1
|
Tandon D, Campbell‐Staton S, Cheviron Z, von Holdt BM. Geographic Variation in Epigenetic Responses to Hypoxia in Deer Mice (Peromyscus maniculatus) Distributed Along an Elevational Gradient. Mol Ecol 2025; 34:e17752. [PMID: 40156223 PMCID: PMC12010463 DOI: 10.1111/mec.17752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Lowland and highland Peromyscus maniculatus populations display divergent, locally adapted physiological phenotypes shaped by altitudinal differences in oxygen availability. Many physiological responses to hypoxia seem to have evolved in lowland ancestors to offset episodic and localised bouts of low internal oxygen availability. However, upon chronic hypoxia exposure at high elevation, these responses can lead to physiological complications. Therefore, highland ancestry is often associated with evolved hypoxia responses, particularly traits promoting tolerance of constant hypoxia. Environmentally induced DNA methylation can dynamically alter gene expression patterns, providing a proximate basis for phenotypic plasticity. Given each population's differential reliance on plasticity for hypoxia tolerance, we hypothesised that lowland mice have a more robust epigenetic response to hypoxia exposure, driving trait plasticity, than highland mice. Using DNA methylation data of tissues from the heart's left ventricle, we show that upon hypoxia exposure, lowland mice chemically modulate the epigenetic landscape to a greater extent than highland mice, especially at key hypoxia-relevant genes such as Egln3. This gene is a regulator of the gene Epas1 that is frequently targeted for positive selection at high elevation. We find higher methylation among wild highland mice at gene Egln3 compared to wild lowland mice, suggesting a shared epigenetic ancestral response to episodic and chronic hypoxia. These findings highlight each population's distinct reliance on molecular plasticity driven by their unique evolutionary histories.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Shane Campbell‐Staton
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| | - Zachary Cheviron
- Division of Biological Sciences and Wildlife Biology ProgramUniversity of MontanaMissoulaMontanaUSA
| | - Bridgett M. von Holdt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
2
|
Kreger J, Mooney JA, Shibata D, MacLean AL. Developmental hematopoietic stem cell variation explains clonal hematopoiesis later in life. Nat Commun 2024; 15:10268. [PMID: 39592593 PMCID: PMC11599844 DOI: 10.1038/s41467-024-54711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Clonal hematopoiesis becomes increasingly common with age, but its cause is enigmatic because driver mutations are often absent. Serial observations infer weak selection indicating variants are acquired much earlier in life with unexplained initial growth spurts. Here we use fluctuating CpG methylation as a lineage marker to track stem cell clonal dynamics of hematopoiesis. We show, via the shared prenatal circulation of monozygotic twins, that weak selection conferred by stem cell variation created before birth can reliably yield clonal hematopoiesis later in life. Theory indicates weak selection will lead to dominance given enough time and large enough population sizes. Human hematopoiesis satisfies both these conditions. Stochastic loss of weakly selected variants is naturally prevented by the expansion of stem cell lineages during development. The dominance of stem cell clones created before birth is supported by blood fluctuating CpG methylation patterns that exhibit low correlation between unrelated individuals but are highly correlated between many elderly monozygotic twins. Therefore, clonal hematopoiesis driven by weak selection in later life appears to reflect variation created before birth.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jazlyn A Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
4
|
Lin S, Cai K, Feng S, Lin Z. Identification of m5C-Related gene diagnostic biomarkers for sepsis: a machine learning study. Front Genet 2024; 15:1444003. [PMID: 39540021 PMCID: PMC11558340 DOI: 10.3389/fgene.2024.1444003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Background Sepsis is a serious condition that occurs when the body's response to infection becomes uncontrolled, resulting in a high risk of death. Despite improvements in healthcare, identifying sepsis early is difficult because of its diverse nature and the absence of distinct biomarkers. Recent studies suggest that 5-methylcytosine (m5C)-related genes play a significant role in immune responses, yet their diagnostic potential in sepsis remains unexplored. Methods This research combined and examined four sepsis-related datasets (GSE95233, GSE57065, GSE100159, and GSE65682) sourced from the Gene Expression Omnibus (GEO)database to discover m5C-related genes with differential expression. Various machine learning methods, such as decision tree, random forest, and XGBoost, were utilized in identifying crucial hub genes. Receiver Operating Characteristic (ROC) curve analysis was used to assess the diagnostic accuracy of these genetic markers. Additionally, single-gene enrichment and immune infiltration analyses were conducted to investigate the underlying mechanisms involving these hub genes in sepsis. Results Three hub genes, DNA Methyltransferase 1 (DNMT1), tumor protein P53 (TP53), and toll-like receptor 8 (TLR8), were identified and validated for their diagnostic efficacy, showing area under the curve (AUC) values above 0.7 in both test and validation sets. Enrichment analyses revealed that these genes are involved in key pathways such as p53 signaling and Toll-like receptor signaling. Immune infiltration analysis indicated significant correlations between hub genes and various immune cell types, suggesting their roles in modulating immune responses during sepsis. Conclusion The study highlights the diagnostic potential of m5C-related genes in sepsis and their involvement in immune regulation. These findings offer new insights into sepsis pathogenesis and suggest that DNMT1, TP53, and TLR8 could serve as valuable biomarkers for early diagnosis. Further studies should prioritize validating these biomarkers in clinical settings and investigating their potential for therapy.
Collapse
Affiliation(s)
- Siming Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kexin Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaodan Feng
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhihong Lin
- Department of Emergency Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
6
|
Radwan A, Eccleston J, Sabag O, Marcus H, Sussman J, Ouro A, Rahamim M, Azagury M, Azria B, Stanger BZ, Cedar H, Buganim Y. Transdifferentiation occurs without resetting development-specific DNA methylation, a key determinant of full-function cell identity. Proc Natl Acad Sci U S A 2024; 121:e2411352121. [PMID: 39292740 PMCID: PMC11441492 DOI: 10.1073/pnas.2411352121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
A number of studies have demonstrated that it is possible to directly convert one cell type to another by factor-mediated transdifferentiation, but in the vast majority of cases, the resulting reprogrammed cells are unable to maintain their new cell identity for prolonged culture times and have a phenotype only partially similar to their endogenous counterparts. To better understand this phenomenon, we developed an analytical approach for better characterizing trans-differentiation-associated changes in DNA methylation, a major determinant of long-term cell identity. By examining various models of transdifferentiation both in vitro and in vivo, our studies indicate that despite convincing expression changes, transdifferentiated cells seem unable to alter their original developmentally mandated methylation patterns. We propose that this blockage is due to basic developmental limitations built into the regulatory sequences that govern epigenetic programming of cell identity. These results shed light on the molecular rules necessary to achieve complete somatic cell reprogramming.
Collapse
Affiliation(s)
- Ahmed Radwan
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Jason Eccleston
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Howard Marcus
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Jonathan Sussman
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Alberto Ouro
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Batia Azria
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Ben Z. Stanger
- Department of Medicine and Cell, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
- Department of Development Biology, The Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem91120, Israel
| |
Collapse
|
7
|
Ren Y, Huang P, Zhang L, Tang YF, Luo SL, She Z, Peng H, Chen YQ, Luo JW, Duan WX, Liu LJ, Liu LQ. Dual Regulation Mechanism of Obesity: DNA Methylation and Intestinal Flora. Biomedicines 2024; 12:1633. [PMID: 39200098 PMCID: PMC11351752 DOI: 10.3390/biomedicines12081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Obesity is a multifactorial chronic inflammatory metabolic disorder, with pathogenesis influenced by genetic and non-genetic factors such as environment and diet. Intestinal microbes and their metabolites play significant roles in the occurrence and development of obesity by regulating energy metabolism, inducing chronic inflammation, and impacting intestinal hormone secretion. Epigenetics, which involves the regulation of host gene expression without changing the nucleotide sequence, provides an exact direction for us to understand how the environment, lifestyle factors, and other risk factors contribute to obesity. DNA methylation, as the most common epigenetic modification, is involved in the pathogenesis of various metabolic diseases. The epigenetic modification of the host is induced or regulated by the intestinal microbiota and their metabolites, linking the dynamic interaction between the microbiota and the host genome. In this review, we examined recent advancements in research, focusing on the involvement of intestinal microbiota and DNA methylation in the etiology and progression of obesity, as well as potential interactions between the two factors, providing novel perspectives and avenues for further elucidating the pathogenesis, prevention, and treatment of obesity.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Pediatrics, Haikou Hospital of the Maternal and Child Health, Haikou 570100, China
- Department of Children’s Healthcare, Hainan Modern Women and Children’s Medical, Haikou 570100, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Fen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sen-Lin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yu-Qiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jin-Wen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Wang-Xin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ling-Juan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Li-Qun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.R.); (P.H.); (L.Z.); (Y.-F.T.); (S.-L.L.); (Z.S.); (H.P.); (Y.-Q.C.); (J.-W.L.); (W.-X.D.); (L.-J.L.)
