1
|
Schärfen L, Vock IW, Simon MD, Neugebauer KM. Rapid folding of nascent RNA regulates eukaryotic RNA biogenesis. Mol Cell 2025; 85:1561-1574.e5. [PMID: 40139190 PMCID: PMC12009195 DOI: 10.1016/j.molcel.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
RNA's catalytic, regulatory, or coding potential depends on structure formation. Because base pairing occurs during transcription, early structural states can govern RNA processing events and dictate the formation of functional conformations. These co-transcriptional states remain mostly unknown. Here, we develop co-transcriptional structure tracking (CoSTseq), which detects nascent RNA base pairing within and upon exit from RNA polymerases (Pols) transcriptome wide in living yeast cells. Monitoring each nucleotide's base pairing activity during transcription, CoSTseq reveals predominantly rapid pairing-within 25 bp of transcription after addition to the nascent chain. Moreover, ∼23% of rRNA nucleotides attain their final base pairing state near Pol I, while most other nucleotides must undergo changes in pairing status during later steps of ribosome biogenesis. We show that helicases act immediately to remodel structures across the rDNA locus to facilitate ribosome biogenesis. By contrast, nascent pre-mRNAs attain local structures indistinguishable from mature mRNAs, suggesting that refolding behind elongating ribosomes resembles co-transcriptional folding behind Pol II.
Collapse
MESH Headings
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Fungal/biosynthesis
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA Folding
- Transcription, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/chemistry
- Nucleic Acid Conformation
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Base Pairing
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Precursors/chemistry
- RNA Polymerase II/metabolism
- RNA Polymerase II/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- RNA Polymerase I/metabolism
- RNA Polymerase I/genetics
- Gene Expression Regulation, Fungal
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
Collapse
Affiliation(s)
- Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Isaac W Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
2
|
Boccalini M, Berezovska Y, Bussi G, Paloni M, Barducci A. Exploring RNA destabilization mechanisms in biomolecular condensates through atomistic simulations. Proc Natl Acad Sci U S A 2025; 122:e2425261122. [PMID: 40203038 PMCID: PMC12012522 DOI: 10.1073/pnas.2425261122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Biomolecular condensates are currently recognized to play a key role in organizing cellular space and in orchestrating biochemical processes. Despite an increasing interest in characterizing their internal organization at the molecular scale, not much is known about how the densely crowded environment within these condensates affects the structural properties of recruited macromolecules. Here, we adopted explicit-solvent all-atom simulations based on a combination of enhanced sampling approaches to investigate how the conformational ensemble of an RNA hairpin is reshaped in a highly concentrated peptide solution that mimics the interior of a biomolecular condensate. Our simulations indicate that RNA structure is greatly perturbed by this distinctive physico-chemical environment, which weakens RNA secondary structure and promotes extended nonnative conformations. The resulting high-resolution picture reveals that RNA unfolding is driven by the effective solvation of nucleobases through hydrogen bonding and stacking interactions with surrounding peptides. This solvent effect can be modulated by the amino acid composition of the model condensate as proven by the differential RNA behavior observed in the case of arginine-rich and lysine-rich peptides.
Collapse
Affiliation(s)
- Matteo Boccalini
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| | - Yelyzaveta Berezovska
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| | - Giovanni Bussi
- Molecular and Statistical Biophysics, Scuola Internazionale Superiore di Studi Avanzati, Trieste34136, Italy
| | - Matteo Paloni
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
- Department of Chemical Engineering, Thomas Young Centre, University College London, LondonWC1E 7JE, United Kingdom
| | - Alessandro Barducci
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier34090, France
| |
Collapse
|
3
|
Veenbaas SD, Felder S, Weeks KM. fpocketR: A platform for identification and analysis of ligand-binding pockets in RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645323. [PMID: 40196532 PMCID: PMC11974927 DOI: 10.1101/2025.03.25.645323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Small molecules that bind specific sites in RNAs hold promise for altering RNA function, manipulating gene expression, and expanding the scope of druggable targets beyond proteins. Identifying binding sites in RNA that can engage ligands with good physicochemical properties remains a significant challenge. fpocketR is a software package for identifying, characterizing, and visualizing ligand-binding sites in RNA. fpocketR was optimized, through comprehensive analysis of currently available RNA-ligand complexes, to identify pockets in RNAs able to bind small molecules possessing favorable properties, generally termed drug-like. Here, we demonstrate use of fpocketR to analyze RNA-ligand interactions and novel pockets in small and large RNAs, to assess ensembles of RNA structure models, and to identify pockets in dynamic RNA systems. fpocketR performs best with RNA structures visualized at high (≤3.5 Å) resolution, but also provides useful information with lower resolution structures and computational models. fpocketR is a powerful, freely available tool for discovery and analysis of ligand-binding pockets in RNA molecules.
Collapse
Affiliation(s)
- Seth D. Veenbaas
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| | - Simon Felder
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| |
Collapse
|
4
|
Degenhardt MFS, Degenhardt HF, Bhandari YR, Lee YT, Ding J, Yu P, Heinz WF, Stagno JR, Schwieters CD, Watts NR, Wingfield PT, Rein A, Zhang J, Wang YX. Determining structures of RNA conformers using AFM and deep neural networks. Nature 2025; 637:1234-1243. [PMID: 39695231 PMCID: PMC11779638 DOI: 10.1038/s41586-024-07559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2024] [Indexed: 12/20/2024]
Abstract
Much of the human genome is transcribed into RNAs1, many of which contain structural elements that are important for their function. Such RNA molecules-including those that are structured and well-folded2-are conformationally heterogeneous and flexible, which is a prerequisite for function3,4, but this limits the applicability of methods such as NMR, crystallography and cryo-electron microscopy for structure elucidation. Moreover, owing to the lack of a large RNA structure database, and no clear correlation between sequence and structure, approaches such as AlphaFold5 for protein structure prediction do not apply to RNA. Therefore, determining the structures of heterogeneous RNAs remains an unmet challenge. Here we report holistic RNA structure determination method using atomic force microscopy, unsupervised machine learning and deep neural networks (HORNET), a novel method for determining three-dimensional topological structures of RNA using atomic force microscopy images of individual molecules in solution. Owing to the high signal-to-noise ratio of atomic force microscopy, this method is ideal for capturing structures of large RNA molecules in distinct conformations. In addition to six benchmark cases, we demonstrate the utility of HORNET by determining multiple heterogeneous structures of RNase P RNA and the HIV-1 Rev response element (RRE) RNA. Thus, our method addresses one of the major challenges in determining heterogeneous structures of large and flexible RNA molecules, and contributes to the fundamental understanding of RNA structural biology.
Collapse
Affiliation(s)
- Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Hermann F Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jienyu Ding
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ping Yu
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alan Rein
- Retrovirus Assembly Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA
| | - Jinwei Zhang
- Structural Biology of Noncoding RNAs and Ribonucleoproteins Section, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
5
|
Haseltine WA, Hazel K, Patarca R. RNA Structure: Past, Future, and Gene Therapy Applications. Int J Mol Sci 2024; 26:110. [PMID: 39795966 PMCID: PMC11719923 DOI: 10.3390/ijms26010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes. In contrast to the success of 3-dimensional protein structure prediction using AlphaFold, RNA tertiary and beyond structures prediction remains challenging. However, approaches involving machine learning and artificial intelligence, sequencing of RNA and its modifications, and structural analyses at the single-cell and intact tissue levels, among others, provide an optimistic outlook for the continued development and refinement of RNA-based applications. Here, we highlight those in gene therapy.
Collapse
Affiliation(s)
- William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| | - Kim Hazel
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
| | - Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| |
Collapse
|
6
|
Chen S, Sibley CD, Latifi B, Balaratnam S, Dorn RS, Lupták A, Schneekloth JS, Prescher JA. Bioorthogonal Cyclopropenones for Investigating RNA Structure. ACS Chem Biol 2024; 19:2406-2411. [PMID: 39641920 PMCID: PMC11667673 DOI: 10.1021/acschembio.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
RNA sequences encode structures that impact protein production and other cellular processes. Misfolded RNAs can also potentiate disease, but a complete picture is lacking. To establish more comprehensive and accurate RNA structure-function relationships, new methods are needed to interrogate RNA in native environments. Existing tools rely primarily on electrophiles that are constitutively "on" or triggered by UV light, often resulting in high background. Here we describe an alternative, chemically triggered approach to cross-link RNAs using bioorthogonal cyclopropenones (CpOs). These reagents selectively react with phosphines to provide ketenes─electrophiles that can trap neighboring nucleophiles to forge covalent cross-links. As a proof-of-concept, we conjugated a CpO motif to thiazole orange (TO-1). TO-1-CpO bound selectively to a model RNA aptamer (Mango) with nanomolar affinity, as confirmed by fluorescence turn-on. After phosphine administration, covalent cross-links were formed between the CpO and RNA. Cross-linking was both time and dose dependent. We further applied the chemically triggered tools to model RNAs under biologically relevant conditions. Collectively, this work expands the toolkit of probes for studying RNA and its native conformations.
