1
|
Hirst SR, Beer MA, VanHorn CM, Rautsaw RM, Franz-Chávez H, Lopez BR, Chaparro RR, Rosales-García RA, Vásquez-Cruz V, Kelly-Hernández A, Amézquita SAS, Martínez DEL, Fiol TP, Rincón AR, Whittington AC, Castañeda-Gaytán G, Borja M, Parkinson CL, Strickland JL, Margres MJ. Island biogeography and competition drive rapid venom complexity evolution across rattlesnakes. Evolution 2025:qpaf074. [PMID: 40266827 DOI: 10.1093/evolut/qpaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Understanding how human-mediated environmental change affects biodiversity is key for conserving evolvability. Because the most severe impacts are ongoing, such an understanding is proving exceptionally difficult to attain. Islands are natural, replicated experiments that serve as proxies for habitat fragmentation and, therefore, allow us to use historical changes in biodiversity under Island Biogeography Theory (IBT) to predict the consequences of immediate anthropogenic impacts on functional trait evolution. Rattlesnake venoms are molecular phenotypes that mediate interactions with prey, and diet and venom complexity are positively correlated. Consequently, rattlesnake venoms allow us to investigate how functional traits co-vary with changes in biodiversity according to IBT. We collected venom from 83 rattlesnakes across multiple species and 11 islands in the Gulf of California and estimated venom complexity using the Shannon Diversity Index. Using a mixed effects modeling approach, we found that the number of congenerics, island isolation, and island area best predicted venom complexity variability. All variables exhibited a negative relationship with venom complexity, contrary to predictions for island area under IBT. Larger islands with more congenerics exhibited reduced trait complexity, perhaps reflecting niche partitioning and venom specialization. Ultimately, we used a synthetic eco-evolutionary framework to predict functional trait evolution across fragmented landscapes.
Collapse
Affiliation(s)
- Samuel R Hirst
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Marc A Beer
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Cameron M VanHorn
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Rhett M Rautsaw
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | | | - Bruno Rodriguez Lopez
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gòmez Palacio, Dur., México
| | | | | | - Víctor Vásquez-Cruz
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Alto Lucero, Ver., Mexico
- PIMVS Herpetario Palancoatl, Còrdoba, Ver., Mexico
| | | | | | | | - Tania Perez Fiol
- Centro de Investigaciones Biològicas del Noroeste, S.C. Instituto Politécnico Nacional, La Paz, BCS, Mexico
| | - Alexandra Rubio Rincón
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gòmez Palacio, Dur., México
| | - A Carl Whittington
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Gamaliel Castañeda-Gaytán
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gòmez Palacio, Dur., México
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Gòmez Palacio, Dur., México
| | | | - Jason L Strickland
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
2
|
Denny S, Coad L, Jones S, Ingram DJ. Snaring and wildlife wastage in Africa: drivers, scale, impacts, and paths to sustainability. Bioscience 2025; 75:284-297. [PMID: 40276475 PMCID: PMC12016803 DOI: 10.1093/biosci/biaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 04/26/2025] Open
Abstract
Snaring is considered to be the most common form of hunting in Africa. Although snaring can provide hunters with valuable food and income, it can also devastate wildlife populations when practiced unsustainably and has significant animal welfare implications. Snaring can also be wasteful, both when animals escape with fatal injuries and when catch is discarded. In the present article, we argue that snaring is a regional-scale threat to wildlife and to the sustainable use of biodiversity in Africa. We show that snaring in Africa is geographically widespread and locally intense, that tens of millions of snares are likely set across the continent annually, and that at least 100 million kilograms of wild meat is probably wasted in Africa every year because of snaring. We discuss opportunities to address these impacts through changes to governance and enforcement and by reducing demand for wild meat in cities.
Collapse
Affiliation(s)
- Sean Denny
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Lauren Coad
- Center for International Forestry Research, Bogor, Indonesia
- Department of Biology at the University of Oxford, Oxford, England, United Kingdom
| | - Sorrel Jones
- RSPB Centre of Conservation Science, Cambridge, England, United Kingdom
| | - Daniel J Ingram
- Durrell Institute of Conservation and Ecology, School of Natural Sciences at the University of Kent, Canterbury, England, United Kingdom
| |
Collapse
|
3
|
Sinovas P, Smith C, Keath S, Chantha N, Kaden J, Ith S, Ball A. Giants in the landscape: status, genetic diversity, habitat suitability and conservation implications for a fragmented Asian elephant ( Elephas maximus) population in Cambodia. PeerJ 2025; 13:e18932. [PMID: 40093415 PMCID: PMC11910960 DOI: 10.7717/peerj.18932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/14/2025] [Indexed: 03/19/2025] Open
Abstract
Asian elephant (Elephas maximus) populations are declining and increasingly fragmented across their range. In Cambodia, the Prey Lang Extended Landscape (PLEL) represents a vast expanse of lowland evergreen and semi-evergreen forest with potential to support Asian elephant population recovery in the country. To inform effective landscape-level conservation planning, this study provides the first robust population size estimate for Asian elephants in PLEL, based on non-invasive genetic sampling during the 2020-2021 dry season in three protected areas: Prey Lang, Preah Roka and Chhaeb Wildlife Sanctuaries. Further, it provides an assessment of the species' range, habitat suitability and connectivity within the landscape using Maxent and Fuzzy suitability models. Thirty-five unique genotypes (individual elephants) were identified, of which six were detected in both Preah Roka and Chhaeb Wildlife Sanctuaries, providing evidence that elephants move readily between these neighbouring protected areas. However, no unique genotypes were shared between Preah Roka/Chhaeb and the less functionally connected southerly Prey Lang Wildlife Sanctuary. The estimated population size in the southern population was 31 (95% CI [24-41]) individuals. The northern population of Preah Roka/Chhaeb Wildlife Sanctuaries is estimated to number 20 (95% CI [13-22]) individuals. Habitat loss is prevalent across the landscape and connectivity outside of the protected areas is very limited; however, large swathes of suitable elephant habitat remain. As the landscape holds the potential to be restored to a national stronghold for this flagship species, in turn resulting in the protection of a vast array of biodiversity, we recommend protection of remaining suitable habitat and reduction of threats and disturbance to elephants within these areas as top priorities. Our study offers a model for integrated elephant population and landscape-level habitat modelling that can serve to guide similar research and management efforts in other landscapes.
Collapse
Affiliation(s)
| | | | - Sophorn Keath
- Fauna & Flora, Phnom Penh, Cambodia
- Department of Biology, The Royal University of Phnom Penh, Phnom Penh, Cambodia
| | | | - Jennifer Kaden
- RZSS WildGenes, Royal Zoological Society of Scotland, Edinburgh, United Kingdom
| | - Saveng Ith
- Fauna & Flora, Phnom Penh, Cambodia
- Department of Biology, The Royal University of Phnom Penh, Phnom Penh, Cambodia
| | - Alex Ball
- RZSS WildGenes, Royal Zoological Society of Scotland, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Portugal MCS, Altafim GL, de Jesus SB, Alves AV, Rojas LAV, Zanardi-Lamardo E, Castro IB, Gallucci F, Choueri RB. Toxicity of PAHs-enriched sediments on meiobenthic communities under ocean warming and CO 2-driven acidification scenarios. MARINE POLLUTION BULLETIN 2025; 212:117489. [PMID: 39729829 DOI: 10.1016/j.marpolbul.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
This study aimed to assess the interactive effects of CO2-driven acidification, temperature rise, and PAHs toxicity on meiobenthic communities. Laboratory microcosms were established in a full factorial experimental design, manipulating temperature (25 °C and 27 °C), pH (8.1 and 7.6), and PAH contamination (acenaphthene + benzo(a)pyrene spiked sediments and negative control). Temperature rise and CO2-driven acidification led to a decrease in the densities of Copepoda. The density of nematodes Pseudochromadora and Daptonema also decreased, while Sphaerotheristus and Sabatieria densities increased, particularly in the absence of CO2-driven acidification. Ostracoda densities increased in the acidified scenario. PAH contamination resulted in decreased Daptonema densities but increased Turbellaria and certain Nematoda genera (e.g. Pseudochromadora). Overall, the results indicate that the changes of meiobenthic communities caused by CO2 acidification, warming, and PAH contamination are shaped by the vulnerability and tolerance of each taxonomic group, alongside indirect effects observed in Nematoda assemblages.
Collapse
Affiliation(s)
| | - Giam Luca Altafim
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Simone Brito de Jesus
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Aline Vecchio Alves
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Lino Angel Valcárcel Rojas
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR) - Departamento de Oceanografia, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Italo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | - Fabiane Gallucci
- Instituto do Mar, Universidade Federal de São Paulo (IMar-Unifesp), Santos, SP, Brazil
| | | |
Collapse
|
5
|
Milson CE, Lim JY, Ingram DJ, Edwards DP. The need for carbon finance schemes to tackle overexploitation of tropical forest wildlife. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14406. [PMID: 39436141 PMCID: PMC11780226 DOI: 10.1111/cobi.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/03/2024] [Accepted: 05/16/2024] [Indexed: 10/23/2024]
Abstract
Defaunation of tropical forests, particularly from unsustainable hunting, has diminished populations of key seed dispersers for many tree species, driving shifts in forest community composition toward small-fruited or wind-dispersed trees with low wood density. Such shifts can reduce aboveground biomass, prompting calls for overexploitation to be included in bioeconomic policy, but a synthesis of existing literature for wildlife impacts on carbon stores is lacking. We evaluated the role of wildlife in tropical forest tree recruitment and found that it was critical to tropical forest carbon dynamics. The emerging financial value of ecosystem services provided by tropical forest fauna highlights the need for carbon-based payments for ecosystem services schemes to include wildlife protection. We argue for three cost-effective actions within carbon finance schemes that can facilitate wildlife protection: support land security opportunities for Indigenous peoples and local communities; provide support for local people to protect forest fauna from overexploitation; and focus on natural regeneration in restoration projects. Incorporating defaunation in carbon-financing schemes more broadly requires an increased duration of carbon projects and an improved understanding of defaunation impacts on carbon stores and ecosystem-level models. Without urgent action to halt wildlife losses and prevent empty forest syndrome, the crucial role of tropical forests in tackling climate change may be in jeopardy.