- Children’s Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
8
|
Handal T, Juster S, Abu Diab M, Yanovsky-Dagan S, Zahdeh F, Aviel U, Sarel-Gallily R, Michael S, Bnaya E, Sebban S, Buganim Y, Drier Y, Mouly V, Kubicek S, van den Broek WJAA, Wansink DG, Epsztejn-Litman S, Eiges R. Differentiation shifts from a reversible to an irreversible heterochromatin state at the DM1 locus. Nat Commun 2024; 15:3270. [PMID: 38627364 PMCID: PMC11021500 DOI: 10.1038/s41467-024-47217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.
Collapse
Affiliation(s)
- Tayma Handal
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Sarah Juster
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Manar Abu Diab
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Shira Yanovsky-Dagan
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Fouad Zahdeh
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Uria Aviel
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Roni Sarel-Gallily
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, 91904, Israel
| | - Shir Michael
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Ester Bnaya
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Walther J A A van den Broek
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derick G Wansink
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, 91031, Israel.
- The Hebrew University School of Medicine, Jerusalem, 91120, Israel.
| |
Collapse
|
9
|
Song B, Yu J, Li X, Li J, Fan J, Liu H, Wei W, Zhang L, Gu K, Liu D, Zhao K, Wu J. Increased DNA methylation contributes to the early ripening of pear fruits during domestication and improvement. Genome Biol 2024; 25:87. [PMID: 38581061 PMCID: PMC10996114 DOI: 10.1186/s13059-024-03220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND DNA methylation is an essential epigenetic modification. However, its contribution to trait changes and diversity in the domestication of perennial fruit trees remains unknown. RESULTS Here, we investigate the variation in DNA methylation during pear domestication and improvement using whole-genome bisulfite sequencing in 41 pear accessions. Contrary to the significant decrease during rice domestication, we detect a global increase in DNA methylation during pear domestication and improvement. We find this specific increase in pear is significantly correlated with the downregulation of Demeter-like1 (DML1, encoding DNA demethylase) due to human selection. We identify a total of 5591 differentially methylated regions (DMRs). Methylation in the CG and CHG contexts undergoes co-evolution during pear domestication and improvement. DMRs have higher genetic diversity than selection sweep regions, especially in the introns. Approximately 97% of DMRs are not associated with any SNPs, and these DMRs are associated with starch and sucrose metabolism and phenylpropanoid biosynthesis. We also perform correlation analysis between DNA methylation and gene expression. We find genes close to the hypermethylated DMRs that are significantly associated with fruit ripening. We further verify the function of a hyper-DMR-associated gene, CAMTA2, and demonstrate that overexpression of CAMTA2 in tomato and pear callus inhibits fruit ripening. CONCLUSIONS Our study describes a specific pattern of DNA methylation in the domestication and improvement of a perennial pear tree and suggests that increased DNA methylation plays an essential role in the early ripening of pear fruits.
Collapse
Affiliation(s)
- Bobo Song
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jinshan Yu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jing Fan
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430072, China
| | - Hainan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weilin Wei
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Lingchao Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kaidi Gu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Dongliang Liu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kejiao Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
10
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
11
|
Krumpolec P, Kodada D, Hadžega D, Petrovič O, Babišová K, Dosedla E, Turcsányiová Z, Minárik G. Changes in DNA methylation associated with a specific mode of delivery: a pilot study. Front Med (Lausanne) 2024; 11:1291429. [PMID: 38314203 PMCID: PMC10835804 DOI: 10.3389/fmed.2024.1291429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Background The mode of delivery represents an epigenetic factor with potential to affect further development of the individual by multiple mechanisms. DNA methylation may be one of them, representing a major epigenetic mechanism involving direct chemical modification of the individual's DNA. This pilot study aims to examine whether a specific mode of delivery induces changes of DNA methylation by comparing the umbilical cord blood and peripheral blood of the newborns. Methods Blood samples from infants born by vaginal delivery and caesarean section were analysed to prepare the Methylseq library according to NEBNext enzymatic Methyl-seq Methylation Library Preparation Kit with further generation of target-enriched DNA libraries using the Twist Human Methylome Panel. DNA methylation status was determined using Illumina next-generation sequencing (NGS). Results We identified 168 differentially methylated regions in umbilical cord blood samples and 157 regions in peripheral blood samples. These were associated with 59 common biological, metabolic and signalling pathways for umbilical cord and peripheral blood samples. Conclusion Caesarean section is likely to represent an important epigenetic factor with the potential to induce changes in the genome that could play an important role in development of a broad spectrum of disorders. Our results could contribute to the elucidation of how epigenetic factors, such as a specific mode of delivery, could have adverse impact on health of an individual later in their life.
Collapse
Affiliation(s)
| | - Dominik Kodada
- Medirex Group Academy n.o., Nitra, Slovakia
- Department of Clinical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | | | | | | | - Erik Dosedla
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Zuzana Turcsányiová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | | |
Collapse
|
12
|
Gamal L, Noshy MM, Aboul-Naga AM, Sabit H, El-Shorbagy HM. DNA methylation of GDF-9 and GHR genes as epigenetic regulator of milk production in Egyptian Zaraibi goat. Genes Genomics 2024; 46:135-148. [PMID: 37985544 PMCID: PMC10781795 DOI: 10.1007/s13258-023-01464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND DNA methylation is an epigenetic mechanism that takes place at gene promoters and a potent epigenetic marker to regulate gene expression. OBJECTIVE The study aimed to improve the milk production of Zaraibi goats by addressing the methylation pattern of two milk production-related genes: the growth hormone receptor (GHR) and the growth differentiation factor-9 (GDF-9). METHODS 54 and 46 samples of low and high milk yield groups, respectively, were collected. Detection of methylation was assessed in two CpG islands in the GDF-9 promoter via methylation-specific primer assay (MSP) and in one CpG island across the GHR promoter using combined bisulfite restriction analysis (COBRA). RESULTS A positive correlation between the methylation pattern of GDF-9 and GHR and their expression levels was reported. Breeding season was significantly effective on both peak milk yield (PMY) and total milk yield (TMY), where March reported a higher significant difference in PMY than November. Whereas single birth was highly significant on TMY than multiple births. The 3rd and 4th parities reported the highest significant difference in PMY, while the 4th parity was the most effective one on TMY. CONCLUSION These results may help improve the farm animals' milk productive efficiency and develop prospective epigenetic markers to improve milk yield by epigenetic marker-assisted selection (eMAS) in goat breeding programs.
Collapse
Affiliation(s)
- Layaly Gamal
- Sheep and Goat Research Department, Animal Production Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Magda M Noshy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - A M Aboul-Naga
- Sheep and Goat Research Department, Animal Production Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Haidan M El-Shorbagy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Faculty of Biotechnology, October University for Modern Science and Arts, 6th October, Giza, Egypt.
| |
Collapse
|
13
|
Lozupone M, Dibello V, Sardone R, Castellana F, Zupo R, Lampignano L, Bortone I, Daniele A, Bellomo A, Solfrizzi V, Panza F. The Impact of Apolipoprotein E ( APOE) Epigenetics on Aging and Sporadic Alzheimer's Disease. BIOLOGY 2023; 12:1529. [PMID: 38132357 PMCID: PMC10740847 DOI: 10.3390/biology12121529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Sporadic Alzheimer's disease (AD) derives from an interplay among environmental factors and genetic variants, while epigenetic modifications have been expected to affect the onset and progression of its complex etiopathology. Carriers of one copy of the apolipoprotein E gene (APOE) ε4 allele have a 4-fold increased AD risk, while APOE ε4/ε4-carriers have a 12-fold increased risk of developing AD in comparison with the APOE ε3-carriers. The main longevity factor is the homozygous APOE ε3/ε3 genotype. In the present narrative review article, we summarized and described the role of APOE epigenetics in aging and AD pathophysiology. It is not fully understood how APOE variants may increase or decrease AD risk, but this gene may affect tau- and amyloid-mediated neurodegeneration directly or indirectly, also by affecting lipid metabolism and inflammation. For sporadic AD, epigenetic regulatory mechanisms may control and influence APOE expression in response to external insults. Diet, a major environmental factor, has been significantly associated with physical exercise, cognitive function, and the methylation level of several cytosine-phosphate-guanine (CpG) dinucleotide sites of APOE.
