1
|
Liu L, He P, Wang Y, Ma F, Li D, Bai Z, Qu Y, Zhu L, Yoon CW, Yu X, Huang Y, Liang Z, Zhang Y, Liu K, Guo T, Zeng Y, Zhou Q, Chung HK, Fan R, Wang Y. Engineering sonogenetic EchoBack-CAR T cells. Cell 2025; 188:2621-2636.e20. [PMID: 40179881 DOI: 10.1016/j.cell.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/13/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy for solid tumors encounters challenges such as on-target off-tumor toxicity, exhaustion, and limited T cell persistence. Here, we engineer sonogenetic EchoBack-CAR T cells using an ultrasensitive heat-shock promoter screened from a library and integrated with a positive feedback loop from CAR signaling, enabling long-lasting CAR expression upon focused-ultrasound (FUS) stimulation. EchoBack-hGD2CAR T cells, targeting disialoganglioside GD2, exhibited potent cytotoxicity and persistence in 3D glioblastoma (GBM) models. In mice, EchoBack-hGD2CAR T cells suppressed GBM without off-tumor toxicity and outperformed their constitutive counterparts. Single-cell RNA sequencing revealed enhanced cytotoxicity and reduced exhaustion in EchoBack-CAR T cells compared with the standard CAR T cells. This EchoBack design was further adapted to target prostate-specific membrane antigen (EchoBack-PSMACAR) for prostate cancer treatment, demonstrating long-lasting tumor suppression with minimal off-tumor toxicity. Thus, the sonogenetic EchoBack-CAR T cells can serve as a versatile, efficient, and safe strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Peixiang He
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuxuan Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Fengyi Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Dulei Li
- Acoustic Cell Therapy, Inc., San Diego, CA 92130, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yunjia Qu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Linshan Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Chi Woo Yoon
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yixuan Huang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhengyu Liang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yiming Zhang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Kunshu Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - H Kay Chung
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther 2024; 9:7. [PMID: 38167329 PMCID: PMC10761793 DOI: 10.1038/s41392-023-01680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors. Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation.
Collapse
Affiliation(s)
- Fei Teng
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqin Gao
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
3
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
4
|
Celichowski P, Turi M, Charvátová S, Radhakrishnan D, Feizi N, Chyra Z, Šimíček M, Jelínek T, Bago JR, Hájek R, Hrdinka M. Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. J Transl Med 2023; 21:197. [PMID: 36922828 PMCID: PMC10015723 DOI: 10.1186/s12967-023-04041-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer immunotherapies utilizing genetically engineered T cells have emerged as powerful personalized therapeutic agents showing dramatic preclinical and clinical results, particularly in hematological malignancies. Ectopically expressed chimeric antigen receptors (CARs) reprogram immune cells to target and eliminate cancer. However, CAR T cell therapy's success depends on the balance between effective anti-tumor activity and minimizing harmful side effects. To improve CAR T cell therapy outcomes and mitigate associated toxicities, scientists from different fields are cooperating in developing next-generation products using the latest molecular cell biology and synthetic biology tools and technologies. The immunotherapy field is rapidly evolving, with new approaches and strategies being reported at a fast pace. This comprehensive literature review aims to provide an up-to-date overview of the latest developments in controlling CAR T cell activity for improved safety, efficacy, and flexibility.
Collapse
Affiliation(s)
- Piotr Celichowski
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcello Turi
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Sandra Charvátová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Neda Feizi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Juli Rodriguez Bago
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
5
|
Optogenetic technologies in translational cancer research. Biotechnol Adv 2022; 60:108005. [PMID: 35690273 DOI: 10.1016/j.biotechadv.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
Collapse
|
6
|
Sharabi O, Greenshpan Y, Ofir N, Ottolenghi A, Levi T, Olender L, Adler-Agmon Z, Porgador A, Gazit R. High throughput screen for the improvement of inducible promoters for tumor microenvironment cues. Sci Rep 2022; 12:7169. [PMID: 35504918 PMCID: PMC9065017 DOI: 10.1038/s41598-022-11021-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapies are highly potent and are gaining wide clinical usage. However, severe side effects require focusing effector immune cell activities on the tumor microenvironment (TME). We recently developed a chimeric antigen receptor tumor-induced vector (CARTIV), a synthetic promoter activated by TME factors. To improve CARTIV functions including background, activation levels, and synergism, we screened a library of promoters with variations in key positions. Here, we present a screening method involving turning ON/OFF stimulating TNFα and IFNγ cytokines, followed by sequential cell sorting. Sequencing of enriched promoters identified seventeen candidates, which were cloned and whose activities were then validated, leading to the identification of two CARTIVs with lower background and higher induction. We further combined a third hypoxia element with the two-factor CARTIV, demonstrating additional modular improvement. Our study presents a method of fine-tuning synthetic promoters for desired immunotherapy needs.
