1
|
Huh H, Jayachandran D, Sun J, Irfan M, Lam E, Chundawat SPS, Lee SH. Time-resolved tracking of cellulose biosynthesis and assembly during cell wall regeneration in live Arabidopsis protoplasts. SCIENCE ADVANCES 2025; 11:eads6312. [PMID: 40117364 PMCID: PMC11927630 DOI: 10.1126/sciadv.ads6312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Cellulose, the most abundant polysaccharide on earth composing plant cell walls, is synthesized by coordinated action of multiple enzymes in cellulose synthase complexes embedded within the plasma membrane. Multiple chains of cellulose fibrils form intertwined extracellular matrix networks. It remains largely unknown how newly synthesized cellulose is assembled into an intricate fibril network on cell surfaces. Here, we have established an in vivo time-resolved imaging platform to continuously visualize cellulose biosynthesis and fibril network assembly on Arabidopsis thaliana protoplast surfaces as the primary cell wall regenerates. Our observations provide the basis for a model of cellulose fibril network development in protoplasts driven by an interplay of multiscale dynamics that includes rapid diffusion and coalescence of nascent cellulose fibrils, processive elongation of single fibrils, and cellulose fibrillar network rearrangement during maturation. This study provides fresh insights into the dynamic and mechanistic aspects of cell wall synthesis at the single-cell level.
Collapse
Affiliation(s)
- Hyun Huh
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Dharanidaran Jayachandran
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Junhong Sun
- Department of Plant Biology, Rutgers University, 59 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Mohammad Irfan
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers University, 59 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Shishir P. S. Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Sang-Hyuk Lee
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
- Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Gao HC, Xu F, Cheng X, Bi C, Zheng Y, Li Y, Chen T, Li Y, Chubykin AA, Huang F. Interferometric Ultra-High Resolution 3D Imaging through Brain Sections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636258. [PMID: 39975253 PMCID: PMC11838448 DOI: 10.1101/2025.02.03.636258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Single-molecule super-resolution microscopy allows pin-pointing individual molecular positions in cells with nanometer precision. However, achieving molecular resolution through tissues is often difficult because of optical scattering and aberrations. We introduced 4Pi single-molecule nanoscopy for brain with in-situ point spread function retrieval through opaque tissue (4Pi-BRAINSPOT), integrating 4Pi single-molecule switching nanoscopy with dynamic in-situ coherent PSF modeling, single-molecule compatible tissue clearing, light-sheet illumination, and a novel quantitative analysis pipeline utilizing the highly accurate 3D molecular coordinates. This approach enables the quantification of protein distribution with sub-15-nm resolution in all three dimensions in complex tissue specimens. We demonstrated 4Pi-BRAINSPOT's capacities in revealing the molecular arrangements in various sub-cellular organelles and resolved the membrane morphology of individual dendritic spines through 50-μm transgenic mouse brain slices. This ultra-high-resolution approach allows us to decipher nanoscale organelle architecture and molecular distribution in both isolated cells and native tissue environments with precision down to a few nanometers.
Collapse
Affiliation(s)
- Hao-Cheng Gao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fan Xu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xi Cheng
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Cheng Bi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yue Zheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yilun Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tailong Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | | | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Zulueta Diaz YDLM, Arnspang EC. Super-resolution microscopy to study membrane nanodomains and transport mechanisms in the plasma membrane. Front Mol Biosci 2024; 11:1455153. [PMID: 39290992 PMCID: PMC11405310 DOI: 10.3389/fmolb.2024.1455153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Biological membranes are complex, heterogeneous, and dynamic systems that play roles in the compartmentalization and protection of cells from the environment. It is still a challenge to elucidate kinetics and real-time transport routes for molecules through biological membranes in live cells. Currently, by developing and employing super-resolution microscopy; increasing evidence indicates channels and transporter nano-organization and dynamics within membranes play an important role in these regulatory mechanisms. Here we review recent advances and discuss the major advantages and disadvantages of using super-resolution microscopy to investigate protein organization and transport within plasma membranes.