Collapse
Affiliation(s)
- Caroline E. Milson
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldUK
- Durrell Institute of Conservation and Ecology (DICE)University of KentCanterburyUK
| | - Jun Ying Lim
- Department of Biological SciencesNational University of SingaporeSingapore
- Center for Nature‐based Climate SolutionsNational University of SingaporeSingapore
| | - Daniel J. Ingram
- Durrell Institute of Conservation and Ecology (DICE)University of KentCanterburyUK
| | - David P. Edwards
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Centre for Global Wood SecurityUniversity of CambridgeCambridgeUK
- Conservation Research InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
6
|
Brodie JF, Bello C, Emer C, Galetti M, Luskin MS, Osuri A, Peres CA, Stoll A, Villar N, López AB. Defaunation impacts on the carbon balance of tropical forests. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14414. [PMID: 39466005 DOI: 10.1111/cobi.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/14/2024] [Indexed: 10/29/2024]
Abstract
The urgent need to mitigate and adapt to climate change necessitates a comprehensive understanding of carbon cycling dynamics. Traditionally, global carbon cycle models have focused on vegetation, but recent research suggests that animals can play a significant role in carbon dynamics under some circumstances, potentially enhancing the effectiveness of nature-based solutions to mitigate climate change. However, links between animals, plants, and carbon remain unclear. We explored the complex interactions between defaunation and ecosystem carbon in Earth's most biodiverse and carbon-rich biome, tropical rainforests. Defaunation can change patterns of seed dispersal, granivory, and herbivory in ways that alter tree species composition and, therefore, forest carbon above- and belowground. Most studies we reviewed show that defaunation reduces carbon storage 0-26% in the Neo- and Afrotropics, primarily via population declines in large-seeded, animal-dispersed trees. However, Asian forests are not predicted to experience changes because their high-carbon trees are wind dispersed. Extrapolating these local effects to entire ecosystems implies losses of ∼1.6 Pg CO2 equivalent across the Brazilian Atlantic Forest and 4-9.2 Pg across the Amazon over 100 years and of ∼14.7-26.3 Pg across the Congo basin over 250 years. In addition to being hard to quantify with precision, the effects of defaunation on ecosystem carbon are highly context dependent; outcomes varied based on the balance between antagonist and mutualist species interactions, abiotic conditions, human pressure, and numerous other factors. A combination of experiments, large-scale comparative studies, and mechanistic models could help disentangle the effects of defaunation from other anthropogenic forces in the face of the incredible complexity of tropical forest systems. Overall, our synthesis emphasizes the importance of-and inconsistent results when-integrating animal dynamics into carbon cycle models, which is crucial for developing climate change mitigation strategies and effective policies.
Collapse
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, Montana, USA
- Institute for Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Carolina Bello
- Department of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Carine Emer
- Rio de Janeiro Botanical Garden Research Institute, Rio de Janeiro, Brazil
| | - Mauro Galetti
- Department of Biodiversity, Center for Biodiversity Dynamics and Climate Change, São Paulo State University (UNESP), Rio Claro, Brazil
- Kimberly Green Latin American and Caribbean Center (LACC), Florida International University (FIU), Miami, Florida, USA
| | - Matthew S Luskin
- School of the Environment, University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, University of Queensland, Brisbane, Queensland, Australia
| | - Anand Osuri
- Nature Conservation Foundation, Mysore, India
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Annina Stoll
- Department of Environmental Systems Science, ETH, Zürich, Switzerland
| | - Nacho Villar
- Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - Ana-Benítez López
- Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Sanchez ADS, Alves-Ferreira G, Heming NM, Giné GAF. Distribution and habitat of the painted tree rat (Callistomys pictus): Evaluating areas for future surveys and conservation efforts. PLoS One 2025; 20:e0317356. [PMID: 39854366 PMCID: PMC11759351 DOI: 10.1371/journal.pone.0317356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Knowledge of the potential distribution and locations of poorly known threatened species is crucial for guiding conservation strategies and new field surveys. The painted tree-rat (Callistomys pictus) is a monospecific, rare, and endangered echimyid rodent endemic to the southern Bahia Atlantic Forest in Brazil. There have been no records of the species published in the last 20 years, and the region has experienced significant forest loss and degradation. According to the IUCN, only 13 specimens had been previously reported, with 12 found in the north of Ilhéus and adjacent municipalities, and one recorded approximately 200 km away from this region, suggesting that its distribution might be wider. We aimed to search for unpublished and more recent records of the C. pictus, by consulting the gray literature (including Environmental Impact Study (EIA) reports, Brazilian Red Lists, and management plans of protected areas), scientific collections, online databases, and mastozoologists working in the region. We estimated the species' potential distribution using Ecological Niche Modeling to identify regions, municipalities, and protected areas most likely to support this species, based on factors such as climate suitability and forest cover. We reported three new sightings of the species, including the first within a protected area. We estimated suitable climate conditions across 23,151 km2, of which 9,225 km2 has a high potential for harboring the species. The area between Itacaré and Valença needs more extensive survey efforts as it has high habitat suitability and only one record has been confirmed there so far. Meanwhile, the region between Una and Ilhéus urgently requires habitat conservation initiatives. While the species may have a broader distribution than previously thought, its known occurrences are limited to a few locations, and suitable habitats are underrepresented in protected areas. Additionally, the rarity of sightings continues to indicate a concerning conservation status.
Collapse
Affiliation(s)
- Andrés David Sarmiento Sanchez
- Departamento de Ciências Biológicas, Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Gabriela Alves-Ferreira
- Departamento de Ciências Biológicas, Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Neander Marcel Heming
- Departamento de Ciências Biológicas, Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Gastón Andrés Fernandez Giné
- Departamento de Ciências Biológicas, Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| |
Collapse
|
8
|
Summers J, Cosgrove EJ, Bowman R, Fitzpatrick JW, Chen N. Density dependence maintains long-term stability despite increased isolation and inbreeding in the Florida Scrub-Jay. Ecol Lett 2024; 27:e14483. [PMID: 39738990 PMCID: PMC11698488 DOI: 10.1111/ele.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 01/02/2025]
Abstract
Isolation caused by anthropogenic habitat fragmentation can destabilize populations. Populations relying on the inflow of immigrants can face reduced fitness due to inbreeding depression as fewer new individuals arrive. Empirical studies of the demographic consequences of isolation are critical to understand how populations persist through changing conditions. We used a 34-year demographic and environmental dataset from a population of cooperatively breeding Florida Scrub-Jays (Aphelocoma coerulescens) to create mechanistic models linking environmental and demographic factors to population growth rates. We found that the population has not declined despite both declining immigration and increasing inbreeding, owing to a coinciding response in breeder survival. We find evidence of density-dependent immigration, breeder survival and fecundity, indicating that interactions between vital rates and local density play a role in buffering the population against change. Our study elucidates the impacts of isolation on demography and how long-term stability is maintained via demographic responses.
Collapse
Affiliation(s)
- Jeremy Summers
- Department of Biology, University of Rochester, Rochester, NY
| | - Elissa J. Cosgrove
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY
| | - Reed Bowman
- Avian Ecology Program, Archbold Biological Station, Venus, FL
| | | | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY
| |
Collapse
|
9
|
Dijoux S, Smalås A, Primicerio R, Boukal DS. Differences in Tri-Trophic Community Responses to Temperature-Dependent Vital Rates, Thermal Niche Mismatches and Temperature-Size Rule. Ecol Lett 2024; 27:e70022. [PMID: 39623751 PMCID: PMC11612537 DOI: 10.1111/ele.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Warming climate impacts aquatic ectotherms by changes in individual vital rates and declines in body size, a phenomenon known as the temperature-size rule (TSR), and indirectly through altered species interactions and environmental feedbacks. The relative importance of these effects in shaping community responses to environmental change is incompletely understood. We employ a tri-trophic food chain model with size- and temperature-dependent vital rates and species interaction strengths to explore the role of direct kinetic effects of temperature and TSR on community structure along resource productivity and temperature gradients. We find that community structure, including the propensity for sudden collapse along resource productivity and temperature gradients, is primarily driven by the direct kinetic effects of temperature on vital rates and thermal mismatches between the consumer and predator species, overshadowing the TSR-mediated effects. Overall, our study enhances the understanding of the complex interplay between temperature, species traits and community dynamics in aquatic ecosystems.
Collapse
Affiliation(s)
- Samuel Dijoux
- Department of Ecosystems Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Czech Academy of Sciences, Biology CentreInstitute of EntomologyČeské BudějoviceCzech Republic
| | - Aslak Smalås
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economy, UiTThe Arctic University of NorwayTromsøNorway
- SNA‐Skandinavisk naturoveråking AS (Scandinavian Nature‐Monitoring), DNVTromsøNorway
| | - Raul Primicerio
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economy, UiTThe Arctic University of NorwayTromsøNorway
| | - David S. Boukal
- Department of Ecosystems Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Czech Academy of Sciences, Biology CentreInstitute of EntomologyČeské BudějoviceCzech Republic
| |
Collapse
|
10
|
Luepold SB, Carlotti S, Pasinelli G. A test of the mechanistic process behind the convergent agonistic character displacement hypothesis. Behav Ecol 2024; 35:arae072. [PMID: 39380688 PMCID: PMC11457480 DOI: 10.1093/beheco/arae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/31/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
In this era of rapid global change, understanding the mechanisms that enable or prevent species from co-occurring has assumed new urgency. The convergent agonistic character displacement (CACD) hypothesis posits that signal similarity enables the co-occurrence of ecological competitors by promoting aggressive interactions that reduce interspecific territory overlap and hence, exploitative competition. In northwestern Switzerland, ca. 10% of Phylloscopus sibilatrix produce songs containing syllables that are typical of their co-occurring sister species, Phylloscopus bonelli ("mixed singers"). To examine whether the consequences of P. sibilatrix mixed singing are consistent with CACD, we combined a playback experiment and an analysis of interspecific territory overlap. Although P. bonelli reacted more aggressively to playback of mixed P. sibilatrix song than to playback of typical P. sibilatrix song, interspecific territory overlap was not reduced for mixed singers. Thus, the CACD hypothesis was not supported, which stresses the importance of distinguishing between interspecific aggressive interactions and their presumed spatial consequences.