Collapse
Affiliation(s)
- Omri Sharabi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Noa Ofir
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tamar Levi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Leonid Olender
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Zachor Adler-Agmon
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
7
|
Nitsch L, Jensen P, Yoon H, Koeppel J, Burman SSR, Fischer ES, Scholl C, Fröhling S, Słabicki M. BTB BCL6 dimers as building blocks for reversible drug-induced protein oligomerization. CELL REPORTS METHODS 2022; 2:100193. [PMID: 35497498 PMCID: PMC9046236 DOI: 10.1016/j.crmeth.2022.100193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/17/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022]
Abstract
Here, we characterize the BTB domain of the transcription factor BCL6 (BTBBCL6) as a small-molecule-controlled, reversible oligomerization switch, which oligomerizes upon BI-3802 treatment and de-oligomerizes upon addition of BI-3812. We show that the magnitude of oligomerization can be controlled in vitro by BI-3802 concentration and exposure time. In cellular models, exposure to BI-3802/BI-3812 can drive multiple cycles of foci formation consisting of BTBBCL6 fused to EGFP, which are not degraded due to the lack of a degron. We generated an epidermal growth factor receptor (EGFR)-BTBBCL6 fusion. Treatment with BI-3802, as an ON switch, induced EGFR-BTBBCL6 phosphorylation and activation of downstream effectors, which could in part be reversed by the addition of BI-3812, as an OFF switch. Finally, BI-3802-induced oligomerization of the EGFR-BTBBCL6 fusion enhanced proliferation of an EGF-dependent cell line in absence of EGF. These results demonstrate the successful application of small-molecule-induced, reversible oligomerization as a switch for synthetic biology.
Collapse
Affiliation(s)
- Lena Nitsch
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Patrizia Jensen
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Hojong Yoon
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas Koeppel
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shourya Sonkar Roy Burman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Sebastian Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Mikołaj Słabicki
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
8
|
Jones RD, Qian Y, Ilia K, Wang B, Laub MT, Del Vecchio D, Weiss R. Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles. Nat Commun 2022; 13:1720. [PMID: 35361767 PMCID: PMC8971529 DOI: 10.1038/s41467-022-29338-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Engineered signaling networks can impart cells with new functionalities useful for directing differentiation and actuating cellular therapies. For such applications, the engineered networks must be tunable, precisely regulate target gene expression, and be robust to perturbations within the complex context of mammalian cells. Here, we use bacterial two-component signaling proteins to develop synthetic phosphoregulation devices that exhibit these properties in mammalian cells. First, we engineer a synthetic covalent modification cycle based on kinase and phosphatase proteins derived from the bifunctional histidine kinase EnvZ, enabling analog tuning of gene expression via its response regulator OmpR. By regulating phosphatase expression with endogenous miRNAs, we demonstrate cell-type specific signaling responses and a new strategy for accurate cell type classification. Finally, we implement a tunable negative feedback controller via a small molecule-stabilized phosphatase, reducing output expression variance and mitigating the context-dependent effects of off-target regulation and resource competition. Our work lays the foundation for establishing tunable, precise, and robust control over cell behavior with synthetic signaling networks.
