a shoot system (scion) which adds an additional layer of complexity via genome-to-genome interactions. RESULTS To understand spatial and temporal patterns of bacterial diversity in grafted grapevines, we used 16S rRNA amplicon sequencing to quantify soil and compartment microbiota (berries, leaves, and roots) for grafted grapevines in commercial vineyards across three counties in the Central Valley of California over two successive growing seasons. Community composition revealed compartment-specific dynamics. Roots assembled site-specific bacterial communities that reflected rootstock genotype and environment influences, whereas bacterial communities of leaves and berries displayed associations with time. CONCLUSIONS These results provide further evidence of a microbial terroir within the grapevine root systems but also reveal that the microbiota of above-ground compartments are only weakly associated with the local soil microbiome in the Central Valley of California.
Collapse
Affiliation(s)
- Joel F Swift
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, KS, 66045, USA.
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
- Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Grace E Trello
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO, 63103, USA.
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA.
| |
Collapse
|
23
|
Wang T, Duan S, Xu C, Wang Y, Zhang X, Xu X, Chen L, Han Z, Wu T. Pan-genome analysis of 13 Malus accessions reveals structural and sequence variations associated with fruit traits. Nat Commun 2023; 14:7377. [PMID: 37968318 PMCID: PMC10651928 DOI: 10.1038/s41467-023-43270-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
Structural variations (SVs) and copy number variations (CNVs) contribute to trait variations in fleshy-fruited species. Here, we assemble 10 genomes of genetically diverse Malus accessions, including the ever-green cultivar 'Granny Smith' and the widely cultivated cultivar 'Red Fuji'. Combining with three previously reported genomes, we assemble the pan-genome of Malus species and identify 20,220 CNVs and 317,393 SVs. We also observe CNVs that are positively correlated with expression levels of the genes they are associated with. Furthermore, we show that the noncoding RNA generated from a 209 bp insertion in the intron of mitogen-activated protein kinase homology encoding gene, MMK2, regulates the gene expression and affects fruit coloration. Moreover, we identify overlapping SVs associated with fruit quality and biotic resistance. This pan-genome uncovers possible contributions of CNVs to gene expression and highlights the role of SVs in apple domestication and economically important traits.
Collapse
Affiliation(s)
- Ting Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shiyao Duan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Chen Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China.
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
24
|
You J, Liu Z, Qi Z, Ma Y, Sun M, Su L, Niu H, Peng Y, Luo X, Zhu M, Huang Y, Chang X, Hu X, Zhang Y, Pi R, Liu Y, Meng Q, Li J, Zhang Q, Zhu L, Lin Z, Min L, Yuan D, Grover CE, Fang DD, Lindsey K, Wendel JF, Tu L, Zhang X, Wang M. Regulatory controls of duplicated gene expression during fiber development in allotetraploid cotton. Nat Genet 2023; 55:1987-1997. [PMID: 37845354 PMCID: PMC10632151 DOI: 10.1038/s41588-023-01530-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cotton Gossypium hirsutum by sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants.
Collapse
Affiliation(s)
- Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Niu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yabing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuefan Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qingying Meng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
25
|
Rahimi Y, Bedada G, Moreno S, Gustavsson AM, Ingvarsson PK, Westerbergh A. Phenotypic Diversity in Domesticated and Wild Timothy Grass, and Closely Related Species for Forage Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3494. [PMID: 37836234 PMCID: PMC10575225 DOI: 10.3390/plants12193494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
Timothy grass (Phleum pratense L.) is one of the most important forage crops in temperate regions. Forage production, however, faces many challenges, and new cultivars adapted to a changing climate are needed. Wild populations and relatives of timothy may serve as valuable genetic resources in the breeding of improved cultivars. The aim of our study is to provide knowledge about the phenotypic diversity in domesticated (cultivars, breeding lines and landraces) and wild timothy and two closely related species, P. nodosum (lowland species) and P. alpinum, (high altitude species) to identify potential genetic resources. A total of 244 accessions of timothy and the two related species were studied for growth (plant height, fresh and dry weight) and plant development (days to stem elongation, days to booting and days to heading) in the field and in a greenhouse. We found a large diversity in development and growth between the three Phleum species, as well as between the accessions within each species. Timothy showed the highest growth, but no significant difference was found between wild accessions and cultivars of timothy in fresh and dry weight. However, these two groups of accessions showed significant differences in plant development, where timothy cultivars as a group reached flowering earlier than the wild accessions. This suggests that there has not been a strong directional selection towards increased yield during the domestication and breeding of timothy; rather, timothy has been changed for other traits such as earlier heading. Principal component analysis and cluster analysis based on all traits revealed distinct clusters. Accessions falling within the same cluster showed similarities in the development and growth rather than the type of accession. The large diversity found in this study shows the potential of using timothy accessions as genetic resources in crosses with existing cultivars. Also, accessions of P. nodosum with favorable traits can be candidates for the domestication of a novel forage crop, and the high-altitude relative P. alpinum may be a source of genes for the development of more cold and stresstolerant cultivars.
Collapse
Affiliation(s)
- Yousef Rahimi
- Linnean Centre for Plant Biology, Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (G.B.); (S.M.); (P.K.I.); (A.W.)
| | - Girma Bedada
- Linnean Centre for Plant Biology, Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (G.B.); (S.M.); (P.K.I.); (A.W.)
| | - Silvana Moreno
- Linnean Centre for Plant Biology, Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (G.B.); (S.M.); (P.K.I.); (A.W.)
| | - Anne-Maj Gustavsson
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden;
| | - Pär K. Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (G.B.); (S.M.); (P.K.I.); (A.W.)
| | - Anna Westerbergh
- Linnean Centre for Plant Biology, Department of Plant Biology, BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (G.B.); (S.M.); (P.K.I.); (A.W.)
