1
|
Alviti Kankanamalage HP, Yang JY, Karunarathna SC, Tibpromma S, Kumla J, Wei DP, Lumyong S. Entomopathogenic fungi: insights into recent understanding. World J Microbiol Biotechnol 2025; 41:179. [PMID: 40415063 DOI: 10.1007/s11274-025-04377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025]
Abstract
Entomopathogenic fungi (EPF) are cosmopolitan, obligate, or facultative pathogens that show ruthless aggression toward various insects and ultimately cause them to die. They also have the ability to colonize and establish symbiotic relationships with plants as endophytes, thus offering a number of benefits to the host plants, inducing plant resistance against a number of biotic and abiotic stresses, and growth promotion. Recently, considerable attention has been paid to this group of fungi, mainly due to their exceptional ability to control numerous arthropod pests in crops. This practical application of EPF, which is of great interest, offers an eco-friendly manner of pest control, a key feature that makes them a potential solution to growing environmental concerns. This eco-friendly nature of EPF is particularly significant in the current context of growing environmental concerns and the need for sustainable solutions. This paper has attempted to review our current understanding of EPF. First, we briefly describe the historical identifications of EPF, landmark studies, and their classifications. Second, we discuss the group from an evolutionary standpoint. Third, the insect infection mechanisms, particularly the cuticular penetration pathway and different steps, are discussed. Finally, we emphasize the eco-friendly nature of these fungi, which makes them a sustainable option to mitigate the devastating effects of insect pests in current agriculture systems.
Collapse
Affiliation(s)
- Hasith Priyashantha Alviti Kankanamalage
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jing-Ya Yang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100, Yunnan, People's Republic of China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, 655011, People's Republic of China
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - De-Ping Wei
- Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
2
|
Burazerović J, Jovanović M, Savković Ž, Breka K, Stupar M. Finding the Right Host in the Darkness of the Cave-New Insights into the Ecology and Spatio-temporal Dynamics of Hyperparasitic Fungi (Arthrorhynchus nycteribiae, Laboulbeniales). MICROBIAL ECOLOGY 2025; 88:23. [PMID: 40195174 PMCID: PMC11976334 DOI: 10.1007/s00248-025-02521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
The aim of this study was to determine the presence of the hyperparasitic fungus Arthrorhynchus nycteribiae and to analyze its spatio-temporal pattern in the two bat flies (Penicillidia conspicua and P. dufourii) parasitizing on bats. We collected 612 samples of bat flies from 400 bats in 20 caves in the Central Balkans. Hyperparasite was identified based on morphological and molecular analyses of rDNA genes (LSU and SSU). A. nycteribiae was reported for the first time in Bosnia and Herzegovina and Montenegro, and confirmed in Serbia. Of the 20 sites examined, we found A. nycteribiae at 11 sites. The prevalence of A. nycteribiae infection in the bats examined was approximately 17%. Miniopterus schreibersii harbored the highest number of bat flies and was the only bat species hosting the infected bat flies of the species P. conspicua. Our results showed significant differences in infection patterns during the different seasons: the highest prevalence of bat flies with hyperparasitic fungi was found in the summer season (23%) and the lowest in spring (2%). Female bat fly hosts showed a significantly higher prevalence of infection than male bat flies. This study makes an important contribution to the knowledge of the distribution of A. nycteribiae and to the understanding of complex parasite-host relationships in the poorly studied areas of the Central Balkans.
Collapse
Affiliation(s)
- J Burazerović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - M Jovanović
- Organisation for Respect and Care of Animals (ORCA), Belgrade, Serbia
| | - Ž Savković
- Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| | - K Breka
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - M Stupar
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, et alWijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
4
|
Wang H, Chao S, Yan Q, Zhang S, Chen G, Mao C, Hu Y, Yu F, Wang S, Lv L, Yang B, He J, Zhang S, Zhang L, Simmonds P, Feng G. Genetic diversity of RNA viruses infecting invertebrate pests of rice. SCIENCE CHINA. LIFE SCIENCES 2024; 67:175-187. [PMID: 37946067 DOI: 10.1007/s11427-023-2398-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 11/12/2023]
Abstract
Invertebrate species are a natural reservoir of viral genetic diversity, and invertebrate pests are widely distributed in crop fields. However, information on viruses infecting invertebrate pests of crops is limited. In this report, we describe the deep metatranscriptomic sequencing of 88 invertebrate samples covering all major invertebrate pests in rice fields. We identified 296 new RNA viruses and 13 known RNA viruses. These viruses clustered within 31 families, with many highly divergent viruses constituting potentially new families and genera. Of the identified viruses, 13 RNA viruses clustered within the Fiersviridae family of bacteriophages, and 48 RNA viruses clustered within families and genera of mycoviruses. We detected known rice viruses in novel invertebrate hosts at high abundances. Furthermore, some novel RNA viruses have genome structures closely matching to known plant viruses and clustered within genera of several plant virus species. Forty-five potential insect pathogenic RNA viruses were detected in invertebrate species. Our analysis revealed that host taxonomy plays a major role and geographical location plays an important role in structuring viral diversity. Cross-species transmission of RNA viruses was detected between invertebrate hosts. Newly identified viral genomes showed extensive variation for invertebrate viral families or genera. Together, the large-scale metatranscriptomic analysis greatly expands our understanding of RNA viruses in rice invertebrate species, the results provide valuable information for developing efficient strategies to manage insect pests and virus-mediated crop diseases.
