1
|
Xin Y, Guo T, Qiao M. Current application and future prospects of CRISPR-Cas in lactic acid Bacteria: A review. Food Res Int 2025; 209:116315. [PMID: 40253208 DOI: 10.1016/j.foodres.2025.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/21/2025]
Abstract
Lactic acid bacteria (LABs) have a long history of use in food and beverages fermentation. Recently, several LABs have gained attention as starter or non-starter cultures and probiotics for making functional fermented foods, which have the potential to enhance human health. In addition, certain LABs show great potential as microbial cell factories for producing food-related chemicals. However, enhancing the outcomes of starter and non-starter cultures, exploring the complicated probiotic mechanism of LABs, and engineering strains to enhance the yields of high-value compounds for precision fermentation remains challenging due to the time-consuming and labor-intensive current genome editing tools. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated proteins (Cas) system, originally an adaptive immune system in bacteria, has revolutionized genome editing, metabolic engineering and synthetic biology. Its versatility has resulted in extensive applications across diverse organisms. The widespread distribution of CRISPR-Cas systems and the diversity of CRISPR arrays in LAB genomes highlight their potential for studying the evolution of LABs. This review discusses the current advancement of CRISPR-Cas systems in engineering LABs for food application. Moreover, it outlines future research directions aimed at harnessing CRISPR-Cas systems to advance lactic acid bacterial research and drive innovation in food science.
Collapse
Affiliation(s)
- Yongping Xin
- School of Life Science, Shanxi University, Taiyuan 030006, PR China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan 030006, PR China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
2
|
Xavier KVM, de Oliveira Luz AC, Silva-Junior JW, de Melo BST, de Aragão Batista MV, de Albuquerque Silva AM, de Queiroz Balbino V, Leal-Balbino TC. Molecular epidemiological study of Pseudomonas aeruginosa strains isolated from hospitals in Brazil by MLST and CRISPR/Cas system analysis. Mol Genet Genomics 2025; 300:33. [PMID: 40113632 PMCID: PMC11925996 DOI: 10.1007/s00438-025-02239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
The CRISPR/Cas system defends bacteria and archaea against invasive pathogens, such as phages, establishing an immunological memory from this interaction. Pseudomonas aeruginosa, an opportunistic pathogen, represents a significant public health concern due to its multidrug resistance. This study conducted a molecular epidemiological analysis of clinical isolates of Pseudomonas aeruginosa in Brazil using multilocus sequence typing (MLST) and characterization of CRISPR/Cas system. Most P. aeruginosa isolates harbored the type I-F CRISPR/Cas system (83%), with a subset also exhibiting the type I-E system. Additionally, some isolates presented incomplete CRISPR/Cas systems in their secondary loci. Notably, the isolate Pae93 exhibited a genetic composition rich in phage-related proteins proximal to the orphan CRISPR locus. The identification and characterization of spacer sequences, including previously undocumented ones, revealed a remarkable diversity of predatory mobile genetic elements (MGEs) among the P. aeruginosa isolates studied. The spacer sequences were incorporated into the MGE library. Additionally, the study identified the existence of prophages and anti-CRISPR genes. Two new sequence types (STs 3383 and 3384) were identified and added to the PubMLST database. No discernible correlation was established between the observed STs and the previously delineated CRISPR genotypes. However, the CRISPR system remains valuable for elucidating specific interactions between microorganisms and MGEs. The Brazilian population of clinical P. aeruginosa isolates was shown to be genetically heterogeneous with a non-clonal distribution, as revealed by MLST analysis. The presence of high-risk clones, such as ST 244 and ST 235, underscores the importance of robust epidemiological surveillance and infection control strategies for P. aeruginosa, especially in healthcare settings. This study significantly contributes to the understanding of the molecular epidemiology of these isolates in Brazil.
Collapse
Affiliation(s)
| | | | - José Wilson Silva-Junior
- Laboratory of Bioinformatics and Evolutionary Biology, Department of Genetics, Federal University of Pernambuco-UFPE, Recife, PE, Brazil
| | | | - Marcus Vinícius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Center for Biological and Health Sciences CCBS, Federal University of Sergipe, Aracaju, SE, Brazil
| | | | - Valdir de Queiroz Balbino
- Laboratory of Bioinformatics and Evolutionary Biology, Department of Genetics, Federal University of Pernambuco-UFPE, Recife, PE, Brazil
| | | |
Collapse
|
3
|
Pan M, O'Flaherty S, Hibberd A, Gerdes S, Morovic W, Barrangou R. The curated Lactobacillus acidophilus NCFM genome provides insights into strain specificity and microevolution. BMC Genomics 2025; 26:1. [PMID: 39754036 PMCID: PMC11697832 DOI: 10.1186/s12864-024-11177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The advent of next generation sequencing technologies has enabled a surge in the number of whole genome sequences in public databases, and our understanding of the composition and evolution of bacterial genomes. Besides model organisms and pathogens, some attention has been dedicated to industrial bacteria, notably members of the Lactobacillaceae family that are commonly studied and formulated as probiotic bacteria. Of particular interest is Lactobacillus acidophilus NCFM, an extensively studied strain that has been widely commercialized for decades and is being used for the delivery of vaccines and therapeutics. RESULTS Here, we revisit the L. acidophilus genome, which was sequenced twenty years ago, and determined the core and pan genomes of 114 publicly available L. acidophilus strains, spanning commercial isolates, academic strains and clones from the scientific literature. Results indicate a predictable high level of homogeneity within the species, but also reveal surprising mis-assemblies. Furthermore, by investigating twenty one available L. acidophilus NCFM-derived variants, we document overall genomic stability, with no observed genomic re-arrangement or inversions. CONCLUSION This study provides a comparative analysis of the currently available genomes for L. acidophilus and examines microevolution patterns for several strains derived from L. acidophilus NCFM, which revealed no to very few SNPs with strains sequenced at different points in time using different sequencing technologies and platforms. This re-affirms its suitability for industrial deployment as a probiotic and its use as an engineering chassis and delivery modality for novel biotherapeutics.
Collapse
Affiliation(s)
- Meichen Pan
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Rodolphe Barrangou
- Department of Food, Bioprocessing, & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Fehrenbach A, Mitrofanov A, Alkhnbashi O, Backofen R, Baumdicker F. SpacerPlacer: ancestral reconstruction of CRISPR arrays reveals the evolutionary dynamics of spacer deletions. Nucleic Acids Res 2024; 52:10862-10878. [PMID: 39268572 PMCID: PMC11472070 DOI: 10.1093/nar/gkae772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
Bacteria employ CRISPR-Cas systems for defense by integrating invader-derived sequences, termed spacers, into the CRISPR array, which constitutes an immunity memory. While spacer deletions occur randomly across the array, newly acquired spacers are predominantly integrated at the leader end. Consequently, spacer arrays can be used to derive the chronology of spacer insertions. Reconstruction of ancestral spacer acquisitions and deletions could help unravel the coevolution of phages and bacteria, the evolutionary dynamics in microbiomes, or track pathogens. However, standard reconstruction methods produce misleading results by overlooking insertion order and joint deletions of spacers. Here, we present SpacerPlacer, a maximum likelihood-based ancestral reconstruction approach for CRISPR array evolution. We used SpacerPlacer to reconstruct and investigate ancestral deletion events of 4565 CRISPR arrays, revealing that spacer deletions occur 374 times more frequently than mutations and are regularly deleted jointly, with an average of 2.7 spacers. Surprisingly, we observed a decrease in the spacer deletion frequency towards both ends of the reconstructed arrays. While the resulting trailer-end conservation is commonly observed, a reduced deletion frequency is now also detectable towards the variable leader end. Finally, our results point to the hypothesis that frequent loss of recently acquired spacers may provide a selective advantage.