| |
Collapse
|
26
|
Zhang J, Xiong H, Burguener GF, Vasquez-Gross H, Liu Q, Debernardi JM, Akhunova A, Garland-Campbell K, Kianian SF, Brown-Guedira G, Pozniak C, Faris JD, Akhunov E, Dubcovsky J. Sequencing 4.3 million mutations in wheat promoters to understand and modify gene expression. Proc Natl Acad Sci U S A 2023; 120:e2306494120. [PMID: 37703281 PMCID: PMC10515147 DOI: 10.1073/pnas.2306494120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Wheat is an important contributor to global food security, and further improvements are required to feed a growing human population. Functional genetics and genomics tools can help us to understand the function of different genes and to engineer beneficial changes. In this study, we used a promoter capture assay to sequence 2-kb regions upstream of all high-confidence annotated genes from 1,513 mutagenized plants from the tetraploid wheat variety Kronos. We identified 4.3 million induced mutations with an accuracy of 99.8%, resulting in a mutation density of 41.9 mutations per kb. We also remapped Kronos exome capture reads to Chinese Spring RefSeq v1.1, identified 4.7 million mutations, and predicted their effects on annotated genes. Using these predictions, we identified 59% more nonsynonymous substitutions and 49% more truncation mutations than in the original study. To show the biological value of the promoter dataset, we selected two mutations within the promoter of the VRN-A1 vernalization gene. Both mutations, located within transcription factor binding sites, significantly altered VRN-A1 expression, and one reduced the number of spikelets per spike. These publicly available sequenced mutant datasets provide rapid and inexpensive access to induced variation in the promoters and coding regions of most wheat genes. These mutations can be used to understand and modulate gene expression and phenotypes for both basic and commercial applications, where limited governmental regulations can facilitate deployment. These mutant collections, together with gene editing, provide valuable tools to accelerate functional genetic studies in this economically important crop.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA95616
| | - Hongchun Xiong
- Department of Plant Sciences, University of California, Davis, CA95616
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Germán F. Burguener
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Hans Vasquez-Gross
- Department of Plant Sciences, University of California, Davis, CA95616
- Nevada Bioinformatics Center, University of Nevada, Reno, NV89557
| | - Qiujie Liu
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Juan M. Debernardi
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| | - Alina Akhunova
- Department of Plant Pathology, Kansas State University, Manhattan, KS66506
| | - Kimberly Garland-Campbell
- United States Department of Agriculture - Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA99164
| | - Shahryar F. Kianian
- United States Department of Agriculture - Agricultural Research Service, Cereal Disease Laboratory, Saint Paul, MN55108-6086
| | - Gina Brown-Guedira
- United States Department of Agriculture - Agricultural Research Service, Plant Science Research Unit, Raleigh, NC27695
| | - Curtis Pozniak
- Crop Development Centre, University of Saskatchewan, SaskatoonS7N 5A8, Canada
| | - Justin D. Faris
- United States Department of Agriculture - Agricultural Research Service, Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND58102
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS66506
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA95616
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
27
|
Naveed S, Gandhi N, Billings G, Jones Z, Campbell BT, Jones M, Rustgi S. Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2023; 24:14174. [PMID: 37762483 PMCID: PMC10532291 DOI: 10.3390/ijms241814174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Cotton (Gossypium spp.) is the primary source of natural textile fiber in the U.S. and a major crop in the Southeastern U.S. Despite constant efforts to increase the cotton fiber yield, the yield gain has stagnated. Therefore, we undertook a novel approach to improve the cotton fiber yield by altering its growth habit from perennial to annual. In this effort, we identified genotypes with high-expression alleles of five floral induction and meristem identity genes (FT, SOC1, FUL, LFY, and AP1) from an Upland cotton mini-core collection and crossed them in various combinations to develop cotton lines with annual growth habit, optimal flowering time, and enhanced productivity. To facilitate the characterization of genotypes with the desired combinations of stacked alleles, we identified molecular markers associated with the gene expression traits via genome-wide association analysis using a 63 K SNP Array. Over 14,500 SNPs showed polymorphism and were used for association analysis. A total of 396 markers showed associations with expression traits. Of these 396 markers, 159 were mapped to genes, 50 to untranslated regions, and 187 to random genomic regions. Biased genomic distribution of associated markers was observed where more trait-associated markers mapped to the cotton D sub-genome. Many quantitative trait loci coincided at specific genomic regions. This observation has implications as these traits could be bred together. The analysis also allowed the identification of candidate regulators of the expression patterns of these floral induction and meristem identity genes whose functions will be validated.
Collapse
Affiliation(s)
- Salman Naveed
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Nitant Gandhi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Grant Billings
- Department of Crop & Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Zachary Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - B. Todd Campbell
- USDA-ARS Coastal Plains Soil, Water, and Plant Research Center, Florence, SC 29501, USA;
| | - Michael Jones
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA; (S.N.); (M.J.)
| |
Collapse
|
28
|
Jing CY, Zhang FM, Wang XH, Wang MX, Zhou L, Cai Z, Han JD, Geng MF, Yu WH, Jiao ZH, Huang L, Liu R, Zheng XM, Meng QL, Ren NN, Zhang HX, Du YS, Wang X, Qiang CG, Zou XH, Gaut BS, Ge S. Multiple domestications of Asian rice. NATURE PLANTS 2023; 9:1221-1235. [PMID: 37550371 DOI: 10.1038/s41477-023-01476-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
The origin of domesticated Asian rice (Oryza sativa L.) has been controversial for more than half a century. The debates have focused on two leading hypotheses: a single domestication event in China or multiple domestication events in geographically separate areas. These two hypotheses differ in their predicted history of genes/alleles selected during domestication. Here we amassed a dataset of 1,578 resequenced genomes, including an expanded sample of wild rice from throughout its geographic range. We identified 993 selected genes that generated phylogenetic trees on which japonica and indica formed a monophyletic group, suggesting that the domestication alleles of these genes originated only once in either japonica or indica. Importantly, the domestication alleles of most selected genes (~80%) stemmed from wild rice in China, but the domestication alleles of a substantial minority of selected genes (~20%) originated from wild rice in South and Southeast Asia, demonstrating separate domestication events of Asian rice.