Collapse
Affiliation(s)
- Haoran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shufen Chao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Qing Yan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Shu Zhang
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Chonghui Mao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Fengquan Yu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Shuo Wang
- Sanya Agricultural Technology Extension and Service Centre, Sanya, 572000, China
| | - Liang Lv
- Institute of Plant Protection & Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Baojun Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Jiachun He
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310012, China
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Guozhong Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311400, China.
| |
Collapse
|
5
|
Van Caenegem W, Blondelle A, Dumolein I, Santamaria B, Dick CW, Hiller T, Liu J, Quandt CA, Villarreal Saucedo RV, Verbeken A, Haelewaters D. Five new species of Gloeandromyces (Fungi, Laboulbeniales) from tropical American bat flies (Diptera, Streblidae), revealed by morphology and phylogenetic reconstruction. Mycologia 2023; 115:714-737. [PMID: 37589548 DOI: 10.1080/00275514.2023.2230114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023]
Abstract
This paper describes and illustrates five new species of Gloeandromyces (Ascomycota, Laboulbeniales) associated with tropical American bat flies (Diptera, Streblidae). These are Gloeandromyces cusucoensis sp. nov. from Trichobius uniformis in Costa Rica and Honduras, G. diversiformis sp. nov. from Strebla wiedemanni in Costa Rica, G. plesiosaurus sp. nov. from Trichobius yunkeri in Panama, G. pseudodickii sp. nov. from Trichobius longipes in Ecuador and Panama, and G. verbekeniae sp. nov. from Strebla galindoi in Ecuador and Panama. The description of these five species doubles the number of known species in the genus. Morphological characteristics, host association, and a three-locus (18S nuc rDNA, 28S nuc rDNA, TEF1) phylogenetic reconstruction support placement of these taxa in the genus Gloeandromyces. Three of the new species are polymorphic; they have multiple morphotypes that grow in specific positions on the host integument: G. diversiformis f. diversiformis, f. musiformis, and f. vanillicarpiformis; G. plesiosaurus f. asymmetricus and f. plesiosaurus; and G. verbekeniae f. verbekeniae and f. inflexus. Finally, a dichotomous key to all species and morphotypes is presented.