Collapse
Affiliation(s)
- Axel Fehrenbach
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Mathematical and Computational Population Genetics, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Mitrofanov
- Bioinformatics group, Department of Computer Science, University of Freiburg, 79085 Freiburg, Germany
| | - Omer S Alkhnbashi
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Healthcare City, 505055 Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Healthcare City, 505055 Dubai, United Arab Emirates
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, 79085 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79085 Freiburg, Germany
| | - Franz Baumdicker
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, Mathematical and Computational Population Genetics, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Wang L, Yang J, Li X, Gu Y, Wang L, Liu Z, Hu J. Comparison of CRISPR typing and conventional molecular methods for distinguishing Laribacter hongkongensis isolates from fish, frogs and humans. Int J Food Microbiol 2024; 422:110824. [PMID: 39003891 DOI: 10.1016/j.ijfoodmicro.2024.110824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
High-resolution and efficient typing for Laribacter hongkongensis (L. hongkongensis) is essential for epidemiological investigation of such emerging foodborne pathogens. Clustered regularly interspaced short palindromic repeats (CRISPR) typing is an innovative molecular method that shows great promise for L. hongkongensis typing. Here, we explored the CRISPR typing method by combining CRISPR1 and CRISPR2 loci to characterize a collection of 109 L. hongkongensis isolates from humans and animals and compared it to current molecular methods such as pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The results showed that all three methods have high discriminatory power (diversity index was 0.9902 for PFGE, 0.9663 for CRISPR and 0.9562 for MLST); strong congruence was observed between them (Rand index was 0.969 between CRISPR and PFGE, 0.953 between CRISPR and MLST, 0.958 between PFGE and MLST). CRISPR typing could well distinguish the isolates in the same STs or PFGE profiles, and the genetic information contained by the CRISPR array is useful for deep phylogenetic typing. We demonstrate that rapid CRISPR typing is a practical genetic fingerprinting tool with high resolution, comparable ease of use and lower cost, ability to track the source of various groups of L. hongkongensis strains and indication of genetic characteristics.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jun Yang
- Shaoguan Municipal Health Supervision Agency, Shaoguan 510200, China
| | - Xue Li
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yingjuan Gu
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Li Wang
- Luohu district Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Zhihua Liu
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jing Hu
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
6
|
Zhang K, Wang Z, Wang P, Xu H, Jiao X, Li Q. Prevalence and genetic characteristics of Salmonella enterica serovar Meleagridis from animals and humans. Vet Microbiol 2024; 290:109993. [PMID: 38278043 DOI: 10.1016/j.vetmic.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Salmonella enterica serovar Meleagridis (S. Meleagridis) is a non-typhoidal Salmonella serotype commonly found in food and humans. In this study, we investigated 61 Chinese S. Meleagridis isolates from various sources, predominantly from pigs and pig products. Additionally, the serotype was also identified in samples from human infections. Whole-genome sequencing analysis of these isolates, combined with 10 isolates from other countries, demonstrated that the Chinese isolates formed a distinct Cluster C, further divided into two subclusters (Cluster C-1 and Cluster C-2) based on cgMLST analysis. CRISPR typing divided the 61 isolates into three CRISPR types (MCT1, MCT2, MCT3), belonging to Cluster I (96.7%, 59/61) and Cluster II (3.3%, 2/61), which corresponded to Cluster C-2 and Cluster C-1, respectively. Among the 48 identified spacers, the spacer SoeB5 was the only target differentiating MCT1 and MCT2 isolates of Cluster I. MelB12 and MelB13, identified in US and Denmark isolates, were not found among the 61 Chinese isolates. Examination of antimicrobial resistance gene profiles and their genetic contexts uncovered the presence of IncR plasmids in 43 (70.5%, 43/61) isolates within Cluster C, conferring resistance to tetracycline and trimethoprim/sulfamethoxazole. Homology analysis of spacers showed that 12 spacers exhibited similarity to sequences in phages or plasmids. Additionally, five spacers showed homology to sequences in plasmids from other Salmonella serotypes, suggesting their potential role in helping S. Meleagridis resist against Salmonella isolates carrying similar plasmids. The comprehensive analysis of CRISPR, cgMLST, and antimicrobial resistance in S. Meleagridis highlights the pig reservoir as a crucial factor in the evolution and transmission of this serotype to humans.
Collapse
Affiliation(s)
- Kai Zhang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Pengyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Muzyukina P, Soutourina O. CRISPR genotyping methods: Tracing the evolution from spoligotyping to machine learning. Biochimie 2024; 217:66-73. [PMID: 37506757 DOI: 10.1016/j.biochi.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems provide prokaryotes with adaptive immunity defenses against foreign genetic invaders. The identification of CRISPR-Cas function is among the most impactful discoveries of recent decades that have shaped the development of genome editing in various organisms paving the way for a plethora of promising applications in biotechnology and health. Even before the discovery of CRISPR-Cas biological role, the particular structure of CRISPR loci has been explored for epidemiological genotyping of bacterial pathogens. CRISPR-Cas loci are arranged in CRISPR arrays of mostly identical direct repeats intercalated with invader-derived spacers and an operon of cas genes encoding the Cas protein components. Each small CRISPR RNA (crRNA) encoded within the CRISPR array constitutes a key functional unit of this RNA-based CRISPR-Cas defense system guiding the Cas effector proteins toward the foreign nucleic acids for their destruction. The information acquired from prior invader encounters and stored within CRISPR arrays turns out to be extremely valuable in tracing the microevolution and epidemiology of major bacterial pathogens. We review here the history of CRISPR-based typing strategies highlighting the first PCR-based methods that have set the stage for recent developments of high-throughput sequencing and machine learning-based approaches. A great amount of whole genome sequencing and metagenomic data accumulated in recent years opens up new avenues for combining experimental and computational approaches of high-resolution CRISPR-based typing.
Collapse
Affiliation(s)
- P Muzyukina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - O Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
8
|
Watts EA, Garrett SC, Catchpole RJ, Clark LM, Sanders TJ, Marshall CJ, Wenck BR, Vickerman RL, Santangelo TJ, Fuchs R, Robb B, Olson S, Graveley BR, Terns MP. Histones direct site-specific CRISPR spacer acquisition in model archaeon. Nat Microbiol 2023; 8:1682-1694. [PMID: 37550505 PMCID: PMC10823912 DOI: 10.1038/s41564-023-01446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
CRISPR-Cas systems provide heritable immunity against viruses and other mobile genetic elements by incorporating fragments of invader DNA into the host CRISPR array as spacers. Integration of new spacers is localized to the 5' end of the array, and in certain Gram-negative Bacteria this polarized localization is accomplished by the integration host factor. For most other Bacteria and Archaea, the mechanism for 5' end localization is unknown. Here we show that archaeal histones play a key role in directing integration of CRISPR spacers. In Pyrococcus furiosus, deletion of either histone A or B impairs integration. In vitro, purified histones are sufficient to direct integration to the 5' end of the CRISPR array. Archaeal histone tetramers and bacterial integration host factor induce similar U-turn bends in bound DNA. These findings indicate a co-evolution of CRISPR arrays with chromosomal DNA binding proteins and a widespread role for binding and bending of DNA to facilitate accurate spacer integration.
Collapse
|
9
|
Le Gallou B, Pastuszka A, Lemaire C, Mereghetti L, Lanotte P. Group B Streptococcus CRISPR1 Typing of Maternal, Fetal, and Neonatal Infectious Disease Isolates Highlights the Importance of CC1 in In Utero Fetal Death. Microbiol Spectr 2023; 11:e0522122. [PMID: 37341591 PMCID: PMC10434043 DOI: 10.1128/spectrum.05221-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
We performed a descriptive analysis of group B Streptococcus (GBS) isolates responsible for maternal and fetal infectious diseases from 2004 to 2020 at the University Hospital of Tours, France. This represents 115 isolates, including 35 isolates responsible for early-onset disease (EOD), 48 isolates responsible for late-onset disease (LOD), and 32 isolates from maternal infections. Among the 32 isolates associated with maternal infection, 9 were isolated in the context of chorioamnionitis associated with in utero fetal death. Analysis of neonatal infection distribution over time highlighted the decrease in EOD since the early 2000s, while LOD incidence has remained relatively stable. All GBS isolates were analyzed by sequencing their CRISPR1 locus, which is an efficient way to determine the phylogenetic affiliation of strains, as it correlates with the lineages defined by multilocus sequence typing (MLST). Thus, the CRISPR1 typing method allowed us to assign a clonal complex (CC) to all isolates; among these isolates, CC17 was predominant (60/115, 52%), and the other main CCs, such as CC1 (19/115, 17%), CC10 (9/115, 8%), CC19 (8/115, 7%), and CC23 (15/115, 13%), were also identified. As expected, CC17 isolates (39/48, 81.3%) represented the majority of LOD isolates. Unexpectedly, we found mainly CC1 isolates (6/9) and no CC17 isolates that were responsible for in utero fetal death. Such a result highlights the possibility of a particular role of this CC in in utero infection, and further investigations should be conducted on a larger group of GBS isolated in a context of in utero fetal death. IMPORTANCE Group B Streptococcus is the leading bacterium responsible for maternal and neonatal infections worldwide, also involved in preterm birth, stillbirth, and fetal death. In this study, we determined the clonal complex of all GBS isolates responsible for neonatal diseases (early- and late-onset diseases) and maternal invasive infections, including chorioamnionitis associated with in utero fetal death. All GBS was isolated at the University Hospital of Tours from 2004 to 2020. We described the local group B Streptococcus epidemiology, which confirmed national and international data concerning neonatal disease incidence and clonal complex distribution. Indeed, neonatal diseases are mainly characterized by CC17 isolates, especially in late-onset disease. Interestingly, we identified mainly CC1 isolates responsible for in utero fetal death. CC1 could have a particular role in this context, and such a result should be confirmed on a larger group of GBS isolated from in utero fetal death.
Collapse
Affiliation(s)
- Brice Le Gallou
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Adeline Pastuszka
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Coralie Lemaire
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Laurent Mereghetti
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
10
|
Page CA, Pérez-Díaz IM, Pan M, Barrangou R. Genome-Wide Comparative Analysis of Lactiplantibacillus pentosus Isolates Autochthonous to Cucumber Fermentation Reveals Subclades of Divergent Ancestry. Foods 2023; 12:2455. [PMID: 37444193 DOI: 10.3390/foods12132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Lactiplantibacillus pentosus, commonly isolated from commercial cucumber fermentation, is a promising candidate for starter culture formulation due to its ability to achieve complete sugar utilization to an end pH of 3.3. In this study, we conducted a comparative genomic analysis encompassing 24 L. pentosus and 3 Lactiplantibacillus plantarum isolates autochthonous to commercial cucumber fermentation and 47 lactobacillales reference genomes to determine species specificity and provide insights into niche adaptation. Results showed that metrics such as average nucleotide identity score, emulated Rep-PCR-(GTG)5, computed multi-locus sequence typing (MLST), and multiple open reading frame (ORF)-based phylogenetic trees can robustly and consistently distinguish the two closely related species. Phylogenetic trees based on the alignment of 587 common ORFs separated the L. pentosus autochthonous cucumber isolates from olive fermentation isolates into clade A and B, respectively. The L. pentosus autochthonous clade partitions into subclades A.I, A.II, and A.III, suggesting substantial intraspecies diversity in the cucumber fermentation habitat. The hypervariable sequences within CRISPR arrays revealed recent evolutionary history, which aligns with the L. pentosus subclades identified in the phylogenetic trees constructed. While L. plantarum autochthonous to cucumber fermentation only encode for Type II-A CRISPR arrays, autochthonous L. pentosus clade B codes for Type I-E and L. pentosus clade A hosts both types of arrays. L. pentosus 7.8.2, for which phylogeny could not be defined using the varied methods employed, was found to uniquely encode for four distinct Type I-E CRISPR arrays and a Type II-A array. Prophage sequences in varied isolates evidence the presence of adaptive immunity in the candidate starter cultures isolated from vegetable fermentation as observed in dairy counterparts. This study provides insight into the genomic features of industrial Lactiplantibacillus species, the level of species differentiation in a vegetable fermentation habitat, and diversity profile of relevance in the selection of functional starter cultures.