Collapse
Affiliation(s)
- Madia Lozupone
- Department of Translational Biomedicine and Neuroscience (DiBrain), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Rodolfo Sardone
- Local Healthcare Authority of Taranto, 74121 Taranto, Italy;
| | - Fabio Castellana
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Roberta Zupo
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Luisa Lampignano
- Local Healthcare Authority of Bari, ASL Bari, 70132 Bari, Italy;
| | - Ilaria Bortone
- Department of Translational Biomedicine and Neuroscience (DiBrain), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy;
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, 00168 Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Vincenzo Solfrizzi
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| | - Francesco Panza
- Department of Interdisciplinary Medicine, Clinica Medica e Geriatria “Cesare Frugoni”, University of Bari Aldo Moro, 70121 Bari, Italy; (F.C.); (R.Z.); (V.S.)
| |
Collapse
|
14
|
Horvath S, Haghani A, Zoller JA, Lu AT, Ernst J, Pellegrini M, Jasinska AJ, Mattison JA, Salmon AB, Raj K, Horvath M, Paul KC, Ritz BR, Robeck TR, Spriggs M, Ehmke EE, Jenkins S, Li C, Nathanielsz PW. Pan-primate studies of age and sex. GeroScience 2023; 45:3187-3209. [PMID: 37493860 PMCID: PMC10643767 DOI: 10.1007/s11357-023-00878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
Age and sex have a profound effect on cytosine methylation levels in humans and many other species. Here we analyzed DNA methylation profiles of 2400 tissues derived from 37 primate species including 11 haplorhine species (baboons, marmosets, vervets, rhesus macaque, chimpanzees, gorillas, orangutan, humans) and 26 strepsirrhine species (suborders Lemuriformes and Lorisiformes). From these we present here, pan-primate epigenetic clocks which are highly accurate for all primates including humans (age correlation R = 0.98). We also carried out in-depth analysis of baboon DNA methylation profiles and generated five epigenetic clocks for baboons (Olive-yellow baboon hybrid), one of which, the pan-tissue epigenetic clock, was trained on seven tissue types (fetal cerebral cortex, adult cerebral cortex, cerebellum, adipose, heart, liver, and skeletal muscle) with ages ranging from late fetal life to 22.8 years of age. Using the primate data, we characterize the effect of age and sex on individual cytosines in highly conserved regions. We identify 11 sex-related CpGs on autosomes near genes (POU3F2, CDYL, MYCL, FBXL4, ZC3H10, ZXDC, RRAS, FAM217A, RBM39, GRIA2, UHRF2). Low overlap can be observed between age- and sex-related CpGs. Overall, this study advances our understanding of conserved age- and sex-related epigenetic changes in primates, and provides biomarkers of aging for all primates.
Collapse
Affiliation(s)
- Steve Horvath
- Altos Labs, San Diego, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and BiobehavioralSciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute On Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, and Department of Molecular Medicine, UT Health San Antonio, and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | | | | | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Beate R Ritz
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Todd R Robeck
- Corporate Zoological Operations, SeaWorld Parks, Orlando, FL, USA
| | - Maria Spriggs
- Busch Gardens Tampa, SeaWorld Parks, Tampa, FL, 33612, USA
| | | | - Susan Jenkins
- Texas Pregnancy & Life-Course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources Department, Laramie, WY, USA
| | - Cun Li
- Texas Pregnancy & Life-Course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources Department, Laramie, WY, USA
| | - Peter W Nathanielsz
- Texas Pregnancy & Life-Course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources Department, Laramie, WY, USA
| |
Collapse
|
15
|
Maehara H, Kokaji T, Hatano A, Suzuki Y, Matsumoto M, Nakayama KI, Egami R, Tsuchiya T, Ozaki H, Morita K, Shirai M, Li D, Terakawa A, Uematsu S, Hironaka KI, Ohno S, Kubota H, Araki H, Miura F, Ito T, Kuroda S. DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins in liver and skeletal muscle. Sci Rep 2023; 13:19118. [PMID: 37926704 PMCID: PMC10625943 DOI: 10.1038/s41598-023-46393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
Each tissue has a dominant set of functional proteins required to mediate tissue-specific functions. Epigenetic modifications, transcription, and translational efficiency control tissue-dominant protein production. However, the coordination of these regulatory mechanisms to achieve such tissue-specific protein production remains unclear. Here, we analyzed the DNA methylome, transcriptome, and proteome in mouse liver and skeletal muscle. We found that DNA hypomethylation at promoter regions is globally associated with liver-dominant or skeletal muscle-dominant functional protein production within each tissue, as well as with genes encoding proteins involved in ubiquitous functions in both tissues. Thus, genes encoding liver-dominant proteins, such as those involved in glycolysis or gluconeogenesis, the urea cycle, complement and coagulation systems, enzymes of tryptophan metabolism, and cytochrome P450-related metabolism, were hypomethylated in the liver, whereas those encoding-skeletal muscle-dominant proteins, such as those involved in sarcomere organization, were hypomethylated in the skeletal muscle. Thus, DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins.
Collapse
Affiliation(s)
- Hideki Maehara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916‑5 Takayama, Ikoma, Nara, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki, 305‑8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, 305‑8577, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki, 305‑8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, 305‑8577, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masaki Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Ken-Ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan.
| |
Collapse
|
16
|
Yang C, Gao Z, Wang Y, Zhang Q, Bai M, Yang H, Guo J, Zhang Y. Genome-wide DNA methylation analysis reveals layer-specific methylation patterns in deer antler tissue. Gene 2023; 884:147744. [PMID: 37640118 DOI: 10.1016/j.gene.2023.147744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
This paper explored using of deer antlers as a model for studying rapid growth and cartilage formation in mammals. The genes and regulatory mechanisms involved in antler chondrogenesis are poorly understood, however, previous research has suggested that DNA methylation played a key role in antler regeneration. By using fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP), this study measured DNA methylation levels in cartilage (CA) and reserve mesenchyme (RM) cells and tissues. Results showed that RM cells (RMCs) DNA methylation levels were significantly lower than those of CA, suggesting that DNA demethylation may be involved in antler fast cartilage differentiation. The study also identified 20 methylated fragments specific to RMCs or CA using the methylation-sensitive amplified polymorphism (MSAP) technique and confirmed these findings using southern blot analysis. The data provide the first experimental evidence of a link between epigenetic regulation and rapid cartilage differentiation in antlers.
Collapse
Affiliation(s)
- Chun Yang
- College of Basic Medicine, Beihua University, Jilin, PR China.
| | - Zizheng Gao
- College of Basic Medicine, Beihua University, Jilin, PR China
| | - Yukun Wang
- School of Stomatology, Beihua University, Jilin, PR China
| | - Qi Zhang
- School of Public Health, Beihua University, Jilin, PR China
| | - Muran Bai
- School of Stomatology, Beihua University, Jilin, PR China
| | - Huiran Yang
- School of Public Health, Beihua University, Jilin, PR China
| | - Junqi Guo
- The Third Clinical Medicine Affiliated to Changchun University of Chinese Medicine, Changchun, PR China.
| | - Yan Zhang
- School of Public Health, Beihua University, Jilin, PR China.
| |
Collapse
|
17
|
Shao Z, Han Y, Zhou D. Optimized bisulfite sequencing analysis reveals the lack of 5-methylcytosine in mammalian mitochondrial DNA. BMC Genomics 2023; 24:439. [PMID: 37542258 PMCID: PMC10403921 DOI: 10.1186/s12864-023-09541-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND DNA methylation is one of the best characterized epigenetic modifications in the mammalian nuclear genome and is known to play a significant role in various biological processes. Nonetheless, the presence of 5-methylcytosine (5mC) in mitochondrial DNA remains controversial, as data ranging from the lack of 5mC to very extensive 5mC have been reported. RESULTS By conducting comprehensive bioinformatic analyses of both published and our own data, we reveal that previous observations of extensive and strand-biased mtDNA-5mC are likely artifacts due to a combination of factors including inefficient bisulfite conversion, extremely low sequencing reads in the L strand, and interference from nuclear mitochondrial DNA sequences (NUMTs). To reduce false positive mtDNA-5mC signals, we establish an optimized procedure for library preparation and data analysis of bisulfite sequencing. Leveraging our modified workflow, we demonstrate an even distribution of 5mC signals across the mtDNA and an average methylation level ranging from 0.19% to 0.67% in both cell lines and primary cells, which is indistinguishable from the background noise. CONCLUSIONS We have developed a framework for analyzing mtDNA-5mC through bisulfite sequencing, which enables us to present multiple lines of evidence for the lack of extensive 5mC in mammalian mtDNA. We assert that the data available to date do not support the reported presence of mtDNA-5mC.
Collapse
Affiliation(s)
- Zhenyu Shao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yang Han
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University & Chinese Academy of Medical Sciences (RU069), Shanghai, 200032, China
| | - Dan Zhou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University & Chinese Academy of Medical Sciences (RU069), Shanghai, 201399, China.
| |
Collapse
|
18
|
Zhu W, Yang C, Liu Q, Peng M, Li Q, Wang H, Chen X, Zhang B, Feng P, Chen T, Zeng D, Zhao Y. Integrated Analysis of DNA Methylome and Transcriptome Reveals Epigenetic Regulation of Cold Tolerance in Litopenaeus vannamei. Int J Mol Sci 2023; 24:11573. [PMID: 37511332 PMCID: PMC10380378 DOI: 10.3390/ijms241411573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation is an important epigenetic modification that has been shown to be associated with responses to non-biological stressors. However, there is currently no research on DNA methylation in response to environmental signals in shrimp. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles and differentially expressed genes between two strains of Litopenaeus vannamei with significantly different cold tolerance through whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Between Lv-C and Lv-T (constant temperature of 28 °C and low temperatures of 18 °C and 10 °C) under cytosine-guanine (CG) environments, 39,100 differentially methylated regions (DMRs) were identified, corresponding to 9302 DMR-related genes (DMRGs). The DMRs were mainly located in the gene body (exons and introns). Gene Ontology (GO) analysis showed that these DMRGs were significantly enriched in cell parts, catalytic activity, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant enrichment of these DMRGs in pathways such as proteasome (ko03050), oxidative phosphorylation (ko00190), mTOR signaling pathway (ko04150), fatty acid metabolism (ko01212), and fatty acid degradation (ko00071). The comprehensive results suggested that L. vannamei mainly regulates gene expression in response to low temperatures through hypermethylation or demethylation of some genes involved in thermogenesis, glycolysis, the autophagy pathway, the peroxisome, and drug metabolism pathways. These results provide important clues for studying DNA methylation patterns and identifying cold tolerance genes in shrimp.
