1
|
Veenbaas SD, Koehn JT, Irving PS, Lama NN, Weeks KM. Ligand-binding pockets in RNA and where to find them. Proc Natl Acad Sci U S A 2025; 122:e2422346122. [PMID: 40261926 PMCID: PMC12054788 DOI: 10.1073/pnas.2422346122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/11/2025] [Indexed: 04/24/2025] Open
Abstract
RNAs are critical regulators of gene expression, and their functions are often mediated by complex secondary and tertiary structures. Structured regions in RNA can selectively interact with small molecules-via well-defined ligand-binding pockets-to modulate the regulatory repertoire of an RNA. The broad potential to modulate biological function intentionally via RNA-ligand interactions remains unrealized, however, due to challenges in identifying compact RNA motifs with the ability to bind ligands with good physicochemical properties (often termed drug-like). Here, we devise fpocketR, a computational strategy that accurately detects pockets capable of binding drug-like ligands in RNA structures. Remarkably few, roughly 50, of such pockets have ever been visualized. We experimentally confirmed the ligandability of novel pockets detected with fpocketR using a fragment-based approach introduced here, Frag-MaP, that detects ligand-binding sites in cells. Analysis of pockets detected by fpocketR and validated by Frag-MaP reveals dozens of sites able to bind drug-like ligands, supports a model for RNA secondary structural motifs able to bind quality ligands, and creates a broad framework for understanding the RNA ligand-ome.
Collapse
Affiliation(s)
- Seth D. Veenbaas
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| | - Jordan T. Koehn
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| | - Patrick S. Irving
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| | - Nicole N. Lama
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC27599-3290
| |
Collapse
|
2
|
Xu X, He M, Tai X, Ren Q, Shen X, Li C, Ren A. Structure-based principles underlying ligand recognition of xanthine-II riboswitch. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2800-0. [PMID: 40304919 DOI: 10.1007/s11427-024-2800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/18/2024] [Indexed: 05/02/2025]
Abstract
Riboswitches are conserved RNA elements that specifically recognize the cognate metabolites and regulate downstream gene expression involved in the metabolic pathways. To date, two classes of xanthine-responsive riboswitches involved in xanthine homeostasis have been identified. The recently reported xanthine-II riboswitch originates from guanine riboswitch family, featuring a single U-to-G mutation and several nucleotide insertions. Here, we report the complex structure of xanthine-II riboswitch bound to xanthine. The tertiary structure of xanthine-II riboswitch adopts a three-way junction scaffold similar to that of guanine riboswitch. However, the distinctive mutation and insertions in xanthine-II riboswitch facilitate the formation of a highly specific binding pocket for xanthine, distinguishing it from guanine riboswitches. Xanthine is bound in the junction region, forming a base triple with C64 and the mutant nucleotide G37, and is sandwiched by one base pair U8-A38 and one base triple A7-C36-U65. Structural alignment and ligand recognition specificity of the xanthine-II riboswitch are further verified by ligand-binding assays of structure-based mutation using isothermal titration calorimetry. Furthermore, leveraging the ligand specificity of the xanthine-II riboswitch, we develop a highly specific and sensitive biosensor for xanthine detection by fusing xanthine-II riboswitch with Pepper fluorogenic aptamer, highlighting the potential applications of xanthine-II riboswitch in diagnosing diseases related to xanthine metabolism disorders.
Collapse
Affiliation(s)
- Xiaochen Xu
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Mengqi He
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Tai
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qianyu Ren
- Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Xin Shen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Chunyan Li
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Aiming Ren
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Chen D, Li J, Wu Y, Hong L, Liu Y. Structural dynamics-guided engineering of a riboswitch RNA for evolving c-di-AMP synthases. SCIENCE ADVANCES 2025; 11:eadt8165. [PMID: 40173223 PMCID: PMC11963983 DOI: 10.1126/sciadv.adt8165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Cyclic diadenosine monophosphate (C-di-AMP) synthases are key enzymes for synthesizing c-di-AMP, a potent activator of the stimulator of interferon genes (STING) immune pathway. However, characterizing these enzymes has been hampered by the lack of effective sensors. While c-di-AMP riboswitches, as natural aptamers, hold the potential as RNA biosensors, their poorly comprehended structural dynamics and inherent "OFF" genetic output pose substantial challenges. To address these limitations, we synthesized over 10 fluorophore-labeled samples to probe the conformational changes of the riboswitch at the single-molecule level. By integrating these dynamic findings with steady-state fluorescence titration, mutagenesis, in vivo assays, and strand displacement strategy, we transformed the natural aptamer into a c-di-AMP biosensor. This engineered biosensor reversed its genetic output from "OFF" to "ON" upon c-di-AMP binding, exhibiting a 50-fold improvement in the c-di-AMP detection limit. Leveraging this refined biosensor, we developed a robust strategy for high-throughput in vivo evolution of c-di-AMP synthases.
Collapse
Affiliation(s)
- Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Li
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - You Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Hong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Veenbaas SD, Koehn JT, Irving PS, Lama NN, Weeks KM. Ligand-binding pockets in RNA, and where to find them. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643147. [PMID: 40161846 PMCID: PMC11952572 DOI: 10.1101/2025.03.13.643147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
RNAs are critical regulators of gene expression, and their functions are often mediated by complex secondary and tertiary structures. Structured regions in RNA can selectively interact with small molecules - via well-defined ligand binding pockets - to modulate the regulatory repertoire of an RNA. The broad potential to modulate biological function intentionally via RNA-ligand interactions remains unrealized, however, due to challenges in identifying compact RNA motifs with the ability to bind ligands with good physicochemical properties (often termed drug-like). Here, we devise fpocketR, a computational strategy that accurately detects pockets capable of binding drug-like ligands in RNA structures. Remarkably few, roughly 50, of such pockets have ever been visualized. We experimentally confirmed the ligandability of novel pockets detected with fpocketR using a fragment-based approach introduced here, Frag-MaP, that detects ligand-binding sites in cells. Analysis of pockets detected by fpocketR and validated by Frag-MaP reveals dozens of newly identified sites able to bind drug-like ligands, supports a model for RNA secondary structural motifs able to bind quality ligands, and creates a broad framework for understanding the RNA ligand-ome.
Collapse
Affiliation(s)
- Seth D. Veenbaas
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| | - Jordan T. Koehn
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| | - Patrick S. Irving
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| | - Nicole N. Lama
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290
| |
Collapse
|
5
|
Shin JY, Choi SR, An SY, Bang KM, Song HK, Suh JY, Kim NK. Deciphering ligand and metal ion dependent intricate folding landscape of Vc2 c-di-GMP riboswitch aptamer. Nucleic Acids Res 2025; 53:gkae1296. [PMID: 39777471 PMCID: PMC11705072 DOI: 10.1093/nar/gkae1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/01/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Riboswitches are RNAs that recognize ligands and regulate gene expression. They are typically located in the untranslated region of bacterial messenger RNA and consist of an aptamer and an expression platform. In this study, we examine the folding pathway of the Vc2 (Vibrio cholerae) riboswitch aptamer domain, which targets the bacterial secondary messenger cyclic-di-GMP. We demonstrated by nuclear magnetic resonance (NMR) and isothermal titration calorimetry that the stable folding of the Vc2 riboswitch requires an adequate supply of Mg2+, Na+ and K+ ions. We found that Mg2+ has a crucial role in the pre-folding of the aptamer, while K+ is essential for establishing the long-range G-C interactions and stabilizing the ligand binding pocket. Precise imino proton assignments revealed the progressive folding of the aptamer. The results indicate that the P2 helix consists of weaker and more dynamic base pairs compared to the P1b helix, allowing the rearrangement of the base pairs in the P2 helix during the folding process required for effective ligand recognition. This study provides a profound understanding riboswitch architecture and dynamics at the atomic level under physiological conditions as well as structural information on apo-state RNA.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seo-Ree Choi
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - So Young An
- Department of Agriculture Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyeong-Mi Bang
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Yong Suh
- Department of Agriculture Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Data Center, Korea Institute of Science and Technology, Hwarang-ro 14-5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
6
|
Li C, Xu X, Geng Z, Zheng L, Song Q, Shen X, Wu J, zhao J, Li H, He M, Tai X, Zhang L, Ma J, Dong Y, Ren A. Structure-based characterization and compound identification of the wild-type THF class-II riboswitch. Nucleic Acids Res 2024; 52:8454-8465. [PMID: 38769061 PMCID: PMC11317127 DOI: 10.1093/nar/gkae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Riboswitches are conserved regulatory RNA elements participating in various metabolic pathways. Recently, a novel RNA motif known as the folE RNA motif was discovered upstream of folE genes. It specifically senses tetrahydrofolate (THF) and is therefore termed THF-II riboswitch. To unravel the ligand recognition mechanism of this newly discovered riboswitch and decipher the underlying principles governing its tertiary folding, we determined both the free-form and bound-form THF-II riboswitch in the wild-type sequences. Combining structural information and isothermal titration calorimetry (ITC) binding assays on structure-based mutants, we successfully elucidated the significant long-range interactions governing the function of THF-II riboswitch and identified additional compounds, including alternative natural metabolites and potential lead compounds for drug discovery, that interact with THF-II riboswitch. Our structural research on the ligand recognition mechanism of the THF-II riboswitch not only paves the way for identification of compounds targeting riboswitches, but also facilitates the exploration of THF analogs in diverse biological contexts or for therapeutic applications.