Collapse
Affiliation(s)
- Chun-Yan Jing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Hua Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Xia Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jing-Dan Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mu-Fan Geng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hao Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zi-Hui Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing-Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Xiang Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Su Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Gen Qiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Hui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Jareczek JJ, Grover CE, Hu G, Xiong X, Arick Ii MA, Peterson DG, Wendel JF. Domestication over Speciation in Allopolyploid Cotton Species: A Stronger Transcriptomic Pull. Genes (Basel) 2023; 14:1301. [PMID: 37372480 DOI: 10.3390/genes14061301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Cotton has been domesticated independently four times for its fiber, but the genomic targets of selection during each domestication event are mostly unknown. Comparative analysis of the transcriptome during cotton fiber development in wild and cultivated materials holds promise for revealing how independent domestications led to the superficially similar modern cotton fiber phenotype in upland (G. hirsutum) and Pima (G. barbadense) cotton cultivars. Here we examined the fiber transcriptomes of both wild and domesticated G. hirsutum and G. barbadense to compare the effects of speciation versus domestication, performing differential gene expression analysis and coexpression network analysis at four developmental timepoints (5, 10, 15, or 20 days after flowering) spanning primary and secondary wall synthesis. These analyses revealed extensive differential expression between species, timepoints, domestication states, and particularly the intersection of domestication and species. Differential expression was higher when comparing domesticated accessions of the two species than between the wild, indicating that domestication had a greater impact on the transcriptome than speciation. Network analysis showed significant interspecific differences in coexpression network topology, module membership, and connectivity. Despite these differences, some modules or module functions were subject to parallel domestication in both species. Taken together, these results indicate that independent domestication led G. hirsutum and G. barbadense down unique pathways but that it also leveraged similar modules of coexpression to arrive at similar domesticated phenotypes.
Collapse
Affiliation(s)
- Josef J Jareczek
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
- Biology Department, Bellarmine University, Louisville, KY 40205, USA
| | - Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Guanjing Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianpeng Xiong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mark A Arick Ii
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
30
|
Jaccard C, Ye W, Bustos-Segura C, Glauser G, Kaplan I, Benrey B. Consequences of squash (Cucurbita argyrosperma) domestication for plant defence and herbivore interactions. PLANTA 2023; 257:106. [PMID: 37127808 PMCID: PMC10151309 DOI: 10.1007/s00425-023-04139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION Cucurbita argyrosperma domestication affected plant defence by downregulating the cucurbitacin synthesis-associated genes. However, tissue-specific suppression of defences made the cultivars less attractive to co-evolved herbivores Diabrotica balteata and Acalymma spp. Plant domestication reduces the levels of defensive compounds, increasing susceptibility to insects. In squash, the reduction of cucurbitacins has independently occurred several times during domestication. The mechanisms underlying these changes and their consequences for insect herbivores remain unknown. We investigated how Cucurbita argyrosperma domestication has affected plant chemical defence and the interactions with two herbivores, the generalist Diabrotica balteata and the specialist Acalymma spp. Cucurbitacin levels and associated genes in roots and cotyledons in three wild and four domesticated varieties were analysed. Domesticated varieties contained virtually no cucurbitacins in roots and very low amounts in cotyledons. Contrastingly, cucurbitacin synthesis-associated genes were highly expressed in the roots of wild populations. Larvae of both insects strongly preferred to feed on the roots of wild squash, negatively affecting the generalist's performance but not that of the specialist. Our findings illustrate that domestication results in tissue-specific suppression of chemical defence, making cultivars less attractive to co-evolved herbivores. In the case of squash, this may be driven by the unique role of cucurbitacins in stimulating feeding in chrysomelid beetles.
Collapse
Affiliation(s)
- Charlyne Jaccard
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Wenfeng Ye
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN 47907 USA
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
31
|
Hull KL, Greenwood MP, Lloyd M, Bester-van der Merwe AE, Rhode C. Gene expression differentials driven by mass rearing and artificial selection in black soldier fly colonies. INSECT MOLECULAR BIOLOGY 2023; 32:86-105. [PMID: 36322045 DOI: 10.1111/imb.12816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The micro-evolutionary forces that shape genetic diversity during domestication have been assessed in many plant and animal systems. However, the impact of these processes on gene expression, and consequent functional adaptation to artificial environments, remains under-investigated. In this study, whole-transcriptome dynamics associated with the early stages of domestication of the black soldier fly (BSF), Hermetia illucens, were assessed. Differential gene expression (DGE) was evaluated in relation to (i) generational time within the cultured environment (F2 vs. F3), and (ii) two selection strategies [no artificial selective pressure (NS); and selection for greater larval mass (SEL)]. RNA-seq was conducted on 5th instar BSF larvae (n = 36), representing equal proportions of the NS (F2 = 9; F3 = 9) and SEL (F2 = 9; F3 = 9) groups. A multidimensional scaling plot revealed greater gene expression variability within the NS and F2 subgroups, while the SEL group clustered separately with lower levels of variation. Comparisons between generations revealed 898 differentially expressed genes (DEGs; FDR-corrected p < 0.05), while between selection strategies, 213 DEGs were observed (FDR-corrected p < 0.05). Enrichment analyses revealed that metabolic, developmental, and defence response processes were over-expressed in the comparison between F2 and F3 larvae, while metabolic processes were the main differentiating factor between NS and SEL lines. This illustrates the functional adaptations that occur in BSF colonies across generations due to mass rearing; as well as highlighting genic dynamics associated with artificial selection for production traits that might inform future selective breeding strategies.
Collapse
Affiliation(s)
- Kelvin L Hull
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | | | - Melissa Lloyd
- Research and Development Department, Insect Technology Group Holdings UK Ltd., Guildford, UK
| | | | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
32
|
Liu C, Wang T, Chen H, Ma X, Jiao C, Cui D, Han B, Li X, Jiao A, Ruan R, Xue D, Wang Y, Han L. Genomic footprints of Kam Sweet Rice domestication indicate possible migration routes of the Dong people in China and provide resources for future rice breeding. MOLECULAR PLANT 2023; 16:415-431. [PMID: 36578210 DOI: 10.1016/j.molp.2022.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Dong people are one of China's 55 recognized ethnic minorities, but there has been a long-standing debate about their origins. In this study, we performed whole-genome resequencing of Kam Sweet Rice (KSR), a valuable, rare, and ancient rice landrace unique to the Dong people. Through comparative genomic analyses of KSR and other rice landraces from south of the Yangtze River Basin in China, we provide evidence that the ancestors of the Dong people likely originated from the southeast coast of China at least 1000 years ago. Alien introgression and admixture in KSR demonstrated multiple migration events in the history of the Dong people. Genomic footprints of domestication demonstrated characteristics of KSR that arose from artificial selection and geographical adaptation by the Dong people. The key genes GS3, Hd1, and DPS1 (related to agronomic traits) and LTG1 and MYBS3 (related to cold tolerance) were identified as domestication targets, reflecting crop improvement and changes in the geographical environment of the Dong people during migration. A genome-wide association study revealed a candidate yield-associated gene, Os01g0923300, a specific haplotype in KSR that is important for regulating grain number per panicle. RNA-sequencing and quantitative reverse transcription-PCR results showed that this gene was more highly expressed in KSR than in ancestral populations, indicating that it may have great value in increasing yield potential in other rice accessions. In summary, our work develops a novel approach for studying human civilization and migration patterns and provides valuable genomic datasets and resources for future breeding of high-yield and climate-resilient rice varieties.