Collapse
Affiliation(s)
- Shannon Buckley Luepold
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandro Carlotti
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Gilberto Pasinelli
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
11
|
Sellars L, Franks B. How mariculture expansion is dewilding the ocean and its inhabitants. SCIENCE ADVANCES 2024; 10:eadn8943. [PMID: 39413184 PMCID: PMC11482328 DOI: 10.1126/sciadv.adn8943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/16/2024] [Indexed: 10/18/2024]
Abstract
The world's oceans are largely free from intensive farming, but momentum to intensify and expand mariculture-the cultivation of aquatic organisms in the ocean-is growing. Despite optimism that mariculture will create economic and nutritional benefits for humans, it can also generate a host of risks, including environmental degradation, harms to wildlife integrity and welfare, captivity effects, and shifts in how humans view the nonhuman world. Collectively, we refer to these four types of risks as "dewilding." In this systematic review, we searched Scopus and Web of Science for recent literature documenting mariculture's dewilding impacts to organize and collate this evidence under one unified framework. We find that mariculture's dewilding impacts are consistently documented, though often in isolation, and that captivity and conceptual dewilding impacts are recognized as potential harms far less than impacts on the environment and wildlife. Future work examining mariculture's dewilding impacts will be paramount to guiding human decision-making and activity going forward.
Collapse
Affiliation(s)
- Laurie Sellars
- The Law, Ethics & Animals Program, Yale University, 127 Wall Street, New Haven, CT 06511, USA
| | - Becca Franks
- Department of Environmental Studies, New York University, 285 Mercer Street, New York, NY 10003, USA
| |
Collapse
|
12
|
Guizada Duran LA, Aliaga-Rossel E, Frias MP, Zerbini AN. Bolivian River Dolphin trends: A long-term analysis in the Mamore basin. PLoS One 2024; 19:e0308806. [PMID: 39365787 PMCID: PMC11452032 DOI: 10.1371/journal.pone.0308806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/31/2024] [Indexed: 10/06/2024] Open
Abstract
South American river dolphins face significant threats from intense human activities, resulting in habitat loss, fragmentation of their natural connectivity, overfishing, pollution, and incidental and intentional catches for use as bait for fisheries. From 1998 to 2022, 12 surveys were conducted in a river system in the Mamore River (Ibare-Tijamuchi-Mamore) basin, one of the primary distribution areas of the Bolivian river dolphin (BRD - Inia geoffrensis boliviensis). Generalized linear models (GLMs) were used to assess population trends. The most supported model does not definitively indicate a decline in population. The estimated mean annual rate of population change for BRDs over the 24-year monitoring period was -0.0115 per year. The average count of BRDs in the Ibare River is lower (mean = 20, n = 4) compared to the mean of Tijamuchi (mean = 260, n = 4), and the same pattern is observed with the Mamore River (mean = 76, n = 4). There is tentative visual evidence of negative trend for the count of BRD based on the GLM curves, but the statistics are still inconclusive to the sub-basin of the Mamore River. This study highlights the importance of continue with monitoring efforts on river dolphin populations. Similar population dynamics are observed in other river dolphin species in the Amazon region, requiring immediate actions to reduce mortality and reverse the concerning decreasing trend exhibited by these populations.
Collapse
Affiliation(s)
- Luis A. Guizada Duran
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Institute of Ecology, Universidad Mayor de San Andrés, La Paz, Bolivia
| | | | - Mariana Paschoalini Frias
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- World Wide Fund for Nature–Brazil, Brasília, BR
| | - Alexandre N. Zerbini
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Cooperative Institute for Climate, Ocean and Ecosystem Studies, University of Washington & National Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, Seattle, WA, United States America
- Marine Ecology and Telemetry Research, Seabeck, WA, United States America
- Institute Aquile, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
13
|
Fernandes TV, Parr CL, Campos RI, Neves FDS, Solar R. Scavenging in two mountain ecosystems: Distinctive contribution of ants in grassland and non-ant invertebrates in forest. Ecology 2024; 105:e4365. [PMID: 38895926 DOI: 10.1002/ecy.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024]
Abstract
Scavenging is a key process for the cycling of nutrients in ecosystems, yet it is still neglected in the ecological literature. Apart from the importance of specific groups of animals in scavenging, there have been few ecological studies that compare them. Furthermore, the ecological studies on scavenging have mainly focused on vertebrates despite the crucial importance of invertebrates in this process. Here, we performed a large-scale ant suppression and vertebrate exclusion experiment to quantify the relative contribution of ants, non-ant invertebrates and vertebrates in scavenging nitrogen-rich (insect carcasses) and carbon-rich (seeds) baits in two contrasting mountainous habitats in Brazil (grasslands and forests). Overall, bait removal was 23.2% higher in forests than in grasslands. Ants were the primary scavengers in grasslands, responsible for more than 57% of dead insect larvae and seed removal, while, in forests, non-ant invertebrates dominated, removing nearly 65% of all baits. Vertebrates had a minor role in scavenging dead insect larvae and seeds in both habitats, with <4% of removals. Furthermore, our results show that animal-based baits were more consumed in forests than seeds, and both resources were equally consumed in grasslands. Therefore, we demonstrate the superiority of invertebrates in this process, with a particular emphasis on the irreplaceable role of ants, especially in this grassland ecosystem. As such, we further advance our knowledge of a key ecosystem process, showing the relative importance of three major groups in scavenging and the differences in ecosystems functioning between two contrasting tropical habitats.
Collapse
Affiliation(s)
- Tiago Vinícius Fernandes
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Vale do Jequitinhonha e Mucuri, Diamantina, Brazil
- Programa de Pós-Graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Catherine L Parr
- School of Environmental Sciences, The University of Liverpool, Liverpool, UK
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | | | | | - Ricardo Solar
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Denny S, Englander G, Hunnicutt P. Private management of African protected areas improves wildlife and tourism outcomes but with security concerns in conflict regions. Proc Natl Acad Sci U S A 2024; 121:e2401814121. [PMID: 38950358 PMCID: PMC11260162 DOI: 10.1073/pnas.2401814121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Protected areas can conserve wildlife and benefit people when managed effectively. African governments increasingly delegate the management of protected areas to private, nongovernmental organizations, hoping that private organizations' significant resources and technical capacities actualize protected areas' potential. Does private sector management improve outcomes compared to a counterfactual of government management? We leverage the transfer of management authority from governments to African Parks (AP)-the largest private manager of protected areas in Africa-to show that private management significantly improves wildlife outcomes via reduced elephant poaching and increased bird abundances. Our results also suggest that AP's management augments tourism, while the effect on rural wealth is inconclusive. However, AP's management increases the risk of armed groups targeting civilians, which could be an unintended outcome of AP's improved monitoring and enforcement systems. These findings reveal an intricate interplay between conservation, economic development, and security under privately managed protected areas in Africa.
Collapse
Affiliation(s)
- Sean Denny
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA93117
| | | | - Patrick Hunnicutt
- Environmental Science and Policy, Chapman University, Orange, CA92866
- School of Planning, Public Policy, and Management, University of Oregon, Eugene, OR97403
| |
Collapse
|
15
|
Nunes BZ, Ribeiro VV, Garcia Y, Lourenço RA, Castro ÍB. Chemical contamination affecting filter-feeding bivalves in no-take marine protected areas from Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121102. [PMID: 38759561 DOI: 10.1016/j.jenvman.2024.121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Marine protected areas (MPAs) are zones geographically delimited under pre-defined management goals, seeking to reduce anthropogenic threats to biodiversity. Despite this, in recent years reports of MPAs affected by chemical contamination has grown. Therefore, this study addresses this critical issue assessing legacy and current chemical contamination in filter-feeder bivalves obtained in very restrictive no-take MPAs from Brazil. The detected pollutants encompass polycyclic aromatic hydrocarbons (PAHs), linear alkylbenzenes (LABs), and persistent organic pollutants (POPs) like dichlorodiphenyltrichloroethane (DDTs) and polychlorinated biphenyls (PCBs). Despite protective measures, bivalves from nine MPAs exhibited high LABs (13.2-1139.0 ng g-1) and DDTs levels (0.1-62.3 ng g-1). PAHs were present in low concentrations (3.1-29.03 ng g-1), as PCBs (0.7-6.4 ng g-1), hexachlorobenzene (0.1-0.2 ng g-1), and Mirex (0.1-0.3 ng g-1). Regardless of the sentinel species, MPAs and management categories, similar accumulation patterns were observed for LABs, DDTs, PAHs, and PCBs. Based on the limits proposed by Oslo Paris Commission, the measured levels of PAHs, PCBs and were below the environmental assessment criteria. Such findings indicate the no biological effects are expected to occur. However, they are higher considering background conditions typically measured in remote or pristine areas and potential simultaneous exposure. Such findings indicate an influence of anthropogenic sources, emphasizing the urgency for monitoring programs guiding strategic management efforts to safeguard these areas.
Collapse
Affiliation(s)
- Beatriz Zachello Nunes
- Programa de Pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, Brazil
| | | | - Yonara Garcia
- Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, Brazil
| | | | - Ítalo Braga Castro
- Programa de Pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR-UNIFESP), Santos, Brazil.
| |
Collapse
|
16
|
Summers J, Cosgrove EJ, Bowman R, Fitzpatrick JW, Chen N. Impacts of increasing isolation and environmental variation on Florida Scrub-Jay demography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575127. [PMID: 38260596 PMCID: PMC10802623 DOI: 10.1101/2024.01.10.575127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Isolation caused by anthropogenic habitat fragmentation can destabilize populations. Populations relying on the inflow of immigrants can face reduced fitness due to inbreeding depression as fewer new individuals arrive. Empirical studies of the demographic consequences of isolation are critical to understand how populations persist through changing conditions. We used a 34-year demographic and environmental dataset from a population of cooperatively-breeding Florida Scrub-Jays ( Aphelocoma coerulescens ) to create mechanistic models linking environmental and demographic factors to population growth rates. We found that the population has not declined despite both declining immigration and increasing inbreeding, owing to a coinciding response in breeder survival. We find evidence of density-dependent immigration, breeder survival, and fecundity, indicating that interactions between vital rates and local density play a role in buffering the population against change. Our study elucidates the impacts of isolation on demography and how long-term stability is maintained via demographic responses.