Collapse
Affiliation(s)
- Sharon Chen
- Department
of Chemistry, Department of Molecular Biology & Biochemistry,
and Department of
Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Christopher D. Sibley
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Brandon Latifi
- Department
of Chemistry, Department of Molecular Biology & Biochemistry,
and Department of
Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Sumirtha Balaratnam
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Robert S. Dorn
- Department
of Chemistry, Department of Molecular Biology & Biochemistry,
and Department of
Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Andrej Lupták
- Department
of Chemistry, Department of Molecular Biology & Biochemistry,
and Department of
Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - John S. Schneekloth
- Chemical
Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jennifer A. Prescher
- Department
of Chemistry, Department of Molecular Biology & Biochemistry,
and Department of
Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
8
|
Lee YT. Nexus between RNA conformational dynamics and functional versatility. Curr Opin Struct Biol 2024; 89:102942. [PMID: 39413483 PMCID: PMC11602372 DOI: 10.1016/j.sbi.2024.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
RNA conformational dynamics is pivotal for functional regulations in biology. RNA can function as versatile as protein but adopts multiple distinct structures. In this review, we provide a focused review of the recent advances in studies of RNA conformational dynamics and address some of the misconceptions about RNA structure and its conformational dynamics. We discuss why the traditional methods for structure determination come up short in describing RNA conformational space. The examples discussed provide illustrations of the structure-based mechanisms of RNAs with diverse roles, including viral, long noncoding, and catalytic RNAs, one of which focuses on the debated area of conformational heterogeneity of an RNA structural element in the HIV-1 genome.
Collapse
Affiliation(s)
- Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
9
|
Annecke HTP, Eidelpes R, Feyrer H, Ilgen J, Gürdap CO, Dasgupta R, Petzold K. Optimising in-cell NMR acquisition for nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2024; 78:249-264. [PMID: 39162911 PMCID: PMC11614993 DOI: 10.1007/s10858-024-00448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
Understanding the structure and function of nucleic acids in their native environment is crucial to structural biology and one focus of in-cell NMR spectroscopy. Many challenges hamper in-cell NMR in human cell lines, e.g. sample decay through cell death and RNA degradation. The resulting low signal intensities and broad line widths limit the use of more complex NMR experiments, reducing the possible structural and dynamic information that can be extracted. Here, we optimize the detection of imino proton signals, indicators of base-pairing and therefore secondary structure, of a double-stranded DNA oligonucleotide in HeLa cells, using selective excitation. We demonstrate the reproducible quantification of in-cell selective longitudinal relaxation times (selT1), which are reduced compared to the in vitro environment, as a result of interactions with the complex cellular environment. By measuring the intracellular selT1, we optimize the existing proton pulse sequences, and shorten measurement time whilst enhancing the signal gained per unit of time. This exemplifies an advantage of selective excitation over conventional methods like jump-return water suppression for in-cell NMR. Furthermore, important experimental controls are discussed, including intracellular quantification, supernatant control measurements, as well as the processing of lowly concentrated in-cell NMR samples. We expect that robust and fast in-cell NMR experiments of nucleic acids will facilitate the study of structure and dynamics and reveal their functional correlation.
Collapse
Affiliation(s)
- Henry T P Annecke
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Reiner Eidelpes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Hannes Feyrer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Julian Ilgen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden
| | - Cenk Onur Gürdap
- Department of Women's and Children's Health, Karolinska Institutet, 171 65, Solna, Sweden
- Science for Life Laboratory, 171 65, Solna, Sweden
| | - Rubin Dasgupta
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 1, 171 65, Stockholm, Sweden.
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
- Science for Life Laboratory, 171 65, Solna, Sweden.
- Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 752 37, Uppsala, Sweden.
| |
Collapse
|
10
|
Li CY, Sandhu S, Ken ML. RNA ensembles from in vitro to in vivo: Toward predictive models of RNA cellular function. Curr Opin Struct Biol 2024; 89:102915. [PMID: 39401473 DOI: 10.1016/j.sbi.2024.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 11/29/2024]
Abstract
Deepening our understanding of RNA biology and accelerating development of RNA-based therapeutics go hand-in-hand-both requiring a transition from qualitative descriptions of RNA structure to quantitative models capable of predicting RNA behaviors, and from a static to an ensemble view. Ensembles are determined from their free energy landscapes, which define the relative populations of conformational states and the energetic barriers separating them. Experimental determination of RNA ensembles over the past decade has led to powerful predictive models of RNA behavior in vitro. It has also been shown during this time that the cellular environment redistributes RNA ensembles, changing the abundances of functionally relevant conformers relative to in vitro contexts with subsequent functional RNA consequences. However, recent studies have demonstrated that testing models built from in vitro ensembles with highly quantitative measurements of RNA cellular function, aided by emerging computational methodologies, enables predictive modelling of cellular activity and biological discovery.
Collapse
Affiliation(s)
- Catherine Y Li
- The Scripps Research Institute, Graduate Program, La Jolla, CA, USA
| | - Shawn Sandhu
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA
| | - Megan L Ken
- The Scripps Research Institute, Department of Integrative Structural and Computational Biology, La Jolla, CA, USA.
| |
Collapse
|
11
|
Schärfen L, Vock IW, Simon MD, Neugebauer KM. Rapid folding of nascent RNA regulates eukaryotic RNA biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625435. [PMID: 39651172 PMCID: PMC11623619 DOI: 10.1101/2024.11.26.625435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
An RNA's catalytic, regulatory, or coding potential depends on RNA structure formation. Because base pairing occurs during transcription, early structural states can govern RNA processing events and dictate the formation of functional conformations. These co-transcriptional states remain unknown. Here, we develop CoSTseq, which detects nascent RNA base pairing within and upon exit from RNA polymerases (Pols) transcriptome-wide in living yeast cells. By monitoring each nucleotide's base pairing activity during transcription, we identify distinct classes of behaviors. While 47% of rRNA nucleotides remain unpaired, rapid and delayed base pairing - with rates of 48.5 and 13.2 kb -1 of transcribed rDNA, respectively - typically completes when Pol I is only 25 bp downstream. We show that helicases act immediately to remodel structures across the rDNA locus and facilitate ribosome biogenesis. In contrast, nascent pre-mRNAs attain local structures indistinguishable from mature mRNAs, suggesting that refolding behind elongating ribosomes resembles co-transcriptional folding behind Pol II.
Collapse
|
12
|
Shin JH, Cuevas LM, Roy R, Bonilla SL, Al-Hashimi H, Greenleaf WJ, Herschlag D. Exploring the energetic and conformational properties of the sequence space connecting naturally occurring RNA tetraloop receptor motifs. RNA (NEW YORK, N.Y.) 2024; 30:1646-1659. [PMID: 39362695 PMCID: PMC11571812 DOI: 10.1261/rna.080039.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Folded RNAs contain tertiary contact motifs whose structures and energetics are conserved across different RNAs. The transferable properties of RNA motifs simplify the RNA folding problem, but measuring energetic and conformational properties of many motifs remains a challenge. Here, we use a high-throughput thermodynamic approach to investigate how sequence changes alter the binding properties of naturally occurring motifs, the GAAA tetraloop • tetraloop receptor (TLR) interactions. We measured the binding energies and conformational preferences of TLR sequences that span mutational pathways from the canonical 11ntR to two other natural TLRs, the IC3R and Vc2R. While the IC3R and Vc2R share highly similar energetic and conformational properties, the landscapes that map the sequence changes for their conversion from the 11ntR to changes in these properties differ dramatically. Differences in the energetic landscapes stem from the mutations needed to convert the 11ntR to the IC3R and Vc2R rather than a difference in the intrinsic energetic architectures of these TLRs. The conformational landscapes feature several nonnative TLR variants with conformational preferences that differ from both the initial and final TLRs; these species represent potential branching points along the multidimensional sequence space to sequences with greater fitness in other RNA contexts with alternative conformational preferences. Our high-throughput, quantitative approach reveals the complex nature of sequence-fitness landscapes and leads to models for their molecular origins. Systematic and quantitative molecular approaches provide critical insights into understanding the evolution of natural RNAs as they traverse complex landscapes in response to selective pressures.
Collapse
Affiliation(s)
- John H Shin
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Lena M Cuevas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, New York, New York 10065, USA
| | - Hashim Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Chem-H Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Jang SS, Ray KK, Lynall DG, Shepard KL, Nuckolls C, Gonzalez RL. RNA adapts its flexibility to efficiently fold and resist unfolding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595525. [PMID: 38853856 PMCID: PMC11160689 DOI: 10.1101/2024.05.27.595525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Recent studies have demonstrated that the mechanisms through which biopolymers like RNA interconvert between multiple folded structures are critical for their cellular functions. A major obstacle to elucidating these mechanisms is the lack of experimental approaches that can resolve these interconversions between functionally relevant biomolecular structures. Here, we dissect the complete set of structural rearrangements executed by an ultra-stable RNA, the UUCG stem-loop, at the single-molecule level using a nano-electronic device with microsecond time resolution. We show that the stem-loop samples at least four conformations along two folding pathways leading to two distinct folded structures, only one of which has been previously observed. By modulating its flexibility, the stem-loop can adaptively select between these pathways, enabling it to both fold rapidly and resist unfolding. This paradigm of stabilization through compensatory changes in flexibility broadens our understanding of stable RNA structures and is expected to serve as a general strategy employed by all biopolymers.