Collapse
Affiliation(s)
| | - Eva C Arnspang
- Department of Green Technology, SDU Biotechnology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Fang L, Huang F. Measurement precision bounds on aberrated single-molecule emission patterns. OPTICS EXPRESS 2024; 32:31431-31447. [PMID: 39573278 PMCID: PMC11595290 DOI: 10.1364/oe.527267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 11/26/2024]
Abstract
Single-molecule localization microscopy (SMLM) has revolutionized the study of biological phenomena by providing exquisite nanoscale spatial resolution. However, optical aberrations induced by sample and system imperfections distort the single-molecule emission patterns (i.e. PSFs), leading to reduced precision and resolution of SMLM, particularly in three-dimensional (3D) applications. While various methods, both analytical and instrumental, have been employed to mitigate these aberrations, a comprehensive analysis of how different types of commonly encountered aberrations affect single-molecule experiments and their image formation remains missing. In this study, we addressed this gap by conducting a quantitative study of the theoretical precision limit for position and wavefront distortion measurements in the presence of aberrations. Leveraging Fisher information and Cramér-Rao lower bound (CRLB), we quantitively analyzed and compared the effects of different aberration types, including index mismatch aberrations, on localization precision in both biplane and astigmatism 3D modalities as well as 2D SMLM imaging. Furthermore, we studied the achievable wavefront estimation precision from aberrated single-molecule emission patterns, a pivot step for successful adaptive optics in SMLM through thick specimens. This analysis lays a quantitative foundation for the development and application of SMLM in whole-cells, tissues and with a large field of view, providing in-depth insights into the behavior of different aberration types in single-molecule imaging and thus generating theoretical guidelines for developing highly efficient aberration correction strategies and enhancing the precision and reliability of 3D SMLM.
Collapse
Affiliation(s)
- Li Fang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Vaidya RM, Zhang J, Nall D, Lee Y, Chang Kim E, Ma D, Huang F, Nonaka H, Kiyonaka S, Hamachi I, Jung Chung H, Selvin PR. Nanoscale organization is changed in native, surface AMPARs by mouse brain region and tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604547. [PMID: 39091751 PMCID: PMC11291066 DOI: 10.1101/2024.07.22.604547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Synaptic AMPA receptors (AMPARs) on neuronal plasma membranes are correlated with learning and memory. Using a unique labeling and super-resolution imaging, we have visualized the nanoscale synaptic and extra-synaptic organization of native surface AMPARs for the first time in mouse brain slices as a function of brain region and tauopathy. We find that the fraction of surface AMPARs organized in synaptic clusters is two-times smaller in the hippocampus compared to the motor and somatosensory cortex. In 6 months old PS19 model of tauopathy, synaptic and extrasynaptic distributions are disrupted in the hippocampus but not in the cortex. Thus, this optimized super-resolution imaging tool allows us to observe synaptic deterioration at the onset of tauopathy before apparent neurodegeneration.
Collapse
Affiliation(s)
- Rohit M. Vaidya
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign; Urbana, IL, 61801, USA
| | - Jiahao Zhang
- Dept. of Physics, University of Illinois at Urbana-Champaign; Urbana, IL, 61801, USA
| | - Duncan Nall
- Dept. of Physics, University of Illinois at Urbana-Champaign; Urbana, IL, 61801, USA
| | - Yongjae Lee
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign; Urbana, IL, 61801, USA
| | - Eung Chang Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign; Urbana, IL, 61801, USA
| | - Donghan Ma
- Weldon School of Biomedical Engineering, Purdue University; West Lafayette, IN, 47907, USA
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University; West Lafayette, IN, 47907, USA
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University; 615-8510, Kyoto, Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Nagoya University; Nagoya, 464-8603, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University; 615-8510, Kyoto, Japan
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign; Urbana, IL, 61801, USA
| | - Paul R. Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign; Urbana, IL, 61801, USA
- Dept. of Physics, University of Illinois at Urbana-Champaign; Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Liu J, Li Y, Chen T, Zhang F, Xu F. Machine Learning for Single-Molecule Localization Microscopy: From Data Analysis to Quantification. Anal Chem 2024; 96:11103-11114. [PMID: 38946062 DOI: 10.1021/acs.analchem.3c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-molecule localization microscopy (SMLM) is a versatile tool for realizing nanoscale imaging with visible light and providing unprecedented opportunities to observe bioprocesses. The integration of machine learning with SMLM enhances data analysis by improving efficiency and accuracy. This tutorial aims to provide a comprehensive overview of the data analysis process and theoretical aspects of SMLM, while also highlighting the typical applications of machine learning in this field. By leveraging advanced analytical techniques, SMLM is becoming a powerful quantitative analysis tool for biological research.