Collapse
Affiliation(s)
- Clinton A Page
- United States Department of Agriculture, Agricultural Research Service, SEA Food Science and Market Quality and Handling Research Unit, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Ilenys M Pérez-Díaz
- United States Department of Agriculture, Agricultural Research Service, SEA Food Science and Market Quality and Handling Research Unit, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC 27695-7624, USA
| |
Collapse
|
11
|
Enam SU, Cherry JL, Leonard SR, Zheludev IN, Lipman DJ, Fire AZ. Restriction Endonuclease-Based Modification-Dependent Enrichment (REMoDE) of DNA for Metagenomic Sequencing. Appl Environ Microbiol 2023; 89:e0167022. [PMID: 36519847 PMCID: PMC9888230 DOI: 10.1128/aem.01670-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metagenomic sequencing is a swift and powerful tool to ascertain the presence of an organism of interest in a sample. However, sequencing coverage of the organism of interest can be insufficient due to an inundation of reads from irrelevant organisms in the sample. Here, we report a nuclease-based approach to rapidly enrich for DNA from certain organisms, including enterobacteria, based on their differential endogenous modification patterns. We exploit the ability of taxon-specific methylated motifs to resist the action of cognate methylation-sensitive restriction endonucleases that thereby digest unwanted, unmethylated DNA. Subsequently, we use a distributive exonuclease or electrophoretic separation to deplete or exclude the digested fragments, thus enriching for undigested DNA from the organism of interest. As a proof of concept, we apply this method to enrich for the enterobacteria Escherichia coli and Salmonella enterica by 11- to 142-fold from mock metagenomic samples and validate this approach as a versatile means to enrich for genomes of interest in metagenomic samples. IMPORTANCE Pathogens that contaminate the food supply or spread through other means can cause outbreaks that bring devastating repercussions to the health of a populace. Investigations to trace the source of these outbreaks are initiated rapidly but can be drawn out due to the labored methods of pathogen isolation. Metagenomic sequencing can alleviate this hurdle but is often insufficiently sensitive. The approach and implementations detailed here provide a rapid means to enrich for many pathogens involved in foodborne outbreaks, thereby improving the utility of metagenomic sequencing as a tool in outbreak investigations. Additionally, this approach provides a means to broadly enrich for otherwise minute levels of modified DNA, which may escape unnoticed in metagenomic samples.
Collapse
Affiliation(s)
- Syed Usman Enam
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Joshua L. Cherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Susan R. Leonard
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Ivan N. Zheludev
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - David J. Lipman
- Office of the Center Director, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Andrew Z. Fire
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
12
|
Detection and identification of Lactobacillus acidophilus species and its commercial probiotic strains using CRISPR loci-based amplicon analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Lam TJ, Mortensen K, Ye Y. Diversity and dynamics of the CRISPR-Cas systems associated with Bacteroides fragilis in human population. BMC Genomics 2022; 23:573. [PMID: 35953824 PMCID: PMC9367070 DOI: 10.1186/s12864-022-08770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background CRISPR-Cas (clustered regularly interspaced short palindromic repeats—CRISPR-associated proteins) systems are adaptive immune systems commonly found in prokaryotes that provide sequence-specific defense against invading mobile genetic elements (MGEs). The memory of these immunological encounters are stored in CRISPR arrays, where spacer sequences record the identity and history of past invaders. Analyzing such CRISPR arrays provide insights into the dynamics of CRISPR-Cas systems and the adaptation of their host bacteria to rapidly changing environments such as the human gut. Results In this study, we utilized 601 publicly available Bacteroides fragilis genome isolates from 12 healthy individuals, 6 of which include longitudinal observations, and 222 available B. fragilis reference genomes to update the understanding of B. fragilis CRISPR-Cas dynamics and their differential activities. Analysis of longitudinal genomic data showed that some CRISPR array structures remained relatively stable over time whereas others involved radical spacer acquisition during some periods, and diverse CRISPR arrays (associated with multiple isolates) co-existed in the same individuals with some persisted over time. Furthermore, features of CRISPR adaptation, evolution, and microdynamics were highlighted through an analysis of host-MGE network, such as modules of multiple MGEs and hosts, reflecting complex interactions between B. fragilis and its invaders mediated through the CRISPR-Cas systems. Conclusions We made available of all annotated CRISPR-Cas systems and their target MGEs, and their interaction network as a web resource at https://omics.informatics.indiana.edu/CRISPRone/Bfragilis. We anticipate it will become an important resource for studying of B. fragilis, its CRISPR-Cas systems, and its interaction with mobile genetic elements providing insights into evolutionary dynamics that may shape the species virulence and lead to its pathogenicity. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08770-8).
Collapse
Affiliation(s)
- Tony J Lam
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Kate Mortensen
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Yuzhen Ye
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
14
|
Monte DFM, Nethery MA, Berman H, Keelara S, Lincopan N, Fedorka-Cray PJ, Barrangou R, Landgraf M. Clustered Regularly Interspaced Short Palindromic Repeats Genotyping of Multidrug-Resistant Salmonella Heidelberg Strains Isolated From the Poultry Production Chain Across Brazil. Front Microbiol 2022; 13:867278. [PMID: 35783410 PMCID: PMC9248969 DOI: 10.3389/fmicb.2022.867278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Heidelberg has been associated with a broad host range, such as poultry, dairy calves, swine, wild birds, environment, and humans. The continuous evolution of S. Heidelberg raises a public health concern since there is a global dispersal of lineages harboring a wide resistome and virulome on a global scale. Here, we characterized the resistome, phylogenetic structure and clustered regularly interspaced short palindromic repeats (CRISPR) array composition of 81 S. Heidelberg strains isolated from broiler farms (n = 16), transport and lairage (n = 5), slaughterhouse (n = 22), and retail market (n = 38) of the poultry production chain in Brazil, between 2015 and 2016 using high-resolution approaches including whole-genome sequencing (WGS) and WGS-derived CRISPR genotyping. More than 91% of the S. Heidelberg strains were multidrug-resistant. The total antimicrobial resistance (AMR) gene abundances did not vary significantly across regions and sources suggesting the widespread distribution of antibiotic-resistant strains from farm to market. The highest AMR gene abundance was observed for fosA7, aac(6')-Iaa, sul2, tet(A), gyrA, and parC for 100% of the isolates, followed by 88.8% for bla CMY-2. The β-lactam resistance was essentially driven by the presence of the plasmid-mediated AmpC (pAmpC) bla CMY-2 gene, given the isolates which did not carry this gene were susceptible to cefoxitin (FOX). Most S. Heidelberg strains were classified within international lineages, which were phylogenetically nested with Salmonella strains from European countries; while CRISPR genotyping analysis revealed that the spacer content was overall highly conserved, but distributed into 13 distinct groups. In summary, our findings underscore the potential role of S. Heidelberg as a key pathogen disseminated from farm to fork in Brazil and reinforce the importance of CRISPR-based genotyping for salmonellae. Hence, we emphasized the need for continuous mitigation programs to monitor the dissemination of this high-priority pathogen.