Collapse
|
17
|
Lewis R, Pointer MD, Friend L, Gage MJG, Spurgin LG. Tests of evolutionary and genetic rescue using flour beetles, Tribolium castaneum, experimentally evolved to thermal conditions. Ecol Evol 2024; 14:e11313. [PMID: 38694756 PMCID: PMC11056960 DOI: 10.1002/ece3.11313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Small, isolated populations are often characterised by low levels of genetic diversity. This can result in inbreeding depression and reduced capacity to adapt to changes in the environment, and therefore higher risk of extinction. However, sometimes these populations can be rescued if allowed to increase in size or if migrants enter, bringing in new allelic variation and thus increasing genetic diversity. This study uses experimental manipulation of population size and migration to quantify their effects on fitness in a challenging environment to better understand genetic rescue. Using small, replicated populations of Tribolium castaneum experimentally evolved to different temperature regimes we tested genetic and demographic rescue, by performing large-scale manipulations of population size and migration and examining fitness consequences over multiple generations. We measured fitness in high temperature (38°C) thermal lines maintained at their usual 'small' population size of N = 100 individuals, and with 'large' scaled up duplicates containing N≈10,000 individuals. We compared these large lines with and without migration (m = 0.1) for 10 generations. Additionally, we assessed the effects of outcrossing at an individual level, by comparing fitness of hybrid (thermal line × stock) offspring with within-line crosses. We found that, at the population level, a rapid increase in the number of individuals in the population resulted in reduced fitness (represented by reproductive output and survival through heatwave conditions), regardless of migration. However, at an individual level, the hybrid offspring of migrants with native individuals generally demonstrated increased longevity in high temperature conditions compared with individuals from thermal selection lines. Overall, these populations showed no evidence that demographic manipulations led to genetic or evolutionary rescue. Following the effects of migration in individuals over several generations may be the next step in unravelling these conflicting results. We discuss these findings in the context of conservation intervention.
Collapse
Affiliation(s)
- Rebecca Lewis
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | - Lucy Friend
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
18
|
Durand-Bessart C, Akomo-Okoue EF, Ebang Ella GW, Porcher V, Bitome Essono PY, Bretagnolle F, Fontaine C. Local people enhance our understanding of Afrotropical frugivory networks. Curr Biol 2024; 34:1541-1548.e3. [PMID: 38452760 DOI: 10.1016/j.cub.2024.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Afrotropical forests are undergoing massive change caused by defaunation, i.e., the human-induced decline of animal species,1 most of which are frugivorous species.1,2,3 Frugivores' depletion and their functional disappearance are expected to cascade on tree dispersal and forest structure via interaction networks,4,5,6,7 as the majority of tree species depend on frugivores for their dispersal.8 However, frugivory networks remain largely unknown, especially in Afrotropical areas,9,10,11 which considerably limits our ability to predict changes in forest dynamics and structures using network analysis.12,13,14,15 While the academic workforce may be inadequate to fill this knowledge gap before it is too late, local ecological knowledge appears as a valuable source of ecological information and could significantly contribute to our understanding of such crucial interactions for tropical forests.16,17,18,19,20,21 To investigate potential synergies between local ecological knowledge and academic knowledge,20,21 we compiled frugivory interactions linking 286 trees to 100 frugivore species from the academic literature and local ecological knowledge coming from interviews of Gabonese forest-dependent people. Here, we showed that local ecological knowledge on frugivory interactions was substantial and original, with 39% of these interactions unknown by science. We demonstrated that combining academic and local ecological knowledge affects the functional relationship linking frugivore body mass to seed size, as well as the network structure. Our results highlight the benefits of bridging knowledge systems between academics and local communities for a better understanding of the functioning and response to perturbations of Afrotropical forests.
Collapse
Affiliation(s)
- Clémentine Durand-Bessart
- Biogeosciences, UMR 6282, Université Bourgogne Franche Comte-CNRS, 21000 Dijon, France; Centre d'Ecologie et des Sciences de la Conservation, CESCO, UMR 7204, MNHN-CNRS-SU, 75005 Paris, France; SENS, IRD, CIRAD, 34000 Montpellier, France.
| | | | | | - Vincent Porcher
- Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; SENS, IRD, CIRAD, 34000 Montpellier, France
| | | | - François Bretagnolle
- Biogeosciences, UMR 6282, Université Bourgogne Franche Comte-CNRS, 21000 Dijon, France
| | - Colin Fontaine
- Centre d'Ecologie et des Sciences de la Conservation, CESCO, UMR 7204, MNHN-CNRS-SU, 75005 Paris, France
| |
Collapse
|
19
|
Jankauskas L, Pinho GLL, Sanz-Lazaro C, Casado-Coy N, Rangel DF, Ribeiro VV, Castro ÍB. Microplastic in clams: An extensive spatial assessment in south Brazil. MARINE POLLUTION BULLETIN 2024; 201:116203. [PMID: 38422825 DOI: 10.1016/j.marpolbul.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Microplastic pollution is becoming a continuously growing environmental concern, while bivalve mollusks are particularly vulnerable due to their sessile habits and feeding through water filtration processes. Microplastic incidence in soft tissues of the clam Amarilladesma mactroides was assessed along unconsolidated substrates distributed in extensive coastal regions of southern Brazil. Influence of urbanization levels, distance to rivers and local hydrodynamics on microplastic accumulation by the clam was tested. The average concentration of microplastics was high (3.09 ± 2.11 particles.g-1), considering 16 sampled sites. Particles were mainly composed by polyamide, polyethylene and polyethylene terephthalate, while were mainly smaller, fibrous and colorless. High urbanization and closer proximity to rivers insured higher contamination, which is a trend observed globally. No influence of coastal hydrodynamics was seen. Considering obtained findings, A. mactroides presents good potential to be used as a valuable tool to assess microplastic contamination in unconsolidated substrates of beach areas.
Collapse
Affiliation(s)
- Laura Jankauskas
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | | | - Carlos Sanz-Lazaro
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain
| | - Nuria Casado-Coy
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, Spain
| | | | | | - Ítalo Braga Castro
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil; Instituto do Mar, Universidade Federal de São Paulo, Santos, Brazil.
| |
Collapse
|
20
|
Pereira WG, Almeida ACD, Barros-Alves SDP, Alves DFR. Species distribution models to predict the impacts of environmental disasters on shrimp species of economic interest. MARINE POLLUTION BULLETIN 2024; 201:116162. [PMID: 38401388 DOI: 10.1016/j.marpolbul.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Here, we used distribution models to predict the size of the environmentally suitable area for shrimps of fishing interest that were impacted by the tailing plume from the collapse of the Fundão Dam, one of the largest ecological disasters ever to occur in Brazil. Species distribution models (SDMs) were generated for nine species of penaeid shrimp that occurred in the impacted region. Average temperature showed the highest percentage of contribution for SDMs. The environmental suitability of penaeids varied significantly in relation to the distance to the coast and mouth river. The area of environmental suitability of shrimps impacted by tailings plumes ranged from 27 to 47 %. Notably, three protected areas displayed suitable conditions, before the disaster, for until eight species. The results obtained by the SDMs approach provide crucial information for conservation and restoration efforts of coastal biodiversity in an impacted region with limited prior knowledge about biodiversity distribution.
Collapse
Affiliation(s)
- Wanessa Gomes Pereira
- Laboratório de Ecologia de Ecossistemas Aquáticos (LEEA), Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ariádine Cristine de Almeida
- Laboratório de Ecologia de Ecossistemas Aquáticos (LEEA), Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Samara de Paiva Barros-Alves
- Departamento de Ciências Agrárias e Naturais (DECAN), Universidade do Estado de Minas Gerais, Ituiutaba, Minas Gerais, Brazil.
| | - Douglas Fernandes Rodrigues Alves
- Laboratório de Ecologia de Ecossistemas Aquáticos (LEEA), Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
21
|
Karabanina E, Lansink GMJ, Ponnikas S, Kvist L. A renewed glance at the Palearctic golden eagle: Genetic variation in space and time. Ecol Evol 2024; 14:e11109. [PMID: 38469039 PMCID: PMC10925523 DOI: 10.1002/ece3.11109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Anthropogenic pressures on nature have been causing population declines for centuries. Intensified persecution of apex predators, like the golden eagle, resulted in population bottlenecks during the 19th and 20th centuries. To study population genetics and demographic history of the golden eagle throughout its distribution, we collected museum samples from previously underrepresented regions, such as Russia and Central Asia. We used 12 microsatellite loci and a fragment of the mitochondrial DNA control region to re-evaluate phylogeography of Eurasian golden eagles and study the impacts of the population bottleneck. Our results revealed a north-south genetic gradient, expressed by the difference between Mediterranean and Holarctic lineages, as well as genetically distinct Northern Europe and Central Asia and Caucasus regions. Furthermore, Northern Europe exhibited the lowest, whereas Central Asia and Caucasus had the highest genetic diversity. Although golden eagles maintained relatively high genetic diversity, we detected genetic signatures of the recent bottleneck, including reduced genetic diversity and a decline in the effective female population size around the year 1975. Our study improves the knowledge of the genetic composition of Eurasian golden eagles and highlights the importance of understanding their historical population dynamics in the face of ongoing and future conservation efforts.
Collapse
Affiliation(s)
| | | | - Suvi Ponnikas
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Laura Kvist
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
22
|
Horoszowski-Fridman YB, Izhaki I, Katz SM, Barkan R, Rinkevich B. Shifting reef restoration focus from coral survivorship to biodiversity using Reef Carpets. Commun Biol 2024; 7:141. [PMID: 38297065 PMCID: PMC10830465 DOI: 10.1038/s42003-024-05831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
To enhance the practice of farmed-coral transplantation, we conducted a trial of an approach called "Reef Carpets" (RC), which draws inspiration from the commercial turf-grass sod in land-based lawn gardening. Three 8.4m2 RCs were established on a sandy seabed, containing preselected combinations of branching corals (Acropora cf. variabilis, Pocillopora damicornis, Stylophora pistillata) with nursery recruited dwellers, and were monitored for 17-months. Corals within RCs grew, supported coral recruitment and offered ecological habitats for coral-associated organisms. While the unstable sediment underneath the RCs increased corals' partial mortalities, corals managed to grow and propagate. The extent of fish and gastropods corallivory varied among the coral species and planulation of Stylophora transplants was significantly higher than same-size natal-colonies. The RCs provided conducive environments for fish/invertebrate communities (183 taxa), and each coral species influenced specifically species-diversity and reef-associated communities. Even dead corals played crucial roles as habitats for reef biota, sustaining >80% of the RCs diversity; hence, they should not be considered automatically as indicators of failure. RCs scaled-up reef restoration and generated, in short periods, new reefs in denuded zones with enhanced biodiversity. Yet, RCs employment on soft-beds could be improved by using more structured artificial frameworks, requiring further research efforts.