Collapse
Affiliation(s)
- Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Tailong Chen
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Xu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Lai JZ, Lin CY, Chen SJ, Cheng YM, Abe M, Lin TC, Chien FC. Temporal-Focusing Multiphoton Excitation Single-Molecule Localization Microscopy Using Spontaneously Blinking Fluorophores. Angew Chem Int Ed Engl 2024; 63:e202404942. [PMID: 38641901 DOI: 10.1002/anie.202404942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Single-molecule localization microscopy (SMLM) based on temporal-focusing multiphoton excitation (TFMPE) and single-wavelength excitation is used to visualize the three-dimensional (3D) distribution of spontaneously blinking fluorophore-labeled subcellular structures in a thick specimen with a nanoscale-level spatial resolution. To eliminate the photobleaching effect of unlocalized molecules in out-of-focus regions for improving the utilization rate of the photon budget in 3D SMLM imaging, SMLM with single-wavelength TFMPE achieves wide-field and axially confined two-photon excitation (TPE) of spontaneously blinking fluorophores. TPE spectral measurement of blinking fluorophores is then conducted through TFMPE imaging at a tunable excitation wavelength, yielding the optimal TPE wavelength for increasing the number of detected photons from a single blinking event during SMLM. Subsequently, the TPE fluorescence of blinking fluorophores is recorded to obtain a two-dimensional TFMPE-SMLM image of the microtubules in cancer cells with a localization precision of 18±6 nm and an overall imaging resolution of approximately 51 nm, which is estimated based on the contribution of Nyquist resolution and localization precision. Combined with astigmatic imaging, the system is capable of 3D TFMPE-SMLM imaging of brain tissue section of a 5XFAD transgenic mouse with the pathological features of Alzheimer's disease, revealing the distribution of neurotoxic amyloid-beta peptide deposits.
Collapse
Affiliation(s)
- Jian-Zong Lai
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, No.301, Sec.2, Gaofa 3rd Rd., Guiren Dist., Tainan City, 71150, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, No.301, Sec.2, Gaofa 3rd Rd., Guiren Dist., Tainan City, 71150, Taiwan
| | - Yu-Min Cheng
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8526, Japan
| | - Tzu-Chau Lin
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| |
Collapse
|
8
|
Struckman HL, Moise N, Vanslembrouck B, Rothacker N, Chen Z, van Hengel J, Weinberg SH, Veeraraghavan R. Indirect Correlative Light and Electron Microscopy (iCLEM): A Novel Pipeline for Multiscale Quantification of Structure From Molecules to Organs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:318-333. [PMID: 38525890 PMCID: PMC11057817 DOI: 10.1093/mam/ozae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/09/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
Correlative light and electron microscopy (CLEM) methods are powerful methods that combine molecular organization (from light microscopy) with ultrastructure (from electron microscopy). However, CLEM methods pose high cost/difficulty barriers to entry and have very low experimental throughput. Therefore, we have developed an indirect correlative light and electron microscopy (iCLEM) pipeline to sidestep the rate-limiting steps of CLEM (i.e., preparing and imaging the same samples on multiple microscopes) and correlate multiscale structural data gleaned from separate samples imaged using different modalities by exploiting biological structures identifiable by both light and electron microscopy as intrinsic fiducials. We demonstrate here an application of iCLEM, where we utilized gap junctions and mechanical junctions between muscle cells in the heart as intrinsic fiducials to correlate ultrastructural measurements from transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM) with molecular organization from confocal microscopy and single molecule localization microscopy (SMLM). We further demonstrate how iCLEM can be integrated with computational modeling to discover structure-function relationships. Thus, we present iCLEM as a novel approach that complements existing CLEM methods and provides a generalizable framework that can be applied to any set of imaging modalities, provided suitable intrinsic fiducials can be identified.