Collapse
Affiliation(s)
- Warre Van Caenegem
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Aimée Blondelle
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Iris Dumolein
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Brianna Santamaria
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Carl W Dick
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky 42101
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois 60605
| | - Thomas Hiller
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart 70599, Germany
| | - Jingyu Liu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - C Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | | | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, Ghent 9000, Belgium
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80309
- Herbario UCH, Universidad Autónoma de Chiriquí, Apartado Postal 0427, David, Panama
- Centro de Investigaciones Micológicas, Universidad Autónoma de Chiriquí, Apartado Postal 0427, David, Panama
| |
Collapse
|
6
|
Tang D, Huang O, Zou W, Wang Y, Wang Y, Dong Q, Sun T, Yang G, Yu H. Six new species of zombie-ant fungi from Yunnan in China. IMA Fungus 2023; 14:9. [PMID: 37170179 PMCID: PMC10173673 DOI: 10.1186/s43008-023-00114-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
Some Ophiocordyceps species infecting ants are able to manipulate the host behavior. The hosts are manipulated in order to move to location that are advantageous for fungal spore transmission. Ophiocordyceps species that are able to manipulate the ant's behavior are called "zombie-ant fungi". They are widespread within tropical forests worldwide, with relatively few reports from subtropical monsoon evergreen broad-leaf forest. Zombie-ant fungi have been described and reported in different countries worldwide. However, there were a few reports from China. This study proposed six new species of zombie-ant fungi from China based on multi-gene (SSU, LSU, TEF, RPB1 and RPB2) phylogenetic analyses and morphological characteristics. Six novel species of Ophiocordyceps from China were identified as the Ophiocordyceps unilateralis core clade, forming a separate lineage with other species. Six novel species of Ophiocordyceps with hirsutella-like asexual morphs exclusively infecting ants were presented herein, namely, Ophiocordyceps acroasca, Ophiocordyceps bifertilis, Ophiocordyceps subtiliphialida, Ophiocordyceps basiasca, Ophiocordyceps nuozhaduensis and Ophiocordyceps contiispora. Descriptions and illustrations for six taxon were provided. Five of these species were collected from the subtropical monsoon evergreen broad-leaf forest, and one was collected from the rainforest and subtropical monsoon evergreen broad-leaf forest. This work proposes that the same host of Camponotus can be infected by multiple ant pathogenic fungi, while multiple ants of Polyrhachis can be infected by the same pathogenic fungi at the same time. This study contributes towards a better understanding of the evolutionary relationship between hosts and fungi, and provides novel insights into the morphology, distribution, parasitism, and ecology of Ophiocordyceps unilateralis sensu lato. We have provided a method for obtaining living cultures of Ophiocordyceps unilateralis complex species and their asexual morphs based on the living cultures, which is of significant value for further studies of Ophiocordyceps unilateralis complex species in the future.
Collapse
Affiliation(s)
- Dexiang Tang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Ou Huang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Weiqiu Zou
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Yuanbing Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
| | - Quanying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Tao Sun
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China
- School of Life Science, Yunnan University, Kunming, 650504, China
| | - Gang Yang
- The Council of Management and Conservation of Sun River National Park, Puer, 665000, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650504, China.
| |
Collapse
|
7
|
The chalara-like anamorphs of Leotiomycetes. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractThe chalara-like anamorphs of Leotiomycetes are phialidic hyphomycetes with cylindrical collarettes and deeply seated sporulating loci, and hyaline, aseptate or septate, cylindrical conidia. They are commonly found on plant litters in both terrestrial and submerged environments, and with broad geographical distribution. This paper reports our research result of diversity, taxonomy and phylogeny of these fungi in China, which is based on a systematic study by using an integrated approach of literature study, morphological observation and phylogenetic analyses of 153 chalara-like fungal species with diversified morphology in conidiomata, setae, conidiophores, phialides and conidia. The phylogenetic analyses employing different datasets of SSU, LSU and ITS sequences of 116 species showed that these chalara-like fungi were paraphyletic and scattered in 20 accepted genera belonging to five families of Leotiomycetes: Arachnopezizaceae, Hamatocanthoscyphaceae, Helotiaceae, Neolauriomycetaceae