Collapse
Affiliation(s)
- Daniel F. M. Monte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
- Laboratory of Avian Pathology, Department of Pathology, Theriogenology, and One Health, São Paulo State University (FCAV-Unesp), São Paulo, Brazil
| | - Matthew A. Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Hanna Berman
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Shivaramu Keelara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula J. Fedorka-Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Bhattacharjee R, Nandi A, Mitra P, Saha K, Patel P, Jha E, Panda PK, Singh SK, Dutt A, Mishra YK, Verma SK, Suar M. Theragnostic application of nanoparticle and CRISPR against food-borne multi-drug resistant pathogens. Mater Today Bio 2022; 15:100291. [PMID: 35711292 PMCID: PMC9194658 DOI: 10.1016/j.mtbio.2022.100291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Foodborne infection is one of the leading sources of infections spreading across the world. Foodborne pathogens are recognized as multidrug-resistant (MDR) pathogens posing a significant problem in the food industry and healthy consumers resulting in enhanced economic burden, and nosocomial infections. The continued search for enhanced microbial detection tools has piqued the interest of the CRISPR-Cas system and Nanoparticles. CRISPR-Cas system is present in the bacterial genome of some prokaryotes and is repurposed as a theragnostic tool against MDR pathogens. Nanoparticles and composites have also emerged as an efficient tool in theragnostic applications against MDR pathogens. The diagnostic limitations of the CRISPR-Cas system are believed to be overcome by a synergistic combination of the nanoparticles system and CRISPR-Cas using nanoparticles as vehicles. In this review, we have discussed the diagnostic application of CRISPR-Cas technologies along with their potential usage in applications like phage resistance, phage vaccination, strain typing, genome editing, and antimicrobial. we have also elucidated the antimicrobial and detection role of nanoparticles against foodborne MDR pathogens. Moreover, the novel combinatorial approach of CRISPR-Cas and nanoparticles for their synergistic effects in pathogen clearance and drug delivery vehicles has also been discussed.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Priya Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Koustav Saha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Sushil Kumar Singh
- DBT- NECAB, Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Suresh K. Verma
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| |
Collapse
|
16
|
Kumar P, Rani A, Singh S, Kumar A. Recent advances on
DNA
and omics‐based technology in Food testing and authentication: A review. J Food Saf 2022. [DOI: 10.1111/jfs.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pramod Kumar
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Alka Rani
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Shalini Singh
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| | - Anuj Kumar
- National Institute of Cancer Prevention and Research Indian Council for Medical Research (ICMR‐NICPR) Noida India
| |
Collapse
|
17
|
Zhang X, An X. Adaptation by Type III CRISPR-Cas Systems: Breakthrough Findings and Open Questions. Front Microbiol 2022; 13:876174. [PMID: 35495695 PMCID: PMC9048733 DOI: 10.3389/fmicb.2022.876174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems acquire heritable defense memory against invading nucleic acids through adaptation. Type III CRISPR-Cas systems have unique and intriguing features of defense and are important in method development for Genetics research. We started to understand the common and unique properties of type III CRISPR-Cas adaptation in recent years. This review summarizes our knowledge regarding CRISPR-Cas adaptation with the emphasis on type III systems and discusses open questions for type III adaptation studies.
Collapse
Affiliation(s)
- Xinfu Zhang
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, United States
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Xinfu Zhang,
| | - Xinmin An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center of Tree breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Xinmin An,
| |
Collapse
|
18
|
Fu Y, Smith JC, Shariat NW, M'ikanatha NM, Dudley EG. Evidence for common ancestry and microevolution of passerine-adapted Salmonella enterica serovar Typhimurium in the UK and USA. Microb Genom 2022; 8. [PMID: 35195512 PMCID: PMC8942035 DOI: 10.1099/mgen.0.000775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The evolution of Salmonella enterica serovar Typhimurium (S. Typhimurium) within passerines has resulted in pathoadaptation of this serovar to the avian host in Europe. Recently, we identified an S. Typhimurium lineage from passerines in North America. The emergence of passerine-adapted S. Typhimurium in Europe and North America raises questions regarding its evolutionary origin. Here, we demonstrated that the UK and US passerine-adapted S. Typhimurium shared a common ancestor from ca. 1838, and larids played a key role in the clonal expansion by disseminating the common ancestor between North America and Europe. Further, we identified virulence gene signatures common in the passerine- and larid-adapted S. Typhimurium, including conserved pseudogenes in fimbrial gene lpfD and Type 3 Secretion System (T3SS) effector gene steC. However, the UK and US passerine-adapted S. Typhimurium also possessed unique virulence gene signatures (i.e. pseudogenes in fimbrial gene fimC and T3SS effector genes sspH2, gogB, sseJ and sseK2), and the majority of them (38/47) lost a virulence plasmid pSLT that was present in the larid-adapted S. Typhimurium. These results provide evidence that passerine-adapted S. Typhimurium share a common ancestor with those from larids, and the divergence of passerine- and larid-adapted S. Typhimurium might be due to pseudogenization or loss of specific virulence genes.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jared C Smith
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA 30602, USA
| | - Nikki W Shariat
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.,E. coli Reference Center, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Lemaire C, Le Gallou B, Lanotte P, Mereghetti L, Pastuszka A. Distribution, Diversity and Roles of CRISPR-Cas Systems in Human and Animal Pathogenic Streptococci. Front Microbiol 2022; 13:828031. [PMID: 35173702 PMCID: PMC8841824 DOI: 10.3389/fmicb.2022.828031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococci form a wide group of bacteria and are involved in both human and animal pathologies. Among pathogenic isolates, differences have been highlighted especially concerning their adaptation and virulence profiles. CRISPR-Cas systems have been identified in bacteria and many streptococci harbor one or more systems, particularly subtypes I-C, II-A, and III-A. Since the demonstration that CRISPR-Cas act as an adaptive immune system in Streptococcus thermophilus, a lactic bacteria, the diversity and role of CRISPR-Cas were extended to many germs and functions were enlarged. Among those, the genome editing tool based on the properties of Cas endonucleases is used worldwide, and the recent attribution of the Nobel Prize illustrates the importance of this tool in the scientific world. Another application is CRISPR loci analysis, which allows to easily characterize isolates in order to understand the interactions of bacteria with their environment and visualize species evolution. In this review, we focused on the distribution, diversity and roles of CRISPR-Cas systems in the main pathogenic streptococci.
Collapse
Affiliation(s)
- Coralie Lemaire
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Brice Le Gallou
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
- *Correspondence: Philippe Lanotte,
| | - Laurent Mereghetti
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Adeline Pastuszka
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
20
|
Kim K, Lee YJ. Relationship between CRISPR sequence type and antimicrobial resistance in avian pathogenic Escherichia coli. Vet Microbiol 2022; 266:109338. [PMID: 35051827 DOI: 10.1016/j.vetmic.2022.109338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/09/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) is a primary cause of extraintestinal disease and respiratory infections in chickens; therefore, various antimicrobials applied via mass medication in farms to control APEC in Korea. In this study, we analyzed the relationship between CRISPR sequence type and antimicrobial resistance (AMR) in APEC isolates. Based on spacer distribution, a total of 103 CRISPR-positive APEC isolates were classified into 25 E. coli sequence types (ESTs), largely into two clusters that were correlated with phylogenetic groups: isolates appearing to have CRISPR 1 and/or 2 (93.2 %) and those having CRISPR 3 and 4 (6.8 %). Moreover, ESTs were divided into three AMR pattern-based groups: cephems-resistant group, non-cephems-resistant group, and antimicrobial sensitive group. There were significant differences among the groups (p < 0.05). Sixteen of the 25 ESTs had a significantly higher distribution of multidrug-resistant (MDR) isolates than the other ESTs (p < 0.05), and the ratio of MDR isolates was significantly higher than that of non-MDR isolates in the CRISPR 1 and 2 arrays (p < 0.05). A total of 9 protospacers were identified with protospacer, with protospacer 1 in CRISPR 1 being the most prevalent among the isolates (41.7 %). The protospacers of CRISPR 1 and 2 loci were associated with protection against external invaders such as bacteriophage or endogenous gene regulation. However, each protospacer of the CRISPR 3 and 4 loci originated from genes associated with AMR plasmids. These results indicate that CRISPR sequence type can improve AMR bacteria and enhance strategies for tackling the complexity of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Koeun Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
21
|
Zhang X, Garrett S, Graveley BR, Terns MP. Unique properties of spacer acquisition by the type III-A CRISPR-Cas system. Nucleic Acids Res 2021; 50:1562-1582. [PMID: 34893878 PMCID: PMC8860593 DOI: 10.1093/nar/gkab1193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Type III CRISPR-Cas systems have a unique mode of interference, involving crRNA-guided recognition of nascent RNA and leading to DNA and RNA degradation. How type III systems acquire new CRISPR spacers is currently not well understood. Here, we characterize CRISPR spacer uptake by a type III-A system within its native host, Streptococcus thermophilus. Adaptation by the type II-A system in the same host provided a basis for comparison. Cas1 and Cas2 proteins were critical for type III adaptation but deletion of genes responsible for crRNA biogenesis or interference did not detectably change spacer uptake patterns, except those related to host counter-selection. Unlike the type II-A system, type III spacers are acquired in a PAM- and orientation-independent manner. Interestingly, certain regions of plasmids and the host genome were particularly well-sampled during type III-A, but not type II-A, spacer uptake. These regions included the single-stranded origins of rolling-circle replicating plasmids, rRNA and tRNA encoding gene clusters, promoter regions of expressed genes and 5′ UTR regions involved in transcription attenuation. These features share the potential to form DNA secondary structures, suggesting a preferred substrate for type III adaptation. Lastly, the type III-A system adapted to and protected host cells from lytic phage infection.
Collapse
Affiliation(s)
- Xinfu Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sandra Garrett
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Michael P Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA 30602, USA.,Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Li C, Wang Y, Gao Y, Li C, Ma B, Wang H. Antimicrobial Resistance and CRISPR Typing Among Salmonella Isolates From Poultry Farms in China. Front Microbiol 2021; 12:730046. [PMID: 34603259 PMCID: PMC8481896 DOI: 10.3389/fmicb.2021.730046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Although knowledge of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been applied in many research areas, comprehensive studies of this system in Salmonella, particularly in analysis of antibiotic resistance, have not been reported. In this work, 75 Salmonella isolates obtained from broilers or broilers products were characterized to determine their antimicrobial susceptibilities, antibiotic resistance gene profiles, and CRISPR array diversities, and genotyping was explored. In total, 80.00% (60/75) of the strains were multidrug resistant, and the main pattern observed in the isolates was CN-AZM-AMP-AMC-CAZ-CIP-ATM-TE-SXT-FOS-C. The resistance genes of streptomycin (aadA), phenicol (floR-like and catB3-like), β-lactams (bla TEM, bla OXA, and bla CTX), tetracycline [tet(A)-like], and sulfonamides (sul1 and sul2) appeared at higher frequencies among the corresponding resistant isolates. Subsequently, we analyzed the CRISPR arrays and found 517 unique spacer sequences and 31 unique direct repeat sequences. Based on the CRISPR spacer sequences, we developed a novel typing method, CRISPR locus three spacer sequences typing (CLTSST), to help identify sources of Salmonella outbreaks especially correlated with epidemiological data. Compared with multi-locus sequence typing (MLST), conventional CRISPR typing (CCT), and CRISPR locus spacer pair typing (CLSPT), discrimination using CLTSST was weaker than that using CCT but stronger than that using MLST and CLSPT. In addition, we also found that there were no close correlations between CRISPR loci and antibiotics but had close correlations between CRISPR loci and antibiotic resistance genes in Salmonella isolates.