Collapse
Affiliation(s)
- Heather L Struckman
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Nicolae Moise
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Nathan Rothacker
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Zhenhui Chen
- Krannert Cardiovascular Research Center, Department of Medicine, Indiana University, Room E400, 1801 N. Senate Blvd., Suite E400, Indianapolis, IN 46202, USA
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B, Entrance 36, 9000 Ghent, Belgium
| | - Seth H Weinberg
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, 2124 Fontana Labs, 140 W. 19th Ave, The Ohio State University, Columbus, OH 43210, USA
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, 2255 Kenny Rd, Rm 5189, Pelotonia Research Center, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Fang L, Huang F. Measurement precision bounds on aberrated single molecule emission patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569462. [PMID: 38076960 PMCID: PMC10705439 DOI: 10.1101/2023.11.30.569462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Single-Molecule Localization Microscopy (SMLM) has revolutionized the study of biological phenomena by providing exquisite nanoscale spatial resolution. However, optical aberrations induced by sample and system imperfections distort the single molecule emission patterns (i.e. PSFs), leading to reduced precision and resolution of SMLM, particularly in three-dimensional (3D) applications. While various methods, both analytical and instrumental, have been employed to mitigate these aberrations, a comprehensive analysis of how different types of commonly encountered aberrations affect single molecule experiments and their image formation remains missing. In this study, we addressed this gap by conducting a quantitative study of the theoretical precision limit for position and wavefront distortion measurements in the presence of aberrations. Leveraging Fisher information and Cramér-Rao lower bound (CRLB), we quantitively analyzed and compared the effects of different aberration types, including index mismatch aberrations, on localization precision in both biplane and astigmatism 3D modalities as well as 2D SMLM imaging. Furthermore, we studied the achievable wavefront estimation precision from aberrated single molecule emission patterns, a pivot step for successful adaptive optics in SMLM through thick specimens. This analysis lays a quantitative foundation for the development and application of SMLM in whole-cells, tissues and with large field of view, providing in-depth insights into the behavior of different aberration types in single molecule imaging and thus generating theoretical guidelines for developing highly efficient aberration correction strategies and enhancing the precision and reliability of 3D SMLM.
Collapse
Affiliation(s)
- Li Fang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Zhang P, Ma D, Cheng X, Tsai AP, Tang Y, Gao HC, Fang L, Bi C, Landreth GE, Chubykin AA, Huang F. Deep learning-driven adaptive optics for single-molecule localization microscopy. Nat Methods 2023; 20:1748-1758. [PMID: 37770712 PMCID: PMC10630144 DOI: 10.1038/s41592-023-02029-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
The inhomogeneous refractive indices of biological tissues blur and distort single-molecule emission patterns generating image artifacts and decreasing the achievable resolution of single-molecule localization microscopy (SMLM). Conventional sensorless adaptive optics methods rely on iterative mirror changes and image-quality metrics. However, these metrics result in inconsistent metric responses and thus fundamentally limit their efficacy for aberration correction in tissues. To bypass iterative trial-then-evaluate processes, we developed deep learning-driven adaptive optics for SMLM to allow direct inference of wavefront distortion and near real-time compensation. Our trained deep neural network monitors the individual emission patterns from single-molecule experiments, infers their shared wavefront distortion, feeds the estimates through a dynamic filter and drives a deformable mirror to compensate sample-induced aberrations. We demonstrated that our method simultaneously estimates and compensates 28 wavefront deformation shapes and improves the resolution and fidelity of three-dimensional SMLM through >130-µm-thick brain tissue specimens.
Collapse
Affiliation(s)
- Peiyi Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Donghan Ma
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Xi Cheng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Andy P Tsai
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu Tang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Hao-Cheng Gao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Li Fang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Cheng Bi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| | - Fang Huang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
11
|
Ushakov DS, Finke S. Tissue optical clearing and 3D imaging of virus infections. Adv Virus Res 2023; 116:89-121. [PMID: 37524483 DOI: 10.1016/bs.aivir.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Imaging pathogens within 3D environment of biological tissues provides spatial information about their localization and interactions with the host. Technological advances in fluorescence microscopy and 3D image analysis now permit visualization and quantification of pathogens directly in large tissue volumes and in great detail. In recent years large volume imaging became an important tool in virology research helping to understand the properties of viruses and the host response to infection. In this chapter we give a review of fluorescence microscopy modalities and tissue optical clearing methods used for large volume tissue imaging. A summary of recent applications for virus research is provided with particular emphasis on studies using light sheet fluorescence microscopy. We describe the challenges and approaches for volumetric image analysis. Practical examples of volumetric imaging implemented in virology laboratories and addressing specialized research questions, such as virus tropism and immune host response are described. We conclude with an overview of the emerging technologies and their potential for virus research.