Collapse
Affiliation(s)
- Weilin Zhu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Min Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Tiancong Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Digang Zeng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| |
Collapse
|
19
|
Deng Q, Du Y, Wang Z, Chen Y, Wang J, Liang H, Zhang D. Identification and validation of a DNA methylation-driven gene-based prognostic model for clear cell renal cell carcinoma. BMC Genomics 2023; 24:307. [PMID: 37286941 DOI: 10.1186/s12864-023-09416-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with heterogeneous morphology and poor prognosis. This study aimed to establish a DNA methylation (DNAm)-driven gene-based prognostic model for ccRCC. METHODS Reduced representation bisulfite sequencing (RRBS) was performed on the DNA extracts from ccRCC patients. We analyzed the RRBS data from 10 pairs of patient samples to screen the candidate CpG sites, then trained and validated an 18-CpG site model, and integrated the clinical characters to establish a Nomogram model for the prognosis or risk evaluation of ccRCC. RESULTS We identified 2261 DMRs in the promoter region. After DMR selection, 578 candidates were screened, and was correspondence with 408 CpG dinucleotides in the 450 K array. We collected the DNAm profiles of 478 ccRCC samples from TCGA dataset. Using the training set with 319 samples, a prognostic panel of 18 CpGs was determined by univariate Cox regression, LASSO regression, and multivariate Cox proportional hazards regression analyses. We constructed a prognostic model by combining the clinical signatures. In the test set (159 samples) and whole set (478 samples), the Kaplan-Meier plot showed significant differences; and the ROC curve and survival analyses showed AUC greater than 0.7. The Nomogram integrated with clinicopathological characters and methylation risk score had better performance, and the decision curve analyses also showed a beneficial effect. CONCLUSIONS This work provides insight into the role of hypermethylation in ccRCC. The targets identified might serve as biomarkers for early ccRCC diagnosis and prognosis biomarkers for ccRCC. We believe our findings have implications for better risk stratification and personalized management of this disease.
Collapse
Affiliation(s)
- Qiong Deng
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518109, China
- College of Basic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ye Du
- Central Laboratory, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518109, China
| | - Zhu Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518109, China
| | - Yeda Chen
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518109, China
| | - Jieyan Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518109, China
| | - Hui Liang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, 518109, China
| | - Du Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No 7, Pengfei Road, Dapeng New District, Shenzhen, 518120, China.
| |
Collapse
|
20
|
Wu S, Xie J, Zhao H, Sanchez O, Zhao X, Freeman JL, Yuan C. Pre-differentiation GenX exposure induced neurotoxicity in human dopaminergic-like neurons. CHEMOSPHERE 2023; 332:138900. [PMID: 37172627 DOI: 10.1016/j.chemosphere.2023.138900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
GenX, also known as hexafluoropropylene oxide dimer acid (HFPO) was introduced as a safer alternative to perfluorooctanoic acid (PFOA) in 2009. After nearly two decades of applications there are increasing safety concerns about GenX due to its association with various organ damages. Few studies, however, have systematically assessed the molecular neurotoxicity of low-dose GenX exposure. Here, we evaluated the effects of pre-differentiation exposure of GenX on dopaminergic (DA) -like neurons using SH-SY5Y cell line; and assessed changes in epigenome, mitochondrion, and neuronal characteristics. Low dose GenX exposure at 0.4 and 4 μg/L prior to differentiation induces persistent changes in nuclear morphology and chromatin arrangements, manifested specifically in the facultative repressive marker H3K27me3. We also observed impaired neuronal network, increased calcium activity along with alterations in Tyrosine hydroxylase (TH) and α-Synuclein after prior exposure to GenX. Collectively, our results identified neurotoxicity of low-dose GenX exposure in human DA-like neurons following a developmental exposure scheme. The observed changes in neuronal characteristics suggest GenX as a potential neurotoxin and risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar Sanchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xihui Zhao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
22
|
Rusin LY. Evolution of homology: From archetype towards a holistic concept of cell type. J Morphol 2023; 284:e21569. [PMID: 36789784 DOI: 10.1002/jmor.21569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The concept of homology lies in the heart of comparative biological science. The distinction between homology as structure and analogy as function has shaped the evolutionary paradigm for a century and formed the axis of comparative anatomy and embryology, which accept the identity of structure as a ground measure of relatedness. The advent of single-cell genomics overturned the classical view of cell homology by establishing a backbone regulatory identity of cell types, the basic biological units bridging the molecular and phenotypic dimensions, to reveal that the cell is the most flexible unit of living matter and that many approaches of classical biology need to be revised to understand evolution and diversity at the cellular level. The emerging theory of cell types explicitly decouples cell identity from phenotype, essentially allowing for the divergence of evolutionarily related morphotypes beyond recognition, as well as it decouples ontogenetic cell lineage from cell-type phylogeny, whereby explicating that cell types can share common descent regardless of their structure, function or developmental origin. The article succinctly summarizes current progress and opinion in this field and formulates a more generalistic view of biological cell types as avatars, transient or terminal cell states deployed in a continuum of states by the developmental programme of one and the same omnipotent cell, capable of changing or combining identities with distinct evolutionary histories or inventing ad hoc identities that never existed in evolution or development. It highlights how the new logic grounded in the regulatory nature of cell identity transforms the concepts of cell homology and phenotypic stability, suggesting that cellular evolution is inherently and massively network-like, with one-to-one homologies being rather uncommon and restricted to shallower levels of the animal tree of life.
Collapse
Affiliation(s)
- Leonid Y Rusin
- Laboratory for Mathematic Methods and Models in Bioinformatics, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- EvoGenome Analytics LLC, Odintsovo, Moscow Region, Russia
| |
Collapse
|
23
|
Abstract
BACKGROUND Autoimmune hepatitis has an unknown cause and genetic associations that are not disease-specific or always present. Clarification of its missing causality and heritability could improve prevention and management strategies. AIMS Describe the key epigenetic and genetic mechanisms that could account for missing causality and heritability in autoimmune hepatitis; indicate the prospects of these mechanisms as pivotal factors; and encourage investigations of their pathogenic role and therapeutic potential. METHODS English abstracts were identified in PubMed using multiple key search phases. Several hundred abstracts and 210 full-length articles were reviewed. RESULTS Environmental induction of epigenetic changes is the prime candidate for explaining the missing causality of autoimmune hepatitis. Environmental factors (diet, toxic exposures) can alter chromatin structure and the production of micro-ribonucleic acids that affect gene expression. Epistatic interaction between unsuspected genes is the prime candidate for explaining the missing heritability. The non-additive, interactive effects of multiple genes could enhance their impact on the propensity and phenotype of autoimmune hepatitis. Transgenerational inheritance of acquired epigenetic marks constitutes another mechanism of transmitting parental adaptations that could affect susceptibility. Management strategies could range from lifestyle adjustments and nutritional supplements to precision editing of the epigenetic landscape. CONCLUSIONS Autoimmune hepatitis has a missing causality that might be explained by epigenetic changes induced by environmental factors and a missing heritability that might reflect epistatic gene interactions or transgenerational transmission of acquired epigenetic marks. These unassessed or under-evaluated areas warrant investigation.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
24
|
Verdone L, Caserta M, Ben-Soussan TD, Venditti S. On the road to resilience: Epigenetic effects of meditation. VITAMINS AND HORMONES 2023; 122:339-376. [PMID: 36863800 DOI: 10.1016/bs.vh.2022.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many environmental and lifestyle related factors may influence the physiology of the brain and body by acting on fundamental molecular pathways, such as the hypothalamus-pituitary-adrenal axis (HPA) and the immune system. For example, stressful conditions created by adverse early-life events, unhealthy habits and low socio-economic status may favor the onset of diseases linked to neuroendocrine dysregulation, inflammation and neuroinflammation. Beside pharmacological treatments used in clinical settings, much attention has been given to complementary treatments such as mind-body techniques involving meditation that rely on the activation of inner resources to regain health. At the molecular level, the effects of both stress and meditation are elicited epigenetically through a set of mechanisms that regulate gene expression as well as the circulating neuroendocrine and immune effectors. Epigenetic mechanisms constantly reshape genome activities in response to external stimuli, representing a molecular interface between organism and environment. In the present work, we aimed to review the current knowledge on the correlation between epigenetics, gene expression, stress and its possible antidote, meditation. After introducing the relationship between brain, physiology, and epigenetics, we will proceed to describe three basic epigenetic mechanisms: chromatin covalent modifications, DNA methylation and non-coding RNAs. Subsequently, we will give an overview of the physiological and molecular aspects related to stress. Finally, we will address the epigenetic effects of meditation on gene expression. The results of the studies reported in this review demonstrate that mindful practices modulate the epigenetic landscape, leading to increased resilience. Therefore, these practices can be considered valuable tools that complement pharmacological treatments when coping with pathologies related to stress.