Collapse
Affiliation(s)
- Chunhui Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tianyi Wang
- Smartgenomics Technology Institute, Tianjin 301700, China
| | - Huicha Chen
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Jiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaobing Li
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Aixia Jiao
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Renchao Ruan
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Dayuan Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
33
|
Gutierrez A, Grillo MA. Effects of Domestication on Plant-Microbiome Interactions. PLANT & CELL PHYSIOLOGY 2022; 63:1654-1666. [PMID: 35876043 DOI: 10.1093/pcp/pcac108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Through the process of domestication, selection is targeted on a limited number of plant traits that are typically associated with yield. As an unintended consequence, domesticated plants often perform poorly compared to their wild progenitors for a multitude of traits that were not under selection during domestication, including abiotic and biotic stress tolerance. Over the past decade, advances in sequencing technology have allowed for the rigorous characterization of host-associated microbial communities, termed the microbiome. It is now clear that nearly every conceivable plant interaction with the environment is mediated by interactions with the microbiome. For this reason, plant-microbiome interactions are an area of great promise for plant breeding and crop improvement. Here, we review the literature to assess the potential impact that domestication has had on plant-microbiome interactions and the current understanding of the genetic basis of microbiome variation to inform plant breeding efforts. Overall, we find limited evidence that domestication impacts the diversity of microbiomes, but domestication is often associated with shifts in the abundance and composition of microbial communities, including taxa of known functional significance. Moreover, genome-wide association studies and mutant analysis have not revealed a consistent set of core candidate genes or genetic pathways that confer variation in microbiomes across systems. However, such studies do implicate a consistent role for plant immunity, root traits, root and leaf exudates and cell wall integrity as key traits that control microbiome colonization and assembly. Therefore, selection on these key traits may pose the most immediate promise for enhancing plant-microbiome interactions through breeding.
Collapse
Affiliation(s)
- Andres Gutierrez
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
34
|
Jian L, Yan J, Liu J. De Novo Domestication in the Multi-Omics Era. PLANT & CELL PHYSIOLOGY 2022; 63:1592-1606. [PMID: 35762778 DOI: 10.1093/pcp/pcac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Most cereal crops were domesticated within the last 12,000 years and subsequently spread around the world. These crops have been nourishing the world by supplying a primary energy and nutrient source, thereby playing a critical role in determining the status of human health and sustaining the global population. Here, we review the major challenges of future agriculture and emphasize the utilization of wild germplasm. De novo domestication is one of the most straightforward strategies to manipulate domestication-related and/or other genes with known function, and thereby introduce desired traits into wild plants. We also summarize known causal variations and their corresponding pathways in order to better understand the genetic basis of crop evolution, and how this knowledge could facilitate de novo domestication. Indeed knowledge-driven de novo domestication has great potential for the development of new sustainable crops that have climate-resilient high yield with low resource input and meet individual nutrient needs. Finally, we discuss current opportunities for and barriers to knowledge-driven de novo domestication.
Collapse
Affiliation(s)
- Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
35
|
Singh J, van der Knaap E. Unintended Consequences of Plant Domestication. PLANT & CELL PHYSIOLOGY 2022; 63:1573-1583. [PMID: 35715986 DOI: 10.1093/pcp/pcac083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/12/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Human selection on wild populations mostly favored a common set of plant traits during domestication. This process of direct selection also altered other independent traits that were not directly perceived or desired during crop domestication and improvement. A deeper knowledge of the inadvertent and undesirable phenotypic effects and their underlying genetic causes can help design strategies to mitigate their effects and improve genetic gain in crop plants. We review different factors explaining the negative consequences of plant domestication at the phenotypic and genomic levels. We further describe the genetic causes of undesirable effects that originate from the selection of favorable alleles during plant domestication. In addition, we propose strategies that could be useful in attenuating such effects for crop improvement. With novel -omics and genome-editing tools, it is relatively approachable to understand and manipulate the genetic and biochemical mechanisms responsible for the undesirable phenotypes in domesticated plants.
Collapse
Affiliation(s)
- Jugpreet Singh
- Center for Applied Genetic Technologies, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
- Institute for Plant Breeding, Genetics and Genomics, 111 Riverbend Road, University of Georgia, Athens, GA 30602, USA
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
36
|
Xiao J, Liu B, Yao Y, Guo Z, Jia H, Kong L, Zhang A, Ma W, Ni Z, Xu S, Lu F, Jiao Y, Yang W, Lin X, Sun S, Lu Z, Gao L, Zhao G, Cao S, Chen Q, Zhang K, Wang M, Wang M, Hu Z, Guo W, Li G, Ma X, Li J, Han F, Fu X, Ma Z, Wang D, Zhang X, Ling HQ, Xia G, Tong Y, Liu Z, He Z, Jia J, Chong K. Wheat genomic study for genetic improvement of traits in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1718-1775. [PMID: 36018491 DOI: 10.1007/s11427-022-2178-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/10/2022] [Indexed: 01/17/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major crop that feeds 40% of the world's population. Over the past several decades, advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat, and the genetic basis of agronomically important traits, which promote the breeding of elite varieties. In this review, we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield, end-use traits, flowering regulation, nutrient use efficiency, and biotic and abiotic stress responses, and various breeding strategies that contributed mainly by Chinese scientists. Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools, high-throughput phenotyping platforms, sequencing-based cloning strategies, high-efficiency genetic transformation systems, and speed-breeding facilities. These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process, ultimately contributing to more sustainable agriculture in China and throughout the world.