and Pezizellaceae. Additional six genera, Ascoconidium, Bioscypha, Chalarodendron, Didonia, Phaeoscypha and Tapesina, all reported with chalara-like anamorphs in literatures, are also accepted as members of Pezizellaceae or Leotiomycetes genera incertae sedis. Among of these 26 accepted genera of chalara-like fungi in Leotiomycetes, 17 genera are asexually typified genera (Ascoconidium, Bloxamia, Chalara, Chalarodendron, Constrictochalara, Cylindrochalara, Cylindrocephalum, Leochalara, Lareunionomyces, Minichalara, Neochalara, Neolauriomyces, Nagrajchalara, Parachalara, Stipitochalara, Xenochalara and Zymochalara), and 9 are sexually typified genera (Bioscypha, Bloxamiella, Calycellina, Calycina, Didonia, Hymenoscyphus, Mollisina, Phaeoscypha and Tapesina). The phylogenetic significance of conidial septation in generic delimitation was further confirmed; while other morphologies such as conidiomata, setae, conidiophores, phialides, conidial length, and conidial ornamentation have little phylogenetic significance, but could be used for species delimitation. The polyphyletic genus Chalara s. lat. is revised with monophyletic generic concepts by redelimitation of Chalara s. str. in a narrow concept, adaption of the emended Calycina to also include asexually typified chalara-like fungi, reinstatement of Cylindrocephalum, and introduction of six new genera: Constrictochalara W.P. Wu & Y.Z. Diao, Leochalara W.P. Wu & Y.Z. Diao, Minichalara W.P. Wu & Y.Z. Diao, Nagrajchalara W.P. Wu & Y.Z. Diao, Parachalara W.P. Wu & Y.Z. Diao and Stipitochalara W.P. Wu & Y.Z. Diao. Chaetochalara becomes a synonym of Chalara s. str., and the known species are disassembled into Chalara s. str. and Nagrajchalara. The polyphyletic genus Bloxamia is also redefined by introducing the new genus Bloxamiella W.P. Wu & Y.Z. Diao for B. cyatheicola. Five existing species of Chalara s. lat. were excluded from Leotiomycetes and reclassified: Chalara breviclavata as Chalarosphaeria breviclavata W.P. Wu & Y.Z. Diao gen. et sp. nov. in Chaetosphaeriaceae, C. vaccinii as Sordariochalara vaccinii W.P. Wu & Y.Z. Diao gen. et sp. nov. in Lasiosphaeriaceae, and three other Chalara species with hyaline phialides, C. hyalina, C. schoenoplecti and C. siamense as combinations of Pyxidiophora in Pyxidiophoraceae. For biodiversity of these fungi in China, a total of 80 species in 12 genera, including 60 new species, 17 new records and 1 new name, were discovered and documented in this paper. In addition, five species including three new species are reported from Japan. In connection to this revision, a total of 44 new combinations are made. The identification keys are provided for most of these genera. Future research area of these fungi should be the phylogenetic relationship of several sexually typified genera such as Bioscypha, Calycellina, Calycina, Didonia, Phaeoscypha, Rodwayella and Tapesina, and systematic revision of existing names under the genera Bloxamia, Chaetochalara and Chalara.
Collapse
|
8
|
Awad M, Piálková R, Haelewaters D, Nedvěd O. Infection patterns of Harmonia axyridis (Coleoptera: Coccinellidae) by ectoparasitic microfungi and endosymbiotic bacteria. J Invertebr Pathol 2023; 197:107887. [PMID: 36669676 DOI: 10.1016/j.jip.2023.107887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/08/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The invasive alien ladybird Harmonia axyridis (Coleoptera: Coccinellidae) hosts a wide range of natural enemies. Many observations have been done in nature but experimental studies of interactions of multiple enemies on Ha. axyridis are rare. In light of this knowledge gap, we tested whether the host phenotype and presence of bacterial endosymbionts Spiroplasma and Wolbachia affected parasitism of Ha. axyridis by the ectoparasitic fungus Hesperomyces harmoniae (Ascomycota: Laboulbeniales). We collected 379 Ha. axyridis in the Czech Republic, processed specimens, including screening for He. harmoniae and a molecular assessment for bacteria, and calculated fecundity and hatchability of females. We found that high hatchability rate (71 %) was conditioned by high fecundity (20 eggs daily or more). The average parasite prevalence of He. harmoniae was 53 %, while the infection rate of Spiroplasma was 73 % in ladybirds that survived in winter conditions. Wolbachia was only present in 2 % of the analyzed ladybirds. Infection by either He. harmoniae or Spiroplasma did not differ among host color morphs. In the novemdecimsignata morph, younger individuals (with orange elytra) were more heavily parasitized compared to old ones (with red elytra). Fecundity and hatchability rate of females were unaffected by infection with either He. harmoniae or Spiroplasma. However, female ladybirds co-infected with He. harmoniae and Spiroplasma had a significantly lower fecundity and hatchability compared to females with only one or no symbiont.
Collapse
Affiliation(s)
- Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Radka Piálková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Danny Haelewaters
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.