Collapse
Affiliation(s)
- Ross D Jones
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yili Qian
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Katherine Ilia
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Benjamin Wang
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael T Laub
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Domitilla Del Vecchio
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
9
|
Lawton ML, Emili A. Mass Spectrometry-Based Phosphoproteomics and Systems Biology: Approaches to Study T Lymphocyte Activation and Exhaustion. J Mol Biol 2021; 433:167318. [PMID: 34687714 DOI: 10.1016/j.jmb.2021.167318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
T lymphocytes respond to extracellular cues and recognize and clear foreign bodies. These functions are tightly regulated by receptor-mediated intracellular signal transduction pathways and phosphorylation cascades resulting in rewiring of transcription, cell adhesion, and metabolic pathways, which leads to changes in downstream effector functions including cytokine secretion and target-cell killing. Given that these pathways become dysregulated in chronic diseases such as cancer, auto-immunity, diabetes, and persistent infections, mapping T cell signaling dynamics in normal and pathological states is central to understanding and modulating immune system behavior. Despite recent advances, there remains much to be learned from the study of T cell signaling at a systems level. The application of global phospho-proteomic profiling technology has the potential to provide unprecedented insights into the molecular networks that govern T cell function. These include capturing the spatiotemporal dynamics of the T cell responses as an ensemble of interacting components, rather than a static view at a single point in time. In this review, we describe innovative experimental approaches to study signaling mechanisms in the TCR, co-stimulatory receptors, synthetic signaling molecules such as chimeric antigen receptors, inhibitory receptors, and T cell exhaustion. Technical advances in mass spectrometry and systems biology frameworks are emphasized as these are poised to identify currently unknown functional relationships and dependencies to create causal predictive models that expand from the traditional narrow reductionist lens of singular components in isolation.
Collapse
Affiliation(s)
- Matthew L Lawton
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
10
|
Advances in engineering and synthetic biology toward improved therapeutic immune cells. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Titratable Pharmacological Regulation of CAR T Cells Using Zinc Finger-Based Transcription Factors. Cancers (Basel) 2021; 13:cancers13194741. [PMID: 34638227 PMCID: PMC8507528 DOI: 10.3390/cancers13194741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Chimeric antigen receptor (CAR) T cell therapy can be associated with substantial side effects primarily due to intense immune activation following treatment, or target antigen recognition on off-tumor tissue. Consequently, temporal and tunable control of CAR T cell activity is of major importance for the clinical translation of innovative CAR designs. This work demonstrates the transcriptional regulation of an anti-CD20 CAR in primary T cells using a drug inducible zinc finger-based transcription factor. The switch system enables titratable induction of CAR expression and CAR T cell effector function with the clinically relevant inducer drug tamoxifen and its metabolites both in vitro and in vivo, whereby CAR activity is strictly dependent on the presence of the inducer drug. The results obtained can readily be transferred to other CARs for which an improved control of expression is required. Abstract Chimeric antigen receptor (CAR) T cell therapy has emerged as an attractive strategy for cancer immunotherapy. Despite remarkable success for hematological malignancies, excessive activity and poor control of CAR T cells can result in severe adverse events requiring control strategies to improve safety. This work illustrates the feasibility of a zinc finger-based inducible switch system for transcriptional regulation of an anti-CD20 CAR in primary T cells providing small molecule-inducible control over therapeutic functions. We demonstrate time- and dose-dependent induction of anti-CD20 CAR expression and function with metabolites of the clinically-approved drug tamoxifen, and the absence of background CAR activity in the non-induced state. Inducible CAR T cells executed fine-tuned cytolytic activity against target cells both in vitro and in vivo, whereas CAR-related functions were lost upon drug discontinuation. This zinc finger-based transcriptional control system can be extended to other therapeutically important CARs, thus paving the way for safer cellular therapies.
Collapse
|
12
|
Chimeric antigen receptor- and natural killer cell receptor-engineered innate killer cells in cancer immunotherapy. Cell Mol Immunol 2021; 18:2083-2100. [PMID: 34267335 PMCID: PMC8429625 DOI: 10.1038/s41423-021-00732-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T-cell (CAR-T) therapy has demonstrated impressive therapeutic efficacy against hematological malignancies, but multiple challenges have hindered its application, particularly for the eradication of solid tumors. Innate killer cells (IKCs), particularly NK cells, NKT cells, and γδ T cells, employ specific antigen-independent innate tumor recognition and cytotoxic mechanisms that simultaneously display high antitumor efficacy and prevent tumor escape caused by antigen loss or modulation. IKCs are associated with a low risk of developing GVHD, thus offering new opportunities for allogeneic "off-the-shelf" cellular therapeutic products. The unique innate features, wide tumor recognition range, and potent antitumor functions of IKCs make them potentially excellent candidates for cancer immunotherapy, particularly serving as platforms for CAR development. In this review, we first provide a brief summary of the challenges hampering CAR-T-cell therapy applications and then discuss the latest CAR-NK-cell research, covering the advantages, applications, and clinical translation of CAR- and NK-cell receptor (NKR)-engineered IKCs. Advances in synthetic biology and the development of novel genetic engineering techniques, such as gene-editing and cellular reprogramming, will enable the further optimization of IKC-based anticancer therapies.