Collapse
Affiliation(s)
- Jun Xiao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics, Northeast Normal University, Changchun, 130024, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyan Jia
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Aimin Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Fei Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyun Yang
- Institute of Crop Research, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xuelei Lin
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuanghe Cao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qian Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Kunpu Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Guoqiang Li
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Ma
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Junming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fangpu Han
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Yiping Tong
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiyong Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- CIMMYT China Office, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
37
|
Mostert‐O'Neill MM, Tate H, Reynolds SM, Mphahlele MM, van den Berg G, Verryn SD, Acosta JJ, Borevitz JO, Myburg AA. Genomic consequences of artificial selection during early domestication of a wood fibre crop. THE NEW PHYTOLOGIST 2022; 235:1944-1956. [PMID: 35657639 PMCID: PMC9541791 DOI: 10.1111/nph.18297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
From its origins in Australia, Eucalyptus grandis has spread to every continent, except Antarctica, as a wood crop. It has been cultivated and bred for over 100 yr in places such as South Africa. Unlike most annual crops and fruit trees, domestication of E. grandis is still in its infancy, representing a unique opportunity to interrogate the genomic consequences of artificial selection early in the domestication process. To determine how a century of artificial selection has changed the genome of E. grandis, we generated single nucleotide polymorphism genotypes for 1080 individuals from three advanced South African breeding programmes using the EUChip60K chip, and investigated population structure and genome-wide differentiation patterns relative to wild progenitors. Breeding and wild populations appeared genetically distinct. We found genomic evidence of evolutionary processes known to have occurred in other plant domesticates, including interspecific introgression and intraspecific infusion from wild material. Furthermore, we found genomic regions with increased linkage disequilibrium and genetic differentiation, putatively representing early soft sweeps of selection. This is, to our knowledge, the first study of genomic signatures of domestication in a timber species looking beyond the first few generations of cultivation. Our findings highlight the importance of intra- and interspecific hybridization during early domestication.
Collapse
Affiliation(s)
- Marja M. Mostert‐O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Hannah Tate
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - S. Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Makobatjatji M. Mphahlele
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
- Mondi Forests, Tree Improvement Technology Programme, Trahar Technology Centre – TTCMountain Home Estate, Off Dennis Shepstone Dr.Hilton3245South Africa
| | - Gert van den Berg
- Sappi Forests Research, Shaw Research CentrePO Box 473Howick3290South Africa
| | - Steve D. Verryn
- Creation Breeding Innovations75 Kafue St.Lynnwood Glen0081South Africa
| | - Juan J. Acosta
- Camcore, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityPO Box 7626RaleighNC27695USA
| | - Justin O. Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy BiologyAustralian National UniversityCanberraACT0200Australia
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
38
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
39
|
Takeshima R, Yabe S, Matsui K. Genetic basis of maturity time is independent from that of flowering time and contributes to ecotype differentiation in common buckwheat (Fagopyrum esculentum Moench). BMC PLANT BIOLOGY 2022; 22:353. [PMID: 35864444 PMCID: PMC9306078 DOI: 10.1186/s12870-022-03722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Common buckwheat is considered a quantitative short-day plant and is classified into the autumn (highly photoperiod sensitive), summer (weakly photoperiod sensitive), and intermediate ecotype. Understanding ecotype differentiation is essential for adaptive expansion and maximizing yield. The genetic analysis for ecotype has focused on photoperiod-dependent flowering time, whereas post-flowering traits such as seed set and maturity time might also regulate ecotype differentiation. RESULTS A field experiment revealed that ecotype differentiation is mainly defined by the timing of seed set and maturation, whereas flowering time is less relevant. Thus, we focused on maturity time as a trait that defines the ecotype. To detect QTLs for maturity time, we developed two F2 populations derived from early × late-maturing accessions and intermediate × late-maturing accessions. Using genotyping by random amplicon sequencing-direct analysis, we generated a high-density linkage map. QTL analysis detected two major QTLs for maturity time, one in each F2 population. We also detected QTLs for flowering time at loci different from maturity time QTLs, which suggests that different genetic mechanisms regulate flowering and maturity. Association analysis showed that both QTLs for maturity time were significantly associated with variations in the trait across years. CONCLUSIONS Maturity time appeared to be more suitable for explaining ecotype differentiation than flowering time, and different genetic mechanisms would regulate the timing of flowering and maturation. The QTLs and QTL-linked markers for maturity time detected here may be useful to extend the cultivation area and to fine-tune the growth period to maximize yield in buckwheat.
Collapse
Affiliation(s)
- Ryoma Takeshima
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Shiori Yabe
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8518, Japan
| | - Katsuhiro Matsui
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8518, Japan
- Graduate School of Life and Environmental Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
40
|
Sathee L, Jagadhesan B, Pandesha PH, Barman D, Adavi B S, Nagar S, Krishna GK, Tripathi S, Jha SK, Chinnusamy V. Genome Editing Targets for Improving Nutrient Use Efficiency and Nutrient Stress Adaptation. Front Genet 2022; 13:900897. [PMID: 35774509 PMCID: PMC9237392 DOI: 10.3389/fgene.2022.900897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, the development of RNA-guided genome editing (CRISPR-Cas9 technology) has revolutionized plant genome editing. Under nutrient deficiency conditions, different transcription factors and regulatory gene networks work together to maintain nutrient homeostasis. Improvement in the use efficiency of nitrogen (N), phosphorus (P) and potassium (K) is essential to ensure sustainable yield with enhanced quality and tolerance to stresses. This review outlines potential targets suitable for genome editing for understanding and improving nutrient use (NtUE) efficiency and nutrient stress tolerance. The different genome editing strategies for employing crucial negative and positive regulators are also described. Negative regulators of nutrient signalling are the potential targets for genome editing, that may improve nutrient uptake and stress signalling under resource-poor conditions. The promoter engineering by CRISPR/dead (d) Cas9 (dCas9) cytosine and adenine base editing and prime editing is a successful strategy to generate precise changes. CRISPR/dCas9 system also offers the added advantage of exploiting transcriptional activators/repressors for overexpression of genes of interest in a targeted manner. CRISPR activation (CRISPRa) and CRISPR interference (CRISPRi) are variants of CRISPR in which a dCas9 dependent transcription activation or interference is achieved. dCas9-SunTag system can be employed to engineer targeted gene activation and DNA methylation in plants. The development of nutrient use efficient plants through CRISPR-Cas technology will enhance the pace of genetic improvement for nutrient stress tolerance of crops and improve the sustainability of agriculture.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - B. Jagadhesan
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pratheek H. Pandesha
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Dipankar Barman
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sandeep Adavi B
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shivani Nagar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. K. Krishna
- Department of Plant Physiology, College of Agriculture, KAU, Thrissur, India
| | - Shailesh Tripathi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra K. Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
41
|
Lu S, Fang C, Abe J, Kong F, Liu B. Current overview on the genetic basis of key genes involved in soybean domestication. ABIOTECH 2022; 3:126-139. [PMID: 36312442 PMCID: PMC9590488 DOI: 10.1007/s42994-022-00074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
Modern crops were created through the domestication and genetic introgression of wild relatives and adaptive differentiation in new environments. Identifying the domestication-related genes and unveiling their molecular diversity provide clues for understanding how the domesticated variants were selected by ancient people, elucidating how and where these crops were domesticated. Molecular genetics and genomics have explored some domestication-related genes in soybean (Glycine max). Here, we summarize recent studies about the quantitative trait locus (QTL) and genes involved in the domestication traits, introduce the functions of these genes, clarify which alleles of domesticated genes were selected during domestication. A deeper understanding of soybean domestication could help to break the bottleneck of modern breeding by highlighting unused genetic diversity not selected in the original domestication process, as well as highlighting promising new avenues for the identification and research of important agronomic traits among different crop species.