| | - Oldřich Nedvěd
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Van Caenegem W, Ceryngier P, Romanowski J, Pfister DH, Haelewaters D. Hesperomyces (Fungi, Ascomycota) associated with Hyperaspis ladybirds (Coleoptera, Coccinellidae): Rethinking host specificity. FRONTIERS IN FUNGAL BIOLOGY 2023; 3:1040102. [PMID: 37746211 PMCID: PMC10512334 DOI: 10.3389/ffunb.2022.1040102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 09/26/2023]
Abstract
Laboulbeniales (Ascomycota, Laboulbeniomycetes) are biotrophic microfungi always attached to the exoskeleton of their arthropod hosts. They do not form hyphae or a mycelium; instead, they undergo determinate growth, developing from a two-celled ascospore to form a multicellular thallus. Hesperomyces virescens has been reported on over 30 species of ladybirds (Coleoptera, Coccinellidae); in reality, it represents a complex of species, presumably segregated by host genus association. In this study, we report on Hesperomyces thalli on Hyperaspis vinciguerrae from the Canary Islands and compare them with the Hesperomyces hyperaspidis described on Hyperaspis sp. from Trinidad. We generated the sequences of the internal transcribed spacer (ITS) region, the large subunit (LSU) nuclear ribosomal RNA gene, and the minichromosome maintenance complex component 7 (MCM7) protein-coding gene. Our phylogenetic reconstruction of Hesperomyces based on a concatenated ITS-LSU-MCM7 dataset revealed Hesperomyces sp. ex Hy. vinciguerrae as a member of the He. virescens species complex distinct from He. virescens sensu stricto (s.s.). It also revealed that the Hesperomyces sp. ex Chilocorus bipustulatus from Algeria is different from He. virescens s.s., which is associated with Chilocorus stigma from the USA. This suggests that the species of Hesperomyces are not solely segregated by host association, but that there is also a biogeographical component involved. Based on these data, we refrained from referring our material from Hy. vinciguerrae to He. hyperaspidis. Finally, we discuss the usefulness of MCM7 as a useful marker for species delimitation in Hesperomyces.
Collapse
Affiliation(s)
- Warre Van Caenegem
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
| | - Piotr Ceryngier
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Jerzy Romanowski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Donald H. Pfister
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, Cambridge, MA, United States
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| |
Collapse
|
10
|
Knapp M, Řeřicha M, Haelewaters D, González E. Fungal ectoparasites increase winter mortality of ladybird hosts despite limited effects on their immune system. Proc Biol Sci 2022; 289:20212538. [PMID: 35317669 PMCID: PMC8941424 DOI: 10.1098/rspb.2021.2538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Winter represents a challenging period for insects inhabiting temperate regions. A plethora of studies have investigated how environmental conditions such as temperature affect insect overwintering success. However, only a few studies have focused on biotic factors and the mechanisms affecting the overwintering performance of insects. Here, we investigated the effects of the parasitic fungus Hesperomyces virescens on the overwintering performance and immune system functioning of the invasive ladybird Harmonia axyridis. Winter survival was significantly lower for infected than for uninfected ladybirds. Body mass loss during overwintering tends to be higher for infected individuals compared to uninfected ones and for larger ladybirds. In addition, parasitic infection reduced post-winter longevity without food in male but not female ladybirds. Total haemocyte and protein concentration as well as antimicrobial activity against Escherichia coli significantly decreased during ladybird overwintering. However, haemolymph parameters were only poorly affected by Hesperomyces infection, with the exception of antimicrobial activity against E. coli that tended to be higher in infected ladybirds. Interestingly, none of the pre-winter haemolymph parameters were good predictors of ladybird winter survival. Overall, our results indicate that energy exhaustion unrelated to immune system challenge is the most probable explanation for increased overwintering mortality in infected ladybirds.
Collapse
Affiliation(s)
- Michal Knapp
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Michal Řeřicha
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Ezequiel González
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic,Instituto Multidisciplinario de Biología Vegetal (IMBIV)- Universidad Nacional de Córdoba (UNC)- CONICET, Centro de Investigaciones Entomológicas de Córdoba FCEFyN, Av. Vélez Sarsfield 1611, X5016GCA Córdoba, Argentina
| |
Collapse
|
11
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
12
|
Péter Á, Mihalca AD, Haelewaters D, Sándor AD. Focus on Hyperparasites: Biotic and Abiotic Traits Affecting the Prevalence of Parasitic Microfungi on Bat Ectoparasites. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.795020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tritrophic association of bats, bat flies, and Laboulbeniales microfungi is a remarkably understudied system that may reveal patterns applicable to community ecology theory of (hyper)parasites. Laboulbeniales are biotrophic microfungi, exclusively associated with arthropods, with several species that are specialized on bat flies, which themselves are permanent ectoparasites of bats. Several hypotheses were tested on biotic and abiotic traits that may influence the presence and prevalence of hyperparasitic Laboulbeniales fungi on bat flies, based on southeastern European data. We found a wide distribution of fungal infection on bat flies, with underground-dwelling bats hosting more Laboulbeniales-infected flies compared to crevice-dwelling species. Bat host behavior, sociality, roost selection (underground versus crevice), bat fly sex, and season all have significant effects on the prevalence of fungal infection. Laboulbeniales infections are more common on bat flies that are infecting bat species with dense and long-lasting colonies (Miniopterus schreibersii, Myotis myotis, Myotis blythii), which roost primarily in underground sites. Inside these sites, elevated temperature and humidity may enhance the development and transmission of Laboulbeniales fungi. Sexual differences in bat hosts’ behavior also have an effect on fungal infection risk, with densely roosting female bat hosts harboring more Laboulbeniales-infected bat flies.