Collapse
Affiliation(s)
- Dmitry S Ushakov
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Stefan Finke
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Arnould B, Quillin AL, Heemstra JM. Tracking the Message: Applying Single Molecule Localization Microscopy to Cellular RNA Imaging. Chembiochem 2023; 24:e202300049. [PMID: 36857087 PMCID: PMC10192057 DOI: 10.1002/cbic.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
RNA function is increasingly appreciated to be more complex than merely communicating between DNA sequence and protein structure. RNA localization has emerged as a key contributor to the intricate roles RNA plays in the cell, and the link between dysregulated spatiotemporal localization and disease warrants an exploration beyond sequence and structure. However, the tools needed to visualize RNA with precise resolution are lacking in comparison to methods available for studying proteins. In the past decade, many techniques have been developed for imaging RNA, and in parallel super resolution and single-molecule techniques have enabled imaging of single molecules in cells. Of these methods, single molecule localization microscopy (SMLM) has shown significant promise for probing RNA localization. In this review, we highlight current approaches that allow super resolution imaging of specific RNA transcripts and summarize challenges and future opportunities for developing innovative RNA labeling methods that leverage the power of SMLM.
Collapse
Affiliation(s)
- Benoît Arnould
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexandria L Quillin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
13
|
Rodríguez C, Booth MJ, Turcotte R. Editorial: Adaptive optics for in vivo brain imaging. Front Neurosci 2023; 17:1188614. [PMID: 37065915 PMCID: PMC10102636 DOI: 10.3389/fnins.2023.1188614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Affiliation(s)
- Cristina Rodríguez
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- *Correspondence: Cristina Rodríguez
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Raphaël Turcotte
- Kingdom Supercultures, Brooklyn, NY, United States
- Raphaël Turcotte
| |
Collapse
|
14
|
Hung ST, Cnossen J, Fan D, Siemons M, Jurriens D, Grußmayer K, Soloviev O, Kapitein LC, Smith CS. SOLEIL: single-objective lens inclined light sheet localization microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3275-3294. [PMID: 35781973 PMCID: PMC9208595 DOI: 10.1364/boe.451634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
High-NA light sheet illumination can improve the resolution of single-molecule localization microscopy (SMLM) by reducing the background fluorescence. These approaches currently require custom-made sample holders or additional specialized objectives, which makes the sample mounting or the optical system complex and therefore reduces the usability of these approaches. Here, we developed a single-objective lens-inclined light sheet microscope (SOLEIL) that is capable of 2D and 3D SMLM in thick samples. SOLEIL combines oblique illumination with point spread function PSF engineering to enable dSTORM imaging in a wide variety of samples. SOLEIL is compatible with standard sample holders and off-the-shelve optics and standard high NA objectives. To accomplish optimal optical sectioning we show that there is an ideal oblique angle and sheet thickness. Furthermore, to show what optical sectioning delivers for SMLM we benchmark SOLEIL against widefield and HILO microscopy with several biological samples. SOLEIL delivers in 15 μm thick Caco2-BBE cells a 374% higher intensity to background ratio and a 54% improvement in the estimated CRLB compared to widefield illumination, and a 184% higher intensity to background ratio and a 20% improvement in the estimated CRLB compared to HILO illumination.