Collapse
Affiliation(s)
- Chunyan Li
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Xiaochen Xu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Luqian Zheng
- College of Life Sciences, Anhui Normal University, Wuhu 241000 Anhui, China
| | - Qianqian Song
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Xin Shen
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jin zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongcheng Li
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Mengqi He
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Tai
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiming Ren
- Life Sciences Institute, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang Key Laboratory of Biotherapy, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Walter NG. Are non-protein coding RNAs junk or treasure?: An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non-functional or functional RNAs. Bioessays 2024; 46:e2300201. [PMID: 38351661 DOI: 10.1002/bies.202300201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 03/28/2024]
Abstract
The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non-protein coding, or non-coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is "junk", a term still championed by some geneticists and evolutionary biologists. In contrast, molecular biologists and biochemists studying the vast number of transcripts produced from most of this genome "junk" often surmise that these ncRNAs have biological significance. What gives? This essay contrasts the two opposing, extant viewpoints, aiming to explain their bases, which arise from distinct reference frames of the underlying scientific disciplines. Finally, it aims to reconcile these divergent mindsets in hopes of stimulating synergy between scientific fields.
Collapse
Affiliation(s)
- Nils G Walter
- Center for RNA Biomedicine, Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Olenginski LT, Spradlin SF, Batey RT. Flipping the script: Understanding riboswitches from an alternative perspective. J Biol Chem 2024; 300:105730. [PMID: 38336293 PMCID: PMC10907184 DOI: 10.1016/j.jbc.2024.105730] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.
Collapse
Affiliation(s)
| | | | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
9
|
Chauvier A, Walter NG. Regulation of bacterial gene expression by non-coding RNA: It is all about time! Cell Chem Biol 2024; 31:71-85. [PMID: 38211587 DOI: 10.1016/j.chembiol.2023.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
11
|
Hou Q, Chatterjee S, Lund PE, Suddala KC, Walter NG. Single-molecule FRET observes opposing effects of urea and TMAO on structurally similar meso- and thermophilic riboswitch RNAs. Nucleic Acids Res 2023; 51:11345-11357. [PMID: 37855661 PMCID: PMC10639078 DOI: 10.1093/nar/gkad866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteria live in a broad range of environmental temperatures that require adaptations of their RNA sequences to maintain function. Riboswitches are regulatory RNAs that change conformation upon typically binding metabolite ligands to control bacterial gene expression. The paradigmatic small class-I preQ1 riboswitches from the mesophile Bacillus subtilis (Bsu) and the thermophile Thermoanaerobacter tengcongensis (Tte) adopt similar pseudoknot structures when bound to preQ1. Here, we use UV-melting analysis combined with single-molecule detected chemical denaturation by urea to compare the thermodynamic and kinetic folding properties of the two riboswitches, and the urea-countering effects of trimethylamine N-oxide (TMAO). Our results show that, first, the Tte riboswitch is more thermotolerant than the Bsu riboswitch, despite only subtle sequence differences. Second, using single-molecule FRET, we find that urea destabilizes the folded pseudoknot structure of both riboswitches, yet has a lower impact on the unfolding kinetics of the thermodynamically less stable Bsu riboswitch. Third, our analysis shows that TMAO counteracts urea denaturation and promotes folding of both the riboswitches, albeit with a smaller effect on the more stable Tte riboswitch. Together, these findings elucidate how subtle sequence adaptations in a thermophilic bacterium can stabilize a common RNA structure when a new ecological niche is conquered.
Collapse
Affiliation(s)
- Qian Hou
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, NY, NY 10021, USA
| | - Surajit Chatterjee
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Paul E Lund
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Krishna C Suddala
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Passalacqua LFM, Banco MT, Moon JD, Li X, Jaffrey SR, Ferré-D'Amaré AR. Intricate 3D architecture of a DNA mimic of GFP. Nature 2023; 618:1078-1084. [PMID: 37344591 PMCID: PMC10754392 DOI: 10.1038/s41586-023-06229-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Banco
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared D Moon
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Xing Li
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Samie R Jaffrey
- Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Marton Menendez A, Nesbitt DJ. Ionic Cooperativity between Lysine and Potassium in the Lysine Riboswitch: Single-Molecule Kinetic and Thermodynamic Studies. J Phys Chem B 2023; 127:2430-2440. [PMID: 36916791 DOI: 10.1021/acs.jpcb.3c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Functionality in many biological systems, including proteins and nucleic acid structures, including protein and nucleic acid riboswitch structures, can depend on cooperative kinetic behavior between multiple small molecule ligands. In this work, single-molecule FRET data on the Bacillus subtilis lysine riboswitch reveals that affinity for the cognate lysine ligand increases significantly with K+, providing evidence for synergism between lysine/K+ binding to the aptamer and successful folding of the riboswitch. To describe/interpret this more complex kinetic scenario, we explore the conventional 4-state ("square") model for aptamer binding as a function of K+. Extension into this additional dimension generates a novel "cube" model for riboswitch folding dynamics with respect to lysine/K+ binding, revealing that riboswitch folding (kfold) and unfolding (kunfold) rate constants increase and decrease dramatically with K+, respectively. Furthermore, temperature-dependent single-molecule kinetic studies indicate that the presence of K+ entropically enhances the transition state barrier to folding but partially compensates for this by increasing the overall exothermicity for lysine binding. We rationalize this behavior as evidence that K+ facilitates hydrogen bonding between the negatively charged carboxyl group of lysine and the RNA, increasing structural rigidity and lowering entropy in the binding pocket. Finally, we explore the effects of cation size with Na+ and Cs+ studies to demonstrate that K+ is optimally suited for bridging interactions between lysine and the riboswitch aptamer domain. Regulation of lysine production and transport, dictated by the riboswitch's ability to recognize and bind lysine, is therefore intimately tied to the presence of K+ in the binding pocket and is strongly modulated by local cation conditions. The results suggest an increase in lysine riboswitch functionality by sensitivity to additional species in the cellular riboswitch environment.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Xu X, Egger M, Li C, Chen H, Micura R, Ren A. Structure-based investigations of the NAD+-II riboswitch. Nucleic Acids Res 2023; 51:54-67. [PMID: 36610789 PMCID: PMC9841397 DOI: 10.1093/nar/gkac1227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 01/09/2023] Open
Abstract
Riboswitches are conserved non-coding domains in bacterial mRNA with gene regulation function that are essential for maintaining enzyme co-factor metabolism. Recently, the pnuC RNA motif was reported to selectively bind nicotinamide adenine dinucleotide (NAD+), defining a novel class of NAD+ riboswitches (NAD+-II) according to phylogenetic analysis. To reveal the three-dimensional architecture and the ligand-binding mode of this riboswitch, we solved the crystal structure of NAD+-II riboswitch in complex with NAD+. Strikingly and in contrast to class-I riboswitches that form a tight recognition pocket for the adenosine diphosphate (ADP) moiety of NAD+, the class-II riboswitches form a binding pocket for the nicotinamide mononucleotide (NMN) portion of NAD+ and display only unspecific interactions with the adenosine. We support this finding by an additional structure of the class-II RNA in complex with NMN alone. The structures define a novel RNA tertiary fold that was further confirmed by mutational analysis in combination with isothermal titration calorimetry (ITC), and 2-aminopurine-based fluorescence spectroscopic folding studies. Furthermore, we truncated the pnuC RNA motif to a short RNA helical scaffold with binding affinity comparable to the wild-type motif to allude to the potential of engineering the NAD+-II motif for biotechnological applications.