Collapse
|
13
|
Yang L, Yin J, Wu J, Qiao L, Zhao EM, Cai F, Ye H. Engineering genetic devices for in vivo control of therapeutic T cell activity triggered by the dietary molecule resveratrol. Proc Natl Acad Sci U S A 2021; 118:e2106612118. [PMID: 34404729 PMCID: PMC8403971 DOI: 10.1073/pnas.2106612118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cell therapies have been recognized as powerful strategies in cancer immunotherapy; however, the clinical application of CAR-T is currently constrained by severe adverse effects in patients, caused by excessive cytotoxic activity and poor T cell control. Herein, we harnessed a dietary molecule resveratrol (RES)-responsive transactivator and a transrepressor to develop a repressible transgene expression (RESrep) device and an inducible transgene expression (RESind) device, respectively. After optimization, these tools enabled the control of CAR expression and CAR-mediated antitumor function in engineered human cells. We demonstrated that a resveratrol-repressible CAR expression (RESrep-CAR) device can effectively inhibit T cell activation upon resveratrol administration in primary T cells and a xenograft tumor mouse model. Additionally, we exhibit how a resveratrol-inducible CAR expression (RESind-CAR) device can achieve fine-tuned and reversible control over T cell activation via a resveratrol-titratable mechanism. Furthermore, our results revealed that the presence of RES can activate RESind-CAR T cells with strong anticancer cytotoxicity against cells in vitro and in vivo. Our study demonstrates the utility of RESrep and RESind devices as effective tools for transgene expression and illustrates the potential of RESrep-CAR and RESind-CAR devices to enhance patient safety in precision cancer immunotherapies.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Proliferation
- Cytotoxicity, Immunologic/immunology
- Disease Models, Animal
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/therapy
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Linfeng Yang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jianli Yin
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiali Wu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Longliang Qiao
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Evan M Zhao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China;
| |
Collapse
|
14
|
Huang X, Williams JZ, Chang R, Li Z, Burnett CE, Hernandez-Lopez R, Setiady I, Gai E, Patterson DM, Yu W, Roybal KT, Lim WA, Desai TA. DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. NATURE NANOTECHNOLOGY 2021; 16:214-223. [PMID: 33318641 PMCID: PMC7878327 DOI: 10.1038/s41565-020-00813-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/28/2020] [Indexed: 05/21/2023]
Abstract
Biomaterials can improve the safety and presentation of therapeutic agents for effective immunotherapy, and a high level of control over surface functionalization is essential for immune cell modulation. Here, we developed biocompatible immune cell-engaging particles (ICEp) that use synthetic short DNA as scaffolds for efficient and tunable protein loading. To improve the safety of chimeric antigen receptor (CAR) T cell therapies, micrometre-sized ICEp were injected intratumorally to present a priming signal for systemically administered AND-gate CAR-T cells. Locally retained ICEp presenting a high density of priming antigens activated CAR T cells, driving local tumour clearance while sparing uninjected tumours in immunodeficient mice. The ratiometric control of costimulatory ligands (anti-CD3 and anti-CD28 antibodies) and the surface presentation of a cytokine (IL-2) on ICEp were shown to substantially impact human primary T cell activation phenotypes. This modular and versatile biomaterial functionalization platform can provide new opportunities for immunotherapies.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jasper Z Williams
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan Chang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongbo Li
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Cassandra E Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Rogelio Hernandez-Lopez
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Initha Setiady
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Gai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - David M Patterson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Yu
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kole T Roybal
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Wendell A Lim
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Cell Design Institute and Center for Synthetic Immunology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Jan M, Scarfò I, Larson RC, Walker A, Schmidts A, Guirguis AA, Gasser JA, Słabicki M, Bouffard AA, Castano AP, Kann MC, Cabral ML, Tepper A, Grinshpun DE, Sperling AS, Kyung T, Sievers QL, Birnbaum ME, Maus MV, Ebert BL. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med 2021; 13:eabb6295. [PMID: 33408186 PMCID: PMC8045771 DOI: 10.1126/scitranslmed.abb6295] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/19/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Cell-based therapies are emerging as effective agents against cancer and other diseases. As autonomous "living drugs," these therapies lack precise control. Chimeric antigen receptor (CAR) T cells effectively target hematologic malignancies but can proliferate rapidly and cause toxicity. We developed ON and OFF switches for CAR T cells using the clinically approved drug lenalidomide, which mediates the proteasomal degradation of several target proteins by inducing interactions between the CRL4CRBN E3 ubiquitin ligase and a C2H2 zinc finger degron motif. We performed a systematic screen to identify "super-degron" tags with enhanced sensitivity to lenalidomide-induced degradation and used these degradable tags to generate OFF-switch degradable CARs. To create an ON switch, we engineered a lenalidomide-inducible dimerization system and developed split CARs that required both lenalidomide and target antigen for activation. Subtherapeutic lenalidomide concentrations controlled the effector functions of ON- and OFF-switch CAR T cells. In vivo, ON-switch split CARs demonstrated lenalidomide-dependent antitumor activity, and OFF-switch degradable CARs were depleted by drug treatment to limit inflammatory cytokine production while retaining antitumor efficacy. Together, the data showed that these lenalidomide-gated switches are rapid, reversible, and clinically suitable systems to control transgene function in diverse gene- and cell-based therapies.
Collapse
Affiliation(s)
- Max Jan
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Walker
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Schmidts
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Andrew A Guirguis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jessica A Gasser
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mikołaj Słabicki
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ana P Castano
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael C Kann
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Maria L Cabral
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Tepper
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel E Grinshpun
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Adam S Sperling
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Taeyoon Kyung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Marcela V Maus
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin L Ebert
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
16
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Li LQ, Zhang LH, Zhang Y, Lu XC, Zhang Y, Liu YK, Khader MA, Jia-Wen, Tao-Liu, Li JZ. Construction of immune-related gene pairs signature to predict the overall survival of osteosarcoma patients. Aging (Albany NY) 2020; 12:22906-22926. [PMID: 33203792 PMCID: PMC7746392 DOI: 10.18632/aging.104017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to establish the prognosis of osteosarcoma patients based on the characteristics of immune-related gene pairs. We used the lasso Cox regression model to construct and verify the signature consisting of 14 immune-related gene pairs. This signature can accurately predict the overall survival of osteosarcoma patients and is an independent prognostic factor for osteosarcoma patients. For this we constructed a signature-based nomogram. The results of the nomogram show that our signature can bring clinical net benefits. We then assessed the abundance of infiltrating immune cells in each sample, and combine the results of the gene set enrichment analysis of a single sample to explore the differences in the immune microenvironment between IRPG signature groups. The result of gene set enrichment analysis shows the strong relationship between signature and immune system. Finally, we evaluated the relationship between signature and immunotherapy efficiency using algorithms such as TIMI and SubMap to explore patients who might benefit from immunotherapy. In conclusion, our signature can predict the overall survival rate of osteosarcoma patients and provide potential guidance for exploring patients who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Long-Qing Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Liang-Hao Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xin-Chang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yong-Kui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Manhas Abdul Khader
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia-Wen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao-Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia-Zhen Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
18
|
Safaei M, Mobini GR, Abiri A, Shojaeian A. Synthetic biology in various cellular and molecular fields: applications, limitations, and perspective. Mol Biol Rep 2020; 47:6207-6216. [PMID: 32507922 DOI: 10.1007/s11033-020-05565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023]
Abstract
Synthetic biology breakthroughs have facilitated genetic circuit engineering to program cells through novel biological functions, dynamic gene expressions, as well as logic controls. SynBio can also participate in the rapid development of new treatments required for the human lifestyle. Moreover, these technologies are applied in the development of innovative therapeutic, diagnostic, as well as discovery-related methods within a wide range of cellular and molecular applications. In the present review study, SynBio applications in various cellular and molecular fields such as novel strategies for cancer therapy, biosensing, metabolic engineering, protein engineering, and tissue engineering were highlighted and summarized. The major safety and regulatory concerns about synthetic biology will be the environmental release, legal concerns, and risks of the engineered organisms. The final sections focused on limitations to SynBio.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Shojaeian