Collapse
Affiliation(s)
- Shih-Te Hung
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Jelmer Cnossen
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Daniel Fan
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
| | - Marijn Siemons
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Daphne Jurriens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Kristin Grußmayer
- Department of Bionanoscience and Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| | - Oleg Soloviev
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
- Flexible Optical B.V., Polakweg 10-11, 2288 GG Rijswijk, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Carlas S. Smith
- Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
15
|
Shah HP, Devergne O. Confocal and Super-Resolution Imaging of Polarized Intracellular Trafficking and Secretion of Basement Membrane Proteins During Drosophila Oogenesis. J Vis Exp 2022:10.3791/63778. [PMID: 35662240 PMCID: PMC10325488 DOI: 10.3791/63778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023] Open
Abstract
The basement membrane (BM) - a specialized sheet of extracellular matrix present at the basal side of epithelial cells - is critical for the establishment and maintenance of epithelial tissue morphology and organ morphogenesis. Moreover, the BM is essential for tissue modeling, serving as a signaling platform, and providing external forces to shape tissues and organs. Despite the many important roles that the BM plays during normal development and pathological conditions, the biological pathways controlling the intracellular trafficking of BM-containing vesicles and how basal secretion leads to the polarized deposition of BM proteins are poorly understood. The follicular epithelium of the Drosophila ovary is an excellent model system to study the basal deposition of BM membrane proteins, as it produces and secretes all major components of the BM. Confocal and super-resolution imaging combined with image processing in fixed tissues allows for the identification and characterization of cellular factors specifically involved in the intracellular trafficking and deposition of BM proteins. This article presents a detailed protocol for staining and imaging BM-containing vesicles and deposited BM using endogenously tagged proteins in the follicular epithelium of the Drosophila ovary. This protocol can be applied to address both qualitative and quantitative questions and it was developed to accommodate high-throughput screening, allowing for the rapid and efficient identification of factors involved in the polarized intracellular trafficking and secretion of vesicles during epithelial tissue development.
Collapse
Affiliation(s)
- Hemin P Shah
- Department of Biological Sciences, Northern Illinois University
| | - Olivier Devergne
- Department of Biological Sciences, Northern Illinois University;
| |
Collapse
|
16
|
Jouchet P, Poüs C, Fort E, Lévêque-Fort S. Time-modulated excitation for enhanced single-molecule localization microscopy. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A: MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES 2022; 380:20200299. [PMID: 0 DOI: 10.1098/rsta.2020.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 05/19/2023]
Abstract
Structured illumination in single-molecule localization microscopy provides new information on the position of molecules and thus improves the localization precision compared to standard localization methods. Here, we used a time-shifted sinusoidal excitation pattern to modulate the fluorescence signal of the molecules whose position information is carried by the phase and recovered by synchronous demodulation. We designed two flexible fast demodulation systems located upstream of the camera, allowing us to overcome the limiting camera acquisition frequency and thus to maximize the collection of photons in the demodulation process. The temporally modulated fluorescence signal was then sampled synchronously on the same image, repeatedly during acquisition. This microscopy, called ModLoc, allows us to experimentally improve the localization precision by a factor of 2.4 in one direction, compared to classical Gaussian fitting methods. A temporal study and an experimental demonstration both show that the short lifetimes of the molecules in blinking regimes impose a modulation frequency in the kilohertz range, which is beyond the reach of current cameras. A demodulation system operating at these frequencies would thus be necessary to take full advantage of this new localization approach.
This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.
Collapse
Affiliation(s)
- Pierre Jouchet
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Christian Poüs
- Université Paris-Saclay, INSERM UMR 1193, Châtenay-Malabry, France
| | - Emmanuel Fort
- Institut Langevin, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Sandrine Lévêque-Fort
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
17
|
Engelbrecht L, Ollewagen T, de Swardt D. Advances in fluorescence microscopy can reveal important new aspects of tissue regeneration. Biochimie 2022; 196:194-202. [DOI: 10.1016/j.biochi.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
18
|
Hwang W, Kim D, Kim D. Axial Scanning Metal-Induced Energy Transfer Microscopy for Extended Range Nanometer-Sectioning Cell Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105497. [PMID: 35174635 DOI: 10.1002/smll.202105497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Nanometer-sectioning optical microscopy has become an indispensable tool in membrane-related biomedical studies. Finally, many nanometer-sectioning imaging schemes, such as variable-angle total internal reflection fluorescence microscopy, metal-induced energy transfer (MIET) imaging, and supercritical-angle fluorescence microscopy have been introduced. However, these methods can measure a single layer of molecules, and the measurement ranges are below 100 nm, which is not large enough to cover the thickness of lamellipodium. This paper proposes an optical imaging scheme that can identify the axial locations of two layers of molecules with an extended measurement range and a nanometer-scale precision by using MIET, axial focal plane scanning, and biexponential analysis in fluorescence lifetime imaging microscopy. The feasibility of the proposed method is demonstrated by measuring an artificial sample of a known structure and the lamellipodium of a human aortic endothelial cell whose thickness ranges from 100 to 450 nm with 18.3 nm precision.