Collapse
Affiliation(s)
- Xiaochen Xu
- Department of Gastroenterology/Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michaela Egger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Chunyan Li
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Aiming Ren
- Department of Gastroenterology/Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
Xu L, Xiao Y, Zhang J, Fang X. Structural insights into translation regulation by the THF-II riboswitch. Nucleic Acids Res 2023; 51:952-965. [PMID: 36620887 PMCID: PMC9881143 DOI: 10.1093/nar/gkac1257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
In bacteria, expression of folate-related genes is controlled by the tetrahydrofolate (THF) riboswitch in response to specific binding of THF and its derivatives. Recently, a second class of THF riboswitches, named THF-II, was identified in Gram-negative bacteria, which exhibit distinct architecture from the previously characterized THF-I riboswitches found in Gram-positive bacteria. Here, we present the crystal structures of the ligand-bound THF-II riboswitch from Mesorhizobium loti. These structures exhibit a long rod-like fold stabilized by continuous base pair and base triplet stacking across two helices of P1 and P2 and their interconnecting ligand-bound binding pocket. The pterin moiety of the ligand docks into the binding pocket by forming hydrogen bonds with two highly conserved pyrimidines in J12 and J21, which resembles the hydrogen-bonding pattern at the ligand-binding site FAPK in the THF-I riboswitch. Using small-angle X-ray scattering and isothermal titration calorimetry, we further characterized the riboswitch in solution and reveal that Mg2+ is essential for pre-organization of the binding pocket for efficient ligand binding. RNase H cleavage assay indicates that ligand binding reduces accessibility of the ribosome binding site in the right arm of P1, thus down-regulating the expression of downstream genes. Together, these results provide mechanistic insights into translation regulation by the THF-II riboswitch.
Collapse
Affiliation(s)
| | | | - Jie Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China,Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
16
|
Wu Y, Zhu L, Li S, Chu H, Wang X, Xu W. High content design of riboswitch biosensors: All-around rational module-by-module design. Biosens Bioelectron 2022; 220:114887. [DOI: 10.1016/j.bios.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
17
|
Vikram, Mishra V, Rana A, Ahire JJ. Riboswitch-mediated regulation of riboflavin biosynthesis genes in prokaryotes. 3 Biotech 2022; 12:278. [PMID: 36275359 PMCID: PMC9474784 DOI: 10.1007/s13205-022-03348-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/02/2022] [Indexed: 11/01/2022] Open
Abstract
Prokaryotic organisms frequently use riboswitches to quantify intracellular metabolite concentration via high-affinity metabolite receptors. Riboswitches possess a metabolite-sensing system that controls gene regulation in a cis-acting fashion at the initiation of transcriptional/translational level by binding with a specific metabolite and controlling various biochemical pathways. Riboswitch binds with flavin mononucleotide (FMN), a phosphorylated form of riboflavin and controls gene expression involved in riboflavin biosynthesis and transport pathway. The first step of the riboflavin biosynthesis pathway is initiated by the conversion of guanine nucleotide triphosphate (GTP), which is an intermediate of the purine biosynthesis pathway. An alternative pentose phosphate pathway of riboflavin biosynthesis includes the enzymatic conversion of ribulose-5-phosphate into 3, 4 dihydroxy-2-butanone-4-phosphates by DHBP synthase. The product of ribAB interferes with both GTP cyclohydrolase II as well as DHBP synthase activities, which catalyze the cleavage of GTP and converts DHBP Ribu5P in the initial steps of both riboflavin biosynthesis branches. Riboswitches are located in the 5' untranslated region (5' UTR) of messenger RNAs and contain an aptamer domain (highly conserved in sequence) where metabolite binding leads to a conformational change in an aptamer domain, which modulate the regulation of gene expression located on bacterial mRNA. In this review, we focus on how riboswitch regulates the riboflavin biosynthesis pathway in Bacillus subtilis and Lactobacillus plantarum.
Collapse
Affiliation(s)
- Vikram
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Ananya Rana
- Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management (NIFTEM), Sonipat, Haryana India
| | - Jayesh J. Ahire
- Centre for Research and Development, Unique Biotech Ltd., Plot No. 2, Phase II, MN Park, Hyderabad, Telangana India
| |
Collapse
|
18
|
Philips O, Sultonova M, Blackmore B, Murphy JP. Understanding emerging bioactive metabolites with putative roles in cancer biology. Front Oncol 2022; 12:1014748. [PMID: 36249070 PMCID: PMC9557195 DOI: 10.3389/fonc.2022.1014748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulated metabolism in cancers is, by now, well established. Although metabolic adaptations provide cancers with the ability to synthesize the precursors required for rapid biosynthesis, some metabolites have direct functional, or bioactive, effects in human cells. Here we summarize recently identified metabolites that have bioactive roles either as post-translational modifications (PTMs) on proteins or in, yet unknown ways. We propose that these metabolites could play a bioactive role in promoting or inhibiting cancer cell phenotypes in a manner that is mostly unexplored. To study these potentially important bioactive roles, we discuss several novel metabolomic and proteomic approaches aimed at defining novel PTMs and metabolite-protein interactions. Understanding metabolite PTMs and protein interactors of bioactive metabolites may provide entirely new therapeutic targets for cancer.
Collapse
Affiliation(s)
| | | | | | - J. Patrick Murphy
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
19
|
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y. Recent advances in RNA structurome. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1285-1324. [PMID: 35717434 PMCID: PMC9206424 DOI: 10.1007/s11427-021-2116-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022]
Abstract
RNA structures are essential to support RNA functions and regulation in various biological processes. Recently, a range of novel technologies have been developed to decode genome-wide RNA structures and novel modes of functionality across a wide range of species. In this review, we summarize key strategies for probing the RNA structurome and discuss the pros and cons of representative technologies. In particular, these new technologies have been applied to dissect the structural landscape of the SARS-CoV-2 RNA genome. We also summarize the functionalities of RNA structures discovered in different regulatory layers-including RNA processing, transport, localization, and mRNA translation-across viruses, bacteria, animals, and plants. We review many versatile RNA structural elements in the context of different physiological and pathological processes (e.g., cell differentiation, stress response, and viral replication). Finally, we discuss future prospects for RNA structural studies to map the RNA structurome at higher resolution and at the single-molecule and single-cell level, and to decipher novel modes of RNA structures and functions for innovative applications.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanda Zhu
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Qiongli Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guangnan Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junfeng Ma
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siwy Ling Yang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Jieyu Zhao
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jianghui Zhu
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | - Xianyang Fang
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection, Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Chun Kit Kwok
- Department of Chemistry, and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
20
|
The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold. Nat Chem Biol 2022; 18:191-198. [PMID: 34937911 PMCID: PMC9812287 DOI: 10.1038/s41589-021-00931-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/21/2021] [Indexed: 01/07/2023]
Abstract
Squash is an RNA aptamer that strongly activates the fluorescence of small-molecule analogs of the fluorophore of green fluorescent protein (GFP). Unlike other fluorogenic aptamers, isolated de novo from random-sequence RNA, Squash was evolved from the bacterial adenine riboswitch to leverage its optimized in vivo folding and stability. We now report the 2.7-Å resolution cocrystal structure of fluorophore-bound Squash, revealing that while the overall fold of the riboswitch is preserved, the architecture of the ligand-binding core is dramatically transformed. Unlike previously characterized aptamers that activate GFP-derived fluorophores, Squash does not harbor a G-quadruplex, sandwiching its fluorophore between a base triple and a noncanonical base quadruple in a largely apolar pocket. The expanded structural core of Squash allows it to recognize unnatural fluorophores that are larger than the simple purine ligand of the parental adenine riboswitch, and suggests that stable RNA scaffolds can tolerate larger variation than has hitherto been appreciated.