Collapse
Affiliation(s)
- Yael B Horoszowski-Fridman
- Israel Oceanographic and Limnological Research, Tel-Shikmona, Haifa, 31080, Israel
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel
| | - Ido Izhaki
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel
| | - Sefano M Katz
- The School of Marine Sciences, Ruppin Academic Center, Michmoret, 40297, Israel
- Pacific Blue Foundation, PO Box 13306, Suva, Fiji Islands
| | - Ronen Barkan
- The School of Marine Sciences, Ruppin Academic Center, Michmoret, 40297, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, Tel-Shikmona, Haifa, 31080, Israel.
| |
Collapse
|
23
|
Dijoux S, Pichon NA, Sentis A, Boukal DS. Body size and trophic position determine the outcomes of species invasions along temperature and productivity gradients. Ecol Lett 2024; 27:e14310. [PMID: 37811596 DOI: 10.1111/ele.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
Species invasions are predicted to increase in frequency with global change, but quantitative predictions of how environmental filters and species traits influence the success and consequences of invasions for local communities are lacking. Here we investigate how invaders alter the structure, diversity and stability regime of simple communities across environmental gradients (habitat productivity, temperature) and community size structure. We simulate all three-species trophic modules (apparent and exploitative competition, trophic chain and intraguild predation). We predict that invasions most often succeed in warm and productive habitats and that successful invaders include smaller competitors, intraguild predators and comparatively small top predators. This suggests that species invasions and global change may facilitate the downsizing of food webs. Furthermore, we show that successful invasions leading to species substitutions rarely alter system stability, while invasions leading to increased diversity can destabilize or stabilize community dynamics depending on the environmental conditions and invader's trophic position.
Collapse
Affiliation(s)
- Samuel Dijoux
- Department of Ecosystems Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Noémie A Pichon
- Ecology and Genetics Unit, Faculty of Science, University of Oulu, Oulu, Finland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Arnaud Sentis
- INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - David S Boukal
- Department of Ecosystems Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
24
|
De-la-Torre GE, Dioses-Salinas DC, Pizarro-Ortega CI, Forero López AD, Fernández Severini MD, Rimondino GN, Malanca FE, Dobaradaran S, Aragaw TA, Mghili B, Ayala F. Plastic and paint debris in marine protected areas of Peru. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165788. [PMID: 37524177 DOI: 10.1016/j.scitotenv.2023.165788] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Contamination with anthropogenic debris, such as plastic and paint particles, has been widely investigated in the global marine environment. However, there is a lack of information regarding their presence in marine protected areas (MPAs). In the present study, the abundance, distribution, and chemical characteristics of microplastics (MPs; <5 mm), mesoplastics (MePs; 5-25 mm), and paint particles were investigated in multiple environmental compartments of two MPAs from Peru. The characteristics of MPs across surface water, bottom sediments, and fish guts were similar, primarily dominated by blue fibers. On the other hand, MePs and large MPs (1-5 mm) were similar across sandy beaches. Several particles were composite materials consisting of multiple layers confirmed as alkyd resins by Fourier-transformed infrared spectroscopy, which were typical indicators of marine coatings. The microstructure of paint particles showed differentiated topography across layers, as well as different elemental compositions. Some layers displayed amorphous structures with Ba-, Cr-, and Ti-based additives. However, the leaching and impact of potentially toxic additives in paint particles require further investigation. The accumulation of multiple types of plastic and paint debris in MPAs could pose a threat to conservation goals. The current study contributed to the knowledge regarding anthropogenic debris contamination in MPAs and further elucidated the physical and chemical properties of paint particles in marine environments. While paint particles may look similar to MPs and MePs, more attention should be given to these contaminants in places where intense maritime activity takes place.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fabio Ernesto Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco
| | - Félix Ayala
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
25
|
Brasileiro L, Mayrink RR, Pereira AC, Costa FJV, Nardoto GB. Differentiating wild from captive animals: an isotopic approach. PeerJ 2023; 11:e16460. [PMID: 38025752 PMCID: PMC10680447 DOI: 10.7717/peerj.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Wildlife farming can be an important but complex tool for conservation. To achieve conservation benefits, wildlife farming should meet a variety of criteria, including traceability conditions to identify the animals' origin. The traditional techniques for discriminating between wild and captive animals may be insufficient to prevent doubts or misdeclaration, especially when labels are not expected or mandatory. There is a pressing need to develop more accurate techniques to discriminate between wild and captive animals and their products. Stable isotope analysis has been used to identify animal provenance, and some studies have successfully demonstrated its potential to differentiate wild from captive animals. In this literature review, we examined an extensive collection of publications to develop an overall picture of the application of stable isotopes to distinguish between wild and captive animals focusing on evaluating the patterns and potential of this tool. Survey methodology We searched peer-reviewed publications in the Web of Science database and the references list from the main studies on the subject. We selected and analyzed 47 studies that used δ13C, δ15N, δ2H, δ18O, and δ34S in tissues from fish, amphibians, reptiles, birds, and mammals. We built a database from the isotope ratios and metadata extracted from the publications. Results Studies have been using stable isotopes in wild and captive animals worldwide, with a particular concentration in Europe, covering all main vertebrate groups. A total of 80.8% of the studies combined stable isotopes of carbon and nitrogen, and 88.2% used at least one of those elements. Fish is the most studied group, while amphibians are the least. Muscle and inert organic structures were the most analyzed tissues (46.81% and 42.55%). δ13C and δ15N standard deviation and range were significantly higher in the wild than in captive animals, suggesting a more variable diet in the first group. δ13C tended to be higher in wild fishes and in captive mammals, birds, reptiles, and amphibians. δ15N was higher in the wild terrestrial animals when controlling for diet. Only 5.7% of the studies failed to differentiate wild and captive animals using stable isotopes. Conclusions This review reveals that SIA can help distinguish between wild and captive in different vertebrate groups, rearing conditions, and methodological designs. Some aspects should be carefully considered to use the methodology properly, such as the wild and captivity conditions, the tissue analyzed, and how homogeneous the samples are. Despite the increased use of SIA to distinguish wild from captive animals, some gaps remain since some taxonomic groups (e.g., amphibians), countries (e.g., Africa), and isotopes (e.g., δ2H, δ18O, and δ34S) have been little studied.
Collapse
Affiliation(s)
- Luiza Brasileiro
- Diretoria de Fiscalização Ambiental, Brasilia Ambiental, Brasília, DF, Brazil
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Rodrigo Ribeiro Mayrink
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
- Setor Técnico-Científico, Policia Federal, Belo Horizonte, MG, Brazil
| | - André Costa Pereira
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Gabriela Bielefeld Nardoto
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
26
|
Warne RK, Chaber AL. Assessing Disease Risks in Wildlife Translocation Projects: A Comprehensive Review of Disease Incidents. Animals (Basel) 2023; 13:3379. [PMID: 37958133 PMCID: PMC10649731 DOI: 10.3390/ani13213379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Although translocation projects have been instrumental in the supplementation or restoration of some wild populations, they also carry a large risk of disease transmission to native and translocated animals. This study systematically reviewed conservation translocation projects to identify projects that met the criteria for a translocation significant disease incursion (TSDI), whereby the translocation resulted in negative population growth rates or the failure of populations to grow due to an infectious disease-either in the native or translocated species. In doing so, risk factors for these incidents could be identified. Analysis of the resulting 30 TSDIs demonstrated that there was equal representation of TSDIs using wild-caught and captive-bred animals. Additionally, the type of pathogen predisposed in a TSDI was more likely a result of the animal group translocated (e.g., fungal pathogens were more likely to be detected in amphibian translocations) and it was nearly five times more likely for a disease to be encountered by a translocated species than for a disease to be introduced to a native population. However, there are numerous project-specific predisposing factors for TSDIs, and therefore it is essential that future translocation projects conduct thorough disease risk analysis as well as report their outcomes for the benefit of their own and future translocations.
Collapse
Affiliation(s)
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Mudla Wirra Road, Roseworthy, SA 5371, Australia
| |
Collapse
|
27
|
Finn C, Grattarola F, Pincheira-Donoso D. More losers than winners: investigating Anthropocene defaunation through the diversity of population trends. Biol Rev Camb Philos Soc 2023; 98:1732-1748. [PMID: 37189305 DOI: 10.1111/brv.12974] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
The global-scale decline of animal biodiversity ('defaunation') represents one of the most alarming consequences of human impacts on the planet. The quantification of this extinction crisis has traditionally relied on the use of IUCN Red List conservation categories assigned to each assessed species. This approach reveals that a quarter of the world's animal species are currently threatened with extinction, and ~1% have been declared extinct. However, extinctions are preceded by progressive population declines through time that leave demographic 'footprints' that can alert us about the trajectories of species towards extinction. Therefore, an exclusive focus on IUCN conservation categories, without consideration of dynamic population trends, may underestimate the true extent of the processes of ongoing extinctions across nature. In fact, emerging evidence (e.g. the Living Planet Report), reveals a widespread tendency for sustained demographic declines (an average 69% decline in population abundances) of species globally. Yet, animal species are not only declining. Many species worldwide exhibit stable populations, while others are even thriving. Here, using population trend data for >71,000 animal species spanning all five groups of vertebrates (mammals, birds, reptiles, amphibians and fishes) and insects, we provide a comprehensive global-scale assessment of the diversity of population trends across species undergoing not only declines, but also population stability and increases. We show a widespread global erosion of species, with 48% undergoing declines, while 49% and 3% of species currently remain stable or are increasing, respectively. Geographically, we reveal an intriguing pattern similar to that of threatened species, whereby declines tend to concentrate around tropical regions, whereas stability and increases show a tendency to expand towards temperate climates. Importantly, we find that for species currently classed by the IUCN Red List as 'non-threatened', 33% are declining. Critically, in contrast with previous mass extinction events, our assessment shows that the Anthropocene extinction crisis is undergoing a rapid biodiversity imbalance, with levels of declines (a symptom of extinction) greatly exceeding levels of increases (a symptom of ecological expansion and potentially of evolution) for all groups. Our study contributes a further signal indicating that global biodiversity is entering a mass extinction, with ecosystem heterogeneity and functioning, biodiversity persistence, and human well-being under increasing threat.
Collapse
Affiliation(s)
- Catherine Finn
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Florencia Grattarola
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Daniel Pincheira-Donoso
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
28
|
Poulsen JR, Maicher V, Malinowski H, DeSisto C. Situating defaunation in an operational framework to advance biodiversity conservation. Bioscience 2023; 73:721-727. [PMID: 37854893 PMCID: PMC10580966 DOI: 10.1093/biosci/biad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Anthropogenic pressures are causing the widespread loss of wildlife species and populations, with adverse consequences for ecosystem functioning. This phenomenon has been widely but inconsistently referred to as defaunation. A cohesive, quantitative framework for defining and evaluating defaunation is necessary for advancing biodiversity conservation. Likening defaunation to deforestation, we propose an operational framework for defaunation that defines it and related terms, situates defaunation relative to intact communities and faunal degradation, and encourages quantitative, ecologically reasonable, and equitable measurements. We distinguish between defaunation, the conversion of an ecosystem from having wild animals to not having wild animals, and faunal degradation, the process of losing animals or species from an animal community. The quantification of context-relevant defaunation boundaries or baselines is necessary to compare faunal communities over space and time. Situating a faunal community on the degradation curve can promote Global Biodiversity Framework targets, advancing the 2050 Vision for Biodiversity.