Collapse
|
13
|
Kaishian PJ. Insects and their Laboulbeniales (Ascomycota, Fungi) of Lake Eustis and Emeralda Marsh Conservation Area: A case study on urbanization and diversity. Ecol Evol 2021; 11:16618-16633. [PMID: 34938461 PMCID: PMC8668729 DOI: 10.1002/ece3.8246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
A rapid biodiversity assessment of insects and associated Laboulbeniales fungi was conducted over the course of five nights in August, 2018, at two central Florida lakes: Lake Eustis and the nearby protected and restored National Natural Landmark, Emeralda Marsh Conservation Area (EMCA), which encompasses a portion of Lake Griffin. Lake Eustis was surveyed for Laboulbeniales in 1897 by mycologist Dr. Roland Thaxter but has not since been investigated. Because Lake Eustis has been urbanized, with the lake perimeter almost entirely altered by human development, the site offers a look into Laboulbeniales diversity across a 121-year timeline, before and after human development. By surveying Lake Eustis and EMCA, a modern case study comparison of Laboulbeniales and insect diversity between a developed and a protected and restored system is made. A total of 4022 insects were collected during the rapid assessment. Overall, insect abundance was greater at EMCA, with 3001 insects collected, than 1021 insects collected from Eustis. Although family-level insect richness was comparable between sites, with 55 families present at EMCA and 56 at Eustis, 529 out of 3001 (17.6%) of the insects collected at EMCA were hosts to parasitic Laboulbeniales fungi, whereas only 2 out of 1021 (0.19%) collected from Eustis were infected. A total of 16 species of Laboulbeniales found at EMCA compared with only one at Eustis. The current number of Laboulbeniales species documented at Eustis was incredibly depauperate compared with the 26 species and two varieties recorded by Thaxter in 1897. These findings suggest the possibility of utilizing Laboulbeniales as indicators of ecosystem health, and future research should investigate this question further. A figure displaying host-parasite records and a species list of Laboulbeniales are presented. Finally, updated occurrence records for species of Ceratomyces and Hydrophilomyces are provided.
Collapse
Affiliation(s)
- Patricia J. Kaishian
- Department of Environmental and Forest BiologySUNY College of Environmental Science & ForestrySyracuseNew YorkUSA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
14
|
Penetrative and non-penetrative interaction between Laboulbeniales fungi and their arthropod hosts. Sci Rep 2021; 11:22170. [PMID: 34773061 PMCID: PMC8589835 DOI: 10.1038/s41598-021-01729-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Laboulbeniales are a highly specialized group of fungi living only on arthropods. They have high host specificity and spend their entire life-cycle on an arthropod host. Taxonomic characters of Laboulbeniales are based on the architecture of the cells of the parenchymal thallus, i.e. the visible part of the fungus outside the host. The extent of the fungus spreading inside the host-the haustorium-remains largely unknown. The attachment to the arthropod host is fundamental to understand the fungus-animal interaction, but how this truly occurs is unclear. Recent evidences question the strictly parasitic life-style of Laboulbeniales. We used micro-computed tomography (µCT) and 3D reconstructions to visualize, for the first time, the complete structure of Laboulbeniales species in situ on their hosts. We compared the haustoriate species, Arthrorhynchus nycteribiae on an insect host to the non-haustoriate species, Rickia gigas on a millipede host. Our results confirm that some Laboulbeniales species are ectoparasitic and have a haustorial structure that penetrates the host's cuticle, while others are ectobionts and are only firmly attached to the host's cuticle without penetrating it. The presence and the morphology of the haustorium are important traits for Laboulbeniales evolution, and key factors for future understanding of host dependence and specificity.