Collapse
Affiliation(s)
- Sukjin S. Jang
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - David G. Lynall
- Department of Electrical Engineering, Columbia University, New York, NY 10027 USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027 USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| |
Collapse
|
14
|
Chen S, Sibley CD, Latifi B, Balaratnam S, Dorn RS, Lupták A, Schneekloth JS, Prescher JA. Bioorthogonal cyclopropenones for investigating RNA structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619649. [PMID: 39484557 PMCID: PMC11527001 DOI: 10.1101/2024.10.22.619649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
RNA sequences encode secondary and tertiary structures that impact protein production and other cellular processes. Misfolded RNAs can also potentiate disease, but the complete picture is lacking. To establish more comprehensive and accurate RNA structure-function relationships, new methods are needed to interrogate RNA and trap native conformations in cellular environments. Existing tools primarily rely on electrophiles that are constitutively "on" or triggered by UV light, often resulting in high background reactivity. We developed an alternative, chemically triggered approach to crosslink RNAs using bioorthogonal cyclopropenones (CpOs). These reagents selectively react with phosphines to provide ketenes-electrophiles that can trap neighboring nucleophiles to forge covalent crosslinks. As proof-of-concept, we synthesized a panel of CpOs and appended them to thiazole orange (TO-1). The TO-1 conjugates bound selectively to a model RNA aptamer (Mango) with nanomolar affinity, confirmed by fluorescence turn-on. After phosphine administration, covalent crosslinks were formed between the CpO probes and RNA. The degree of crosslinking was both time and dose-dependent. We further applied the chemically triggered tools to model RNAs in biologically relevant conditions. Collectively, this work expands the toolkit of probes for studying RNA and its native conformations.
Collapse
Affiliation(s)
- Sharon Chen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Brandon Latifi
- Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Sumirtha Balaratnam
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702
| | - Robert S. Dorn
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Andrej Lupták
- Departments of Chemistry, University of California, Irvine, California 92697, United States
- Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States
- Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702
| | - Jennifer A. Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States
- Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States
- Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
15
|
Ye R, Zhao H, Wang X, Xue Y. Technological advancements in deciphering RNA-RNA interactions. Mol Cell 2024; 84:3722-3736. [PMID: 39047724 DOI: 10.1016/j.molcel.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
RNA-RNA interactions (RRIs) can dictate RNA molecules to form intricate higher-order structures and bind their RNA substrates in diverse biological processes. To elucidate the function, binding specificity, and regulatory mechanisms of various RNA molecules, especially the vast repertoire of non-coding RNAs, advanced technologies and methods that globally map RRIs are extremely valuable. In the past decades, many state-of-the-art technologies have been developed for this purpose. This review focuses on those high-throughput technologies for the global mapping of RRIs. We summarize the key concepts and the pros and cons of different technologies. In addition, we highlight the novel biological insights uncovered by these RRI mapping methods and discuss the future challenges for appreciating the crucial roles of RRIs in gene regulation across bacteria, viruses, archaea, and mammals.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuanchao Xue
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Bonilla SL, Jones AN, Incarnato D. Structural and biophysical dissection of RNA conformational ensembles. Curr Opin Struct Biol 2024; 88:102908. [PMID: 39146886 DOI: 10.1016/j.sbi.2024.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
RNA's ability to form and interconvert between multiple secondary and tertiary structures is critical to its functional versatility and the traditional view of RNA structures as static entities has shifted towards understanding them as dynamic conformational ensembles. In this review we discuss RNA structural ensembles and their dynamics, highlighting the concept of conformational energy landscapes as a unifying framework for understanding RNA processes such as folding, misfolding, conformational changes, and complex formation. Ongoing advancements in cryo-electron microscopy and chemical probing techniques are significantly enhancing our ability to investigate multiple structures adopted by conformationally dynamic RNAs, while traditional methods such as nuclear magnetic resonance spectroscopy continue to play a crucial role in providing high-resolution, quantitative spatial and temporal information. We discuss how these methods, when used synergistically, can provide a comprehensive understanding of RNA conformational ensembles, offering new insights into their regulatory functions.
Collapse
Affiliation(s)
- Steve L Bonilla
- Laboratory of RNA Structural Biology and Biophysics, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| | - Alisha N Jones
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
17
|
Bukina V, Božič A. Context-dependent structure formation of hairpin motifs in bacteriophage MS2 genomic RNA. Biophys J 2024; 123:3397-3407. [PMID: 39118324 PMCID: PMC11480767 DOI: 10.1016/j.bpj.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Many functions of ribonucleic acid (RNA) rely on its ability to assume specific sequence-structure motifs. Packaging signals found in certain RNA viruses are one such prominent example of functional RNA motifs. These signals are short hairpin loops that interact with coat proteins and drive viral self-assembly. As they are found in different positions along the much longer genomic RNA, the formation of their correct structure occurs as a part of a larger context. Any changes to this context can consequently lead to changes in the structure of the motifs themselves. In fact, previous studies have shown that structure and function of RNA motifs can be highly context sensitive to the flanking sequence surrounding them. However, in what ways different flanking sequences influence the structure of an RNA motif they surround has yet to be studied in detail. We focus on a hairpin-rich region of the RNA genome of bacteriophage MS2-a well-studied RNA virus with a wide potential for use in biotechnology-and systematically examine context-dependent structural stability of 14 previously identified hairpin motifs, which include putative and confirmed packaging signals. Combining secondary and tertiary RNA structure prediction of the hairpin motifs placed in different contexts, ranging from the native genomic sequence to random RNA sequences and unstructured poly-U sequences, we determine different measures of motif structural stability. In this way, we show that while some motif structures can be stable in any context, others require specific context provided by the genome. Our results demonstrate the importance of context in RNA structure formation and how changes in the flanking sequence of an RNA motif sometimes lead to drastic changes in its structure. Structural stability of a motif in different contexts could provide additional insights into its functionality as well as assist in determining whether it remains functional when intentionally placed in other contexts.
Collapse
Affiliation(s)
- Veronika Bukina
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Palacios-Pérez M, José MV. A Proposal for the RNAome at the Dawn of the Last Universal Common Ancestor. Genes (Basel) 2024; 15:1195. [PMID: 39336786 PMCID: PMC11431127 DOI: 10.3390/genes15091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Marco V. José
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
19
|
Verma AR, Ray KK, Bodick M, Kinz-Thompson CD, Gonzalez RL. Increasing the accuracy of single-molecule data analysis using tMAVEN. Biophys J 2024; 123:2765-2780. [PMID: 38268189 PMCID: PMC11393709 DOI: 10.1016/j.bpj.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024] Open
Abstract
Time-dependent single-molecule experiments contain rich kinetic information about the functional dynamics of biomolecules. A key step in extracting this information is the application of kinetic models, such as hidden Markov models (HMMs), which characterize the molecular mechanism governing the experimental system. Unfortunately, researchers rarely know the physicochemical details of this molecular mechanism a priori, which raises questions about how to select the most appropriate kinetic model for a given single-molecule data set and what consequences arise if the wrong model is chosen. To address these questions, we have developed and used time-series modeling, analysis, and visualization environment (tMAVEN), a comprehensive, open-source, and extensible software platform. tMAVEN can perform each step of the single-molecule analysis pipeline, from preprocessing to kinetic modeling to plotting, and has been designed to enable the analysis of a single-molecule data set with multiple types of kinetic models. Using tMAVEN, we have systematically investigated mismatches between kinetic models and molecular mechanisms by analyzing simulated examples of prototypical single-molecule data sets exhibiting common experimental complications, such as molecular heterogeneity, with a series of different types of HMMs. Our results show that no single kinetic modeling strategy is mathematically appropriate for all experimental contexts. Indeed, HMMs only correctly capture the underlying molecular mechanism in the simplest of cases. As such, researchers must modify HMMs using physicochemical principles to avoid the risk of missing the significant biological and biophysical insights into molecular heterogeneity that their experiments provide. By enabling the facile, side-by-side application of multiple types of kinetic models to individual single-molecule data sets, tMAVEN allows researchers to carefully tailor their modeling approach to match the complexity of the underlying biomolecular dynamics and increase the accuracy of their single-molecule data analyses.