Collapse
Affiliation(s)
- John R Poulsen
- The Nature Conservancy, Boulder, Colorado, United States
- Duke University, Durham, North Carolina, United States
| | - Vincent Maicher
- CAFI Forest Research and Monitoring for The Nature Conservancy, Gabon
| | | | - Camille DeSisto
- Nicholas School of the Environment, Duke University, United States
| |
Collapse
|
29
|
Boiten G, Dekegel S, Tagg N, Willie J. Defaunation is known to have pervasive, negative effects on tropical forests, but this is not the whole story. PLoS One 2023; 18:e0290717. [PMID: 37651368 PMCID: PMC10470957 DOI: 10.1371/journal.pone.0290717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
Ecosystem functioning and integrity are affected by the loss of large-bodied animals, and comprehending when and how ecosystems are affected is an important goal of defaunation ecology. Despite considerable investigation, our understanding is incomplete. Previous research is biased towards the study of seed dispersal in the Neotropics. This study examined whether and how defaunation affects stem density, species diversity, species composition, spatial distribution, and dispersal mode composition of young understorey plants in an Afrotropical setting. Rectangular plots along transects and wedge-shaped plots under focal trees of five mammal-dispersed species were used to compare three sites representing a defaunation gradient in the Dja faunal reserve in Cameroon. Results showed no change in stem density. Woody plant diversity was highest in the most defaunated site, and compositional differences were noted. Under focal trees, the overall abundance of both seedlings and juveniles was similar. The most defaunated site had the highest number of seedlings far from parent trees. More juvenile stems occurred near parent trees in the least defaunated site. This surprising trend might result from fruit dispersal by small, surviving animals and humans more easily collecting fruits, for food or medicinal purposes, in defaunated, more accessible sites. Negligible or no differences in the abundance of animal-dispersed species and other dispersal modes emerged. This study highlights the roles of extant taxa as surrogate providers of ecological services in defaunated Afrotropical forests. Hence, functional compensation is a serious possibility. Additionally, conceptual models of defaunation consequences that exclude the role of humans may not reflect real-world situations. Overall, these investigations suggest that tropical forests, especially those where ecological niches are less partitioned, may be more resilient to defaunation pressures than is often assumed. Effectively conserving extant, and perhaps less iconic, animal species provides hope for defaunated forests.
Collapse
Affiliation(s)
- Gust Boiten
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Steffi Dekegel
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nikki Tagg
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
- Born Free Foundation, Horsham, United Kingdom
| | - Jacob Willie
- Centre for Research and Conservation, Royal Zoological Society of Antwerp, Antwerp, Belgium
| |
Collapse
|
30
|
Martins MF, Costa PG, Guerreiro ADS, Bianchini A. Consequences of prenatal exposure to contaminants in elasmobranchs: Biochemical outcomes during the embryonic development of Pseudobatos horkelii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121276. [PMID: 36791946 DOI: 10.1016/j.envpol.2023.121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Coastal elasmobranchs are vulnerable to chemicals mostly due to their k-strategic life history characteristics and high trophic positions. Embryos might be particularly exposed through the maternal offloading of contaminants, possibly leading to disruptions during critical developmental phases. Yet, knowledge on biochemical outcomes of prenatal exposure in elasmobranchs is notably limited. Therefore, we aimed to investigate the effects of prenatal exposure to contaminants in embryos of the critically endangered Brazilian guitarfish, Pseudobatos horkelii. Polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pharmaceuticals and personal care products, and metals were determined in embryos. Additionally, glutathione S-transferase activity (GST), glutathione (GSH), and metallothionein levels (MT) were analyzed. Finally, lipid peroxidation levels (LPO) and protein carbonyl groups (PCO) were assessed. Embryonic exposure depended on yolk consumption, which was conspicuous in earlier development. We observed a dilution effect of contaminants levels, potentially related to biotransformation of these compounds throughout the embryonic development. Nevertheless, GST was not correlated to contaminant concentrations. The multivariate relationship between antioxidant components (GSH and GST) and LPO and PCO was negative, suggesting the lack of efficient defense of these biomarkers in early development, leading to oxidative damage. In this context, our results indicate that prenatal exposure to contaminants might impact the redox status in embryos of P. horkelii, leading to oxidative damage. Furthermore, metal concentrations influenced MT levels, suggesting this as a potential detoxification pathway in this species.
Collapse
Affiliation(s)
- Mariana F Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil.
| | - Patrícia G Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Amanda da S Guerreiro
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo - USP. Rua do Matão, Trav. 14, São Paulo, SP, 05508-090, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália Km 8, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
31
|
De León LF, Silva B, Avilés-Rodríguez KJ, Buitrago-Rosas D. Harnessing the omics revolution to address the global biodiversity crisis. Curr Opin Biotechnol 2023; 80:102901. [PMID: 36773576 DOI: 10.1016/j.copbio.2023.102901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Human disturbances are altering global biodiversity in unprecedented ways. We identify three fundamental challenges underpinning our understanding of global biodiversity (namely discovery, loss, and preservation), and discuss how the omics revolution (e.g. genomics, transcriptomics, proteomics, metabolomics, and meta-omics) can help address these challenges. We also discuss how omics tools can illuminate the major drivers of biodiversity loss, including invasive species, pollution, urbanization, overexploitation, and climate change, with a special focus on highly diverse tropical environments. Although omics tools are transforming the traditional toolkit of biodiversity research, their application to addressing the current biodiversity crisis remains limited and may not suffice to offset current rates of biodiversity loss. Despite technical and logistical challenges, omics tools need to be fully integrated into global biodiversity research, and better strategies are needed to improve their translation into biodiversity policy and practice. It is also important to recognize that although the omics revolution can be considered the biologist's dream, socioeconomic disparity limits their application in biodiversity research.
Collapse
Affiliation(s)
- Luis F De León
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Bruna Silva
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kevin J Avilés-Rodríguez
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA; Department of Biology, Fordham University, Bronx, NY, USA
| | | |
Collapse
|
32
|
Mayer LB, Mellado B, Ruiz-Miranda CR, Nogueira MR, Monteiro LR. Diversity profiles of medium and large-size mammals in an Atlantic Forest remnant: seasonal and spatial patterns. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2023. [DOI: 10.1080/01650521.2023.2180198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Luana Burg Mayer
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Breno Mellado
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Carlos Ramon Ruiz-Miranda
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Marcelo R. Nogueira
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Leandro R. Monteiro
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Tobajas J, Ramos‐López B, Piqué J, Sanchez‐Rojas G. Predation risk in tree squirrels: implications of the presence of free‐ranging dogs. J Zool (1987) 2023. [DOI: 10.1111/jzo.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J. Tobajas
- Departamento de Botánica, Ecología y Fisiología Vegetal Universidad de Córdoba Córdoba Spain
- Instituto de Investigación en Recursos Cinegéticos (IREC, CISC‐UCLM‐JCCM) Ciudad Real Spain
- Instituto de Ciencias Básicas e Ingeniería, (UAEH), Área Académica de Biología, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Mexico
| | - B. Ramos‐López
- Instituto de Investigación en Recursos Cinegéticos (IREC, CISC‐UCLM‐JCCM) Ciudad Real Spain
- TYC GIS Soluciones Integrales S.L. Madrid Spain
| | - J. Piqué
- TRAGSATEC, Calle Julián Camarillo 6B Madrid Spain
| | - G. Sanchez‐Rojas
- Instituto de Ciencias Básicas e Ingeniería, (UAEH), Área Académica de Biología, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Mexico
| |
Collapse
|
34
|
Yan Z, Tan M. Changes in light pollution in the Pan-Third Pole's protected areas from 1992 to 2021. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
35
|
Genung MA, Reilly J, Williams NM, Buderi A, Gardner J, Winfree R. Rare and declining bee species are key to consistent pollination of wildflowers and crops across large spatial scales. Ecology 2023; 104:e3899. [PMID: 36263772 DOI: 10.1002/ecy.3899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023]
Abstract
Biodiversity promotes ecosystem function (EF) in experiments, but it remains uncertain how biodiversity loss affects function in larger-scale natural ecosystems. In these natural ecosystems, rare and declining species are more likely to be lost, and function needs to be maintained across space and time. Here, we explore the importance of rare and declining bee species to the pollination of three wildflowers and three crops using large-scale (72 sites across 5000 km2 ), multi-year datasets. Half of the sampled bee species (82/164) were rare or declining, but these species provided only ~15% of overall pollination. To determine the number of species important to EF, we used two methods of "scaling up," both of which have previously been used for biodiversity-function analysis. First, we summed bee species' contributions to pollination across space and time and then found the minimum set of species needed to provide a threshold level of function across all sites; according to this method, effectively no rare and declining bee species were important to pollination. Second, we account for the "insurance value" of biodiversity by finding the minimum set of bee species needed to simultaneously provide a threshold level of function at each site in each year. The second method leads to the conclusion that 25 rare and eight declining bee species (36% and 53% of all rare and declining bee species, respectively) are included in the minimum set. Our findings provide some of the strongest evidence yet that rare and declining species are key to meeting threshold levels of EF, thereby providing a more direct link between real-world biodiversity loss and EF.