Collapse
Affiliation(s)
- Loredana Verdone
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Tal Dotan Ben-Soussan
- Cognitive Neurophysiology Laboratory, Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
25
|
Colwell M, Flack N, Rezabek A, Faulk C. Intergenerational arsenic exposure on the mouse epigenome and metabolic physiology. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:72-87. [PMID: 36593717 PMCID: PMC9974848 DOI: 10.1002/em.22526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 05/06/2023]
Abstract
Inorganic arsenic (iAs) is one of the largest toxic exposures to impact humanity worldwide. Exposure to iAs during pregnancy may disrupt the proper remodeling of the epigenome of F1 developing offspring and potentially their F2 grand-offspring via disruption of fetal primordial germ cells (PGCs). There is a limited understanding between the correlation of disease phenotype and methylation profile within offspring of both generations and whether it persists to adulthood. Our study aims to understand the intergenerational effects of in utero iAs exposure on the epigenetic profile and onset of disease phenotypes within F1 and F2 adult offspring, despite the lifelong absence of direct arsenic exposure within these generations. We exposed F0 female mice (C57BL6/J) to the following doses of iAs in drinking water 2 weeks before pregnancy until the birth of the F1 offspring: 1, 10, 245, and 2300 ppb. We found sex- and dose-specific changes in weight and body composition that persist from early time to adulthood within both generations. Fasting blood glucose challenge suggests iAs exposure causes dysregulation of glucose metabolism, revealing generational, exposure, and sex-specific differences. Toward understanding the mechanism, genome-wide DNA methylation data highlights exposure-specific patterns in liver, finding dysregulation within genes associated with cancer, T2D, and obesity. We also identified regions containing persistently differentially methylated CpG sites between F1 and F2 generations. Our results indicate the F1 developing embryos and their PGCs, which will result in F2 progeny, retain epigenetic damage established during the prenatal period and are associated with adult metabolic dysfunction.
Collapse
Affiliation(s)
- Mathia Colwell
- Department of Environmental Health Sciences, School of Public Health, University of Michigan
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Sciences
| | - Nicole Flack
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine
| | - Amanda Rezabek
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Sciences
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Sciences
| |
Collapse
|
26
|
Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci 2023; 24:ijms24021727. [PMID: 36675240 PMCID: PMC9863985 DOI: 10.3390/ijms24021727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives. The 5mC and oxidized methylcytosines are essential for the maintenance of cellular identity and function during differentiation. Cytosine modifications with DNMT and TET enzymes exert pleiotropic effects on various aspects of hematopoiesis, including self-renewal of hematopoietic stem/progenitor cells (HSPCs), lineage determination, differentiation, and function. Under pathological conditions, these enzymes are frequently dysregulated, leading to loss of function. In particular, the loss of DNMT3A and TET2 function is conspicuous in diverse hematological disorders, including myeloid and lymphoid malignancies, and causally related to clonal hematopoiesis and malignant transformation. Here, we update recent advances in understanding how the maintenance of DNA methylation homeostasis by DNMT and TET proteins influences normal hematopoiesis and malignant transformation, highlighting the potential impact of DNMT3A and TET2 dysregulation on clonal dominance and evolution of pre-leukemic stem cells to full-blown malignancies. Clarification of the normal and pathological functions of DNA-modifying epigenetic regulators will be crucial to future innovations in epigenetic therapies for treating hematological disorders.
Collapse
|
27
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Liu HN, Shu Q, Lin-Wang K, Espley RV, Allan AC, Pei MS, Li XL, Su J, Wu J. DNA methylation reprogramming provides insights into light-induced anthocyanin biosynthesis in red pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111499. [PMID: 36265764 DOI: 10.1016/j.plantsci.2022.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation, an epigenetic mark, is proposed to regulate plant anthocyanin biosynthesis. It well known that light induces anthocyanin accumulation, with bagging treatments commonly used to investigate light-controlled anthocyanin biosynthesis. We studied the DNA methylome landscape during pear skin coloration under various conditions (fruits re-exposed to sunlight after bag removal). The DNA methylation level in gene body/TE and its flanking sequence was generally similar between debagged and bagged treatments, however differentially methylated regions (DMRs) were re-modelled after light-exposure. Both DNA demethylase homologs and the RNA-directed DNA methylation (RdDM) pathways contributed to this re-distribution. A total of 310 DEGs were DMR-associated during light-induced anthocyanin biosynthesis between debagged and bagged treatments. The hypomethylated mCHH context was seen within the promoter of PyUFGT, together with other anthocyanin biosynthesis genes (PyPAL, PyDFR and PyANS). This enhanced transcriptional activation and promoted anthocyanin accumulation after light re-exposure. Unlike previous reports on bud sports, we did not detect DMRs within the MYB10 promoter. Instead, we observed the genome-wide re-distribution of methylation patterns, suggesting different mechanisms underlying methylation patterns of differentially accumulated anthocyanins caused by either bud mutation or environment change. We investigate the dynamic landscape of genome-scale DNA methylation, which is the combined effect of DNA demethylation and RdDM pathway, in the process of light-induced fruit colour formation in pear. This process is regulated by methylation changes on promoter regions of several DEGs. These results provide a DMR-associated DEGs set and new insight into the mechanism of DNA methylation involved in light-induced anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Hai-Nan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
| | - Qun Shu
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Mao-Song Pei
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
| | - Xiao-Long Li
- College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China.
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Sreekar N, Shrestha S. Bioinformatic Evaluation of Features on Cis-regulatory Elements at 6q25.1. Bioinform Biol Insights 2023; 17:11779322231167971. [PMID: 37124129 PMCID: PMC10134125 DOI: 10.1177/11779322231167971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Eukaryotic non-coding regulatory features contribute significantly to cellular plasticity which on aberration leads to cellular malignancy. Enhancers are cis-regulatory elements that contribute to the development of resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer leading to poor clinical outcome. ER is vital for therapeutic targets in ER-positive breast cancer. Here, we review and report the different regulatory features present on ER with the objective to delineate potential mechanisms which may contribute to development of resistance. The UCSC Genome Browser, data mining, and bioinformatics tools were used to review enhancers, transcription factors (TFs), histone marks, long non-coding RNAs (lncRNAs), and variants residing in the non-coding region of the ER gene. We report 7 enhancers, 3 of which were rich in TF-binding sites and histone marks in a cell line-specific manner. Furthermore, some enhancers contain estrogen resistance variants and sites for lncRNA. Our review speculates putative models suggesting potential aberrations in gene regulation and expression if these regulatory landscapes and assemblies are altered. This review gives an interesting perspective in designing integrated in vitro studies including non-coding elements to study development of endocrine resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
| | - Smeeta Shrestha
- Smeeta Shrestha, Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore.
| |
Collapse
|
30
|
Wang Y, Zuo L, Wei T, Zhang Y, Zhang Y, Ming R, Bachar D, Xiao W, Madiha K, Chen C, Fan Q, Li C, Liu JH. CHH methylation of genes associated with fatty acid and jasmonate biosynthesis contributes to cold tolerance in autotetraploids of Poncirus trifoliata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2327-2343. [PMID: 36218272 DOI: 10.1111/jipb.13379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lanlan Zuo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dahro Bachar
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Xiao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Khan Madiha
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Qijun Fan
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
31
|
Moharrek F, Ingerslev LR, Altıntaş A, Lundell L, Hansen AN, Small L, Workman CT, Barrès R. Comparative analysis of sperm DNA methylation supports evolutionary acquired epigenetic plasticity for organ speciation. Epigenomics 2022; 14:1305-1324. [PMID: 36420698 DOI: 10.2217/epi-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aim: To perform a comparative epigenomic analysis of DNA methylation in spermatozoa from humans, mice, rats and mini-pigs. Materials & methods: Genome-wide DNA methylation analysis was used to compare the methylation profiles of orthologous CpG sites. Transcription profiles of early embryo development were analyzed to provide insight into the association between sperm methylation and gene expression programming. Results: We identified DNA methylation variation near genes related to the central nervous system and signal transduction. Gene expression dynamics at different time points of preimplantation stages were modestly associated with spermatozoal DNA methylation at the nearest promoters. Conclusion: Conserved genomic regions subject to epigenetic variation across different species were associated with specific organ functions, suggesting their potential contribution to organ speciation and long-term adaptation to the environment.