Collapse
Affiliation(s)
- Anjali R Verma
- Department of Chemistry, Columbia University, New York, New York
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, New York
| | - Maya Bodick
- Department of Chemistry, Columbia University, New York, New York
| | | | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, New York.
| |
Collapse
|
20
|
Zhang S, Wang Z, Qiao J, Yu T, Zhang W. The effect of the loop on the thermodynamic and kinetic of single base pair in pseudoknot. J Chem Phys 2024; 161:085105. [PMID: 39212209 DOI: 10.1063/5.0216593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
RNA pseudoknots are RNA molecules with specialized three-dimensional structures that play important roles in various biological processes. To understand the functions and mechanisms of pseudoknots, it is essential to elucidate their structures and folding pathways. The most fundamental step in RNA folding is the opening and closing of a base pair. The effect of flexible loops on the base pair in pseudoknots remains unclear. In this work, we use molecular dynamics simulations and Markov state model to study the configurations, thermodynamic and kinetic of single base pair in pseudoknots. We find that the presence of the loop leads to a trap state. In addition, the rate-limiting step for the formation of base pair is the disruption of the trap state, rather than the open state to the closed state, which is quite different from the previous studies on non-pseudoknot RNA. For the thermodynamic parameters in pseudoknots, we find that the entropy difference upon opening the base pair between this simulation and the nearest-neighbor model results from the different entropy of different lengths of loop in solution. The thermodynamic parameters of the stack in pseudoknot are close to the nearest-neighbor parameters. The bases on the loop have different distribution patterns in different states, and the slow transition states of the loop are determined by the orientation of the bases.
Collapse
Affiliation(s)
- Shuhao Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhen Wang
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Jie Qiao
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ting Yu
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
21
|
Taghavi A, Chen JL, Wang Z, Sinnadurai K, Salthouse D, Ozon M, Feri A, Fountain MA, Choudhary S, Childs-Disney JL, Disney MD. NMR structures and magnetic force spectroscopy studies of small molecules binding to models of an RNA CAG repeat expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608150. [PMID: 39229124 PMCID: PMC11370455 DOI: 10.1101/2024.08.20.608150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
RNA repeat expansions fold into stable structures and cause microsatellite diseases such as Huntington's disease (HD), myotonic dystrophy type 1 (DM1), and spinocerebellar ataxias (SCAs). The trinucleotide expansion of r(CAG), or r(CAG)exp, causes both HD and SCA3, and the RNA's toxicity has been traced to its translation into polyglutamine (polyQ; HD) as well as aberrant pre-mRNA alternative splicing (SCA3 and HD). Previously, a small molecule, 1, was discovered that binds to r(CAG)exp and rescues aberrant pre-mRNA splicing in patient-derived fibroblasts by freeing proteins bound to the repeats. Here, we report the structures of single r(CAG) repeat motif (5'CAG/3'GAC where the underlined adenosines form a 1×1 nucleotide internal loop) in complex with 1 and two other small molecules via nuclear magnetic resonance (NMR) spectroscopy combined with simulated annealing. Compound 2 was designed based on the structure of 1 bound to the RNA while 3 was selected as a diverse chemical scaffold. The three complexes, although adopting different 3D binding pockets upon ligand binding, are stabilized by a combination of stacking interactions with the internal loop's closing GC base pairs, hydrogen bonds, and van der Waals interactions. Molecular dynamics (MD) simulations performed with NMR-derived restraints show that the RNA is stretched and bent upon ligand binding with significant changes in propeller-twist and opening. Compound 3 has a distinct mode of binding by insertion into the helix, displacing one of the loop nucleotides into the major groove and affording a rod-like shape binding pocket. In contrast, 1 and 2 are groove binders. A series of single molecule magnetic force spectroscopy studies provide a mechanistic explanation for how bioactive compounds might rescue disease-associated cellular phenotypes.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jonathan L. Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Zhen Wang
- Depixus SAS, 3-5 Impasse Reille, 75014, Paris, France
| | | | | | - Matthew Ozon
- Depixus SAS, 3-5 Impasse Reille, 75014, Paris, France
| | - Adeline Feri
- Depixus SAS, 3-5 Impasse Reille, 75014, Paris, France
| | - Matthew A. Fountain
- Department of Chemistry and Biochemistry, State University of New York at Fredonia, Fredonia, NY 14063, USA
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D. Disney
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
22
|
Muscat S, Martino G, Manigrasso J, Marcia M, De Vivo M. On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules. J Chem Theory Comput 2024. [PMID: 39150960 DOI: 10.1021/acs.jctc.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
RNA molecules play a vital role in biological processes within the cell, with significant implications for science and medicine. Notably, the biological functions exerted by specific RNA molecules are often linked to the RNA conformational ensemble. However, the experimental characterization of such three-dimensional RNA structures is challenged by the structural heterogeneity of RNA and by its multiple dynamic interactions with binding partners such as small molecules, proteins, and metal ions. Consequently, our current understanding of the structure-function relationship of RNA molecules is still limited. In this context, we highlight molecular dynamics (MD) simulations as a powerful tool to complement experimental efforts on RNAs. Despite the recognized limitations of current force fields for RNA MD simulations, examining the dynamics of selected RNAs has provided valuable functional insights into their structures.
Collapse
Affiliation(s)
- Stefano Muscat
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Gianfranco Martino
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Jacopo Manigrasso
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Mölndal, Sweden
| | - Marco Marcia
- European Molecular Biology Laboratory Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
23
|
Allan MF, Aruda J, Plung JS, Grote SL, des Taillades YJM, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. RESEARCH SQUARE 2024:rs.3.rs-4814547. [PMID: 39149495 PMCID: PMC11326378 DOI: 10.21203/rs.3.rs-4814547/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
Affiliation(s)
- Matthew F. Allan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Justin Aruda
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Jesse S. Plung
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Scott L. Grote
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | | | - Albéric A. de Lajarte
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| |
Collapse
|
24
|
Allan MF, Aruda J, Plung JS, Grote SL, Martin des Taillades YJ, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591762. [PMID: 38746332 PMCID: PMC11092567 DOI: 10.1101/2024.04.29.591762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
|
25
|
Bao N, Wang Z, Fu J, Dong H, Jin Y. RNA structure in alternative splicing regulation: from mechanism to therapy. Acta Biochim Biophys Sin (Shanghai) 2024; 57:3-21. [PMID: 39034824 PMCID: PMC11802352 DOI: 10.3724/abbs.2024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Alternative splicing is a highly intricate process that plays a crucial role in post-transcriptional regulation and significantly expands the functional proteome of a limited number of coding genes in eukaryotes. Its regulation is multifactorial, with RNA structure exerting a significant impact. Aberrant RNA conformations lead to dysregulation of splicing patterns, which directly affects the manifestation of disease symptoms. In this review, the molecular mechanisms of RNA secondary structure-mediated splicing regulation are summarized, with a focus on the complex interplay between aberrant RNA conformations and disease phenotypes resulted from splicing defects. This study also explores additional factors that reshape structural conformations, enriching our understanding of the mechanistic network underlying structure-mediated splicing regulation. In addition, an emphasis has been placed on the clinical role of targeting aberrant splicing corrections in human diseases. The principal mechanisms of action behind this phenomenon are described, followed by a discussion of prospective development strategies and pertinent challenges.
Collapse
Affiliation(s)
- Nengcheng Bao
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Zhechao Wang
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Jiayan Fu
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Haiyang Dong
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yongfeng Jin
- />MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
26
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598678. [PMID: 38915483 PMCID: PMC11195163 DOI: 10.1101/2024.06.12.598678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Matthew J. Crotteau
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia A. Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Scott A. Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Riveros II, Yildirim I. Prediction of 3D RNA Structures from Sequence Using Energy Landscapes of RNA Dimers: Application to RNA Tetraloops. J Chem Theory Comput 2024; 20:4363-4376. [PMID: 38728627 PMCID: PMC11660943 DOI: 10.1021/acs.jctc.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Access to the three-dimensional structure of RNA enables an ability to gain a more profound understanding of its biological mechanisms, as well as the ability to design RNA-targeting drugs, which can take advantage of the unique chemical environment imposed by a folded RNA structure. Due to the dynamic and structurally complex properties of RNA, both experimental and traditional computational methods have difficulty in determining RNA's 3D structure. Herein, we introduce TAPERSS (Theoretical Analyses, Prediction, and Evaluation of RNA Structures from Sequence), a physics-based fragment assembly method for predicting 3D RNA structures from sequence. Using a fragment library created using discrete path sampling calculations of RNA dinucleoside monophosphates, TAPERSS can sample the physics-based energy landscapes of any RNA sequence with relatively low computational complexity. We have benchmarked TAPERSS on 21 RNA tetraloops, using a combinatorial algorithm as a proof-of-concept. We show that TAPERSS was successfully able to predict the apo-state structures of all 21 RNA hairpins, with 16 of those structures also having low predicted energies as well. We demonstrate that TAPERSS performs most accurately on GNRA-like tetraloops with mostly stacked loop-nucleotides, while having limited success with more dynamic UNCG and CUYG tetraloops, most likely due to the influence of the RNA force field used to create the fragment library. Moreover, we show that TAPERSS can successfully predict the majority of the experimental non-apo states, highlighting its potential in anticipating biologically significant yet unobserved states. This holds great promise for future applications in drug design and related studies. With discussed improvements and implementation of more efficient sampling algorithms, we believe TAPERSS may serve as a useful tool for a physics-based conformational sampling of large RNA structures.