Collapse
|
15
|
Pozsgai G, Ben Fekih I, Kohnen MV, Amrani S, Bérces S, Fülöp D, Jaber MYM, Meyling NV, Ruszkiewicz-Michalska M, Pfliegler WP, Sánchez-García FJ, Zhang J, Rensing C, Lövei GL, You M. Associations between carabid beetles and fungi in the light of 200 years of published literature. Sci Data 2021; 8:294. [PMID: 34737321 PMCID: PMC8569211 DOI: 10.1038/s41597-021-01072-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/08/2021] [Indexed: 12/01/2022] Open
Abstract
Describing and conserving ecological interactions woven into ecosystems is one of the great challenges of the 21st century. Here, we present a unique dataset compiling the biotic interactions between two ecologically and economically important taxa: ground beetles (Coleoptera: Carabidae) and fungi. The resulting dataset contains the carabid-fungus associations collected from 392 scientific publications, 129 countries, mostly from the Palearctic region, published over a period of 200 years. With an updated taxonomy to match the currently accepted nomenclature, 3,378 unique associations among 5,564 records were identified between 1,776 carabid and 676 fungal taxa. Ectoparasitic Laboulbeniales were the most frequent fungal group associated with carabids, especially with Trechinae. The proportion of entomopathogens was low. Three different formats of the data have been provided along with an interactive data digest platform for analytical purposes. Our database summarizes the current knowledge on biotic interactions between insects and fungi, while offering a valuable resource to test large-scale hypotheses on those interactions. Measurement(s) | species associations | Technology Type(s) | digital curation | Factor Type(s) | associations between Carabidae and Fungi | Sample Characteristic - Organism | Carabidae • Fungi • Laboulbeniales | Sample Characteristic - Location | global |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.14602770
Collapse
Affiliation(s)
- Gábor Pozsgai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China. .,CE3C - Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, 9700-042, Azores, Portugal.
| | - Ibtissem Ben Fekih
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Said Amrani
- Laboratoire de Biologie et de Physiologie des Organismes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediène, BP 32 El Alia, Alger, 16111, Algeria
| | - Sándor Bérces
- Duna-Ipoly National Park Directorate, Költő u. 21, H-1121, Budapest, Hungary.,Juhász-Nagy Pál Doctoral School, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Dávid Fülöp
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Nagykovácsi út 26-30, H-1029, Budapest, Hungary
| | - Mohammed Y M Jaber
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Nicolai Vitt Meyling
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Malgorzata Ruszkiewicz-Michalska
- Department of Algology and Mycology Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, PL-90-237, Łódź, Poland
| | - Walter P Pfliegler
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, Hungary
| | - Francisco Javier Sánchez-García
- Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Área de Biología Animal, Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, 30100, Spain
| | - Jie Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Gábor L Lövei
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.,Department of Agroecology, Aarhus University, Flakkebjerg Research Centre, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| |
Collapse
|
16
|
|
17
|
Gippet JM, Colin T, Grangier J, Winkler F, Haond M, Dumet A, Tragust S, Mondy N, Kaufmann B. Land-cover and climate factors contribute to the prevalence of the ectoparasitic fungus Laboulbenia formicarum in its invasive ant host Lasius neglectus. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Perreau M, Haelewaters D, Tafforeau P. A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections. Sci Rep 2021; 11:2672. [PMID: 33514784 PMCID: PMC7846571 DOI: 10.1038/s41598-020-79481-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
The discovery of a new fossil species of the Caribbeo-Mexican genus Proptomaphaginus (Coleoptera, Leiodidae, Cholevinae) from Dominican amber, associated with a new fossil parasitic fungus in the genus Columnomyces (Ascomycota, Laboulbeniales), triggered an investigation of extant species of Proptomaphaginus and revealed the long-enduring parasitic association between these two genera. This effort resulted in the description of the fossil species †Proptomaphaginus alleni sp. nov., and one fossil and two extant species of Columnomyces, selectively associated with species of Proptomaphaginus: †Columnomyces electri sp. nov. associated with the fossil †Proptomaphaginus alleni in Dominican amber, Columnomyces hispaniolensis sp. nov. with the extant Proptomaphaginus hispaniolensis (endemic of Hispaniola), and Columnomyces peckii sp. nov. with the extant Proptomaphaginus puertoricensis (endemic of Puerto Rico). Based on biogeography, our current understanding is that the Caribbean species of Proptomaphaginus and their parasitic species of Columnomyces have coevolved since the Miocene. This is the first occurrence of such a coevolution between a genus of parasitic fungus and a genus of Coleoptera. The phylogenetic relations among Proptomaphaginus species are also addressed based on a parsimony analysis. Fossil specimens were observed by propagation phase-contrast synchrotron X-ray microtomography (PPC-SRμCT) and extant specimens were obtained through the study of preserved dried, pinned insects, attesting for the importance of (i) technological advancement and (ii) natural history collections in the study of microparasitic relationships.
Collapse
Affiliation(s)
| | - Danny Haelewaters
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA. .,Department of Zoology, University of South Bohemia, České Budějovice, Czech Republic. .,Department of Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN, USA.