Collapse
Affiliation(s)
- Farideh Moharrek
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lars R Ingerslev
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ali Altıntaş
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Leonidas Lundell
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ann N Hansen
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lewin Small
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Christopher T Workman
- Department of Biotechnology & Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Romain Barrès
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.,Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur & Centre National pour la Recherche Scientifique (CNRS), Valbonne, 06560, France
| |
Collapse
|
32
|
The RNA m 6A writer WTAP in diseases: structure, roles, and mechanisms. Cell Death Dis 2022; 13:852. [PMID: 36207306 PMCID: PMC9546849 DOI: 10.1038/s41419-022-05268-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
N6-methyladenosine (m6A) is a widely investigated RNA modification in studies on the "epigenetic regulation" of mRNAs that is ubiquitously present in eukaryotes. Abnormal changes in m6A levels are closely related to the regulation of RNA metabolism, heat shock stress, tumor occurrence, and development. m6A modifications are catalyzed by the m6A writer complex, which contains RNA methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP), and other proteins with methyltransferase (MTase) capability, such as RNA-binding motif protein 15 (RBM15), KIAA1429 and zinc finger CCCH-type containing 13 (ZC3H13). Although METTL3 is the main catalytic subunit, WTAP is a regulatory subunit whose function is to recruit the m6A methyltransferase complex to the target mRNA. Specifically, WTAP is required for the accumulation of METTL3 and METTL14 in nuclear speckles. In this paper, we briefly introduce the molecular mechanism of m6A modification. Then, we focus on WTAP, a component of the m6A methyltransferase complex, and introduce its structure, localization, and physiological functions. Finally, we describe its roles and mechanisms in cancer.
Collapse
|
33
|
Niu LZ, Xu W, Ma PF, Guo ZH, Li DZ. Single-base methylome analysis reveals dynamic changes of genome-wide DNA methylation associated with rapid stem growth of woody bamboos. PLANTA 2022; 256:53. [PMID: 35913571 DOI: 10.1007/s00425-022-03962-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
CG and CHG methylation levels in the rapid shoot growth stages (ST2-ST4) of woody bamboos were obviously decreased, which might regulate the internode elongation during rapid shoot growth, while CHH methylation was strongly associated with shoot developmental time or age. DNA methylation plays a critical role in the regulation of plant growth and development. Woody bamboos have a unique trait of rapid stem growth resulted from internode elongation at the shooting period. However, it is still unclear whether DNA methylation significantly controls the bamboo rapid stem growth. Here we present whole-genome DNA methylation profiles of the paleotropical woody bamboo Bonia amplexicaulis at five newly defined stages of shoot growth, named ST1-ST5. We found that CG and CHG methylation levels in the rapid shoot growth stages (ST2-ST4) were significantly lower than in the incubation (ST1) and plateau stages (ST5). The changes in methylation levels mainly occurred in flanking regions of genes and gene body regions, and 23647 differentially methylated regions (DMRs) were identified between ST1 and rapid shoot growth stages (ST2-ST4). Combined with transcriptome analysis, we found that DMR-related genes enriched in the auxin and jasmonic acid (JA) signal transduction, and other pathways closely related to plant growth. Intriguingly, CHH methylation was not involved in the rapid shoot growth, but strongly associated with shoot developmental time by gradually accumulating in transposable elements (TEs) regions. Overall, our results reveal the importance of DNA methylation in regulating the bamboo rapid shoot growth and suggest a role of DNA methylation associated with development time or age in woody bamboos.
Collapse
Affiliation(s)
- Liang-Zhong Niu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
34
|
Erichsen L, Thimm C, Santourlidis S. Methyl Group Metabolism in Differentiation, Aging, and Cancer. Int J Mol Sci 2022; 23:8378. [PMID: 35955511 PMCID: PMC9369357 DOI: 10.3390/ijms23158378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Methyl group metabolism belongs to a relatively understudied field of research. Its importance lies in the fact that methyl group metabolic pathways are crucial for the successful conversion of dietary nutrients into the basic building blocks to carry out any cellular methylation reaction. Methyl groups play essential roles in numerous cellular functions such as DNA methylation, nucleotide- and protein biosynthesis. Especially, DNA methylation is responsible for organizing the genome into transcriptionally silent and active regions. Ultimately, it is this proper annotation that determines the quality of expression patterns required to ensure and shape the phenotypic integrity and function of a highly specialized cell type. Life is characterized by constantly changing environmental conditions, which are addressed by changes in DNA methylation. This relationship is increasingly coming into focus as it is of fundamental importance for differentiation, aging, and cancer. The stability and permanence of these metabolic processes, fueling the supplementation of methyl groups, seem to be important criteria to prevent deficiencies and erosion of the methylome. Alterations in the metabolic processes can lead to epigenetic and genetic perturbations, causative for diverse disorders, accelerated aging, and various age-related diseases. In recent decades, the intake of methyl group compounds has changed significantly due to, e.g., environmental pollution and food additives. Based on the current knowledge, this review provides a brief overview of the highly interconnected relationship between nutrition, metabolism, changes in epigenetic modifications, cancer, and aging. One goal is to provide an impetus to additionally investigate changes in DNA methylation as a possible consequence of an impaired methyl group metabolism.
Collapse
Affiliation(s)
- Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany;
| |
Collapse
|
35
|
Zhou W, Hinoue T, Barnes B, Mitchell O, Iqbal W, Lee SM, Foy KK, Lee KH, Moyer EJ, VanderArk A, Koeman JM, Ding W, Kalkat M, Spix NJ, Eagleson B, Pospisilik JA, Szabó PE, Bartolomei MS, Vander Schaaf NA, Kang L, Wiseman AK, Jones PA, Krawczyk CM, Adams M, Porecha R, Chen BH, Shen H, Laird PW. DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. CELL GENOMICS 2022; 2:100144. [PMID: 35873672 PMCID: PMC9306256 DOI: 10.1016/j.xgen.2022.100144] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 05/20/2022] [Indexed: 05/21/2023]
Abstract
We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| | - Toshinori Hinoue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bret Barnes
- Illumina, Inc., Bioinformatics and Instrument Software Department, San Diego, CA 92122, USA
| | - Owen Mitchell
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Waleed Iqbal
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kelly K. Foy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kwang-Ho Lee
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ethan J. Moyer
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra VanderArk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Julie M. Koeman
- Genomics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wubin Ding
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Manpreet Kalkat
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nathan J. Spix
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bryn Eagleson
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Liang Kang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ashley K. Wiseman
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter A. Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rishi Porecha
- Illumina, Inc., Bioinformatics and Instrument Software Department, San Diego, CA 92122, USA
| | | | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Corresponding author
| | - Peter W. Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Corresponding author
| |
Collapse
|
36
|
Yashar WM, Kong G, VanCampen J, Curtiss BM, Coleman DJ, Carbone L, Yardimci GG, Maxson JE, Braun TP. GoPeaks: histone modification peak calling for CUT&Tag. Genome Biol 2022; 23:144. [PMID: 35788238 PMCID: PMC9252088 DOI: 10.1186/s13059-022-02707-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Genome-wide mapping of histone modifications is critical to understanding transcriptional regulation. CUT&Tag is a new method for profiling histone modifications, offering improved sensitivity and decreased cost compared with ChIP-seq. Here, we present GoPeaks, a peak calling method specifically designed for histone modification CUT&Tag data. We compare the performance of GoPeaks against commonly used peak calling algorithms to detect histone modifications that display a range of peak profiles and are frequently used in epigenetic studies. We find that GoPeaks robustly detects genome-wide histone modifications and, notably, identifies a substantial number of H3K27ac peaks with improved sensitivity compared to other standard algorithms.
Collapse
Affiliation(s)
- William M. Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, USA
| | - Garth Kong
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Jake VanCampen
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | | | - Daniel J. Coleman
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Lucia Carbone
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, USA
| | - Galip Gürkan Yardimci
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Center for Early Cancer Detection, Oregon Health & Science University, Portland, USA
| | - Julia E. Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, USA
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA
- Division of Oncologic Sciences, Oregon Health & Science University, Portland, USA
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, USA
| |
Collapse
|
37
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
38
|
Alzahayqa M, Jamous A, Khatib AAH, Salah Z. TET1 Isoforms Have Distinct Expression Pattern, Localization and Regulation in Breast Cancer. Front Oncol 2022; 12:848544. [PMID: 35646706 PMCID: PMC9133332 DOI: 10.3389/fonc.2022.848544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
TET1 regulates gene expression by demethylating their regulatory sequences through the conversion of 5-methylcytosine to 5-hyroxymethylcytosine. TET1 plays important roles in tissue homeostasis. In breast cancer, TET1 was shown to play controversial roles. Moreover, TET1 has at least two isoforms (long and short) that have distinct expression pattern and apparently different functions in tissue development and disease including breast cancer. We hypothesized that TET1 isoforms have different expression patterns, localization and regulation in different types of breast cancer. To prove our hypothesis, we studied the expression of TET1 isoforms in basal and luminal breast cancer cell lines, as well as in basal and luminal breast cancer animal models. We also studied the effect of different hormones on the expression of the two isoforms. Moreover, we assessed the distribution of the isoforms between the cytoplasm and nucleus. Finally, we overexpressed the full length in a breast cancer cell line and tested its effect on cancer cell behavior. In this study, we demonstrate that while Estrogen and GnRH downregulate the expression of long TET1, they lead to upregulation of short TET1 expression. In addition, we uncovered that luminal cells show higher expression level of the long isoform. We also show that while all TET1 isoforms are almost depleted in a basal breast cancer animal model, the expression of the short isoform is induced in luminal breast cancer model. The short form is expressed mainly in the cytoplasm while the long isoform is expressed mainly in the nucleus. Finally, we show that long TET1 overexpression suppresses cell oncogenic phenotypes. In conclusion, our data suggest that TET1 isoforms have distinct expression pattern, localization and regulation in breast cancer and that long TET1 suppresses oncogenic phenotypes, and that further studies are necessary to elucidate the functional roles of different TET1 isoforms in breast cancer.