Collapse
Affiliation(s)
- Ivan Isaac Riveros
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33458 USA
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33458 USA
| |
Collapse
|
28
|
Sarkar R, Mainan A, Roy S. Influence of ion and hydration atmospheres on RNA structure and dynamics: insights from advanced theoretical and computational methods. Chem Commun (Camb) 2024. [PMID: 38501190 DOI: 10.1039/d3cc06105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
RNA, a highly charged biopolymer composed of negatively charged phosphate groups, defies electrostatic repulsion to adopt well-defined, compact structures. Hence, the presence of positively charged metal ions is crucial not only for RNA's charge neutralization, but they also coherently decorate the ion atmosphere of RNA to stabilize its compact fold. This feature article elucidates various modes of close RNA-ion interactions, with a special emphasis on Mg2+ as an outer-sphere and inner-sphere ion. Through examples, we highlight how inner-sphere chelated Mg2+ stabilizes RNA pseudoknots, while outer-sphere ions can also exert long-range electrostatic interactions, inducing groove narrowing, coaxial helical stacking, and RNA ring formation. In addition to investigating the RNA's ion environment, we note that the RNA's hydration environment is relatively underexplored. Our study delves into its profound interplay with the structural dynamics of RNA, employing state-of-the-art atomistic simulation techniques. Through examples, we illustrate how specific ions and water molecules are associated with RNA functions, leveraging atomistic simulations to identify preferential ion binding and hydration sites. However, understanding their impact(s) on the RNA structure remains challenging due to the involvement of large length and long time scales associated with RNA's dynamic nature. Nevertheless, our contributions and recent advances in coarse-grained simulation techniques offer insights into large-scale structural changes dynamically linked to the RNA ion atmosphere. In this connection, we also review how different cutting-edge computational simulation methods provide a microscopic lens into the influence of ions and hydration on RNA structure and dynamics, elucidating distinct ion atmospheric components and specific hydration layers and their individual and collective impacts.
Collapse
Affiliation(s)
- Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India.
| | - Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India.
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India.
| |
Collapse
|
29
|
Verma AR, Ray KK, Bodick M, Kinz-Thompson CD, Gonzalez RL. Increasing the accuracy of single-molecule data analysis using tMAVEN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553409. [PMID: 37645812 PMCID: PMC10462008 DOI: 10.1101/2023.08.15.553409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Time-dependent single-molecule experiments contain rich kinetic information about the functional dynamics of biomolecules. A key step in extracting this information is the application of kinetic models, such as hidden Markov models (HMMs), which characterize the molecular mechanism governing the experimental system. Unfortunately, researchers rarely know the physico-chemical details of this molecular mechanism a priori, which raises questions about how to select the most appropriate kinetic model for a given single-molecule dataset and what consequences arise if the wrong model is chosen. To address these questions, we have developed and used time-series Modeling, Analysis, and Visualization ENvironment (tMAVEN), a comprehensive, open-source, and extensible software platform. tMAVEN can perform each step of the single-molecule analysis pipeline, from pre-processing to kinetic modeling to plotting, and has been designed to enable the analysis of a single-molecule dataset with multiple types of kinetic models. Using tMAVEN, we have systematically investigated mismatches between kinetic models and molecular mechanisms by analyzing simulated examples of prototypical single-molecule datasets exhibiting common experimental complications, such as molecular heterogeneity, with a series of different types of HMMs. Our results show that no single kinetic modeling strategy is mathematically appropriate for all experimental contexts. Indeed, HMMs only correctly capture the underlying molecular mechanism in the simplest of cases. As such, researchers must modify HMMs using physico-chemical principles to avoid the risk of missing the significant biological and biophysical insights into molecular heterogeneity that their experiments provide. By enabling the facile, side-by-side application of multiple types of kinetic models to individual single-molecule datasets, tMAVEN allows researchers to carefully tailor their modeling approach to match the complexity of the underlying biomolecular dynamics and increase the accuracy of their single-molecule data analyses.
Collapse
Affiliation(s)
- Anjali R. Verma
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | - Maya Bodick
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| | | | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, New York, NY 10027 USA
| |
Collapse
|
30
|
Bose R, Saleem I, Mustoe AM. Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states. Cell Chem Biol 2024; 31:17-35. [PMID: 38199037 PMCID: PMC10842484 DOI: 10.1016/j.chembiol.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
RNA secondary structure plays essential roles in encoding RNA regulatory fate and function. Most RNAs populate ensembles of alternatively paired states and are continually unfolded and refolded by cellular processes. Measuring these structural ensembles and their contributions to cellular function has traditionally posed major challenges, but new methods and conceptual frameworks are beginning to fill this void. In this review, we provide a mechanism- and function-centric compendium of the roles of RNA secondary structural ensembles and minority states in regulating the RNA life cycle, from transcription to degradation. We further explore how dysregulation of RNA structural ensembles contributes to human disease and discuss the potential of drugging alternative RNA states to therapeutically modulate RNA activity. The emerging paradigm of RNA structural ensembles as central to RNA function provides a foundation for a deeper understanding of RNA biology and new therapeutic possibilities.
Collapse
Affiliation(s)
- Ritwika Bose
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Irfana Saleem
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Balcerowicz M, Wigge PA, Di Antonio M, Chung B. Monitoring Real-Time Temperature Dynamics of a Short RNA Hairpin Using Förster Resonance Energy Transfer and Circular Dichroism. Methods Mol Biol 2024; 2795:149-158. [PMID: 38594536 DOI: 10.1007/978-1-0716-3814-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
RNA molecules play crucial roles in gene expression regulation and cellular signaling, and these functions are governed by the formation of RNA secondary and tertiary structures. These structures are highly dynamic and subject to rapid changes in response to environmental cues, temperature in particular. Thermosensitive RNA secondary structures have been harnessed by multiple organisms to survey their temperature environment and to adjust gene expression accordingly. It is thus highly desirable to observe RNA structural changes in real time over a range of temperatures. Multiple approaches have been developed to study structural dynamics, but many of these require extensive processing of the RNA, large amounts of RNA input, and/or cannot be applied under physiological conditions. Here, we describe the use of a dually fluorescently labeled RNA oligonucleotide (containing a predicted hairpin structure) to monitor subtle RNA structural dynamics in vitro by Förster resonance energy transfer (FRET) and circular dichroism (CD) spectroscopy. These approaches can be employed under physiologically relevant conditions over a range of temperatures and with RNA concentrations as low as 200 nM; they enable us to observe RNA structural dynamics in real time and to correlate these dynamics with changes in biological processes such as translation.
Collapse
Affiliation(s)
- Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, UK.
| | - Philip A Wigge
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Science Research Hub, London, UK.
- The Institute of Chemical Biology (ICB), Molecular Science Research Hub, London, UK.
- The Francis Crick Institute, London, UK.
| | - Betty Chung
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Ormazábal A, Palma J, Pierdominici-Sottile G. Dynamics and Function of sRNA/mRNAs Under the Scrutiny of Computational Simulation Methods. Methods Mol Biol 2024; 2741:207-238. [PMID: 38217656 DOI: 10.1007/978-1-0716-3565-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Molecular dynamics simulations have proved extremely useful in investigating the functioning of proteins with atomic-scale resolution. Many applications to the study of RNA also exist, and their number increases by the day. However, implementing MD simulations for RNA molecules in solution faces challenges that the MD practitioner must be aware of for the appropriate use of this tool. In this chapter, we present the fundamentals of MD simulations, in general, and the peculiarities of RNA simulations, in particular. We discuss the strengths and limitations of the technique and provide examples of its application to elucidate small RNA's performance.