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
19
|
de Groot MD, Dumolein I, Hiller T, Sándor AD, Szentiványi T, Schilthuizen M, Aime MC, Verbeken A, Haelewaters D. On the Fly: Tritrophic Associations of Bats, Bat Flies, and Fungi. J Fungi (Basel) 2020; 6:jof6040361. [PMID: 33322768 PMCID: PMC7770572 DOI: 10.3390/jof6040361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Parasitism is one of the most diverse and abundant modes of life, and of great ecological and evolutionary importance. Notwithstanding, large groups of parasites remain relatively understudied. One particularly unique form of parasitism is hyperparasitism, where a parasite is parasitized itself. Bats (Chiroptera) may be parasitized by bat flies (Diptera: Hippoboscoidea), obligate blood-sucking parasites, which in turn may be parasitized by hyperparasitic fungi, Laboulbeniales (Ascomycota: Laboulbeniomycetes). In this study, we present the global tritrophic associations among species within these groups and analyze their host specificity patterns. Bats, bat flies, and Laboulbeniales fungi are shown to form complex networks, and sixteen new associations are revealed. Bat flies are highly host-specific compared to Laboulbeniales. We discuss possible future avenues of study with regard to the dispersal of the fungi, abiotic factors influencing the parasite prevalence, and ecomorphology of the bat fly parasites.
Collapse
Affiliation(s)
- Michiel D. de Groot
- Research Group Evolutionary Ecology, Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands;
- Correspondence:
| | - Iris Dumolein
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium; (I.D.); (A.V.); (D.H.)
| | - Thomas Hiller
- Ecology of Tropical Agricultural Systems, University of Hohenheim, Garbenstrasse 13, 70599 Stuttgart, Germany;
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama
| | - Attila D. Sándor
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
- Department of Parasitology and Zoology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
| | - Tamara Szentiványi
- Pathogen and Microbiome Institute, Northern Arizona University, 1395 S. Knoles Drive, Flagstaff, AZ 86011, USA;
| | - Menno Schilthuizen
- Research Group Evolutionary Ecology, Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands;
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47906, USA;
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium; (I.D.); (A.V.); (D.H.)
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium; (I.D.); (A.V.); (D.H.)
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47906, USA;
| |
Collapse
|
20
|
Haelewaters D, Hiller T, Kemp EA, van Wielink PS, Shapiro-Ilan DI, Aime MC, Nedvěd O, Pfister DH, Cottrell TE. Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi. PeerJ 2020; 8:e10110. [PMID: 33194385 PMCID: PMC7648450 DOI: 10.7717/peerj.10110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Harmonia axyridis is an invasive alien ladybird in North America and Europe. Studies show that multiple natural enemies are using Ha. axyridis as a new host. However, thus far, no research has been undertaken to study the effects of simultaneous infection by multiple natural enemies on Ha. axyridis. We hypothesized that high thallus densities of the ectoparasitic fungus Hesperomyces virescens on a ladybird weaken the host’s defenses, thereby making it more susceptible to infection by other natural enemies. We examined mortality of the North American-native Olla v-nigrum and Ha. axyridis co-infected with He. virescens and an entomopathogenic fungus—either Beauveria bassiana or Metarhizium brunneum. Laboratory assays revealed that He. virescens-infected O. v-nigrum individuals are more susceptible to entomopathogenic fungi, but Ha. axyridis does not suffer the same effects. This is in line with the enemy release hypothesis, which predicts that invasive alien species in new geographic areas experience reduced regulatory effects from natural enemies compared to native species. Considering our results, we can ask how He. virescens affects survival when confronted by other pathogens that previously had little impact on Ha. axyridis.
Collapse
Affiliation(s)
- Danny Haelewaters
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, Cambridge, MA, United States of America.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States of America
| | - Thomas Hiller
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Emily A Kemp
- Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, United States Department of Agriculture, Byron, GA, United States of America
| | | | - David I Shapiro-Ilan
- Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, United States Department of Agriculture, Byron, GA, United States of America
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States of America
| | - Oldřich Nedvěd
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Donald H Pfister
- Farlow Reference Library and Herbarium of Cryptogamic Botany, Harvard University, Cambridge, MA, United States of America
| | - Ted E Cottrell
- Agricultural Research Service, Southeastern Fruit and Tree Nut Research Laboratory, United States Department of Agriculture, Byron, GA, United States of America
| |
Collapse
|