Collapse
Affiliation(s)
| | - Abrar Jamous
- Department of Molecular Biology and Biochemistry, Al Quds University, Jerusalem, Palestine
| | - Areej A H Khatib
- Women Health Research Unit, McGill University Health Center, Montreal, QC, Canada
| | - Zaidoun Salah
- Molecular Genetics and Genetic Toxicology Program, Arab American University, Ramallah, Palestine
| |
Collapse
|
39
|
Isaevska E, Fiano V, Asta F, Stafoggia M, Moirano G, Popovic M, Pizzi C, Trevisan M, De Marco L, Polidoro S, Gagliardi L, Rusconi F, Brescianini S, Nisticò L, Stazi MA, Ronfani L, Porta D, Richiardi L. Prenatal exposure to PM 10 and changes in DNA methylation and telomere length in cord blood. ENVIRONMENTAL RESEARCH 2022; 209:112717. [PMID: 35063426 DOI: 10.1016/j.envres.2022.112717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollution exposure in pregnancy can cause molecular level alterations that might influence later disease susceptibility. OBJECTIVES We investigated DNA methylation (DNAm) and telomere length (TL) in the cord blood in relation to gestational PM10 exposure and explored potential gestational windows of susceptibility. METHODS Cord blood epigenome-wide DNAm (N = 384) and TL (N = 500) were measured in children of the Italian birth cohort Piccolipiù, using the Infinium Methylation EPIC BeadChip and qPCR, respectively. PM10 daily exposure levels, based on maternal residential address, were estimated for different gestational periods using models based on satellite data. Epigenome-wide analysis to identify differentially methylated probes (DMPs) and regions (DMRs) was conducted, followed by a pathway analysis and replication analysis in an second Piccolipiù dataset. Distributed lag models (DLMs) using weekly exposures were used to study the association of PM10 exposure across pregnancy with telomere length, as well as with the DMPs that showed robust associations. RESULTS Gestational PM10 exposure was associated with the DNA methylation of more than 250 unique DMPs, most of them identified in early gestation, and 1 DMR. Out of 151 DMPs available in the replication dataset, ten DMPs showed robust associations: eight were associated with exposure during early gestation and 2 with exposure during the whole pregnancy. These exposure windows were supported by the DLM analysis. The PM10 exposure between 15th and 20th gestational week seem to be associated with shorter telomeres at birth, while exposure between 24th and 29th was associated with longer telomeres. DISCUSSION The early pregnancy period is a potential critical window during which PM10 exposure can influence cord blood DNA methylation. The results from the TL analysis were consistent with previous findings and merit further exploration in future studies. The study underlines the importance of considering gestational windows outside of the predefined trimesters that may not always overlap with biologically relevant windows of exposure.
Collapse
Affiliation(s)
- Elena Isaevska
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Valentina Fiano
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Federica Asta
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Giovenale Moirano
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Maja Popovic
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Costanza Pizzi
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Morena Trevisan
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Laura De Marco
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Silvia Polidoro
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy; 5MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK.
| | - Luigi Gagliardi
- Division of Neonatology and Pediatrics, Ospedale Versilia, Viareggio, AUSL Toscana Nord Ovest, Pisa, Italy.
| | - Franca Rusconi
- Unit of Epidemiology, Meyer Children's University Hospital, Florence, Italy; Department of Mother and Child Health, Azienda USL Toscana Nord Ovest, Pisa, Italy.
| | - Sonia Brescianini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Lorenza Nisticò
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Maria Antonietta Stazi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Luca Ronfani
- Clinical Epidemiology and Public Health Research Unit, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| |
Collapse
|
40
|
Li Y, Tang C, Liu F, Zhu C, Liu F, Zhu P, Wang L. DNA methylation safeguards the generation of hematopoietic stem and progenitor cells by repression of Notch signaling. Development 2022; 149:275510. [PMID: 35502759 PMCID: PMC9188753 DOI: 10.1242/dev.200390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
The earliest hematopoietic stem and progenitor cells (HSPCs) are generated from the ventral wall of the dorsal aorta, through endothelial-to-hematopoietic transition during vertebrate embryogenesis. Notch signaling is crucial for HSPC generation across vertebrates; however, the precise control of Notch during this process remains unclear. In the present study, we used multi-omics approaches together with functional assays to assess global DNA methylome dynamics during the endothelial cells to HSPCs transition in zebrafish, and determined that DNA methyltransferase 1 (Dnmt1) is essential for HSPC generation via repression of Notch signaling. Depletion of dnmt1 resulted in decreased DNA methylation levels and impaired HSPC production. Mechanistically, we found that loss of dnmt1 induced hypomethylation of Notch genes and consequently elevated Notch activity in hemogenic endothelial cells, thereby repressing the generation of HSPCs. This finding deepens our understanding of HSPC specification in vivo, which will provide helpful insights for designing new strategies for HSPC generation in vitro. Summary: Multi-omics approaches and functional assays reveal global DNA methylome dynamics and an indispensable role of DNA methyltransferase 1 in hematopoietic stem/progenitor cell generation through repression of Notch signaling.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences 1 , Beijing, 100101 , China
| | - Chao Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Fan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences 1 , Beijing, 100101 , China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College 2 , Tianjin, 300020 , China
| |
Collapse
|
41
|
Gabbutt C, Schenck RO, Weisenberger DJ, Kimberley C, Berner A, Househam J, Lakatos E, Robertson-Tessi M, Martin I, Patel R, Clark SK, Latchford A, Barnes CP, Leedham SJ, Anderson ARA, Graham TA, Shibata D. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat Biotechnol 2022; 40:720-730. [PMID: 34980912 PMCID: PMC9110299 DOI: 10.1038/s41587-021-01109-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Molecular clocks that record cell ancestry mutate too slowly to measure the short-timescale dynamics of cell renewal in adult tissues. Here, we show that fluctuating DNA methylation marks can be used as clocks in cells where ongoing methylation and demethylation cause repeated 'flip-flops' between methylated and unmethylated states. We identify endogenous fluctuating CpG (fCpG) sites using standard methylation arrays and develop a mathematical model to quantitatively measure human adult stem cell dynamics from these data. Small intestinal crypts were inferred to contain slightly more stem cells than the colon, with slower stem cell replacement in the small intestine. Germline APC mutation increased the number of replacements per crypt. In blood, we measured rapid expansion of acute leukemia and slower growth of chronic disease. Thus, the patterns of human somatic cell birth and death are measurable with fluctuating methylation clocks (FMCs).
Collapse
Affiliation(s)
- Calum Gabbutt
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
- London Interdisciplinary Doctoral Training Programme (LIDo), London, UK
| | - Ryan O Schenck
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher Kimberley
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alison Berner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacob Househam
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Isabel Martin
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St. Mark's Hospital, Harrow, London, UK
| | - Roshani Patel
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St. Mark's Hospital, Harrow, London, UK
| | - Susan K Clark
- St. Mark's Hospital, Harrow, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Andrew Latchford
- St. Mark's Hospital, Harrow, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Sun T, Zhang J, Zhang Q, Li X, Li M, Yang Y, Zhou J, Wei Q, Zhou B. Methylome and transcriptome analyses of three different degrees of albinism in apple seedlings. BMC Genomics 2022; 23:310. [PMID: 35439938 PMCID: PMC9016989 DOI: 10.1186/s12864-022-08535-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leaf colour mutations are universally expressed at the seedling stage and are ideal materials for exploring the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in plants. RESULTS In this research, we analysed the different degrees of albinism in apple (Malus domestica) seedlings, including white-leaf mutants (WM), piebald leaf mutants (PM), light-green leaf mutants (LM) and normal leaves (NL) using bisulfite sequencing (BS-seq) and RNA sequencing (RNA-seq). There were 61,755, 79,824, and 74,899 differentially methylated regions (DMRs) and 7566, 3660, and 3546 differentially expressed genes (DEGs) identified in the WM/NL, PM/NL and LM/NL comparisons, respectively. CONCLUSION The analysis of the methylome and transcriptome showed that 9 DMR-associated DEGs were involved in the carotenoid metabolism and flavonoid biosynthesis pathway. The expression of different transcription factors (TFs) may also influence the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in apple leaf mutants. This study provides a new method for understanding the differences in the formation of apple seedlings with different degrees of albinism.