Collapse
Affiliation(s)
- Mark A Genung
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - James Reilly
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Neal M Williams
- Department of Entomology, University of California - Davis, Davis, California, USA
| | - Andrew Buderi
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Joel Gardner
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachael Winfree
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
36
|
Ewert SP, Knörnschild M, Jung K, Frommolt KH. Structurally rich dry grasslands – Potential stepping stones for bats in open farmland. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.995133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Agricultural intensification has caused decrease and fragmentation of European semi-natural dry grasslands. While a high biodiversity value of dry grasslands is acknowledged for plants and insects, locally and on landscape level, their relevance for mobile species, such as bats, is unknown. Here we investigate the use of dry grassland fragments by bats in an agriculturally intensified region in Germany and evaluate local and landscape factors influencing bat activity and assemblages. Specifically, we predicted that a combination of local dry grassland structural richness and landscape features as well as their interactions affect bat activity and foraging above dry grasslands. We also expected that these features influence compositions of local bat assemblages. We repeatedly sampled at 12 dry grassland plots with acoustic monitoring and assessed activity and foraging of bat species/sonotypes, which we grouped into guilds known for foraging in open land, at vegetation edges and in narrow spaces. We determined structural richness of the dry grassland plots in field and derived landscape features from digital landscape data. A relatively high proportion of bat species/sonotypes used dry grasslands regularly. The edge space foragers responded positively to higher local structural richness. Their dry grassland use increased when surrounding forests and woody features were less available, but they foraged more on dry grasslands closer to water bodies. Narrow space bat activity on dry grasslands decreased with less landscape connectivity. Open and narrow space foragers responded to local structural richness only in landscape context. For all bat guilds we found increased use of structurally richer dry grasslands when there was more open farmland in the surroundings. This was also the case for edge space foragers, when landscapes were more homogeneous. Lastly, with increasing structural richness, bat assemblages were more dominated by edge space foragers. We show the importance of European dry grassland fragments for the highly mobile group of bats under certain local structural and landscape compositional conditions. Our results underline the value of heterogeneous dry grassland fragments as potential stepping stones in intensively used farmland areas and contribute to evidence based decision making in dry grassland management and bat conservation.
Collapse
|
37
|
Cox DTC, Gardner AS, Gaston KJ. Diel niche variation in mammalian declines in the Anthropocene. Sci Rep 2023; 13:1031. [PMID: 36658287 PMCID: PMC9852540 DOI: 10.1038/s41598-023-28104-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Biodiversity is being eroded worldwide. Many human pressures are most forcefully exerted or have greatest effect during a particular period of the day. Therefore when species are physically active (their diel niche) may influence their risk of population decline. We grouped 5032 terrestrial extant mammals by their dominant activity pattern (nocturnal, crepuscular, cathemeral and diurnal), and determine variation in population decline across diel niches. We find an increased risk of population decline in diurnal (52.1% of species), compared to nocturnal (40.1% of species), crepuscular (39.1% of species) and cathemeral (43.0% of species) species, associated with the larger proportion of diurnal mammals that are primates. Those species with declining populations whose activity predominantly coincides with that of humans (cathemeral, diurnal) face an increased number of anthropogenic threats than those principally active at night, with diurnal species more likely to be declining from harvesting. Across much of the land surface habitat loss is the predominant driver of population decline, however, harvesting is a greater threat to day-active species in sub-Saharan Africa and mainland tropical Asia, associated with declines in megafauna and arboreal foragers. Deepening understanding of diel variation in anthropogenic pressures and resulting population declines will help target conservation actions.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Alexandra S Gardner
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
38
|
Bluhm H, Diserens TA, Engleder T, Heising K, Heurich M, Janík T, Jirků M, Klich D, König HJ, Kowalczyk R, Kuijper D, Maślanko W, Michler F, Neumann W, Oeser J, Olech W, Perzanowski K, Ratkiewicz M, Romportl D, Šálek M, Kuemmerle T. Widespread habitat for Europe's largest herbivores, but poor connectivity limits recolonization. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Hendrik Bluhm
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
| | - Tom A. Diserens
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
- Faculty of Biology University of Warsaw Warsaw Poland
| | | | - Kaja Heising
- Wisent‐Welt Wittgenstein e.V Bad Berleburg Germany
| | - Marco Heurich
- Chair of Wildlife Ecology and Wildlife Management University of Freiburg Freiburg Germany
- Department of Visitor Management and National Park Monitoring Bavarian Forest National Park Grafenau Germany
- Institute for Forest and Wildlife Management Inland Norway University of Applied Sciences Koppang Norway
| | - Tomáš Janík
- Department of Physical Geography and Geoecology, Faculty of Science Charles University Praha Czechia
- Department of Spatial Ecology The Silva Tarouca Research Institute for Landscape and Ornamental Gardening (VÚKOZ) Průhonice Czechia
| | - Miloslav Jirků
- Institute of Parasitology, Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
| | - Daniel Klich
- Department of Animal Genetics and Conservation Warsaw University of Life Sciences Warsaw Poland
| | - Hannes J. König
- Junior Research Group Human‐Wildlife Conflict and Coexistence Leibniz Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany
| | - Rafał Kowalczyk
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - Dries Kuijper
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - Weronika Maślanko
- Department of Animal Ethology and Wildlife Management University of Life Sciences in Lublin Lublin Poland
| | - Frank‐Uwe Michler
- Faculty of Forest and Environment Eberswalde University for Sustainable Development Eberswalde Germany
| | - Wiebke Neumann
- Department of Wildlife, Fish and Environmental Studies Swedish University of Agricultural Sciences
| | - Julian Oeser
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
| | - Wanda Olech
- Department of Animal Genetics and Conservation Warsaw University of Life Sciences Warsaw Poland
| | - Kajetan Perzanowski
- Institute of Biological Sciences Catholic University of Lublin Lublin Poland
| | | | - Dušan Romportl
- Department of Physical Geography and Geoecology, Faculty of Science Charles University Praha Czechia
- Department of Spatial Ecology The Silva Tarouca Research Institute for Landscape and Ornamental Gardening (VÚKOZ) Průhonice Czechia
| | - Martin Šálek
- Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic
- Faculty of Environmental Sciences Czech University of Life Sciences Prague Suchdol Czech Republic
| | - Tobias Kuemmerle
- Geography Department Humboldt‐Universität zu Berlin Berlin Germany
- Integrative Research Institute on Transformation in Human‐Environment Systems (IRI THESys) Humboldt‐Universität zu Berlin Berlin Germany
| |
Collapse
|
39
|
Nunes BZ, Huang Y, Ribeiro VV, Wu S, Holbech H, Moreira LB, Xu EG, Castro IB. Microplastic contamination in seawater across global marine protected areas boundaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120692. [PMID: 36402421 DOI: 10.1016/j.envpol.2022.120692] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Despite the relatively rich literature on the omnipresence of microplastics in marine environments, the current status and ecological impacts of microplastics on global Marine Protected Areas (MPAs) are still unknown. Their ubiquitous occurrence, increasing volume, and ecotoxicological effects have made microplastic an emerging marine pollutant. Given the critical conservation roles of MPAs that aim to protect vulnerable marine species, biodiversity, and resources, it is essential to have a comprehensive overview of the occurrence, abundance, distribution, and characteristics of microplastics in MPAs including their buffer zones. Here, extensive data were collected and screened based on 1565 peer-reviewed literature from 2017 to 2020, and a GIS-based approach was applied to improve the outcomes by considering boundary limits. Microplastics in seawater samples were verified within the boundaries of 52 MPAs; after including the buffer zones, 1/3 more (68 MPAs) were identified as contaminated by microplastics. A large range of microplastic levels in MPAs was summarized based on water volume (0-809,000 items/m3) or surface water area (21.3-1,650,000,000 items/km2), which was likely due to discrepancy in sampling and analytical methods. Fragment was the most frequently observed shape and fiber was the most abundant shape. PE and PP were the most common and also most abundant polymer types. Overall, 2/3 of available data reported that seawater microplastic levels in MPAs were higher than 12,429 items/km2, indicating that global MPAs alone cannot protect against microplastic pollution. The current limitations and future directions were also discussed toward the post-2020 Global Biodiversity Framework goals.
Collapse
Affiliation(s)
| | - Yuyue Huang
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark
| | | | - Siqi Wu
- College of Environment and Ecology, Chongqing University, 400044, China
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark
| | | | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, 5230, Odense, Denmark.
| | - Italo B Castro
- Institute of Oceanography, Universidade Federal Do Rio Grande, Brazil; Institute of Marine Science, Universidade Federal de São Paulo, Brazil
| |
Collapse
|
40
|
Martin CA, Watson CJ, de Grandpré A, Desrochers L, Deschamps L, Giacomazzo M, Loiselle A, Paquette C, Pépino M, Rainville V, Rheault G, Proulx R. The dominance-diversity dilemma in animal conservation biology. PLoS One 2023; 18:e0283439. [PMID: 36972282 PMCID: PMC10042335 DOI: 10.1371/journal.pone.0283439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The alteration of environmental conditions has two major outcomes on the demographics of living organisms: population decline of the common species and extinction of the rarest ones. Halting the decline of abundant species as well as the erosion of biodiversity require solutions that may be mismatched, despite being rooted in similar causes. In this study, we demonstrate how rank abundance distribution (RAD) models are mathematical representations of a dominance-diversity dilemma. Across 4,375 animal communities from a range of taxonomic groups, we found that a reversed RAD model correctly predicts species richness, based solely on the relative dominance of the most abundant species in a community and the total number of individuals. Overall, predictions from this RAD model explained 69% of the variance in species richness, compared to 20% explained by simply regressing species richness on the relative dominance of the most abundant species. Using the reversed RAD model, we illustrate how species richness is co-limited by the total abundance of a community and the relative dominance of the most common species. Our results highlight an intrinsic trade-off between species richness and dominance that is present in the structure of RAD models and real-world animal community data. This dominance-diversity dilemma suggests that withdrawing individuals from abundant populations might contribute to the conservation of species richness. However, we posit that the positive effect of harvesting on biodiversity is often offset by exploitation practices with negative collateral consequences, such as habitat destruction or species bycatches.
Collapse
Affiliation(s)
- Charles A Martin
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | - Louis Desrochers
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Lucas Deschamps
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Matteo Giacomazzo
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre for Research on Watershed-Aquatic Ecosystem Interactions, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Audréanne Loiselle
- Université de Montréal, Montréal, Québec, Canada
- Institut de Recherche en Biologie Végétale, Montréal, Québec, Canada
| | - Cindy Paquette
- Université du Québec à Montréal, Montréal, Québec, Canada
| | - Marc Pépino
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre for Research on Watershed-Aquatic Ecosystem Interactions, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs, Direction de la Gestion de la Faune Mauricie-Centre-du-Québec, Trois-Rivières, Québec, Canada
| | - Vincent Rainville
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre for Research on Watershed-Aquatic Ecosystem Interactions, University of Québec at Trois-Rivières, Trois-Rivières, Québec, Canada
- Ministère des Forêts, de la Faune et des Parcs, Direction de la Gestion de la Faune Mauricie-Centre-du-Québec, Trois-Rivières, Québec, Canada
| | - Guillaume Rheault
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Parcs Canada, Shawinigan, Québec, Canada
| | - Raphaël Proulx
- Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
41
|
Body mass determines the role of mammal species in a frugivore-large fruit interaction network in a Neotropical savanna. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467422000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Frugivorous mammals play an important role in maintaining biodiversity and are considered one of the main dispersers of large seeds. In this study, we describe the structure of the interaction network between non-flying mammals and seven plant species with large fruits in a megadiverse savanna-forest mosaic in the Brazilian Cerrado. We also evaluated the individual contribution of each species to the organization of the interaction network and tested whether body mass determined the mammals’ role in the network. To record frugivory events of mammals with arboreal and terrestrial habits, camera traps were installed at ground and canopy levels. We identified 18 mammal species interacting with seven plant species in 515 frugivory events. Our observations highlight an interaction network with a modular and non-nested topology and the important role of large mammals in the network structure, which reflects the importance of the group in potential seed dispersal. The extinction of large frugivorous mammals can cause several damages to ecosystem services in the Brazilian Cerrado through changes in network structure, especially threatening the survival of plant species with large fruits.