Collapse
Affiliation(s)
- Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yulong Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yufeng Gao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Boheng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Beauruelle C, Treluyer L, Pastuszka A, Cochard T, Lier C, Mereghetti L, Glaser P, Poyart C, Lanotte P. CRISPR Typing Increases the Discriminatory Power of Streptococcus agalactiae Typing Methods. Front Microbiol 2021; 12:675597. [PMID: 34349737 PMCID: PMC8328194 DOI: 10.3389/fmicb.2021.675597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
We explored the relevance of a Clustered regularly interspaced short palindromic repeats (CRISPR)-based genotyping tool for Streptococcus agalactiae typing and we compared this method to current molecular methods [multi locus sequence typing (MLST) and capsular typing]. To this effect, we developed two CRISPR marker schemes (using 94 or 25 markers, respectively). Among the 255 S. agalactiae isolates tested, 229 CRISPR profiles were obtained. The 94 and 25 markers made it possible to efficiently separate isolates with a high diversity index (0.9947 and 0.9267, respectively), highlighting a high discriminatory power, superior to that of both capsular typing and MLST (diversity index of 0.9017 for MLST). This method has the advantage of being correlated with MLST [through analysis of the terminal direct repeat (TDR) and ancestral spacers] and to possess a high discriminatory power (through analysis of the leader-end spacers recently acquired, which are the witnesses of genetic mobile elements encountered by the bacteria). Furthermore, this “one-shot” approach presents the benefit of much-reduced time and cost in comparison with MLST. On the basis of these data, we propose that this method could become a reference method for group B Streptococcus (GBS) typing.
Collapse
Affiliation(s)
- Clémence Beauruelle
- Département de Bactériologie-Virologie, Hygiène Hospitalière et Parasitologie-Mycologie, Centre Hospitalier Régional Universitaire (CHRU) de Brest, Brest, France.,Inserm, EFS, UMR 1078, GGB, Universitè de Bretagne Occidentale, Brest, France
| | - Ludovic Treluyer
- Institut Cochin, Team Bacteria and Perinatality, INSERM U1016, Paris, France
| | - Adeline Pastuszka
- INRAE, ISP, Université de Tours, Tours, France.,Service de Bactériologie-Virologie, CHRU de Tours, Tours, France
| | | | - Clément Lier
- INRAE, ISP, Université de Tours, Tours, France.,Service de Bactériologie-Virologie, CHRU de Tours, Tours, France
| | - Laurent Mereghetti
- INRAE, ISP, Université de Tours, Tours, France.,Service de Bactériologie-Virologie, CHRU de Tours, Tours, France
| | - Philippe Glaser
- Evolution and Ecology of Resistance to Antibiotics (EERA) Unit, Institut Pasteur, Paris, France.,UMR CNRS 3525, Paris, France
| | - Claire Poyart
- Institut Cochin, Team Bacteria and Perinatality, INSERM U1016, Paris, France.,CNRS UMR 8104, Paris Descartes University, Paris, France.,Department of Bacteriology, University Hospitals Paris Centre-Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | |
Collapse
|
24
|
Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Đermić E, Holeva MC, Jacques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J. Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms 2021; 9:862. [PMID: 33923763 PMCID: PMC8073235 DOI: 10.3390/microorganisms9040862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.
Collapse
Affiliation(s)
- Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95125 Catania, Italy
| | - Jaime Cubero
- National Institute for Agricultural and Food Research and Technology (INIA), 28002 Madrid, Spain;
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel;
| | - Claude Bragard
- UCLouvain, Earth & Life Institute, Applied Microbiology, 1348 Louvain-la-Neuve, Belgium;
| | - Edyta Đermić
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maria C. Holeva
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Bacteriology, GR-14561 Kifissia, Greece;
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, Univ Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France;
| | - Francoise Petter
- European and Mediterranean Plant Protection Organization (EPPO/OEPP), 75011 Paris, France;
| | - Olivier Pruvost
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | - Isabelle Robène
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | | | - Fernando Tavares
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal; or
- FCUP-Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), Univ Montpellier, Cirad, INRAe, Institut Agro, IRD, 34398 Montpellier, France;
| | - Joana Costa
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 300-456 Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|
25
|
Ping S, Mayorga-Reyes N, Price VJ, Onuoha M, Bhardwaj P, Rodrigues M, Owen J, Palacios Araya D, Akins RL, Palmer KL. Characterization of presumptive vancomycin-resistant enterococci recovered during infection control surveillance in Dallas, Texas, USA. Access Microbiol 2021; 3:000214. [PMID: 34151166 PMCID: PMC8209702 DOI: 10.1099/acmi.0.000214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Enterococcus faecalis and E. faecium are Gram-positive bacteria that normally inhabit the human gastrointestinal tract. They are also opportunistic pathogens and can cause nosocomial infection outbreaks. To prevent the spread of nosocomial infections, hospitals may rely on screening methods to identify patients colonized with multidrug-resistant organisms including vancomycin-resistant enterococci (VRE). Spectra VRE agar (Remel) contains vancomycin and other medium components that select for VRE and phenotypically differentiate between E. faecalis and E. faecium by colony colour. We obtained 66 de-identified rectal swab cultures on Spectra VRE agar that were obtained during routine patient admission surveillance at a hospital system in Dallas, Texas, USA. We analysed 90 presumptive VRE from 61 of the Spectra VRE agar cultures using molecular and culture methods. Using ddl typing, 55 were found to be E. faecium and 32 were found to be E. faecalis . While most of the E. faecium were positive for the vanA gene by PCR (52 of 55 strains), few of the E. faecalis were positive for either vanA or vanB (five of 32 strains). The 27 E. faecalis vanA- and vanB-negative strains could not be recultured on Spectra VRE agar. Overall, we found that Spectra VRE agar performed robustly for the identification of vancomycin-resistant E. faecium , but presumptive false positives were obtained for vancomycin-resistant E. faecalis .
Collapse
Affiliation(s)
- Sara Ping
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Nancy Mayorga-Reyes
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Valerie J. Price
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Michelle Onuoha
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Pooja Bhardwaj
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Marinelle Rodrigues
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Jordan Owen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
26
|
Kim K, Yoon S, Kim YB, Lee YJ. Virulence Variation of Salmonella Gallinarum Isolates through SpvB by CRISPR Sequence Subtyping, 2014 to 2018. Animals (Basel) 2020; 10:ani10122346. [PMID: 33317043 PMCID: PMC7763567 DOI: 10.3390/ani10122346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Salmonella Gallinarum causes fowl typhoid in all ages of chickens, which results in economic loss of commercial chicken farms. The disease has been eradicated in many developed countries, but is still prevalent in Korea. In this study, we investigated virulence and genetic variation of S. Gallinarum from Korea, between 2014 and 2018. The results indicated that virulence was increased, which was associated with genetic change over time. Therefore, surveillance of genetic change associated with virulence increase is necessary for monitoring of S. Gallinarum isolates for dissemination. Abstract Salmonella Gallinarum is a Gram-negative bacteria that causes fowl typhoid, a septicemic disease with high morbidity and mortality that affects all ages of chickens. Although vaccines and antimicrobials have been used nationwide to eradicate the disease, the malady is still prevalent in Korea. In this study, we investigated the virulence and genetic variation of 116 S. Gallinarum isolates from laying hens between 2014 and 2018. A total of 116 isolates were divided into five Gallinarum Sequence Types (GST) through clustered regularly interspaced short palindromic repeats (CRISPR) subtyping method. The GSTs displayed changes over time. The 116 isolates showed no difference in virulence gene distribution, but the polyproline linker (PPL) length of the SpvB, one of the virulence factors of Salmonella spp., served as an indicator of S. Gallinarum pathogenicity. The most prevalent PPL length was 22 prolines (37.9%). The shortest PPL length (19 prolines) was found only in isolates from 2014 and 2015. However, the longest PPL length of 24 prolines appeared in 2018. This study indicates that PPLs of S. Gallinarum in Korea tend to lengthen over time, so the pathogenic potency of the bacteria is increasing. Moreover, the transition of GST was associated with PPL length extension over time. These results indicate that surveillance of changing GST and PPL length are necessary in the monitoring of S. Gallinarum isolates.
Collapse
|
27
|
Abstract
PURPOSE OF THE REVIEW Significant numbers of patients worldwide are affected by various rare diseases, but the effective treatment options to these individuals are limited. Rare diseases remain underfunded compared to more common diseases, leading to significant delays in research progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing tools to understand the pathogenesis of rare diseases and develop additional therapeutic approaches with a high degree of precision. RECENT FINDINGS Several genome-editing approaches, including CRISPR/Cas9, TALEN and ZFN, have been used to generate animal models of rare diseases, understand the disease pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most extensively used method for genome editing due to its relative simplicity and superior efficiency compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to treat rare monogenic and other genetically defined human diseases. SUMMARY Less than 5% of ~7000 known rare diseases have FDA-approved therapies, providing a compelling need for additional research and clinical trials to identify efficient treatment options for patients with rare diseases. Development of efficient genome-editing tools capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these diseases.