Collapse
Affiliation(s)
- Agustín Ormazábal
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Juliana Palma
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina
| | - Gustavo Pierdominici-Sottile
- Departmento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
33
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
34
|
Palacios-Pérez M, José MV. A Proposal of the Ur-RNAome. Genes (Basel) 2023; 14:2158. [PMID: 38136981 PMCID: PMC10743229 DOI: 10.3390/genes14122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
It is widely accepted that the earliest RNA molecules were folded into hairpins or mini-helixes. Herein, we depict the 2D and 3D conformations of those earliest RNA molecules with only RNY triplets, which Eigen proposed as the primeval genetic code. We selected 26 species (13 bacteria and 13 archaea). We found that the free energy of RNY hairpins was consistently lower than that of their corresponding shuffled controls. We found traces of the three ribosomal RNAs (16S, 23S, and 5S), tRNAs, 6S RNA, and the RNA moieties of RNase P and the signal recognition particle. Nevertheless, at this stage of evolution there was no genetic code (as seen in the absence of the peptidyl transferase centre and any vestiges of the anti-Shine-Dalgarno sequence). Interestingly, we detected the anticodons of both glycine (GCC) and threonine (GGU) in the hairpins of proto-tRNA.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- NoRCEL’s Latin America Hub, 113 Philosophy Hall, University of California, Berkeley, CA 94720, USA
| | - Marco V. José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| |
Collapse
|
35
|
Tieng FYF, Abdullah-Zawawi MR, Md Shahri NAA, Mohamed-Hussein ZA, Lee LH, Mutalib NSA. A Hitchhiker's guide to RNA-RNA structure and interaction prediction tools. Brief Bioinform 2023; 25:bbad421. [PMID: 38040490 PMCID: PMC10753535 DOI: 10.1093/bib/bbad421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/03/2023] Open
Abstract
RNA biology has risen to prominence after a remarkable discovery of diverse functions of noncoding RNA (ncRNA). Most untranslated transcripts often exert their regulatory functions into RNA-RNA complexes via base pairing with complementary sequences in other RNAs. An interplay between RNAs is essential, as it possesses various functional roles in human cells, including genetic translation, RNA splicing, editing, ribosomal RNA maturation, RNA degradation and the regulation of metabolic pathways/riboswitches. Moreover, the pervasive transcription of the human genome allows for the discovery of novel genomic functions via RNA interactome investigation. The advancement of experimental procedures has resulted in an explosion of documented data, necessitating the development of efficient and precise computational tools and algorithms. This review provides an extensive update on RNA-RNA interaction (RRI) analysis via thermodynamic- and comparative-based RNA secondary structure prediction (RSP) and RNA-RNA interaction prediction (RIP) tools and their general functions. We also highlighted the current knowledge of RRIs and the limitations of RNA interactome mapping via experimental data. Then, the gap between RSP and RIP, the importance of RNA homologues, the relationship between pseudoknots, and RNA folding thermodynamics are discussed. It is hoped that these emerging prediction tools will deepen the understanding of RNA-associated interactions in human diseases and hasten treatment processes.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | | | - Nur Alyaa Afifah Md Shahri
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), UKM, Selangor 43600, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, UKM, Selangor 43600, Malaysia
| | - Learn-Han Lee
- Sunway Microbiomics Centre, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Selangor 47500, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Selangor 47500, Malaysia
- Faculty of Health Sciences, UKM, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
36
|
Roy R, Geng A, Shi H, Merriman DK, Dethoff EA, Salmon L, Al-Hashimi HM. Kinetic Resolution of the Atomic 3D Structures Formed by Ground and Excited Conformational States in an RNA Dynamic Ensemble. J Am Chem Soc 2023; 145:22964-22978. [PMID: 37831584 DOI: 10.1021/jacs.3c04614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Knowing the 3D structures formed by the various conformations populating the RNA free-energy landscape, their relative abundance, and kinetic interconversion rates is required to obtain a quantitative and predictive understanding of how RNAs fold and function at the atomic level. While methods integrating ensemble-averaged experimental data with computational modeling are helping define the most abundant conformations in RNA ensembles, elucidating their kinetic rates of interconversion and determining the 3D structures of sparsely populated short-lived RNA excited conformational states (ESs) remains challenging. Here, we developed an approach integrating Rosetta-FARFAR RNA structure prediction with NMR residual dipolar couplings and relaxation dispersion that simultaneously determines the 3D structures formed by the ground-state (GS) and ES subensembles, their relative abundance, and kinetic rates of interconversion. The approach is demonstrated on HIV-1 TAR, whose six-nucleotide apical loop was previously shown to form a sparsely populated (∼13%) short-lived (lifetime ∼ 45 μs) ES. In the GS, the apical loop forms a broad distribution of open conformations interconverting on the pico-to-nanosecond time scale. Most residues are unpaired and preorganized to bind the Tat-superelongation protein complex. The apical loop zips up in the ES, forming a narrow distribution of closed conformations, which sequester critical residues required for protein recognition. Our work introduces an approach for determining the 3D ensemble models formed by sparsely populated RNA conformational states, provides a rare atomic view of an RNA ES, and kinetically resolves the atomic 3D structures of RNA conformational substates, interchanging on time scales spanning 6 orders of magnitude, from picoseconds to microseconds.
Collapse
Affiliation(s)
- Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, United States
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Dawn K Merriman
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Elizabeth A Dethoff
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
37
|
Riback JA, Eeftens JM, Lee DSW, Quinodoz SA, Donlic A, Orlovsky N, Wiesner L, Beckers L, Becker LA, Strom AR, Rana U, Tolbert M, Purse BW, Kleiner R, Kriwacki R, Brangwynne CP. Viscoelasticity and advective flow of RNA underlies nucleolar form and function. Mol Cell 2023; 83:3095-3107.e9. [PMID: 37683610 PMCID: PMC11089468 DOI: 10.1016/j.molcel.2023.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
The nucleolus is the largest biomolecular condensate and facilitates transcription, processing, and assembly of ribosomal RNA (rRNA). Although nucleolar function is thought to require multiphase liquid-like properties, nucleolar fluidity and its connection to the highly coordinated transport and biogenesis of ribosomal subunits are poorly understood. Here, we use quantitative imaging, mathematical modeling, and pulse-chase nucleotide labeling to examine nucleolar material properties and rRNA dynamics. The mobility of rRNA is several orders of magnitude slower than that of nucleolar proteins, with rRNA steadily moving away from the transcriptional sites in a slow (∼1 Å/s), radially directed fashion. This constrained but directional mobility, together with polymer physics-based calculations, suggests that nascent rRNA forms an entangled gel, whose constant production drives outward flow. We propose a model in which progressive maturation of nascent rRNA reduces its initial entanglement, fluidizing the nucleolar periphery to facilitate the release of assembled pre-ribosomal particles.
Collapse
Affiliation(s)
- Joshua A Riback
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jorine M Eeftens
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel S W Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Sofia A Quinodoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Anita Donlic
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Natalia Orlovsky
- Department of Molecular Biology, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Lennard Wiesner
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Lien Beckers
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Lindsay A Becker
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ushnish Rana
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michele Tolbert
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Byron W Purse
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Ralph Kleiner
- Department of Chemistry, Princeton University, Princeton, Princeton, NJ 08544, USA
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
38
|
Hidalgo M, Ramos C, Zolla G. Analysis of lncRNAs in Lupinus mutabilis (Tarwi) and Their Potential Role in Drought Response. Noncoding RNA 2023; 9:48. [PMID: 37736894 PMCID: PMC10514842 DOI: 10.3390/ncrna9050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Lupinus mutabilis is a legume with high agronomic potential and available transcriptomic data for which lncRNAs have not been studied. Therefore, our objective was to identify, characterize, and validate the drought-responsive lncRNAs in L. mutabilis. To achieve this, we used a multilevel approach based on lncRNA prediction, annotation, subcellular location, thermodynamic characterization, structural conservation, and validation. Thus, 590 lncRNAs were identified by at least two algorithms of lncRNA identification. Annotation with the PLncDB database showed 571 lncRNAs unique to tarwi and 19 lncRNAs with homology in 28 botanical families including Solanaceae (19), Fabaceae (17), Brassicaceae (17), Rutaceae (17), Rosaceae (16), and Malvaceae (16), among others. In total, 12 lncRNAs had homology in more than 40 species. A total of 67% of lncRNAs were located in the cytoplasm and 33% in exosomes. Thermodynamic characterization of S03 showed a stable secondary structure with -105.67 kcal/mol. This structure included three regions, with a multibranch loop containing a hairpin with a SECIS-like element. Evaluation of the structural conservation by CROSSalign revealed partial similarities between L. mutabilis (S03) and S. lycopersicum (Solyc04r022210.1). RT-PCR validation demonstrated that S03 was upregulated in a drought-tolerant accession of L. mutabilis. Finally, these results highlighted the importance of lncRNAs in tarwi improvement under drought conditions.
Collapse
Affiliation(s)
- Manuel Hidalgo
- Programa de Estudio de Medicina Humana, Universidad Privada Antenor Orrego, Av. América Sur 3145, Trujillo 13008, Peru; (M.H.); (C.R.)
| | - Cynthia Ramos
- Programa de Estudio de Medicina Humana, Universidad Privada Antenor Orrego, Av. América Sur 3145, Trujillo 13008, Peru; (M.H.); (C.R.)
| | - Gaston Zolla
- Laboratorio de Fisiología Molecular de Plantas del Programa de Cereales y Granos Nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima 12, Peru
| |
Collapse
|
39
|
Banna HA, Das NK, Ojha M, Koirala D. Advances in chaperone-assisted RNA crystallography using synthetic antibodies. BBA ADVANCES 2023; 4:100101. [PMID: 37655005 PMCID: PMC10466895 DOI: 10.1016/j.bbadva.2023.100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
RNA molecules play essential roles in many biological functions, from gene expression regulation, cellular growth, and metabolism to catalysis. They frequently fold into three-dimensional structures to perform their functions. Therefore, determining RNA structure represents a key step for understanding the structure-function relationships and developing RNA-targeted therapeutics. X-ray crystallography remains a method of choice for determining high-resolution RNA structures, but it has been challenging due to difficulties associated with RNA crystallization and phasing. Several natural and synthetic RNA binding proteins have been used to facilitate RNA crystallography. Having unique properties to help crystal packing and phasing, synthetic antibody fragments, specifically the Fabs, have emerged as promising RNA crystallization chaperones, and so far, over a dozen of RNA structures have been solved using this strategy. Nevertheless, multiple steps in this approach need to be improved, including the recombinant expression of these anti-RNA Fabs, to warrant the full potential of these synthetic Fabs as RNA crystallization chaperones. This review highlights the nuts and bolts and recent advances in the chaperone-assisted RNA crystallography approach, specifically emphasizing the Fab antibody fragments as RNA crystallization chaperones.