Collapse
|
21
|
Abstract
In recent years, it has become clear that RNA molecules are involved in almost all vital cellular processes and pathogenesis of human disorders. The functional diversity of RNA comes from its structural richness. Although composed of only four nucleotides, RNA molecules present a plethora of secondary and tertiary structures critical for intra and intermolecular contacts with other RNAs and ligands (proteins, small metabolites, etc.). In order to fully understand RNA function it is necessary to define its spatial structure. Crystallography, nuclear magnetic resonance and cryogenic electron microscopy have demonstrated considerable success in determining the structures of biologically important RNA molecules. However, these powerful methods require large amounts of sample. Despite their limitations, chemical synthesis and in vitro transcription are usually employed to obtain milligram quantities of RNA for structural studies, delivering simple and effective methods for large-scale production of homogenous samples. The aim of this paper is to provide an overview of methods for large-scale RNA synthesis with emphasis on chemical synthesis and in vitro transcription. We also present our own results of testing the efficiency of these approaches in order to adapt the material acquisition strategy depending on the desired RNA construct.
Collapse
|
22
|
Yadav R, Widom JR, Chauvier A, Walter NG. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nat Commun 2022; 13:207. [PMID: 35017489 PMCID: PMC8752731 DOI: 10.1038/s41467-021-27827-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
The archetypical transcriptional crcB fluoride riboswitch from Bacillus cereus is an intricately structured non-coding RNA element enhancing gene expression in response to toxic levels of fluoride. Here, we used single molecule FRET to uncover three dynamically interconverting conformations appearing along the transcription process: two distinct undocked states and one pseudoknotted docked state. We find that the fluoride anion specifically snap-locks the magnesium-induced, dynamically docked state. The long-range, nesting, single base pair A40-U48 acts as the main linchpin, rather than the multiple base pairs comprising the pseudoknot. We observe that the proximally paused RNA polymerase further fine-tunes the free energy to promote riboswitch docking. Finally, we show that fluoride binding at short transcript lengths is an early step toward partitioning folding into the docked conformation. These results reveal how the anionic fluoride ion cooperates with the magnesium-associated RNA to govern regulation of downstream genes needed for fluoride detoxification of the cell.
Collapse
Affiliation(s)
- Rajeev Yadav
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA
| | - Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
A transient conformation facilitates ligand binding to the adenine riboswitch. iScience 2021; 24:103512. [PMID: 34927032 PMCID: PMC8652005 DOI: 10.1016/j.isci.2021.103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
RNAs adopt various conformations to perform different functions in cells. Incapable of acquiring intermediates, the key initiations of ligand recognition in the adenine riboswitch have not been characterized. In this work, stopped-flow fluorescence was used to track structural switches in the full-length adenine riboswitch in real time. We used PLOR (position-selective labeling of RNA) to incorporate fluorophores into desired positions in the RNA. The switching sequence P1 responded to adenine more rapidly than helix P4 and the binding pocket, followed by stabilization of the binding pocket, P4, and annealing of P1. Moreover, a transient intermediate consisting of an unwound P1 was detected during adenine binding. These events were observed in both the WT riboswitch and a functional mutant. The findings provide insight into the conformational changes of the riboswitch RNA triggered by a ligand. Real-time tracking of the adenine riboswitch at nucleotide resolution A transient conformation with unwound P1 is identified in the adenine riboswitch Helix P1 responds to ligand quicker than the binding pocket or expression platform
Collapse
|
24
|
Pseudoknot length modulates the folding, conformational dynamics, and robustness of Xrn1 resistance of flaviviral xrRNAs. Nat Commun 2021; 12:6417. [PMID: 34741027 PMCID: PMC8571300 DOI: 10.1038/s41467-021-26616-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
To understand how RNA dynamics is regulated and connected to its function, we investigate the folding, conformational dynamics and robustness of Xrn1 resistance of a set of flaviviral xrRNAs using SAXS, smFRET and in vitro enzymatic assays. Flaviviral xrRNAs form discrete ring-like 3D structures, in which the length of a conserved long-range pseudoknot (PK2) ranges from 2 bp to 7 bp. We find that xrRNAs' folding, conformational dynamics and Xrn1 resistance are strongly correlated and highly Mg2+-dependent, furthermore, the Mg2+-dependence is modulated by PK2 length variations. xrRNAs with long PK2 require less Mg2+ to stabilize their folding, exhibit reduced conformational dynamics and strong Xrn1 resistance even at low Mg2+, and tolerate mutations at key tertiary motifs at high Mg2+, which generally are destructive to xrRNAs with short PK2. These results demonstrate an unusual regulatory mechanism of RNA dynamics providing insights into the functions and future biomedical applications of xrRNAs.
Collapse
|
25
|
Bahoua B, Sevdalis SE, Soto AM. Effect of Sequence on the Interactions of Divalent Cations with M-Box Riboswitches from Mycobacterium tuberculosis and Bacillus subtilis. Biochemistry 2021; 60:2781-2794. [PMID: 34472844 DOI: 10.1021/acs.biochem.1c00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA is highly negatively charged and often acquires complex structures that require the presence of divalent cations. Subtle changes in conformation resulting from changes in sequence can affect the way ions associate with RNA. Riboswitches are RNA molecules that are involved in the control of gene expression in bacteria and are excellent systems for testing the effects of sequence variations on the conformation of RNA because they contain a highly conserved binding pocket but present sequence variability among different organisms. In this work, we have compared the aptamer domain of a proposed M-box riboswitch from Mycobacterium tuberculosis with the aptamer domain of a validated M-box riboswitch from Bacillus subtilis. We have in vitro transcribed and purified wild-type (WT) M-box riboswitches from M. tuberculosis and B. subtilis as well as a variety of mutated aptamers in which regions from one riboswitch have been replaced with regions from the other riboswitch. We have used ultraviolet unfolding experiments and circular dichroism to characterize the interactions of WT and related M-box riboswitches with divalent cations. Our results show that M-box from M. tuberculosis associates with Mg2+ and Sr2+ in a similar fashion while M-box from B. subtilis discriminates between these two ions and appears to associate better with Mg2+. Our overall results show that M-box from M. tuberculosis interacts differently with cations than M-box from B. subtilis and suggest conformational differences between these two riboswitches.
Collapse
|
26
|
Xu X, Egger M, Chen H, Bartosik K, Micura R, Ren A. Insights into xanthine riboswitch structure and metal ion-mediated ligand recognition. Nucleic Acids Res 2021; 49:7139-7153. [PMID: 34125892 PMCID: PMC8266621 DOI: 10.1093/nar/gkab486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Riboswitches are conserved functional domains in mRNA that mostly exist in bacteria. They regulate gene expression in response to varying concentrations of metabolites or metal ions. Recently, the NMT1 RNA motif has been identified to selectively bind xanthine and uric acid, respectively, both are involved in the metabolic pathway of purine degradation. Here, we report a crystal structure of this RNA bound to xanthine. Overall, the riboswitch exhibits a rod-like, continuously stacked fold composed of three stems and two internal junctions. The binding-pocket is determined by the highly conserved junctional sequence J1 between stem P1 and P2a, and engages a long-distance Watson-Crick base pair to junction J2. Xanthine inserts between a G-U pair from the major groove side and is sandwiched between base triples. Strikingly, a Mg2+ ion is inner-sphere coordinated to O6 of xanthine and a non-bridging oxygen of a backbone phosphate. Two further hydrated Mg2+ ions participate in extensive interactions between xanthine and the pocket. Our structure model is verified by ligand binding analysis to selected riboswitch mutants using isothermal titration calorimetry, and by fluorescence spectroscopic analysis of RNA folding using 2-aminopurine-modified variants. Together, our study highlights the principles of metal ion-mediated ligand recognition by the xanthine riboswitch.