Collapse
Affiliation(s)
- Tingting Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Junke Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Qiang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Xingliang Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Minji Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Yuzhang Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Jia Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China
| | - Qinping Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China.
| | - Beibei Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100093, China.
| |
Collapse
|
43
|
Global DNA Methylation in Cord Blood as a Biomarker for Prenatal Lead and Antimony Exposures. TOXICS 2022; 10:toxics10040157. [PMID: 35448418 PMCID: PMC9027623 DOI: 10.3390/toxics10040157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
Abstract
DNA methylation is an epigenetic mechanism for gene expression modulation and can be used as a predictor of future disease risks. A prospective birth cohort study was performed to clarify the effects of neurotoxicants on child development, namely, the Tohoku Study of Child Development, in Japan. This study aimed to evaluate the association of prenatal exposure to five toxic metals—arsenic, cadmium, mercury, lead (Pb), antimony (Sb), and polychlorinated biphenyls (PCBs, N = 166)—with global DNA methylation in umbilical cord blood DNA. DNA methylation markers, 5-methyl-2′-deoxycytidine (mC) and 5-hydroxymethyl-2′-deoxycytidine (hmC), were determined using liquid chromatography-tandem mass spectrometry. The mC content in cord blood DNA was positively correlated with Pb and Sb levels (r = 0.435 and 0.288, respectively) but not with cord blood PCBs. We also observed significant positive correlations among Pb levels, maternal age, and hmC content (r = 0.155 and 0.243, respectively). The multiple regression analysis among the potential predictors demonstrated consistent positive associations between Pb and Sb levels and mC and hmC content. Our results suggest that global DNA methylation is a promising biomarker for prenatal exposure to Pb and Sb.
Collapse
|
44
|
Zou Z, Ohta T, Miura F, Oki S. ChIP-Atlas 2021 update: a data-mining suite for exploring epigenomic landscapes by fully integrating ChIP-seq, ATAC-seq and Bisulfite-seq data. Nucleic Acids Res 2022; 50:W175-W182. [PMID: 35325188 PMCID: PMC9252733 DOI: 10.1093/nar/gkac199] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
ChIP-Atlas (https://chip-atlas.org) is a web service providing both GUI- and API-based data-mining tools to reveal the architecture of the transcription regulatory landscape. ChIP-Atlas is powered by comprehensively integrating all data sets from high-throughput ChIP-seq and DNase-seq, a method for profiling chromatin regions accessible to DNase. In this update, we further collected all the ATAC-seq and whole-genome bisulfite-seq data for six model organisms (human, mouse, rat, fruit fly, nematode, and budding yeast) with the latest genome assemblies. These together with ChIP-seq data can be visualized with the Peak Browser tool and a genome browser to explore the epigenomic landscape of a query genomic locus, such as its chromatin accessibility, DNA methylation status, and protein–genome interactions. This epigenomic landscape can also be characterized for multiple genes and genomic loci by querying with the Enrichment Analysis tool, which, for example, revealed that inflammatory bowel disease-associated SNPs are the most significantly hypo-methylated in neutrophils. Therefore, ChIP-Atlas provides a panoramic view of the whole epigenomic landscape. All datasets are free to download via either a simple button on the web page or an API.
Collapse
Affiliation(s)
- Zhaonan Zou
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.,Kyoto University Graduate Program for Medical Innovation, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Kyoto University Graduate Division, Yoshida-Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tazro Ohta
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
45
|
Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review). Mol Med Rep 2022; 25:169. [PMID: 35302170 PMCID: PMC8971914 DOI: 10.3892/mmr.2022.12685] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Circular RNA (circRNA) molecules are noncoding RNAs with unique circular covalently closed structures that contribute to gene expression regulation, protein translation and act as microRNA sponges. circRNAs also have important roles in human disease, particularly tumorigenesis and antitumor processes. Methylation is an epigenetic modification that regulates the expression and roles of DNA and coding RNA and their interactions, as well as of noncoding RNA molecules. Previous studies have focused on the effects of methylation modification on circRNA expression, transport, stability, translation and degradation of circRNAs, as well as how circRNA methylation occurs and the influence of circRNAs on methylation modification processes. circRNA and methylation can also regulate disease pathogenesis via these interactions. In the present study, we define the relationship between circRNAs and methylation, as well as the functions and mechanisms of their interactions during disease progression.
Collapse
|
46
|
Llácer J, Díaz N, Serrano E, Álvarez E, Castillo J, Ortiz J, Ten J, Bernabeu A, Bernabeu R. Vitrification does not affect birth weight. Lessons from the oocyte donation model. Reprod Biomed Online 2022; 45:355-363. [DOI: 10.1016/j.rbmo.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
|
47
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
48
|
Luo D, Yang J, Liu J, Yong X, Wang Z. Identification of four novel hub genes as monitoring biomarkers for colorectal cancer. Hereditas 2022; 159:11. [PMID: 35093172 PMCID: PMC8801129 DOI: 10.1186/s41065-021-00216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Background It must be admitted that the incidence of colorectal cancer (CRC) was on the rise all over the world, but the related treatment had not caught up. Further research on the underlying pathogenesis of CRC was conducive to improving the survival status of current CRC patients. Methods Differentially expressed genes (DEGs) screening were conducted based on “limma” and “RobustRankAggreg” package of R software. Weighted gene co-expression network analysis (WGCNA) was performed in the integrated DEGs that from The Cancer Genome Atlas (TCGA), and all samples of validation were from Gene Expression Omnlbus (GEO) dataset. Results The terms obtained in the functional annotation for primary DEGs indicated that they were associated with CRC. The MEyellow stand out whereby showed the significant correlation with clinical feature (disease), and 4 hub genes, including ABCC13, AMPD1, SCNN1B and TMIGD1, were identified in yellow module. Nine datasets from Gene Expression Omnibus database confirmed these four genes were significantly down-regulated and the survival estimates for the low-expression group of these genes were lower than for the high-expression group in Kaplan-Meier survival analysis section. MEXPRESS suggested that down-regulation of some top hub genes may be caused by hypermethylation. Receiver operating characteristic curves indicated that these genes had certain diagnostic efficacy. Moreover, tumor-infiltrating immune cells and gene set enrichment analysis for hub genes suggested that there were some associations between these genes and the pathogenesis of CRC. Conclusion This study identified modules that were significantly associated with CRC, four novel hub genes, and further analysis of these genes. This may provide a little new insights and directions into the potential pathogenesis of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00216-7.
Collapse
|
49
|
Flanking sequences influence the activity of TET1 and TET2 methylcytosine dioxygenases and affect genomic 5hmC patterns. Commun Biol 2022; 5:92. [PMID: 35075236 PMCID: PMC8786823 DOI: 10.1038/s42003-022-03033-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/28/2021] [Indexed: 02/01/2023] Open
Abstract
TET dioxygenases convert 5-methylcytosine (5mC) preferentially in a CpG context into 5-hydroxymethylcytosine (5hmC) and higher oxidized forms, thereby initiating DNA demethylation, but details regarding the effects of the DNA sequences flanking the target 5mC site on TET activity are unknown. We investigated oxidation of libraries of DNA substrates containing one 5mC or 5hmC residue in randomized sequence context using single molecule readout of oxidation activity and sequence and show pronounced 20 and 70-fold flanking sequence effects on the catalytic activities of TET1 and TET2, respectively. Flanking sequence preferences were similar for TET1 and TET2 and also for 5mC and 5hmC substrates. Enhanced flanking sequence preferences were observed at non-CpG sites together with profound effects of flanking sequences on the specificity of TET2. TET flanking sequence preferences are reflected in genome-wide and local patterns of 5hmC and DNA demethylation in human and mouse cells indicating that they influence genomic DNA modification patterns in combination with locus specific targeting of TET enzymes. Sabrina Adam et al. use a deep enzymology method to study the effect of neighboring DNA sequence variation on the in vitro activity of Tet1 and Tet2. Their results suggest that flanking sequences could represent an important parameter that influences genomic DNA modification patterns.
Collapse
|
50
|
Cedar H, Sabag O, Reizel Y. The role of DNA methylation in genome-wide gene regulation during development. Development 2022; 149:274050. [DOI: 10.1242/dev.200118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Although it is well known that DNA methylation serves to repress gene expression, precisely how it functions during the process of development remains unclear. Here, we propose that the overall pattern of DNA methylation established in the early embryo serves as a sophisticated mechanism for maintaining a genome-wide network of gene regulatory elements in an inaccessible chromatin structure throughout the body. As development progresses, programmed demethylation in each cell type then provides the specificity for maintaining select elements in an open structure. This allows these regulatory elements to interact with a large range of transcription factors and thereby regulate the gene expression profiles that define cell identity.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Ofra Sabag
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, P.O. Box 12272, 91120 Jerusalem, Israel
| | - Yitzhak Reizel
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|