Collapse
Affiliation(s)
- Arun Pradhan
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
28
|
Monte DFM, Nethery MA, Barrangou R, Landgraf M, Fedorka-Cray PJ. Whole-genome sequencing analysis and CRISPR genotyping of rare antibiotic-resistant Salmonella enterica serovars isolated from food and related sources. Food Microbiol 2020; 93:103601. [PMID: 32912589 DOI: 10.1016/j.fm.2020.103601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
For decades, Salmonella Typhimurium and Salmonella Enteritidis have prevailed in several countries as agents of salmonellosis outbreaks. In Brazil, the largest exporter of poultry meat, relatively little attention has been paid to infrequent serovars. Here, we report the emergence and characterization of rare serovars isolated from food and related sources collected between 2014 and 2016 in Brazil. Twenty-two Salmonella enterica isolates were analyzed through the use of whole-genome sequencing (WGS) and clustered regularly interspaced short palindromic repeats (CRISPR) genotyping. These isolates were classified into 10 infrequent serovars, including S. Abony, S. Isangi, S. Rochdale, S. Saphra, S. Orion, S. Ouakam, S. Grumpensis, S. Carrau, S. Abaetetuba, and S. Idikan. The presence of six antimicrobial resistance (AMR) genes, qnrB19, blaCMY-2, tetA, aac(6')-Iaa, sul2 and fosA7, which encode resistance to quinolones, third-generation cephalosporin, tetracycline, aminoglycoside, sulfonamide and fosfomycin, respectively, were confirmed by WGS. All S. Isangi harbored qnrB19 with conserved genomic context across strains, while S. Abony harbored blaCMY-2. Twelve (54.5%) strains displayed chromosomal mutations in parC (Thr57→Ser). Most serovars were classified as independent lineages, except S. Abony and S. Abaetetuba, which phylogenetically nested with Salmonella strains from different countries. CRISPR analysis revealed that the spacer content was strongly correlated with serovar and multi-locus sequence type for all strains, independently confirming the observed phylogenetic patterns, and highlighting the value of CRISPR-based genotyping for Salmonella. These findings add valuable information to the epidemiology of S. enterica in Brazil, where the emergency of antibiotic-resistant Salmonella continues to evolve.
Collapse
Affiliation(s)
- Daniel F M Monte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, Brazil; Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| | - Matthew A Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mariza Landgraf
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, Brazil
| | - Paula J Fedorka-Cray
- Department of Population Health and Pathobiology, North Carolina State University, College of Veterinary Medicine, Raleigh, NC, USA.
| |
Collapse
|
29
|
Long J, Xu Y, Ou L, Yang H, Xi Y, Chen S, Duan G. Utilization of Clustered Regularly Interspaced Short Palindromic Repeats to Genotype Escherichia coli Serogroup O80. Front Microbiol 2020; 11:1708. [PMID: 32793166 PMCID: PMC7390953 DOI: 10.3389/fmicb.2020.01708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
The hypervariable nature of clustered regularly interspaced short palindromic repeats (CRISPRs) makes them valuable biomarkers for subtyping and epidemiological investigation of Escherichia coli. Shiga toxin-producing E. coli (STEC) serogroup O80 is one hybrid pathotype that is emerging recently in Europe and is involved in hemolytic uremic syndrome with bacteremia. However, whether STEC O80 strains can be genotyped using CRISPR has not been evaluated. In this study, we aimed to characterize the genetic diversity of 81 E. coli serogroup O80 isolates deposited in the National Center for Biotechnology Information databases using CRISPR typing and to explore the association between virulence potential and CRISPR types (CTs). A total of 21 CTs were identified in 80 O80 strains. CRISRP typing provided discrimination with variants of a single serotype, which suggested a stronger discriminatory power. Based on CRISPR spacer profiles, 70 O80:H2 isolates were further divided into four lineages (lineage LI, LII, LIII, and LIV), which correlated well with whole-genome single nucleotide polymorphisms typing and virulence gene profiles. Moreover, the association between CRISPR lineages and virulence gene profiles hinted that STEC O80:H2 strains may originate from O80:H19 or O80:H26 and that lineage LI may have been evolved from lineage LII. CT2 and CT13 were shared by human and cattle isolates, suggesting that there might be the potential transmission between cattle and human. Collectively, CRISPR typing is one technology that can be used to monitor the transmission of STEC O80 strains and provide new insights into microevolution of serogroup O80.
Collapse
Affiliation(s)
- Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yake Xu
- Institute for AIDS/STD Control and Prevention, Henan Province Center for Disease Control and Prevention, Henan, China
| | - Liuyang Ou
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
30
|
Wang G, Liu Q, Pei Z, Wang L, Tian P, Liu Z, Zhao J, Zhang H, Chen W. The Diversity of the CRISPR-Cas System and Prophages Present in the Genome Reveals the Co-evolution of Bifidobacterium pseudocatenulatum and Phages. Front Microbiol 2020; 11:1088. [PMID: 32528454 PMCID: PMC7264901 DOI: 10.3389/fmicb.2020.01088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Diverse CRISPR-Cas systems constitute an indispensable part of the bacterial adaptive immune system against viral infections. However, to escape from this immune system, bacteriophages have also evolved corresponding anti-defense measures. We investigated the diversity of CRISPR-Cas systems and the presence of prophages in the genomes of 66 Bifidobacterium pseudocatenulatum strains. Our findings revealed a high occurrence of complete CRISPR-Cas systems (62%, 41/66) in the B. pseudocatenulatum genomes. Subtypes I-C, I-U and II-A, were found to be widespread in this species. No significant association was found between the number of bacterial CRISPR spacers and its host's age. This study on prophages within B. pseudocatenulatum genomes revealed that prophage genes related to distinct functional modules became degraded at different levels, indicating that these prophages were not likely to enter lytic cycle spontaneously. Further, the evolutionary analysis of prophages in this study revealed that they might be derived from different phage ancestors. Notably, self-targeting phenomenon within B. pseudocatenulatum and Anti-CRISPR (Acr) coding genes in prophages was observed. Overall, our results indicate that the competition between B. pseudocatenulatum and phages is a major driving factor for the genomic diversity of both partners.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qian Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
31
|
Comprehensive Mining and Characterization of CRISPR-Cas Systems in Bifidobacterium. Microorganisms 2020; 8:microorganisms8050720. [PMID: 32408568 PMCID: PMC7284854 DOI: 10.3390/microorganisms8050720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated cas) systems constitute the adaptive immune system in prokaryotes, which provides resistance against bacteriophages and invasive genetic elements. The landscape of applications in bacteria and eukaryotes relies on a few Cas effector proteins that have been characterized in detail. However, there is a lack of comprehensive studies on naturally occurring CRISPR-Cas systems in beneficial bacteria, such as human gut commensal Bifidobacterium species. In this study, we mined 954 publicly available Bifidobacterium genomes and identified CRIPSR-Cas systems in 57% of these strains. A total of five CRISPR-Cas subtypes were identified as follows: Type I-E, I-C, I-G, II-A, and II-C. Among the subtypes, Type I-C was the most abundant (23%). We further characterized the CRISPR RNA (crRNA), tracrRNA, and PAM sequences to provide a molecular basis for the development of new genome editing tools for a variety of applications. Moreover, we investigated the evolutionary history of certain Bifidobacterium strains through visualization of acquired spacer sequences and demonstrated how these hypervariable CRISPR regions can be used as genotyping markers. This extensive characterization will enable the repurposing of endogenous CRISPR-Cas systems in Bifidobacteria for genome engineering, transcriptional regulation, genotyping, and screening of rare variants.
Collapse
|
32
|
Nethery MA, Henriksen ED, Daughtry KV, Johanningsmeier SD, Barrangou R. Comparative genomics of eight Lactobacillus buchneri strains isolated from food spoilage. BMC Genomics 2019; 20:902. [PMID: 31775607 PMCID: PMC6881996 DOI: 10.1186/s12864-019-6274-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract Background Lactobacillus buchneri is a lactic acid bacterium frequently associated with food bioprocessing and fermentation and has been found to be either beneficial or detrimental to industrial food processes depending on the application. The ability to metabolize lactic acid into acetic acid and 1,2-propandiol makes L. buchneri invaluable to the ensiling process, however, this metabolic activity leads to spoilage in other applications, and is especially damaging to the cucumber fermentation industry. This study aims to augment our genomic understanding of L. buchneri in order to make better use of the species in a wide range of applicable industrial settings. Results Whole-genome sequencing (WGS) was performed on seven phenotypically diverse strains isolated from spoiled, fermented cucumber and the ATCC type strain for L. buchneri, ATCC 4005. Here, we present our findings from the comparison of eight newly-sequenced and assembled genomes against two publicly available closed reference genomes, L. buchneri CD034 and NRRL B-30929. Overall, we see ~ 50% of all coding sequences are conserved across these ten strains. When these coding sequences are clustered by functional description, the strains appear to be enriched in mobile genetic elements, namely transposons. All isolates harbor at least one CRISPR-Cas system, and many contain putative prophage regions, some of which are targeted by the host’s own DNA-encoded spacer sequences. Conclusions Our findings provide new insights into the genomics of L. buchneri through whole genome sequencing and subsequent characterization of genomic features, building a platform for future studies and identifying elements for potential strain manipulation or engineering.