Collapse
Affiliation(s)
- Xiaochen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michaela Egger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
27
|
Base-Pair Opening Dynamics Study of Fluoride Riboswitch in the Bacillus cereus CrcB Gene. Int J Mol Sci 2021; 22:ijms22063234. [PMID: 33810132 PMCID: PMC8004769 DOI: 10.3390/ijms22063234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
Riboswitches are segments of noncoding RNA that bind with metabolites, resulting in a change in gene expression. To understand the molecular mechanism of gene regulation in a fluoride riboswitch, a base-pair opening dynamics study was performed with and without ligands using the Bacillus cereus fluoride riboswitch. We demonstrate that the structural stability of the fluoride riboswitch is caused by two steps depending on ligands. Upon binding of a magnesium ion, significant changes in a conformation of the riboswitch occur, resulting in the greatest increase in their stability and changes in dynamics by a fluoride ion. Examining hydrogen exchange dynamics through NMR spectroscopy, we reveal that the stabilization of the U45·A37 base-pair due to the binding of the fluoride ion, by changing the dynamics while maintaining the structure, results in transcription regulation. Our results demonstrate that the opening dynamics and stabilities of a fluoride riboswitch in different ion states are essential for the genetic switching mechanism.
Collapse
|
28
|
Wu L, Liu Z, Liu Y. Thermal adaptation of structural dynamics and regulatory function of adenine riboswitch. RNA Biol 2021; 18:2007-2015. [PMID: 33573442 DOI: 10.1080/15476286.2021.1886755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Ligand binding and temperature play important roles in riboswitch RNAs' structures and functions. However, most studies focused on studying structural dynamics or gene-regulation function of riboswitches from the aspect of ligand, instead of temperature. Here we combined NMR, ITC, stopped-flow and in vivo assays to investigate the ligand-triggered switch of adenine riboswitch from 10 to 45°C. Our results demonstrated that at single-nucleotide resolution, structural regions sensed ligand and temperature diversely. Temperature had opposite effects on ligand-binding and gene-regulation of adenine riboswitch. Compared with higher temperature, the RNA bound with its cognate ligand obviously stronger, while its regulatory capacity was weakened at lower temperature. In addition, application of specific-labelled RNAs to the stopped-flow experiments identified the real-time folding of the specific positions upon ligand addition at different temperatures. The kissing loop and internal loop at the riboswitch responded to ligand and temperature differently. The distinct thermo-dynamics of adenine riboswitch exposed here may contribute to the fields of RNA sensors and drug design.
Collapse
Affiliation(s)
- Lin Wu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Liu
- National Facility for Protein Science (Shanghai), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yu Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Wilt HM, Yu P, Tan K, Wang YX, Stagno JR. Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation. J Struct Biol 2021; 213:107703. [PMID: 33571639 DOI: 10.1016/j.jsb.2021.107703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Effective gene regulation by the tetrahydrofolate riboswitch depends not only on ligand affinity but also on the kinetics of ligand association, which involves two cooperative binding sites. We have determined a 1.9-Å resolution crystal structure of the ligand-free THF riboswitch aptamer. The pseudoknot binding site 'unwinds' in the absence of ligand, whereby the adjacent helical domains (P1, P2, and P3) become disjointed, resulting in rotation and misalignment of the gene-regulatory P1 helix with respect to P3. In contrast, the second binding site at the three-way junction, which is the first to fold, is structurally conserved between apo and holo forms. This suggests a kinetic role for this site, in which binding of the first ligand molecule to the stably folded three-way junction promotes formation of the regulatory pseudoknot site and subsequent binding of the second molecule. As such, these findings provide a molecular basis for both conformational switching and kinetic control.
Collapse
Affiliation(s)
- Haley M Wilt
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
30
|
Chen H, Egger M, Xu X, Flemmich L, Krasheninina O, Sun A, Micura R, Ren A. Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding. Nucleic Acids Res 2020; 48:12394-12406. [PMID: 33170270 PMCID: PMC7708056 DOI: 10.1093/nar/gkaa1029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Riboswitches are important gene regulatory elements frequently encountered in bacterial mRNAs. The recently discovered nadA riboswitch contains two similar, tandemly arrayed aptamer domains, with the first domain possessing high affinity for nicotinamide adenine dinucleotide (NAD+). The second domain which comprises the ribosomal binding site in a putative regulatory helix, however, has withdrawn from detection of ligand-induced structural modulation thus far, and therefore, the identity of the cognate ligand and the regulation mechanism have remained unclear. Here, we report crystal structures of both riboswitch domains, each bound to NAD+. Furthermore, we demonstrate that ligand binding to domain 2 requires significantly higher concentrations of NAD+ (or ADP retaining analogs) compared to domain 1. Using a fluorescence spectroscopic approach, we further shed light on the structural features which are responsible for the different ligand affinities, and describe the Mg2+-dependent, distinct folding and pre-organization of their binding pockets. Finally, we speculate about possible scenarios for nadA RNA gene regulation as a putative two-concentration sensor module for a time-controlled signal that is primed and stalled by the gene regulation machinery at low ligand concentrations (domain 1), and finally triggers repression of translation as soon as high ligand concentrations are reached in the cell (domain 2).
Collapse
Affiliation(s)
- Hao Chen
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Michaela Egger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Xiaochen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Laurin Flemmich
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Olga Krasheninina
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Aiai Sun
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
31
|
Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape. Nat Commun 2020; 11:4531. [PMID: 32913225 PMCID: PMC7484762 DOI: 10.1038/s41467-020-18283-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/10/2020] [Indexed: 11/08/2022] Open
Abstract
RNAs begin to fold and function during transcription. Riboswitches undergo cotranscriptional switching in the context of transcription elongation, RNA folding, and ligand binding. To investigate how these processes jointly modulate the function of the folate stress-sensing Fusobacterium ulcerans ZTP riboswitch, we apply a single-molecule vectorial folding (VF) assay in which an engineered superhelicase Rep-X sequentially releases fluorescently labeled riboswitch RNA from a heteroduplex in a 5′-to-3′ direction, at ~60 nt s−1 [comparable to the speed of bacterial RNA polymerase (RNAP)]. We demonstrate that the ZTP riboswitch is kinetically controlled and that its activation is favored by slower unwinding, strategic pausing between but not before key folding elements, or a weakened transcription terminator. Real-time single-molecule monitoring captures folding riboswitches in multiple states, including an intermediate responsible for delayed terminator formation. These results show how individual nascent RNAs occupy distinct channels within the folding landscape that controls the fate of the riboswitch. Many RNAs become functional before their synthesis completes. Here the authors employ a single-molecule vectorial folding assay mimicking RNA transcription and show that the ZTP riboswitch is kinetically controlled and activated by slower unwinding and strategic pausing.
Collapse
|
32
|
Schroeder GM, Dutta D, Cavender CE, Jenkins J, Pritchett EM, Baker CD, Ashton JM, Mathews DH, Wedekind JE. Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation. Nucleic Acids Res 2020; 48:8146-8164. [PMID: 32597951 PMCID: PMC7641330 DOI: 10.1093/nar/gkaa546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/20/2023] Open
Abstract
Riboswitches are structured RNA motifs that recognize metabolites to alter the conformations of downstream sequences, leading to gene regulation. To investigate this molecular framework, we determined crystal structures of a preQ1-I riboswitch in effector-free and bound states at 2.00 Å and 2.65 Å-resolution. Both pseudoknots exhibited the elusive L2 loop, which displayed distinct conformations. Conversely, the Shine-Dalgarno sequence (SDS) in the S2 helix of each structure remained unbroken. The expectation that the effector-free state should expose the SDS prompted us to conduct solution experiments to delineate environmental changes to specific nucleobases in response to preQ1. We then used nudged elastic band computational methods to derive conformational-change pathways linking the crystallographically-determined effector-free and bound-state structures. Pathways featured: (i) unstacking and unpairing of L2 and S2 nucleobases without preQ1-exposing the SDS for translation and (ii) stacking and pairing L2 and S2 nucleobases with preQ1-sequestering the SDS. Our results reveal how preQ1 binding reorganizes L2 into a nucleobase-stacking spine that sequesters the SDS, linking effector recognition to biological function. The generality of stacking spines as conduits for effector-dependent, interdomain communication is discussed in light of their existence in adenine riboswitches, as well as the turnip yellow mosaic virus ribosome sensor.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Debapratim Dutta
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Chapin E Cavender
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Elizabeth M Pritchett
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - John M Ashton
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
33
|
Parallel Discovery Strategies Provide a Basis for Riboswitch Ligand Design. Cell Chem Biol 2020; 27:1241-1249.e4. [PMID: 32795418 DOI: 10.1016/j.chembiol.2020.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
Riboswitches are mRNA domains that make gene-regulatory decisions upon binding their cognate ligands. Bacterial riboswitches that specifically recognize 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP) and 5'-triphosphate (ZTP) regulate genes involved in folate and purine metabolism. Now, we have developed synthetic ligands targeting ZTP riboswitches by replacing the sugar-phosphate moiety of ZMP with various functional groups, including simple heterocycles. Despite losing hydrogen bonds from ZMP, these analogs bind ZTP riboswitches with similar affinities as the natural ligand, and activate transcription more strongly than ZMP in vitro. The most active ligand stimulates gene expression ∼3 times more than ZMP in a live Escherichia coli reporter. Co-crystal structures of the Fusobacterium ulcerans ZTP riboswitch bound to synthetic ligands suggest stacking of their pyridine moieties on a conserved RNA nucleobase primarily determines their higher activity. Altogether, these findings guide future design of improved riboswitch activators and yield insights into how RNA-targeted ligand discovery may proceed.