Collapse
Affiliation(s)
- Wonsang Hwang
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Dongeun Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Dugyoung Kim
- Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| |
Collapse
|
19
|
Xiang L, Chen K, Xu K. Single Molecules Are Your Quanta: A Bottom-Up Approach toward Multidimensional Super-resolution Microscopy. ACS NANO 2021; 15:12483-12496. [PMID: 34304562 PMCID: PMC8789943 DOI: 10.1021/acsnano.1c04708] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The rise of single-molecule localization microscopy (SMLM) and related super-resolution methods over the past 15 years has revolutionized how we study biological and materials systems. In this Perspective, we reflect on the underlying philosophy of how diffraction-unlimited pictures containing rich spatial and functional information may gradually emerge through the local accumulation of single-molecule measurements. Starting with the basic concepts, we analyze the uniqueness of and opportunities in building up the final picture one molecule at a time. After brief introductions to the more established multicolor and three-dimensional measurements, we highlight emerging efforts to extend SMLM to new dimensions and functionalities as fluorescence polarization, emission spectra, and molecular motions, and discuss rising opportunities and future directions. With single molecules as our quanta, the bottom-up accumulation approach provides a powerful conduit for multidimensional microscopy at the nanoscale.
Collapse
|
20
|
Siemons ME, Hanemaaijer NAK, Kole MHP, Kapitein LC. Robust adaptive optics for localization microscopy deep in complex tissue. Nat Commun 2021; 12:3407. [PMID: 34099685 PMCID: PMC8184833 DOI: 10.1038/s41467-021-23647-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
Single-Molecule Localization Microscopy (SMLM) provides the ability to determine molecular organizations in cells at nanoscale resolution, but in complex biological tissues, where sample-induced aberrations hamper detection and localization, its application remains a challenge. Various adaptive optics approaches have been proposed to overcome these issues, but the exact performance of these methods has not been consistently established. Here we systematically compare the performance of existing methods using both simulations and experiments with standardized samples and find that they often provide limited correction or even introduce additional errors. Careful analysis of the reasons that underlie this limited success enabled us to develop an improved method, termed REALM (Robust and Effective Adaptive Optics in Localization Microscopy), which corrects aberrations of up to 1 rad RMS using 297 frames of blinking molecules to improve single-molecule localization. After its quantitative validation, we demonstrate that REALM enables to resolve the periodic organization of cytoskeletal spectrin of the axon initial segment even at 50 μm depth in brain tissue.
Collapse
Affiliation(s)
- Marijn E Siemons
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Naomi A K Hanemaaijer
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Maarten H P Kole
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Axonal Signalling, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
21
|
Choquet D, Sainlos M, Sibarita JB. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat Rev Neurosci 2021; 22:237-255. [PMID: 33712727 DOI: 10.1038/s41583-021-00441-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.
Collapse
Affiliation(s)
- Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France. .,University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Bordeaux, France.
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| | - Jean-Baptiste Sibarita
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
22
|
Kubalová I, Němečková A, Weisshart K, Hřibová E, Schubert V. Comparing Super-Resolution Microscopy Techniques to Analyze Chromosomes. Int J Mol Sci 2021; 22:ijms22041903. [PMID: 33672992 PMCID: PMC7917581 DOI: 10.3390/ijms22041903] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200–250 nm laterally, ~500–700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4′,6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.
Collapse
Affiliation(s)
- Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466 Seeland, Germany;
| | - Alžběta Němečková
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 77900 Olomouc, Czech Republic; (A.N.); (E.H.)
| | | | - Eva Hřibová
- Centre of the Region Hana for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, 77900 Olomouc, Czech Republic; (A.N.); (E.H.)
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466 Seeland, Germany;
- Correspondence: ; Tel.: +49-394-825-212
| |
Collapse
|
23
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
24
|
A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021; 169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.
Collapse
|