Collapse
Affiliation(s)
- Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-0808 Japan
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
42
|
Zhong L, Zhu Y, Olsen KM. Hard versus soft selective sweeps during domestication and improvement in soybean. Mol Ecol 2022; 31:3137-3153. [PMID: 35366022 DOI: 10.1111/mec.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Genome scans for selection can provide an efficient way to dissect the genetic basis of domestication traits and understand mechanisms of adaptation during crop evolution. Selection involving soft sweeps (simultaneous selection for multiple alleles) is probably common in plant genomes but is under-studied, and few if any studies have systematically scanned for soft sweeps in the context of crop domestication. Using genome resequencing data from 302 wild and domesticated soybean accessions, we conducted selection scans using five widely employed statistics to identify selection candidates under classical (hard) and soft sweeps. Across the genome, inferred hard sweeps are predominant in domesticated soybean landraces and improved varieties, whereas soft sweeps are more prevalent in a representative subpopulation of the wild ancestor. Six domestication-related genes, representing both hard and soft sweeps and different stages of domestication, were used as positive controls to assess the detectability of domestication-associated sweeps. Performance of various test statistics suggests that differentiation-based (FST ) methods are robust for detecting complete hard sweeps, and that LD-based strategies perform well for identifying recent/ongoing sweeps; however, none of the test statistics detected a known soft sweep we previously documented at the domestication gene Dt1. Genome scans yielded a set of 66 candidate loci that were identified by both differentiation-based and LD-based (iHH) methods; notably, this shared set overlaps with many previously identified QTLs for soybean domestication/improvement traits. Collectively, our results will help to advance genetic characterizations of soybean domestication traits and shed light on selection modes involved in adaptation in domesticated plant species.
Collapse
Affiliation(s)
- Limei Zhong
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Youlin Zhu
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi, School of Life Sciences, Nanchang University, Nanchang, China
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
43
|
Zhao Q, Jin K, Hu W, Qian C, Li J, Zhang W, Lou Q, Chen J. Rapid and visual monitoring of alien sequences using crop wild relatives specific oligo-painting: The case of cucumber chromosome engineering. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111199. [PMID: 35487648 DOI: 10.1016/j.plantsci.2022.111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Wild species related to domesticated crops (crop wild relatives, or CWRs) represent a high level of genetic diversity that provides a practical gene pool for crop pre-breeding employed to address climate change and food demand challenges globally. Nevertheless, rapid identifying and visual tracking of alien chromosomes and sequences derived from CWRs have been a technical challenge for crop chromosome engineering. Here, a species-specific oligonucleotide (oligo) pool was developed by using the reference genome of Cucumis hystrix (HH, 2n = 2x = 24), a wild species carrying many favorable traits and interspecific compatibility with cultivated cucumber (C. sativus, CC, 2n = 2x = 14). These synthetic double-stranded oligo probes were applied to validate the assembly and characterize the chromosome architectures of C. hystrix, as well as to rapidly identify C. hystrix-chromosomes in diverse C. sativus-hystrix chromosome-engineered germplasms, including interspecific hybrid F1 (HC), synthetic allopolyploids (HHCC, CHC, and HCH) and alien additional lines (CC-H). Moreover, a ∼2Mb of C. hystrix-specific sequences, introduced into cultivated cucumber, were visualized by CWR-specific oligo-painting. These results demonstrate that the CWR-specific oligo-painting technique holds broad applicability for chromosome engineering of numerous crops, as it allows rapid identification of alien chromosomes, reliable detection of homoeologous recombination, and visual tracking of the introgression process. It is promising to achieve directed and high-precision crop pre-breeding combined with other breeding techniques, such as CRISPR/Cas9-mediated chromosome engineering.