Collapse
|
34
|
Wilt HM, Yu P, Tan K, Wang YX, Stagno JR. FMN riboswitch aptamer symmetry facilitates conformational switching through mutually exclusive coaxial stacking configurations. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100035. [PMID: 33103111 PMCID: PMC7573352 DOI: 10.1016/j.yjsbx.2020.100035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 11/16/2022]
Abstract
Knowledge of both apo and holo states of riboswitches aid in elucidating the various mechanisms of ligand-induced conformational “switching” that underpin their gene-regulating capabilities. Previous structural studies on the flavin mononucleotide (FMN)-binding aptamer of the FMN riboswitch, however, have revealed minimal conformational changes associated with ligand binding that do not adequately explain the basis for the switching behavior. We have determined a 2.7-Å resolution crystal structure of the ligand-free FMN riboswitch aptamer that is distinct from previously reported structures, particularly in the conformation and orientation of the P1 and P4 helices. The nearly symmetrical tertiary structure provides a mechanism by which one of two pairs of adjacent helices (P3/P4 or P1/P6) undergo collinear stacking in a mutually exclusive manner, in the absence or presence of ligand, respectively. Comparison of these structures suggests the stem-loop that includes P4 and L4 is important for maintaining a global conformational state that, in the absence of ligand, disfavors formation of the P1 regulatory helix. Together, these results provide further insight to the structural basis for conformational switching of the FMN riboswitch.
Collapse
Affiliation(s)
- Haley M Wilt
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.,Washington College, Chestertown, Maryland 21620, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
35
|
Chan CW, Mondragón A. Crystal structure of an atypical cobalamin riboswitch reveals RNA structural adaptability as basis for promiscuous ligand binding. Nucleic Acids Res 2020; 48:7569-7583. [PMID: 32544228 PMCID: PMC7367189 DOI: 10.1093/nar/gkaa507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 11/25/2022] Open
Abstract
Cobalamin riboswitches encompass a structurally diverse group of cis-acting, gene regulatory elements found mostly in bacterial messenger RNA and are classified into subtypes based on secondary and tertiary characteristics. An unusual variant of the cobalamin riboswitch with predicted structural features was identified in Bacillus subtilis over a decade ago, but its structure and mechanisms of cobalamin selectivity and translational control have remained unsolved. We present the crystal structure of the aptamer domain of this atypical cobalamin riboswitch and a model for the complete riboswitch, including its expression platform domain. We demonstrate that this riboswitch binds to multiple cobalamin derivatives and correlate its promiscuous behavior to its structure and unique arrangement of peripheral elements. Comparative structural analyses between conventional cobalamin riboswitches and the B. subtilis cobalamin riboswitch reveal that the likely basis for this promiscuous ligand binding is intrinsic structural adaptability encoded in the RNA structure. It suggests that cobalamin selectivity might ultimately be viewed as existing on a spectrum of affinity for each derivative rather than as belonging to distinct types based on ligand specificities. Our work provides an interesting and notable example of functional coupling of ligand-sensing and adaptive folding by a structured RNA molecule.
Collapse
Affiliation(s)
- Clarence W Chan
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA
| |
Collapse
|
36
|
Tumor Cell-Intrinsic Immunometabolism and Precision Nutrition in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071757. [PMID: 32630618 PMCID: PMC7409312 DOI: 10.3390/cancers12071757] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
One of the greatest challenges in the cancer immunotherapy field is the need to biologically rationalize and broaden the clinical utility of immune checkpoint inhibitors (ICIs). The balance between metabolism and immune response has critical implications for overcoming the major weaknesses of ICIs, including their lack of universality and durability. The last decade has seen tremendous advances in understanding how the immune system's ability to kill tumor cells requires the conspicuous metabolic specialization of T-cells. We have learned that cancer cell-associated metabolic activities trigger shifts in the abundance of some metabolites with immunosuppressory roles in the tumor microenvironment. Yet very little is known about the tumor cell-intrinsic metabolic traits that control the immune checkpoint contexture in cancer cells. Likewise, we lack a comprehensive understanding of how systemic metabolic perturbations in response to dietary interventions can reprogram the immune checkpoint landscape of tumor cells. We here review state-of-the-art molecular- and functional-level interrogation approaches to uncover how cell-autonomous metabolic traits and diet-mediated changes in nutrient availability and utilization might delineate new cancer cell-intrinsic metabolic dependencies of tumor immunogenicity. We propose that clinical monitoring and in-depth molecular evaluation of the cancer cell-intrinsic metabolic traits involved in primary, adaptive, and acquired resistance to cancer immunotherapy can provide the basis for improvements in therapeutic responses to ICIs. Overall, these approaches might guide the use of metabolic therapeutics and dietary approaches as novel strategies to broaden the spectrum of cancer patients and indications that can be effectively treated with ICI-based cancer immunotherapy.
Collapse
|
37
|
Beyene SS, Ling T, Ristevski B, Chen M. A novel riboswitch classification based on imbalanced sequences achieved by machine learning. PLoS Comput Biol 2020; 16:e1007760. [PMID: 32687488 PMCID: PMC7392346 DOI: 10.1371/journal.pcbi.1007760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/30/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022] Open
Abstract
Riboswitch, a part of regulatory mRNA (50-250nt in length), has two main classes: aptamer and expression platform. One of the main challenges raised during the classification of riboswitch is imbalanced data. That is a circumstance in which the records of a sequences of one group are very small compared to the others. Such circumstances lead classifier to ignore minority group and emphasize on majority ones, which results in a skewed classification. We considered sixteen riboswitch families, to be in accord with recent riboswitch classification work, that contain imbalanced sequences. The sequences were split into training and test set using a newly developed pipeline. From 5460 k-mers (k value 1 to 6) produced, 156 features were calculated based on CfsSubsetEval and BestFirst function found in WEKA 3.8. Statistically tested result was significantly difference between balanced and imbalanced sequences (p < 0.05). Besides, each algorithm also showed a significant difference in sensitivity, specificity, accuracy, and macro F-score when used in both groups (p < 0.05). Several k-mers clustered from heat map were discovered to have biological functions and motifs at the different positions like interior loops, terminal loops and helices. They were validated to have a biological function and some are riboswitch motifs. The analysis has discovered the importance of solving the challenges of majority bias analysis and overfitting. Presented results were generalized evaluation of both balanced and imbalanced models, which implies their ability of classifying, to classify novel riboswitches. The Python source code is available at https://github.com/Seasonsling/riboswitch.