Collapse
Affiliation(s)
- Hasan Al Banna
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Manju Ojha
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
40
|
Heel S, Bartosik K, Juen F, Kreutz C, Micura R, Breuker K. Native Top-Down Mass Spectrometry Uncovers Two Distinct Binding Motifs of a Functional Neomycin-Sensing Riboswitch Aptamer. J Am Chem Soc 2023; 145:15284-15294. [PMID: 37420313 PMCID: PMC10360057 DOI: 10.1021/jacs.3c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 07/09/2023]
Abstract
Understanding how ligands bind to ribonucleic acids (RNA) is important for understanding RNA recognition in biological processes and drug development. Here, we have studied neomycin B binding to neomycin-sensing riboswitch aptamer constructs by native top-down mass spectrometry (MS) using electrospray ionization (ESI) and collisionally activated dissociation (CAD). Our MS data for a 27 nt aptamer construct reveal the binding site and ligand interactions, in excellent agreement with the structure derived from nuclear magnetic resonance (NMR) studies. Strikingly, for an extended 40 nt aptamer construct, which represents the sequence with the highest regulatory factor for riboswitch function, we identified two binding motifs for neomycin B binding, one corresponding to the bulge-loop motif of the 27 nt construct and the other one in the minor groove of the lower stem, which according to the MS data are equally populated. By replacing a noncanonical with a canonical base pair in the lower stem of the 40 nt aptamer, we can reduce binding to the minor groove motif from ∼50 to ∼30%. Conversely, the introduction of a CUG/CUG motif in the lower stem shifts the binding equilibrium in favor of minor groove binding. The MS data reveal site-specific and stoichiometry-resolved information on aminoglycoside binding to RNA that is not directly accessible by other methods and underscore the role of noncanonical base pairs in RNA recognition by aminoglycosides.
Collapse
Affiliation(s)
- Sarah
Viola Heel
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Fabian Juen
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry
and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
41
|
Degenhardt MFS, Degenhardt HF, Bhandari YR, Lee YT, Ding J, Heinz WF, Stagno JR, Schwieters CD, Zhang J, Wang YX. Determining structures of individual RNA conformers using atomic force microscopy images and deep neural networks. RESEARCH SQUARE 2023:rs.3.rs-2798658. [PMID: 37425706 PMCID: PMC10327248 DOI: 10.21203/rs.3.rs-2798658/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The vast percentage of the human genome is transcribed into RNA, many of which contain various structural elements and are important for functions. RNA molecules are conformationally heterogeneous and functionally dyanmics1, even when they are structured and well-folded2, which limit the applicability of methods such as NMR, crystallography, or cryo-EM. Moreover, because of the lack of a large structure RNA database, and no clear correlation between sequence and structure, approaches like AlphaFold3 for protein structure prediction, do not apply to RNA. Therefore determining the structures of heterogeneous RNA is an unmet challenge. Here we report a novel method of determining RNA three-dimensional topological structures using deep neural networks and atomic force microscopy (AFM) images of individual RNA molecules in solution. Owing to the high signal-to-noise ratio of AFM, our method is ideal for capturing structures of individual conformationally heterogeneous RNA. We show that our method can determine 3D topological structures of any large folded RNA conformers, from ~ 200 to ~ 420 residues, the size range that most functional RNA structures or structural elements fall into. Thus our method addresses one of the major challenges in frontier RNA structural biology and may impact our fundamental understanding of RNA structure.
Collapse
Affiliation(s)
- Maximilia F S Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Hermann F Degenhardt
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Yuba R Bhandari
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Yun-Tzai Lee
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Jienyu Ding
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jason R Stagno
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda, USA
| | - Jinwei Zhang
- Structural Biology of Noncoding RNAs and Ribonucleoproteins Section, Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Bethesda, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute; Frederick, USA
| |
Collapse
|
42
|
Khan NS, Rahaman MM, Islam S, Zhang S. RNA-NRD: a non-redundant RNA structural dataset for benchmarking and functional analysis. NAR Genom Bioinform 2023; 5:lqad040. [PMID: 37123530 PMCID: PMC10132383 DOI: 10.1093/nargab/lqad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
The significance of RNA functions and their role in evolution and disease control have remarkably increased the research scope in the field of RNA science. Though the availability of RNA structure data in PBD has been growing tremendously, maintaining their quality and integrity has become the greater challenge. Since the data available in PDB are results of different independent research, they might contain redundancy. As a result, there remains a possibility of data bias for both protein and RNA chains. Quite a few studies have been conducted to remove the redundancy of protein structures by introducing high-quality representatives. However, the amount of research done to remove the redundancy of RNA structures is still very low. To remove RNA chain redundancy in PDB, we have introduced RNA-NRD, a non-redundant dataset of RNA chains based on sequence and 3D structural similarity. We compared RNA-NRD with the existing non-redundant RNA structure dataset RS-RNA and showed that it has better-formed clusters of redundant RNA chains with lower average RMSD and higher average PSI, thus improving the overall quality of the dataset.
Collapse
Affiliation(s)
- Nabila Shahnaz Khan
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Md Mahfuzur Rahaman
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Shahidul Islam
- School of Computing and Design, California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
43
|
Ray KK, Kinz-Thompson CD, Fei J, Wang B, Lin Q, Gonzalez RL. Entropic control of the free-energy landscape of an archetypal biomolecular machine. Proc Natl Acad Sci U S A 2023; 120:e2220591120. [PMID: 37186858 PMCID: PMC10214133 DOI: 10.1073/pnas.2220591120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Biomolecular machines are complex macromolecular assemblies that utilize thermal and chemical energy to perform essential, multistep, cellular processes. Despite possessing different architectures and functions, an essential feature of the mechanisms of action of all such machines is that they require dynamic rearrangements of structural components. Surprisingly, biomolecular machines generally possess only a limited set of such motions, suggesting that these dynamics must be repurposed to drive different mechanistic steps. Although ligands that interact with these machines are known to drive such repurposing, the physical and structural mechanisms through which ligands achieve this remain unknown. Using temperature-dependent, single-molecule measurements analyzed with a time-resolution-enhancing algorithm, here, we dissect the free-energy landscape of an archetypal biomolecular machine, the bacterial ribosome, to reveal how its dynamics are repurposed to drive distinct steps during ribosome-catalyzed protein synthesis. Specifically, we show that the free-energy landscape of the ribosome encompasses a network of allosterically coupled structural elements that coordinates the motions of these elements. Moreover, we reveal that ribosomal ligands which participate in disparate steps of the protein synthesis pathway repurpose this network by differentially modulating the structural flexibility of the ribosomal complex (i.e., the entropic component of the free-energy landscape). We propose that such ligand-dependent entropic control of free-energy landscapes has evolved as a general strategy through which ligands may regulate the functions of all biomolecular machines. Such entropic control is therefore an important driver in the evolution of naturally occurring biomolecular machines and a critical consideration for the design of synthetic molecular machines.
Collapse
Affiliation(s)
- Korak Kumar Ray
- Department of Chemistry, Columbia University, New York, NY10027
| | | | - Jingyi Fei
- Department of Chemistry, Columbia University, New York, NY10027
| | - Bin Wang
- Department of Mechanical Engineering, Columbia University, New York, NY10027
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY10027
| | | |
Collapse
|
44
|
Li J, Chen SJ. RNAJP: enhanced RNA 3D structure predictions with non-canonical interactions and global topology sampling. Nucleic Acids Res 2023; 51:3341-3356. [PMID: 36864729 PMCID: PMC10123122 DOI: 10.1093/nar/gkad122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
RNA 3D structures are critical for understanding their functions. However, only a limited number of RNA structures have been experimentally solved, so computational prediction methods are highly desirable. Nevertheless, accurate prediction of RNA 3D structures, especially those containing multiway junctions, remains a significant challenge, mainly due to the complicated non-canonical base pairing and stacking interactions in the junction loops and the possible long-range interactions between loop structures. Here we present RNAJP ('RNA Junction Prediction'), a nucleotide- and helix-level coarse-grained model for the prediction of RNA 3D structures, particularly junction structures, from a given 2D structure. Through global sampling of the 3D arrangements of the helices in junctions using molecular dynamics simulations and in explicit consideration of non-canonical base pairing and base stacking interactions as well as long-range loop-loop interactions, the model can provide significantly improved predictions for multibranched junction structures than existing methods. Moreover, integrated with additional restraints from experiments, such as junction topology and long-range interactions, the model may serve as a useful structure generator for various applications.
Collapse
Affiliation(s)
- Jun Li
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
45
|
How does precursor RNA structure influence RNA processing and gene expression? Biosci Rep 2023; 43:232489. [PMID: 36689327 PMCID: PMC9977717 DOI: 10.1042/bsr20220149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023] Open
Abstract
RNA is a fundamental biomolecule that has many purposes within cells. Due to its single-stranded and flexible nature, RNA naturally folds into complex and dynamic structures. Recent technological and computational advances have produced an explosion of RNA structural data. Many RNA structures have regulatory and functional properties. Studying the structure of nascent RNAs is particularly challenging due to their low abundance and long length, but their structures are important because they can influence RNA processing. Precursor RNA processing is a nexus of pathways that determines mature isoform composition and that controls gene expression. In this review, we examine what is known about human nascent RNA structure and the influence of RNA structure on processing of precursor RNAs. These known structures provide examples of how other nascent RNAs may be structured and show how novel RNA structures may influence RNA processing including splicing and polyadenylation. RNA structures can be targeted therapeutically to treat disease.