Collapse
Affiliation(s)
- Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kailing Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuntao Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
44
|
Li J, Zhang Y, Ma R, Huang W, Hou J, Fang C, Wang L, Yuan Z, Sun Q, Dong X, Hou Y, Wang Y, Kong F, Sun L. Identification of ST1 reveals a selection involving hitchhiking of seed morphology and oil content during soybean domestication. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1110-1121. [PMID: 35178867 PMCID: PMC9129076 DOI: 10.1111/pbi.13791] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/29/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Seed morphology and quality of cultivated soybean (Glycine max) have changed dramatically during domestication from their wild relatives, but their relationship to selection is poorly understood. Here, we describe a semi-dominant locus, ST1 (Seed Thickness 1), affecting seed thickness and encoding a UDP-D-glucuronate 4-epimerase, which catalyses UDP-galacturonic acid production and promotes pectin biosynthesis. Interestingly, this morphological change concurrently boosted seed oil content, which, along with up-regulation of glycolysis biosynthesis modulated by ST1, enabled soybean to become a staple oil crop. Strikingly, ST1 and an inversion controlling seed coat colour formed part of a single selective sweep. Structural variation analysis of the region surrounding ST1 shows that the critical mutation in ST1 existed in earlier wild relatives of soybean and the region containing ST1 subsequently underwent an inversion, which was followed by successive selection for both traits through hitchhiking during selection for seed coat colour. Together, these results provide direct evidence that simultaneously variation for seed morphology and quality occurred earlier than variation for seed coat colour during soybean domestication. The identification of ST1 thus sheds light on a crucial phase of human empirical selection in soybeans and provides evidence that our ancestors improved soybean based on taste.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Ruirui Ma
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Wenxuan Huang
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jingjing Hou
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Chao Fang
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lingshuang Wang
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Zhihui Yuan
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Qun Sun
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xuehui Dong
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yufeng Hou
- College of Humanities and Development StudiesChina Agricultural UniversityBeijingChina
| | - Ying Wang
- College of Plant ScienceJilin UniversityChangchunChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Lianjun Sun
- State Key Laboratory of AgrobiotechnologyChina Agricultural UniversityBeijingChina
- Beijing Key Laboratory for Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
45
|
Purugganan MD. What is domestication? Trends Ecol Evol 2022; 37:663-671. [PMID: 35534288 DOI: 10.1016/j.tree.2022.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/12/2022] [Accepted: 04/11/2022] [Indexed: 01/06/2023]
Abstract
The nature of domestication is often misunderstood. Most definitions of the process are anthropocentric and center on human intentionality, which minimizes the role of unconscious selection and also excludes non-human domesticators. An overarching, biologically grounded definition of domestication is discussed, which emphasizes its core nature as a coevolutionary process that arises from a specialized mutualism, in which one species controls the fitness of another in order to gain resources and/or services. This inclusive definition encompasses both human-associated domestication of crop plants and livestock as well as other non-human domesticators, such as insects. It also calls into question the idea that humans are themselves domesticated, given that evolution of human traits did not arise through the control of fitness by another species.
Collapse
Affiliation(s)
- Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10011, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Institute for the Study of the Ancient World, New York University, New York, NY 10028, USA.
| |
Collapse
|
46
|
Simons JM, Herbert TC, Kauffman C, Batete MY, Simpson AT, Katsuki Y, Le D, Amundson D, Buescher EM, Weil C, Tuinstra M, Addo‐Quaye C. Systematic prediction of EMS-induced mutations in a sorghum mutant population. PLANT DIRECT 2022; 6:e404. [PMID: 35647479 PMCID: PMC9132608 DOI: 10.1002/pld3.404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 05/14/2023]
Abstract
The precise detection of causal DNA mutations (deoxyribonucleic acid) is very crucial for forward genetic studies. Several sources of errors contribute to false-positive detections by current variant-calling algorithms, which impact associating phenotypes with genotypes. To improve the accuracy of mutation detection, we implemented a binning method for the accurate detection of likely ethyl methanesulfonate (EMS)-induced mutations in a sequenced mutant population. We also implemented a clustering algorithm for detecting likely false negatives with high accuracy. Sorghum bicolor is a very valuable crop species with tremendous potential for uncovering novel gene functions associated with highly desirable agronomical traits. We demonstrate the precision of the described approach in the detection of likely EMS-induced mutations from the publicly available low-cost sequencing of the M3 generation from 600 sorghum BTx623 mutants. The approach detected 3,274,606 single nucleotide polymorphisms (SNPs), of which 96% (3,141,908) were G/C to A/T DNA substitutions, as expected by EMS-mutagenesis mode of action. We demonstrated the general applicability of the described method and showed a high concordance, 94% (3,074,759) SNPs overlap between SAMtools-based and GATK-based variant-calling algorithms. Our clustering algorithm uncovered evidence for an additional 223,048 likely false-negative shared EMS-induced mutations. The final 3,497,654 SNPs represent an 87% increase in SNPs detected from the previous analysis of the mutant population, with an average of one SNP per 125 kb in the sorghum genome. Annotation of the final SNPs revealed 10,263 high-impact and 136,639 moderate-impact SNPs, including 7217 stop-gained mutations, which averages 12 stop-gained mutations per mutant, and four high- or medium-impact SNPs per sorghum gene. We have implemented a public search database for this new genetic resource of 30,285 distinct sorghum genes containing medium- or high-impact EMS-induced mutations. Seedstock for a select 486 of the 600 described mutants are publicly available in the Germplasm Resources Information Network (GRIN) database.
Collapse
Affiliation(s)
- Jared M. Simons
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Tim C. Herbert
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Coleby Kauffman
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Marc Y. Batete
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Andrew T. Simpson
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
- Present address:
Department of Biological SciencesUniversity of IdahoMoscowIdahoUSA
| | - Yuka Katsuki
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Dong Le
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | - Danielle Amundson
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| | | | - Clifford Weil
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Mitch Tuinstra
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Charles Addo‐Quaye
- Division of Natural Sciences and MathematicsLewis‐Clark State CollegeLewistonIdahoUSA
| |
Collapse
|
47
|
Lu R, Chen Y, Zhang X, Feng Y, Comes HP, Li Z, Zheng Z, Yuan Y, Wang L, Huang Z, Guo Y, Sun G, Olsen KM, Chen J, Qiu Y. Genome sequencing and transcriptome analyses provide insights into the origin and domestication of water caltrop (Trapa spp., Lythraceae). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:761-776. [PMID: 34861095 PMCID: PMC8989495 DOI: 10.1111/pbi.13758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Humans have domesticated diverse species from across the plant kingdom; however, our current understanding of plant domestication is largely founded on major cereal crops. Here, we examine the evolutionary processes and genetic basis underlying the domestication of water caltrop (Trapa spp., Lythraceae), a traditional, yet presently underutilized non-cereal crop that sustained early Chinese agriculturalists. We generated a chromosome-level genome assembly of tetraploid T. natans, and then divided the allotetraploid genome into two subgenomes. Based on resequencing data from 57 accessions, representing cultivated diploid T. natans, wild T. natans (2x and 4x) and diploid T. incisa, we showed that water caltrop was likely first domesticated in the Yangtze River Valley as early as 6300 yr BP, and experienced a second improvement c. 800 years ago. We also provided strong support for an allotetraploid origin of T. natans within the past 230 000-310 000 years. By integrating selective sweep and transcriptome profiling analyses, we identified a number of genes potentially selected and/or differentially expressed during domestication, some of which likely contributed not only to larger fruit sizes but also to a more vigorous root system, facilitating nutrient uptake, environmental stress response and underwater photosynthesis. Our results shed light on the evolutionary and domestication history of water caltrop, one of the earliest domesticated crops in China. This study has implications for genomic-assisted breeding of this presently underutilized aquatic plant, and improves our general understanding of plant domestication.