Collapse
Affiliation(s)
- Solomon Shiferaw Beyene
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Ling
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Blagoj Ristevski
- Faculty of Information and Communication Technologies, Bitola, St. Kliment Ohridski University Bitola, ul. Partizanska Bitola, Republic of North Macedonia
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Structural Insights into RNA Dimerization: Motifs, Interfaces and Functions. Molecules 2020; 25:molecules25122881. [PMID: 32585844 PMCID: PMC7357161 DOI: 10.3390/molecules25122881] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
In comparison with the pervasive use of protein dimers and multimers in all domains of life, functional RNA oligomers have so far rarely been observed in nature. Their diminished occurrence contrasts starkly with the robust intrinsic potential of RNA to multimerize through long-range base-pairing ("kissing") interactions, self-annealing of palindromic or complementary sequences, and stable tertiary contact motifs, such as the GNRA tetraloop-receptors. To explore the general mechanics of RNA dimerization, we performed a meta-analysis of a collection of exemplary RNA homodimer structures consisting of viral genomic elements, ribozymes, riboswitches, etc., encompassing both functional and fortuitous dimers. Globally, we found that domain-swapped dimers and antiparallel, head-to-tail arrangements are predominant architectural themes. Locally, we observed that the same structural motifs, interfaces and forces that enable tertiary RNA folding also drive their higher-order assemblies. These feature prominently long-range kissing loops, pseudoknots, reciprocal base intercalations and A-minor interactions. We postulate that the scarcity of functional RNA multimers and limited diversity in multimerization motifs may reflect evolutionary constraints imposed by host antiviral immune surveillance and stress sensing. A deepening mechanistic understanding of RNA multimerization is expected to facilitate investigations into RNA and RNP assemblies, condensates, and granules and enable their potential therapeutical targeting.
Collapse
|
39
|
Brown JA. Unraveling the structure and biological functions of RNA triple helices. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1598. [PMID: 32441456 PMCID: PMC7583470 DOI: 10.1002/wrna.1598] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
It has been nearly 63 years since the first characterization of an RNA triple helix in vitro by Gary Felsenfeld, David Davies, and Alexander Rich. An RNA triple helix consists of three strands: A Watson–Crick RNA double helix whose major‐groove establishes hydrogen bonds with the so‐called “third strand”. In the past 15 years, it has been recognized that these major‐groove RNA triple helices, like single‐stranded and double‐stranded RNA, also mediate prominent biological roles inside cells. Thus far, these triple helices are known to mediate catalysis during telomere synthesis and RNA splicing, bind to ligands and ions so that metabolite‐sensing riboswitches can regulate gene expression, and provide a clever strategy to protect the 3′ end of RNA from degradation. Because RNA triple helices play important roles in biology, there is a renewed interest in better understanding the fundamental properties of RNA triple helices and developing methods for their high‐throughput discovery. This review provides an overview of the fundamental biochemical and structural properties of major‐groove RNA triple helices, summarizes the structure and function of naturally occurring RNA triple helices, and describes prospective strategies to isolate RNA triple helices as a means to establish the “triplexome”. This article is categorized under:RNA Structure and Dynamics > RNA Structure and Dynamics RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems
Collapse
Affiliation(s)
- Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
40
|
McCluskey K, Boudreault J, St-Pierre P, Perez-Gonzalez C, Chauvier A, Rizzi A, Beauregard PB, Lafontaine DA, Penedo JC. Unprecedented tunability of riboswitch structure and regulatory function by sub-millimolar variations in physiological Mg2. Nucleic Acids Res 2020; 47:6478-6487. [PMID: 31045204 PMCID: PMC6614840 DOI: 10.1093/nar/gkz316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer–ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.
Collapse
Affiliation(s)
- Kaley McCluskey
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK
| | - Julien Boudreault
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Patrick St-Pierre
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Adrien Chauvier
- Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | - Adrien Rizzi
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Pascale B Beauregard
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | | | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St. Andrews, Scotland KY16 9SS, UK.,Biomedical Sciences Research Complex, School of Biology, University of St. Andrews, Scotland KY16 9ST, UK
| |
Collapse
|
41
|
Affiliation(s)
- Margaret L Rodgers
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Yumeng Hao
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
42
|
Wolter AC, Pianu A, Kremser J, Strebitzer E, Schnieders R, Fürtig B, Kreutz C, Duchardt-Ferner E, Wöhnert J. NMR resonance assignments for the GTP-binding RNA aptamer 9-12 in complex with GTP. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:281-286. [PMID: 31030336 DOI: 10.1007/s12104-019-09892-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/20/2019] [Indexed: 06/09/2023]
Abstract
Ligand binding RNAs such as artificially created RNA-aptamers are structurally highly diverse. Therefore, they represent important model systems for investigating RNA-folding, RNA-dynamics and the molecular recognition of chemically very different ligands, ranging from small molecules to whole cells. High-resolution structures of RNA-aptamers in complex with their cognate ligands often reveal unexpected tertiary structure elements. Recent studies on different classes of aptamers binding the nucleotide triphosphate GTP as a ligand showed that these systems not only differ widely in binding affinity but also in their ligand binding modes and structural complexity. We initiated the NMR-based structure determination of the high-affinity binding GTP-aptamer 9-12 in order to gain further insights into the diversity of ligand binding modes and structural variability of those aptamers. Here, we report 1H, 13C and 15N resonance assignments for the GTP 9-12-aptamer bound to GTP as the prerequisite for the structure determination by solution NMR.
Collapse
Affiliation(s)
- Antje C Wolter
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt, Germany.
| | - Angela Pianu
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Johannes Kremser
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Elisabeth Strebitzer
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Robbin Schnieders
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt, Germany.
| |
Collapse
|
43
|
Suddala KC, Price IR, Dandpat SS, Janeček M, Kührová P, Šponer J, Banáš P, Ke A, Walter NG. Local-to-global signal transduction at the core of a Mn 2+ sensing riboswitch. Nat Commun 2019; 10:4304. [PMID: 31541094 PMCID: PMC6754395 DOI: 10.1038/s41467-019-12230-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 01/01/2023] Open
Abstract
The widespread Mn2+-sensing yybP-ykoY riboswitch controls the expression of bacterial Mn2+ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch aptamer from Xanthomonas oryzae at 2.96 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated metal ions. In >100 µs of MD simulations, we observe that loss of divalents from the core triggers local structural perturbations in the adjacent docking interface, laying the foundation for signal transduction to the regulatory switch helix. Using single-molecule FRET, we unveil a previously unobserved extended 4WJ conformation that samples transient docked states in the presence of Mg2+. Only upon adding sub-millimolar Mn2+, however, can the 4WJ dock stably, a feature lost upon mutation of an adenosine contacting Mn2+ in the core. These observations illuminate how subtly differing ligand preferences of competing metal ions become amplified by the coupling of local with global RNA dynamics.
Collapse
Affiliation(s)
- Krishna C Suddala
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian R Price
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Shiba S Dandpat
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michal Janeček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Petra Kührová
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
44
|
Jones C, Tran B, Conrad C, Stagno J, Trachman R, Fischer P, Meents A, Ferré-D'Amaré A. Co-crystal structure of the Fusobacterium ulcerans ZTP riboswitch using an X-ray free-electron laser. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2019; 75:496-500. [PMID: 31282869 DOI: 10.1107/s2053230x19008549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/15/2019] [Indexed: 11/10/2022]
Abstract
Riboswitches are conformationally dynamic RNAs that regulate gene expression by binding specific small molecules. ZTP riboswitches bind the purine-biosynthetic intermediate 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP) and its triphosphorylated form (ZTP). Ligand binding to this riboswitch ultimately upregulates genes involved in folate and purine metabolism. Using an X-ray free-electron laser (XFEL), the room-temperature structure of the Fusobacterium ulcerans ZTP riboswitch bound to ZMP has now been determined at 4.1 Å resolution. This model, which was refined against a data set from ∼750 diffraction images (each from a single crystal), was found to be consistent with that previously obtained from data collected at 100 K using conventional synchrotron X-radiation. These experiments demonstrate the feasibility of time-resolved XFEL experiments to understand how the ZTP riboswitch accommodates cognate ligand binding.