Collapse
|
42
|
Bogoni JA, Percequillo AR, Ferraz KMPMB, Peres CA. The empty forest three decades later: Lessons and prospects. Biotropica 2022. [DOI: 10.1111/btp.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juliano A. Bogoni
- Laboratório de Ecologia, Manejo e Conservação de Fauna (LEMaC), Departamento de Ciências Florestais, Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo Piracicaba Brazil
- School of Environmental Sciences University of East Anglia Norwich UK
| | - Alexandre R. Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo Piracicaba Brazil
| | - Katia M. P. M. B. Ferraz
- Laboratório de Ecologia, Manejo e Conservação de Fauna (LEMaC), Departamento de Ciências Florestais, Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo Piracicaba Brazil
| | - Carlos A. Peres
- School of Environmental Sciences University of East Anglia Norwich UK
- Instituto Juruá Manaus Brazil
| |
Collapse
|
43
|
Pires MM, Galetti M. Beyond the “empty forest”: The defaunation syndromes of Neotropical forests in the Anthropocene. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
44
|
Data collected by citizen scientists reveal the role of climate and phylogeny on the frequency of shelter types used by frogs across the Americas. ZOOLOGY 2022; 155:126052. [PMID: 36152596 DOI: 10.1016/j.zool.2022.126052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Shelters are microhabitats where animals rest and hide. These microhabitats can be used from short daily periods to long-term estivation or hibernation. Environmental conditions and the phenotypical characteristics of the animal drive habitat selection in relation to shelters. Based on this, climate regions and phylogeny are expected to affect the use of different shelter types. Although shelters are yet to be described for most anuran species, a variety of microhabitats have already been reported as shelter-sites, including dense vegetation, rock crevices, and holes in the ground. In this study, we evaluated photos of frogs for sheltering behaviour from 29 countries in the Americas deposited on the popular citizen-science platform, iNaturalist. We compared the frequency of use of different shelter types identified on the photos among different climate regions and anuran families, also testing possible phylogenetic signals. We identified 11,133 photographs of 378 frog species showing individuals hiding in shelters or in a resting position. We classified observations into 10 shelter types, with live vegetation (24.7 %) being the most commonly recorded natural shelter, followed by hole in the ground (11.4 %) and tree trunk (11.1 %). The use of different shelter types varied between arid and humid climates, and also among different anuran families. We found strong phylogenetic signal for three shelter types (hole in the ground, live vegetation, and water) and the differences in shelter use among taxa suggest a relation with body characteristics. Approximately 47 % of observations of threatened and near threatened species were in hole in the ground, while artificial habitat represented only 3.6 % of the observations in this group. The daily pattern of shelter use corroborated the nocturnal activity of most species. Our findings also expanded the description of shelter sites for 330 species that had no published information on this behaviour. This study contributes to our current knowledge about animal behaviour and highlights the use of citizen science as an effective approach to understand the natural history of amphibians at a large scale.
Collapse
|
45
|
Liu G, Kingsford RT, Callaghan CT, Rowley JJL. Anthropogenic habitat modification alters calling phenology of frogs. GLOBAL CHANGE BIOLOGY 2022; 28:6194-6208. [PMID: 35949049 PMCID: PMC9804319 DOI: 10.1111/gcb.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic habitat modification significantly challenges biodiversity. With its intensification, understanding species' capacity to adapt is critical for conservation planning. However, little is known about whether and how different species are responding, particularly among frogs. We used a continental-scale citizen science dataset of >226,000 audio recordings of 42 Australian frog species to investigate how calling-a proxy for breeding-phenology varied along an anthropogenic modification gradient. Calling started earlier and breeding seasons lengthened with increasing modification intensity. Breeding seasons averaged 22.9 ± 8.25 days (standard error) longer in the most modified compared to the least modified regions, suggesting that frog breeding activity was sensitive to habitat modification. We also examined whether calls varied along a modification gradient by analysing the temporal and spectral properties of advertisement calls from a subset of 441 audio recordings of three broadly distributed frog species. There was no appreciable effect of anthropogenic habitat modification on any of the measured call variables, although there was high variability. With continued habitat modification, species may shift towards earlier and longer breeding seasons, with largely unknown ecological consequences in terms of proximate and ultimate fitness.
Collapse
Affiliation(s)
- Gracie Liu
- Centre for Ecosystem Science, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
- Australian Museum Research InstituteAustralian MuseumSydneyNew South WalesAustralia
| | - Richard T. Kingsford
- Centre for Ecosystem Science, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
| | - Corey T. Callaghan
- Centre for Ecosystem Science, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
- German Centre for Integrative Biodiversity Research (iDiv) – HalleLeipzigGermany
- Faculty of Environmental SciencesCzech University of Life Sciences PraguePragueCzech Republic
| | - Jodi J. L. Rowley
- Centre for Ecosystem Science, School of Biological, Earth and Environmental SciencesUNSW SydneySydneyNew South WalesAustralia
- Australian Museum Research InstituteAustralian MuseumSydneyNew South WalesAustralia
| |
Collapse
|
46
|
Ferrante M, Lövei GL, Nunes R, Monjardino P, Lamelas-López L, Möller D, Soares AO, Borges PA. Gains and losses in ecosystem services and disservices after converting native forest to agricultural land on an oceanic island. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Lamperty T, Brosi BJ. Loss of endangered frugivores from seed dispersal networks generates severe mutualism disruption. Proc Biol Sci 2022; 289:20220887. [PMID: 36476005 PMCID: PMC9554716 DOI: 10.1098/rspb.2022.0887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022] Open
Abstract
Many tropical seed-dispersing frugivores are facing extinction, but the consequences of the loss of endangered frugivores for seed dispersal is not well understood. We investigated the role of frugivore endangerment status via robustness-to-coextinction simulations (in this context, more accurately described as robustness-to-partner-loss simulations) using data from the Brazilian Atlantic Forest biodiversity hotspot. By simulating the extinction of endangered frugivores, we found a rapid and disproportionate loss of tree species with dispersal partners in the network, and this surprisingly surpassed any other frugivore extinction scenario, including the loss of the most generalist frugivores first. A key driver of this pattern is that many specialist plants rely on at-risk frugivores as seed-dispersal partners. Moreover, interaction compensation in the absence of endangered frugivores may be unlikely because frugivores with growing populations forage on fewer plant species than frugivores with declining populations. Therefore, protecting endangered frugivores could be critical for maintaining tropical forest seed dispersal, and their loss may have higher-than-expected functional consequences for tropical forests, their regeneration processes, and the maintenance of tropical plant diversity.
Collapse
Affiliation(s)
- Therese Lamperty
- Department of Biology, University of Washington, Life Sciences Building, 3747 W Stevens WayNE, Seattle, WA 98195, USA
| | - Berry J. Brosi
- Department of Biology, University of Washington, Life Sciences Building, 3747 W Stevens WayNE, Seattle, WA 98195, USA
| |
Collapse
|
48
|
Scalbert M, Vermeulen C, Breuer T, Doucet J. The challenging coexistence of forest elephants
Loxodonta cyclotis
and timber concessions in central Africa. Mamm Rev 2022. [DOI: 10.1111/mam.12305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Morgane Scalbert
- Université de Liège – Gembloux Agro‐Bio Tech, Forest is Life, Terra Teaching and Research Centre Passage des Déportés 2 B‐5030 Gembloux Belgium
| | - Cédric Vermeulen
- Université de Liège – Gembloux Agro‐Bio Tech, Forest is Life, Terra Teaching and Research Centre Passage des Déportés 2 B‐5030 Gembloux Belgium
| | - Thomas Breuer
- World Wide Fund for Nature Germany Reinhardstr. 18 10117 Berlin Germany
| | - Jean‐Louis Doucet
- Université de Liège – Gembloux Agro‐Bio Tech, Forest is Life, Terra Teaching and Research Centre Passage des Déportés 2 B‐5030 Gembloux Belgium
| |
Collapse
|
49
|
Oliveira MLD, Peres PHDF, Grotta-Neto F, Vogliotti A, Passos FDC, Duarte JMB. Using niche modelling and human influence index to indicate conservation priorities for Atlantic forest deer species. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
50
|
Late Pleistocene megafauna extinction leads to missing pieces of ecological space in a North American mammal community. Proc Natl Acad Sci U S A 2022; 119:e2115015119. [PMID: 36122233 PMCID: PMC9522422 DOI: 10.1073/pnas.2115015119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conservation status of large-bodied mammals is dire. Their decline has serious consequences because they have unique ecological roles not replicated by smaller-bodied animals. Here, we use the fossil record of the megafauna extinction at the terminal Pleistocene to explore the consequences of past biodiversity loss. We characterize the isotopic and body-size niche of a mammal community in Texas before and after the event to assess the influence on the ecology and ecological interactions of surviving species (>1 kg). Preextinction, a variety of C4 grazers, C3 browsers, and mixed feeders existed, similar to modern African savannas, with likely specialization among the two sabertooth species for juvenile grazers. Postextinction, body size and isotopic niche space were lost, and the δ13C and δ15N values of some survivors shifted. We see mesocarnivore release within the Felidae: the jaguar, now an apex carnivore, moved into the specialized isotopic niche previously occupied by extinct cats. Puma, previously absent, became common and lynx shifted toward consuming more C4-based resources. Lagomorphs were the only herbivores to shift toward C4 resources. Body size changes from the Pleistocene to Holocene were species-specific, with some animals (deer, hare) becoming significantly larger and others smaller (bison, rabbits) or exhibiting no change to climate shifts or biodiversity loss. Overall, the Holocene body-size-isotopic niche was drastically reduced and considerable ecological complexity lost. We conclude biodiversity loss led to reorganization of survivors and many "missing pieces" within our community; without intervention, the loss of Earth's remaining ecosystems that support megafauna will likely suffer the same fate.
Collapse
|