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
19
|
Hu B, Yang XB, Sang XT. Development of an immune-related prognostic index associated with hepatocellular carcinoma. Aging (Albany NY) 2020; 12:5010-5030. [PMID: 32191631 PMCID: PMC7138589 DOI: 10.18632/aging.102926] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
Liver hepatocellular carcinoma (LIHC), an inflammation-associated cancer induced by a variety of etiological factors, is still one of the most prevalent and lethal cancers in human population. In this study, the expression profiles of immune-related genes (IRGs) were integrated with the overall survival (OS) of 378 LIHC patients based on the Cancer Genome Atlas (TCGA) dataset. Moreover, the differentially expressed and survival related IRGs among LIHC patients were predicted through the computational difference algorithm and COX regression analysis. As a result, 7 genes, including HSPA4, S100A10, FABP6, CACYBP, HDAC1, FCGR2B and SHC1, were retrieved to construct a predictive model associated with the overall survival (OS) of LIHC patients. Typically, the as-constructed model performed moderately in predicting prognosis, which was also correlated with tumor grade. Functional enrichment analysis revealed that the genes of high-risk group were actively involved in mRNA binding and the spliceosome pathway. Intriguingly, the prognostic index established based on IRGs reflected infiltration by multiple types of immunocytes. Our findings screen several IRGs with clinical significance, reveal the drivers of immune repertoire, and illustrate the importance of a personalized, IRG-based immune signature in LIHC recognition, surveillance, and prognosis prediction.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100010, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100010, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100010, China
| |
Collapse
|
20
|
Huang Z, Wu Y, Allen ME, Pan Y, Kyriakakis P, Lu S, Chang YJ, Wang X, Chien S, Wang Y. Engineering light-controllable CAR T cells for cancer immunotherapy. SCIENCE ADVANCES 2020; 6:eaay9209. [PMID: 32128416 PMCID: PMC7030928 DOI: 10.1126/sciadv.aay9209] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/03/2019] [Indexed: 05/16/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) can recognize and engage with target cancer cells with redirected specificity for cancer immunotherapy. However, there is a lack of ideal CARs for solid tumor antigens, which may lead to severe adverse effects. Here, we developed a light-inducible nuclear translocation and dimerization (LINTAD) system for gene regulation to control CAR T activation. We first demonstrated light-controllable gene expression and functional modulation in human embryonic kidney 293T and Jurkat T cell lines. We then improved the LINTAD system to achieve optimal efficiency in primary human T cells. The results showed that pulsed light stimulations can activate LINTAD CAR T cells with strong cytotoxicity against target cancer cells, both in vitro and in vivo. Therefore, our LINTAD system can serve as an efficient tool to noninvasively control gene activation and activate inducible CAR T cells for precision cancer immunotherapy.
Collapse
Affiliation(s)
- Ziliang Huang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiqian Wu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Molly E. Allen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yijia Pan
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Phillip Kyriakakis
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Shaoying Lu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ya-Ju Chang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Wang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Shu Chien
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Corresponding author.
| |
Collapse
|
21
|
Millacura FA, Largey B, French CE. ParAlleL: A Novel Population-Based Approach to Biological Logic Gates. Front Bioeng Biotechnol 2019; 7:46. [PMID: 30949475 PMCID: PMC6437039 DOI: 10.3389/fbioe.2019.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/27/2019] [Indexed: 01/27/2023] Open
Abstract
In vivo logic gates have proven difficult to combine into larger devices. Our cell-based logic system, ParAlleL, decomposes a large circuit into a collection of small subcircuits working in parallel, each subcircuit responding to a different combination of inputs. A final global output is then generated by a combination of the responses. Using ParAlleL, for the first time a completely functional 3-bit full adder and full subtractor were generated using Escherichia coli cells, as well as a calculator-style display that shows a numeric result, from 0 to 7, when the proper 3 bit binary inputs are introduced into the system. ParAlleL demonstrates the use of a parallel approach for the design of cell-based logic gates that facilitates the generation and analysis of complex processes, without the need for complex genetic engineering.
Collapse
Affiliation(s)
- Felipe A Millacura
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Brendan Largey
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher E French
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
In situ biomolecule production by bacteria; a synthetic biology approach to medicine. J Control Release 2018; 275:217-228. [DOI: 10.1016/j.jconrel.2018.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
|