Collapse
Affiliation(s)
- Christopher Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892, USA
| | - Brandon Tran
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892, USA
| | - Chelsie Conrad
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jason Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Robert Trachman
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892, USA
| | - Pontus Fischer
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Adrian Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, 50 South Drive, MSC 8012, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Jones CP, Panja S, Woodson SA, Ferré-D'Amaré AR. Monitoring co-transcriptional folding of riboswitches through helicase unwinding. Methods Enzymol 2019; 623:209-227. [PMID: 31239047 DOI: 10.1016/bs.mie.2019.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the cell, RNAs fold and begin to function as they are being transcribed. In contrast, in the laboratory, RNAs are typically studied after transcription is completed. Co-transcriptional folding can regulate the function of riboswitches and ribozymes and dictate the order of ribonucleoprotein assembly. Methods to observe and investigate RNA folding and activity during transcription are therefore desirable, yet synchronizing RNA polymerases and incorporating labels at specific sites for biophysical studies can be challenging. A recent methodological advance has been to harness highly processive, engineered "super-helicases" to unwind hybrid RNA-DNA duplexes, thereby releasing the RNA 5'-3'. When combined with single-molecule fluorescence detection, RNA folding and concomitant activity can be studied in vitro in a manner that mimics vectorial folding during transcription. Herein, we describe methods for designing and preparing fluorescently labeled RNA-DNA duplex substrates for sequential helicase-dependent RNA folding experiments.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Subrata Panja
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States.
| |
Collapse
|
46
|
Sengupta RN, Herschlag D. Enhancement of RNA/Ligand Association Kinetics via an Electrostatic Anchor. Biochemistry 2019; 58:2760-2768. [PMID: 31117387 PMCID: PMC6586055 DOI: 10.1021/acs.biochem.9b00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
The diverse biological
processes mediated by RNA rest upon its
recognition of various ligands, including small molecules and nucleic
acids. Nevertheless, a recent literature survey suggests that RNA
molecular recognition of these ligands is slow, with association rate
constants orders of magnitude below the diffusional limit. Thus, we
were prompted to consider strategies for increasing RNA association
kinetics. Proteins can accelerate ligand association via electrostatic
forces, and here, using the Tetrahymena group I ribozyme,
we provide evidence that electrostatic forces can accelerate RNA/ligand
association. This RNA enzyme (E) catalyzes cleavage of an oligonucleotide
substrate (S) by an exogenous guanosine (G) cofactor. The G 2′-
and 3′-OH groups interact with an active site metal ion, termed
MC, within E·S·G, and we perturbed each of these
contacts via −NH3+ substitution. New
and prior data indicate that G(2′NH3+) and G(3′NH3+) bind as strongly as
G, suggesting that the −NH3+ substituents
of these analogues avoid repulsive interactions with MC and make alternative interactions. Unexpectedly, removal of the
adjacent −OH via −H substitution to give G(2′H,3′NH3+) and G(2′NH3+,3′H) enhanced binding, in stark contrast to the deleterious
effect of these substitutions on G binding. Pulse–chase experiments
indicate that the −NH3+ moiety of G(2′H,3′NH3+) increases the rate of G association. These results
suggest that the positively charged −NH3+ group can act as a molecular “anchor” to increase
the residence time of the encounter complex and thereby enhance productive
binding. Electrostatic anchors may provide a broadly applicable strategy
for the development of fast binding RNA ligands and RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Raghuvir N Sengupta
- Department of Biochemistry , Stanford University , Stanford , California 94305 , United States
| | - Daniel Herschlag
- Department of Biochemistry , Stanford University , Stanford , California 94305 , United States.,Departments of Chemical Engineering and Chemistry , Stanford University , Stanford , California 94305 , United States.,Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health) , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
47
|
Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 2019; 20:353-367. [PMID: 30814649 PMCID: PMC6613555 DOI: 10.1038/s41580-019-0108-4] [Citation(s) in RCA: 651] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The metabolome, the collection of small-molecule chemical entities involved in metabolism, has traditionally been studied with the aim of identifying biomarkers in the diagnosis and prediction of disease. However, the value of metabolome analysis (metabolomics) has been redefined from a simple biomarker identification tool to a technology for the discovery of active drivers of biological processes. It is now clear that the metabolome affects cellular physiology through modulation of other 'omics' levels, including the genome, epigenome, transcriptome and proteome. In this Review, we focus on recent progress in using metabolomics to understand how the metabolome influences other omics and, by extension, to reveal the active role of metabolites in physiology and disease. This concept of utilizing metabolomics to perform activity screens to identify biologically active metabolites - which we term activity metabolomics - is already having a broad impact on biology.
Collapse
Affiliation(s)
- Markus M Rinschen
- The Scripps Research Institute, Center for Metabolomics and Mass Spectrometry, La Jolla, CA, USA
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, Netherlands.
| | - Gary Siuzdak
- The Scripps Research Institute, Center for Metabolomics and Mass Spectrometry, La Jolla, CA, USA.
| |
Collapse
|
48
|
Karunanayake Mudiyanselage APKK, Wu R, Leon-Duque MA, Ren K, You M. "Second-generation" fluorogenic RNA-based sensors. Methods 2019; 161:24-34. [PMID: 30660865 PMCID: PMC6589113 DOI: 10.1016/j.ymeth.2019.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 02/07/2023] Open
Abstract
A fluorogenic aptamer can specifically interact with a fluorophore to activate its fluorescence. These nucleic acid-based fluorogenic modules have been dramatically developed over the past decade, and have been used as versatile reporters in the sensor development and for intracellular imaging. In this review, we summarize the design principles, applications, and challenges of the first-generation fluorogenic RNA-based sensors. Moreover, we discuss some strategies to develop next-generation biosensors with improved sensitivity, selectivity, quantification property, and eukaryotic robustness. Using genetically encoded catalytic hairpin assembly strategy as an example, we further introduce a standard protocol to design, characterize, and apply these fluorogenic RNA-based sensors for in vitro detection and cellular imaging of target biomolecules. By incorporating natural RNA machineries, nucleic acid nanotechnology, and systematic evolution approaches, next-generation fluorogenic RNA-based devices can be potentially engineered to be widely applied in cell biology and biomedicine.
Collapse
Affiliation(s)
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mark A Leon-Duque
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
49
|
Zhang H, Keane SC. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1541. [PMID: 31025514 PMCID: PMC7169810 DOI: 10.1002/wrna.1541] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/18/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The characterization of functional yet nonprotein coding (nc) RNAs has expanded the role of RNA in the cell from a passive player in the central dogma of molecular biology to an active regulator of gene expression. The misregulation of ncRNA function has been linked with a variety of diseases and disorders ranging from cancers to neurodegeneration. However, a detailed molecular understanding of how ncRNAs function has been limited; due, in part, to the difficulties associated with obtaining high-resolution structures of large RNAs. Tertiary structure determination of RNA as a whole is hampered by various technical challenges, all of which are exacerbated as the size of the RNA increases. Namely, RNAs tend to be highly flexible and dynamic molecules, which are difficult to crystallize. Biomolecular nuclear magnetic resonance (NMR) spectroscopy offers a viable alternative to determining the structure of large RNA molecules that do not readily crystallize, but is itself hindered by some technical limitations. Recently, a series of advancements have allowed the biomolecular NMR field to overcome, at least in part, some of these limitations. These advances include improvements in sample preparation strategies as well as methodological improvements. Together, these innovations pave the way for the study of ever larger RNA molecules that have important biological function. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Huaqun Zhang
- Biophysics Program, University of Michigan, Ann Arbor, Michigan
| | - Sarah C Keane
- Biophysics Program, University of Michigan, Ann Arbor, Michigan.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Jones CP, Piszczek G, Ferré-D'Amaré AR. Isothermal Titration Calorimetry Measurements of Riboswitch-Ligand Interactions. Methods Mol Biol 2019; 1964:75-87. [PMID: 30929236 DOI: 10.1007/978-1-4939-9179-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the many ways by which bacteria control gene expression is through cis-acting regulatory mRNA elements called riboswitches. By specifically binding to small molecules or metabolites and pairing the binding event to an RNA structure change, riboswitches link a metabolic input to a transcriptional or translational output. For over a decade, isothermal titration calorimetry (ITC) has been used to investigate how riboswitches interact with small molecules. We present methods for assaying RNA-ligand interactions using ITC and analyzing resulting data to estimate thermodynamic parameters associated with binding.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|