Collapse
Affiliation(s)
- Matthew A Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA.,Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | | | - Katheryne V Daughtry
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.,United States Department of Agriculture, Agricultural Research Service, Southeast Area, Food Science Research Unit, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC, 27695-7624, USA
| | - Suzanne D Johanningsmeier
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Food Science Research Unit, North Carolina State University, 322 Schaub Hall, Box 7624, Raleigh, NC, 27695-7624, USA
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, USA. .,Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
33
|
Zeng H, Li C, He W, Zhang J, Chen M, Lei T, Wu H, Ling N, Cai S, Wang J, Ding Y, Wu Q. Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter dublinensis Genotyping Based on CRISPR Locus Diversity. Front Microbiol 2019; 10:1989. [PMID: 31555228 PMCID: PMC6722223 DOI: 10.3389/fmicb.2019.01989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022] Open
Abstract
Cronobacter strains harboring CRISPR-Cas systems are important foodborne pathogens that cause serious neonatal infections. CRISPR typing is a new molecular subtyping method to track the sources of pathogenic bacterial outbreaks and shows a promise in typing Cronobacter, however, this molecular typing procedure using routine PCR method has not been established. Therefore, the purpose of this study was to establish such methodology, 257 isolates of Cronobacter sakazakii, C. malonaticus, and C. dublinensis were used to verify the feasibility of the method. Results showed that 161 C. sakazakii strains could be divided into 129 CRISPR types (CTs), among which CT15 (n = 7) was the most prevalent CT followed by CT6 (n = 4). Further, 65 C. malonaticus strains were divided into 42 CTs and CT23 (n = 8) was the most prevalent followed by CT2, CT3, and CT13 (n = 4). Finally, 31 C. dublinensis strains belonged to 31 CTs. There was also a relationship among CT, sequence type (ST), food types, and serotype. Compared to multi-locus sequence typing (MLST), this new molecular method has greater power to distinguish similar strains and had better accordance with whole genome sequence typing (WGST). More importantly, some lineages were found to harbor conserved ancestral spacers ahead of their divergent specific spacer sequences; this can be exploited to infer the divergent evolution of Cronobacter and provide phylogenetic information reflecting common origins. Compared to WGST, CRISPR typing method is simpler and more affordable, it could be used to identify sources of Cronobacter food-borne outbreaks, from clinical cases to food sources and the production sites.
Collapse
Affiliation(s)
- Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengsi Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenjing He
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tao Lei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haoming Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Na Ling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuzhen Cai
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbiology Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
34
|
Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC, Stevenson A, Wiedmann M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front Microbiol 2019; 10:1591. [PMID: 31354679 PMCID: PMC6639432 DOI: 10.3389/fmicb.2019.01591] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.
Collapse
Affiliation(s)
- Silin Tang
- Mars Global Food Safety Center, Beijing, China
| | - Renato H. Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | | | | | | | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
35
|
Luz ACDO, da Silva JMA, Rezende AM, de Barros MPS, Leal-Balbino TC. Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas aeruginosa. Mol Genet Genomics 2019; 294:1095-1105. [PMID: 31098740 DOI: 10.1007/s00438-019-01575-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023]
Abstract
CRISPR/Cas is an adaptive immune system found in prokaryotes, with the main function of protecting these cells from invasion and possible death by mobile genetic elements. Pseudomonas aeruginosa is considered a model for type I-F CRISPR/Cas system studies. However, its CRISPR loci characteristics have not yet been thoroughly described, and its function has not yet been fully unraveled. The aims of this study were to find the frequency of the system in Brazilian clinical isolates; to identify the loci sequence, its spacer diversity and its origins; as well as to propose a unified spacer library to aid in future structural studies of the CRISPR loci of P. aeruginosa. We investigated types I-F and I-E gene markers to establish CRISPR/Cas typing, and observed two strains harboring both systems simultaneously, a very rare feature. Through amplification and sequencing of CRISPR loci related to type I-F system, we describe polymorphisms in DRs and 350 spacers, of which 97 are new. The spacers that were identified had their possible organisms or proteins of origin identified. Spacer arrays were grouped in five different CRISPR patterns and the plasticity was inferred by rearrangements in spacer arrays. Here, we perform the first detailed and focused description of CRISPR/Cas elements in Brazilian clinical strains of P. aeruginosa. Our findings reflect active and highly diverse CRISPR loci, and we suggest that CRISPR/Cas may also pose as a transcriptional regulatory mechanism. The structural and diversity features described here can provide insights into the function of CRISPR/Cas in this pathogen and help guide the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ana Carolina de Oliveira Luz
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.,Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil
| | | | - Antonio Mauro Rezende
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
36
|
Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria. Curr Opin Biotechnol 2019; 56:61-68. [DOI: 10.1016/j.copbio.2018.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/04/2018] [Accepted: 09/09/2018] [Indexed: 01/01/2023]
|
37
|
Lam TJ, Ye Y. CRISPRs for Strain Tracking and Their Application to Microbiota Transplantation Data Analysis. CRISPR J 2019; 2:41-50. [PMID: 30820491 PMCID: PMC6390457 DOI: 10.1089/crispr.2018.0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
CRISPR-Cas systems are adaptive immune systems naturally found in bacteria and archaea. Prokaryotes use these immune systems to defend against invaders, which include phages, plasmids, and other mobile genetic elements. Relying on the integration of spacers derived from invader sequences (protospacers) into CRISPR loci (forming spacers flanked by repeats), CRISPR-Cas systems are able to store the memory of past immunological encounters. While CRISPR-Cas systems have evolved in response to invading mobile genetic elements, invaders have also developed mechanisms to avoid detection. As a result of an arms race between CRISPR-Cas systems and their targets, CRISPR arrays typically undergo rapid turnover of spacers through the acquisition and loss events. Additionally, microbiomes of different individuals rarely share spacers. Here, we present a computational pipeline, CRISPRtrack, for strain tracking based on CRISPR spacer content, and we applied it to fecal transplantation microbiome data to study the retention of donor strains in recipients. Our results demonstrate the potential use of CRISPRs as a simple yet effective tool for donor-strain tracking in fecal transplantation and as a general purpose tool for quantifying microbiome similarity.
Collapse
Affiliation(s)
- Tony J Lam
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana
| | - Yuzhen Ye
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana
| |
Collapse
|
38
|
Taylor AJ, Stasiewicz MJ. CRISPR-Based Subtyping Using Whole Genome Sequence Data Does Not Improve Differentiation of Persistent and Sporadic Listeria monocytogenes Strains. J Food Sci 2019; 84:319-326. [PMID: 30620778 DOI: 10.1111/1750-3841.14426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
The foodborne pathogen Listeria monocytogenes can persist in food-associated environments for long periods. To identify persistent strains, the subtyping method pulsed-field gel electrophoresis (PFGE) is being replaced by whole genome sequence (WGS)-based subtyping. It was hypothesized that analyzing specific mobile genetic elements, CRISPR (Clustered Regularly Interspaced Short Palindromic Short Repeat) spacer arrays, extracted from WGS data, could differentiate persistent and sporadic isolates within WGS-based clades. To test this hypothesis, 175 L. monocytogenes isolates, previously recovered from retail delis, were analyzed for CRISPR spacers using CRISPRFinder. These isolates represent 23 phylogenetic clades defined by WGS-based single nucleotide polymorphisms and closely related sporadic isolates. In 174/175 (99.4%) of isolates, at least one array with one spacer was identified. Numbers of spacers in a single array ranged from 1 to 28 spacers. Isolates were grouped into 13 spacer patterns (SPs) based on observed variability in the presence or absence of whole spacers. SP variation was consistent with WGS-based clades forming patterns of (i) one SP to one clade, (ii) one SP across many clades, (iii) many SPs within one clade, and (iv) many SPs across many clades. Unfortunately, SPs did not appear to differentiate persistent from sporadic isolates within any WGS-based clade. Overall, these data show that (i) CRISPR arrays are common in WGS data for these food-associated L. monocytogenes and (ii) CRISPR subtyping cannot improve the identification of persistent or sporadic isolates from retail delis. PRACTICAL APPLICATION: CRISPR spacer arrays are present in L. monocytogenes isolates and CRISPR spacer patterns are consistent with previous subtyping methods. These mobile genetic artifacts cannot improve the differentiation between persistent and sporadic L. monocytogenes isolates, used in this study. While CRISPR-based subtyping has been useful for other pathogens, it is not useful in understanding persistence in L. monocytogenes. Thus, the food safety community might be able to use CRISPRs in other areas, but CRISPRs do not seem likely to improve the differentiation of persistence in L. monocytogenes isolates from retail delis.