Collapse
|
46
|
Shin JH, Bonilla SL, Denny SK, Greenleaf WJ, Herschlag D. Dissecting the energetic architecture within an RNA tertiary structural motif via high-throughput thermodynamic measurements. Proc Natl Acad Sci U S A 2023; 120:e2220485120. [PMID: 36897989 PMCID: PMC10243134 DOI: 10.1073/pnas.2220485120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023] Open
Abstract
Structured RNAs and RNA/protein complexes perform critical cellular functions. They often contain structurally conserved tertiary contact "motifs," whose occurrence simplifies the RNA folding landscape. Prior studies have focused on the conformational and energetic modularity of intact motifs. Here, we turn to the dissection of one common motif, the 11nt receptor (11ntR), using quantitative analysis of RNA on a massively parallel array to measure the binding of all single and double 11ntR mutants to GAAA and GUAA tetraloops, thereby probing the energetic architecture of the motif. While the 11ntR behaves as a motif, its cooperativity is not absolute. Instead, we uncovered a gradient from high cooperativity amongst base-paired and neighboring residues to additivity between distant residues. As expected, substitutions at residues in direct contact with the GAAA tetraloop resulted in the largest decreases to binding, and energetic penalties of mutations were substantially smaller for binding to the alternate GUAA tetraloop, which lacks tertiary contacts present with the canonical GAAA tetraloop. However, we found that the energetic consequences of base partner substitutions are not, in general, simply described by base pair type or isostericity. We also found exceptions to the previously established stability-abundance relationship for 11ntR sequence variants. These findings of "exceptions to the rule" highlight the power of systematic high-throughput approaches to uncover novel variants for future study in addition to providing an energetic map of a functional RNA.
Collapse
Affiliation(s)
- John H. Shin
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Steve L. Bonilla
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Sarah K. Denny
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Scribe Therapeutics, Alameda, CA94501
| | - William J. Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
| |
Collapse
|
47
|
Abstract
RNA is a key regulator of almost every cellular process, and the structures adopted by RNA molecules are thought to be central to their functions. The recent fast-paced evolution of high-throughput sequencing-based RNA structure mapping methods has enabled the rapid in vivo structural interrogation of entire cellular transcriptomes. Collectively, these studies are shedding new light on the long underestimated complexity of the structural organization of the transcriptome - the RNA structurome. Moreover, recent analyses are challenging the view that the RNA structurome is a static entity by revealing how RNA molecules establish intricate networks of alternative intramolecular and intermolecular interactions and that these ensembles of RNA structures are dynamically regulated to finely tune RNA functions in living cells. This new understanding of how RNA can shape cell phenotypes has important implications for the development of RNA-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
48
|
Magnus M, Miao Z. RNA 3D Structure Comparison Using RNA-Puzzles Toolkit. Methods Mol Biol 2023; 2586:263-285. [PMID: 36705910 DOI: 10.1007/978-1-0716-2768-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Computational modeling of RNA three-dimensional (3D) structure may help in unrevealing the molecular mechanisms of RNA molecules and in designing molecules with novel functions. An unbiased blind assessment to benchmark the computational modeling is required to understand the achievements and bottlenecks of the prediction, while a standard structure comparison protocol is necessary. RNA-Puzzles is a community-wide effort on the assessment of blind prediction of RNA tertiary structures. And RNA-Puzzles toolkit is a computational resource derived from RNA-Puzzles, which includes (i) decoy sets generated by different RNA 3D structure prediction methods; (ii) 3D structure normalization, analysis, manipulation, and visualization tools; and (iii) 3D structure comparison metric tools. In this chapter, we illustrate a standard RNA 3D structure prediction assessment protocol using the selected tools from RNA-Puzzles toolkit: rna-tools and RNA_assessment.
Collapse
Affiliation(s)
- Marcin Magnus
- ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK. .,Department of Anesthesiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Kensinger AH, Makowski JA, Pellegrene KA, Imperatore JA, Cunningham CL, Frye CJ, Lackey PE, Mihailescu MR, Evanseck JD. Structural, Dynamical, and Entropic Differences between SARS-CoV and SARS-CoV-2 s2m Elements Using Molecular Dynamics Simulations. ACS PHYSICAL CHEMISTRY AU 2023; 3:30-43. [PMID: 36711027 PMCID: PMC9578647 DOI: 10.1021/acsphyschemau.2c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022]
Abstract
The functional role of the highly conserved stem-loop II motif (s2m) in SARS-CoV and SARS-CoV-2 in the viral lifecycle remains enigmatic and an intense area of research. Structure and dynamics of the s2m are key to establishing a structure-function connection, yet a full set of atomistic resolution coordinates is not available for SARS-CoV-2 s2m. Our work constructs three-dimensional coordinates consistent with NMR solution phase data for SARS-CoV-2 s2m and provides a comparative analysis with its counterpart SARS-CoV s2m. We employed initial coordinates based on PDB ID 1XJR for SARS-CoV s2m and two models for SARS-CoV-2 s2m: one based on 1XJR in which we introduced the mutations present in SARS-CoV-2 s2m and the second based on the available SARS-CoV-2 NMR NOE data supplemented with knowledge-based methods. For each of the three systems, 3.5 μs molecular dynamics simulations were used to sample the structure and dynamics, and principal component analysis (PCA) reduced the ensembles to hierarchal conformational substates for detailed analysis. Dilute solution simulations of SARS-CoV s2m demonstrate that the GNRA-like terminal pentaloop is rigidly defined by base stacking uniquely positioned for possible kissing dimer formation. However, the SARS-CoV-2 s2m simulation did not retain the reported crystallographic SARS-CoV motifs and the terminal loop expands to a highly dynamic "nonaloop." Increased flexibility and structural disorganization are observed for the larger terminal loop, where an entropic penalty is computed to explain the experimentally observed reduction in kissing complex formation. Overall, both SARS-CoV and SARS-CoV-2 s2m elements have a similarly pronounced L-shape due to different motif interactions. Our study establishes the atomistic three-dimensional structure and uncovers dynamic differences that arise from s2m sequence changes, which sets the stage for the interrogation of different mechanistic pathways of suspected biological function.
Collapse
Affiliation(s)
- Adam H. Kensinger
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joseph A. Makowski
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Kendy A. Pellegrene
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Joshua A. Imperatore
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caylee L. Cunningham
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Caleb J. Frye
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Patrick E. Lackey
- Department
of Biochemistry and Chemistry, Westminster
College, New Wilmington, Pennsylvania16172, United States
| | - Mihaela Rita Mihailescu
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| | - Jeffrey D. Evanseck
- Department
of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania15282, United States
| |
Collapse
|
50
|
Jang SS, Dubnik S, Hon J, Hellenkamp B, Lynall DG, Shepard KL, Nuckolls C, Gonzalez RL. Characterizing the Conformational Free-Energy Landscape of RNA Stem-Loops Using Single-Molecule Field-Effect Transistors. J Am Chem Soc 2023; 145:402-412. [PMID: 36547391 PMCID: PMC10025942 DOI: 10.1021/jacs.2c10218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed and used single-molecule field-effect transistors (smFETs) to characterize the conformational free-energy landscape of RNA stem-loops. Stem-loops are one of the most common RNA structural motifs and serve as building blocks for the formation of complex RNA structures. Given their prevalence and integral role in RNA folding, the kinetics of stem-loop (un)folding has been extensively characterized using both experimental and computational approaches. Interestingly, these studies have reported vastly disparate timescales of (un)folding, which has been interpreted as evidence that (un)folding of even simple stem-loops occurs on a highly rugged conformational energy landscape. Because smFETs do not rely on fluorophore reporters of conformation or mechanical (un)folding forces, they provide a unique approach that has allowed us to directly monitor tens of thousands of (un)folding events of individual stem-loops at a 200 μs time resolution. Our results show that under our experimental conditions, stem-loops (un)fold over a 1-200 ms timescale during which they transition between ensembles of unfolded and folded conformations, the latter of which is composed of at least two sub-populations. The 1-200 ms timescale of (un)folding we observe here indicates that smFETs report on complete (un)folding trajectories in which unfolded conformations of the RNA spend long periods of time wandering the free-energy landscape before sampling one of several misfolded conformations or the natively folded conformation. Our findings highlight the extremely rugged landscape on which even the simplest RNA structural elements fold and demonstrate that smFETs are a unique and powerful approach for characterizing the conformational free-energy of RNA.
Collapse
Affiliation(s)
- Sukjin S. Jang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Sarah Dubnik
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Jason Hon
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Björn Hellenkamp
- Department of Electrical Engineering, Columbia University, 3000 Broadway, New York, 10027, USA
| | - David G. Lynall
- Department of Electrical Engineering, Columbia University, 3000 Broadway, New York, 10027, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, 3000 Broadway, New York, 10027, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Ruben L. Gonzalez
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|