Collapse
Affiliation(s)
- Rui‐Sen Lu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Yang Chen
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Xin‐Yi Zhang
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Yu Feng
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
| | | | - Zheng Li
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonAZUSA
| | - Zhai‐Sheng Zheng
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery)JinhuaZhejiangChina
| | - Ye Yuan
- Jiaxing Academy of Agricultural SciencesJiaxingChina
| | - Ling‐Yun Wang
- Jinhua Academy of Agricultural Sciences (Zhejiang Institute of Agricultural Machinery)JinhuaZhejiangChina
| | - Zi‐Jian Huang
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Yi Guo
- Department of Archaeology, Cultural Heritage and MuseologyZhejiang UniversityHangzhouChina
| | - Guo‐Ping Sun
- Zhejiang Provincial Research Institute of Cultural Relics and ArchaeologyHangzhouChina
| | - Kenneth M. Olsen
- Department of BiologyWashington University in St LouisSt LouisMOUSA
| | - Jun Chen
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Ying‐Xiong Qiu
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Laboratory of Biosystem Homeostasis and Protection, College of Life SciencesZhejiang UniversityHangzhouZhejiangChina
- Wuhan Botanical GardenChinese Academy of SciencesWuhanHubeiChina
| |
Collapse
|
48
|
Borredá C, Perez-Roman E, Talon M, Terol J. Comparative transcriptomics of wild and commercial Citrus during early ripening reveals how domestication shaped fruit gene expression. BMC PLANT BIOLOGY 2022; 22:123. [PMID: 35300613 PMCID: PMC8928680 DOI: 10.1186/s12870-022-03509-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, β-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Estela Perez-Roman
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
49
|
Wu X, Liu Y, Luo H, Shang L, Leng C, Liu Z, Li Z, Lu X, Cai H, Hao H, Jing HC. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. MOLECULAR PLANT 2022; 15:537-551. [PMID: 34999019 DOI: 10.1016/j.molp.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Domestication and diversification have had profound effects on crop genomes. Originating in Africa and subsequently spreading to different continents, sorghum (Sorghum bicolor) has experienced multiple onsets of domestication and intensive breeding selection for various end uses. However, how these processes have shaped sorghum genomes is not fully understood. In the present study, population genomics analyses were performed on a worldwide collection of 445 sorghum accessions, covering wild sorghum and four end-use subpopulations with diverse agronomic traits. Frequent genetic exchanges were found among various subpopulations, and strong selective sweeps affected 14.68% (∼107.5 Mb) of the sorghum genome, including 3649, 4287, and 3888 genes during sorghum domestication, improvement of grain sorghum, and improvement of sweet sorghum, respectively. Eight different models of haplotype changes in domestication genes from wild sorghum to landraces and improved sorghum were observed, and Sh1- and SbTB1-type genes were representative of two prominent models, one of soft selection or multiple origins and one of hard selection or an early single domestication event. We also demonstrated that the Dry gene, which regulates stem juiciness, was unconsciously selected during the improvement of grain sorghum. Taken together, these findings provide new genomic insights into sorghum domestication and breeding selection, and will facilitate further dissection of the domestication and molecular breeding of sorghum.
Collapse
Affiliation(s)
- Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaochun Lu
- Institute of Sorghum Research, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Hongwei Cai
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
50
|
Dong L, Cheng Q, Fang C, Kong L, Yang H, Hou Z, Li Y, Nan H, Zhang Y, Chen Q, Zhang C, Kou K, Su T, Wang L, Li S, Li H, Lin X, Tang Y, Zhao X, Lu S, Liu B, Kong F. Parallel selection of distinct Tof5 alleles drove the adaptation of cultivated and wild soybean to high latitudes. MOLECULAR PLANT 2022; 15:308-321. [PMID: 34673232 DOI: 10.1016/j.molp.2021.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Photoperiod responsiveness is a key factor limiting the geographic distribution of cultivated soybean and its wild ancestor. In particular, the genetic basis of the adaptation in wild soybean remains poorly understood. In this study, by combining whole-genome resequencing and genome-wide association studies we identified a novel locus, Time of Flowering 5 (Tof5), which promotes flowering and enhances adaptation to high latitudes in both wild and cultivated soybean. By genomic, genetic and transgenic analyses we showed that Tof5 encodes a homolog of Arabidopsis thaliana FRUITFULL (FUL). Importantly, further analyses suggested that different alleles of Tof5 have undergone parallel selection. The Tof5H1 allele was strongly selected by humans after the early domestication of cultivated soybean, while Tof5H2 allele was naturally selected in wild soybean, and in each case facilitating adaptation to high latitudes. Moreover, we found that the key flowering repressor E1 suppresses the transcription of Tof5 by binding to its promoter. In turn, Tof5 physically associates with the promoters of two important FLOWERING LOCUS T (FT), FT2a and FT5a, to upregulate their transcription and promote flowering under long photoperiods. Collectively, our findings provide insights into how wild soybean adapted to high latitudes through natural selection and indicate that cultivated soybean underwent changes in the same gene but evolved a distinct allele that was artificially selected after domestication.
Collapse
Affiliation(s)
- Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Zhihong Hou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Yongli Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiyang Nan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Yuhang Zhang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Qingshan Chen
- Department of Agriculture, Northeast Agricultural University, Harbin 150000, China
| | - Chunbao Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Kun Kou
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Tong Su
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Lingshuang Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Shichen Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Haiyang Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoya Lin
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Yang Tang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Xiaohui Zhao
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China.
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510405, China; The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| |
Collapse
|