Collapse
Affiliation(s)
- Alexander J Taylor
- Dept. of Food Science and Human Nutrition, Coll. of Agricultural, Consumer, and Environmental Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew J Stasiewicz
- Dept. of Food Science and Human Nutrition, Coll. of Agricultural, Consumer, and Environmental Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
39
|
Nethery MA, Barrangou R. CRISPR Visualizer: rapid identification and visualization of CRISPR loci via an automated high-throughput processing pipeline. RNA Biol 2018; 16:577-584. [PMID: 30130453 DOI: 10.1080/15476286.2018.1493332] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A CRISPR locus, defined by an array of repeat and spacer elements, constitutes a genetic record of the ceaseless battle between bacteria and viruses, showcasing the genomic integration of spacers acquired from invasive DNA. In particular, iterative spacer acquisitions represent unique evolutionary histories and are often useful for high-resolution bacterial genotyping, including comparative analysis of closely related organisms, clonal lineages, and clinical isolates. Current spacer visualization methods are typically tedious and can require manual data manipulation and curation, including spacer extraction at each CRISPR locus from genomes of interest. Here, we constructed a high-throughput extraction pipeline coupled with a local web-based visualization tool which enables CRISPR spacer and repeat extraction, rapid visualization, graphical comparison, and progressive multiple sequence alignment. We present the bioinformatic pipeline and investigate the loci of reference CRISPR-Cas systems and model organisms in 4 well-characterized subtypes. We illustrate how this analysis uncovers the evolutionary tracks and homology shared between various organisms through visual comparison of CRISPR spacers and repeats, driven through progressive alignments. Due to the ability to process unannotated genome files with minimal preparation and curation, this pipeline can be implemented promptly. Overall, this efficient high-throughput solution supports accelerated analysis of genomic data sets and enables and expedites genotyping efforts based on CRISPR loci.
Collapse
Affiliation(s)
- Matthew A Nethery
- a Genomic Sciences Graduate Program , North Carolina State University , Raleigh , NC , USA.,b Department of Food, Bioprocessing & Nutrition Sciences , North Carolina State University , Raleigh , NC , USA
| | - Rodolphe Barrangou
- a Genomic Sciences Graduate Program , North Carolina State University , Raleigh , NC , USA.,b Department of Food, Bioprocessing & Nutrition Sciences , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
40
|
Tracking carbapenemase-producing bacteria by molecular typing: Population diversity and sampling pitfall. INFECTION GENETICS AND EVOLUTION 2018; 65:104-106. [PMID: 30030207 DOI: 10.1016/j.meegid.2018.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022]
Abstract
While typing methods are increasingly refined, the sampling of bacteria to be typed in healthcare-associated infection context retains less attention. Through 2 emblematic cases of in-hospital transmission of extensively drug-resistant bacteria producing carbapenemases, we demonstrate the impact of colony sampling in typing results. Because of intra-population diversity, typing several colonies of same species and resistotype was needed to fully track the transmission among patients. Bacterial population studies could better decipher transmission routes of healthcare-associated bacteria, thereby improving outbreak control.
Collapse
|
41
|
Li HY, Kao CY, Lin WH, Zheng PX, Yan JJ, Wang MC, Teng CH, Tseng CC, Wu JJ. Characterization of CRISPR-Cas Systems in Clinical Klebsiella pneumoniae Isolates Uncovers Its Potential Association With Antibiotic Susceptibility. Front Microbiol 2018; 9:1595. [PMID: 30061876 PMCID: PMC6054925 DOI: 10.3389/fmicb.2018.01595] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Prokaryotic CRISPR-Cas systems limit the acquisition of genetic elements and provide immunity against invasive bacteriophage. The characteristics of CRISPR-Cas systems in clinical Klebsiella pneumoniae isolates are still unknown. Here, 97 K. pneumoniae genomes retrieved from the Integrated Microbial Genomes & Microbiomes genome database and 176 clinical isolates obtained from patients with bloodstream (BSI, n = 87) or urinary tract infections (UTI, n = 89) in Taiwan, were used for analysis. Forty out of ninety-seven genomes (41.2%) had CRISPR-Cas systems identified by the combination of CRISPRFinder and cas1 gene sequence alignment. The phylogenetic trees revealed that CRISPR-Cas systems in K. pneumoniae were divided into two types (type I-E, 23; subtype I-E∗, 17) based on the sequences of Cas1 and Cas3 proteins and their location in the chromosome. The distribution of type I-E and I-E∗ CRISPR-Cas systems was associated with the multilocus sequence typing and the pulsed-field gel electrophoresis results. Importantly, no CRISPR-Cas system was identified in published genomes of clonal complex 258 isolates (ST11 and ST258), which comprise the largest multi-drug resistant K. pneumoniae clonal group worldwide. PCR with cas-specific primers showed that 30.7% (54/176) of the clinical isolates had a CRISPR-Cas system. Among clinical isolates, more type I-E CRISPR-Cas systems were found in UTI isolates (BSI, 5.7%; UTI, 11.2%), and subtype I-E∗ CRISPR-Cas systems were dominant in BSI isolates (BSI, 28.7%; UTI, 15.7%) (p = 0.042). Isolates which had subtype I-E∗ CRISPR-Cas system were more susceptible to ampicillin-sulbactam (p = 0.009), cefazolin (p = 0.016), cefuroxime (p = 0.039), and gentamicin (p = 0.012), compared to the CRISPR-negative isolates. The strains containing subtype I-E∗ CRISPR-Cas systems had decreased numbers of plasmids, prophage regions, and acquired antibiotic resistance genes in their published genomes. Here, we first revealed subtype I-E∗ CRISPR-Cas system in K. pneumoniae potentially interfering with the acquisition of phages and plasmids harboring antibiotic resistance determinants, and thus maintained these isolates susceptible to antibiotics.
Collapse
Affiliation(s)
- Hsin-Yu Li
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Cheng-Yen Kao
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Xing Zheng
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jing-Jou Yan
- Department of Pathology, Cheng Ching Hospital at Chung Kang, Taichung, Taiwan
| | - Ming-Cheng Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Chung Tseng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
42
|
Razzouk S. CRISPR-Cas9: A cornerstone for the evolution of precision medicine. Ann Hum Genet 2018; 82:331-357. [PMID: 30014471 DOI: 10.1111/ahg.12271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Modern genetic therapy incorporates genomic testing and genome editing. It is the finest approach for precision medicine. Genome editing is a state-of-the-art technology to manipulate gene expression thus generating a particular genotype. It encompasses multiple programmable nuclease-based approaches leading to genetic changes. Not surprisingly, this method triggered internationally a wide array of controversies in the scientific community and in the public since it transforms the human genome. Given its importance, the pace of this technology is exceptionally fast. In this report, we introduce one aspect of genome editing, the CRISPR/Cas9 system, highlight its potential to correct genetic mutations and explore its utility in clinical setting. Our goal is to enlighten health care providers about genome editing and incite them to take part of this vital debate.
Collapse
Affiliation(s)
- Sleiman Razzouk
- Adjunct Faculty, Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York.,Private Practice, Beirut, Lebanon
| |
Collapse
|
43
|
Beauruelle C, Pastuszka A, Mereghetti L, Lanotte P. Group B Streptococcus Vaginal Carriage in Pregnant Women as Deciphered by Clustered Regularly Interspaced Short Palindromic Repeat Analysis. J Clin Microbiol 2018; 56:e01949-17. [PMID: 29618502 PMCID: PMC5971545 DOI: 10.1128/jcm.01949-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/28/2018] [Indexed: 11/20/2022] Open
Abstract
We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach.
Collapse
Affiliation(s)
- Clemence Beauruelle
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France
| | - Adeline Pastuszka
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France
| | - Laurent Mereghetti
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France
| | - Philippe Lanotte
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France
| |
Collapse
|
44
|
Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber. Int J Food Microbiol 2018; 280:46-56. [PMID: 29778800 DOI: 10.1016/j.ijfoodmicro.2018.04.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/06/2018] [Accepted: 04/28/2018] [Indexed: 02/02/2023]
Abstract
Lactobacillus buchneri is a Gram-positive, obligate heterofermentative, facultative anaerobe commonly affiliated with spoilage of food products. Notably, L. buchneri is able to metabolize lactic acid into acetic acid and 1,2-propanediol. Although beneficial to the silage industry, this metabolic capability is detrimental to preservation of cucumbers by fermentation. The objective of this study was to characterize isolates of L. buchneri purified from both industrial and experimental fermented cucumber after the onset of secondary fermentation. Genotypic and phenotypic characterization included 16S rRNA sequencing, DiversiLab® rep-PCR, colony morphology, API 50 CH carbohydrate analysis, and ability to degrade lactic acid in modified MRS and fermented cucumber media. Distinct groups of isolates were identified with differing colony morphologies that varied in color (translucent white to opaque yellow), diameter (1 mm-11 mm), and shape (umbonate, flat, circular or irregular). Growth rates in MRS revealed strain differences, and a wide spectrum of carbon source utilization was observed. Some strains were able to ferment as many as 21 of 49 tested carbon sources, including inulin, fucose, gentiobiose, lactose, mannitol, potassium ketogluconate, saccharose, raffinose, galactose, and xylose, while others metabolized as few as eight carbohydrates as the sole source of carbon. All isolates degraded lactic acid in both fermented cucumber medium and modified MRS, but exhibited differences in the rate and extent of lactate degradation. Isolates clustered into eight distinct groups based on rep-PCR fingerprints with 20 of 36 of the isolates exhibiting >97% similarity. Although isolated from similar environmental niches, significant phenotypic and genotypic diversity was found among the L. buchneri cultures. A collection of unique L. buchneri strains was identified and characterized, providing the basis for further analysis of metabolic and genomic capabilities of this species to enable control of lactic acid degradation in fermented plant materials.
Collapse
|
45
|
Kimura S, Uehara M, Morimoto D, Yamanaka M, Sako Y, Yoshida T. Incomplete Selective Sweeps of Microcystis Population Detected by the Leader-End CRISPR Fragment Analysis in a Natural Pond. Front Microbiol 2018; 9:425. [PMID: 29568293 PMCID: PMC5852275 DOI: 10.3389/fmicb.2018.00425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/22/2018] [Indexed: 11/13/2022] Open
Abstract
The freshwater cyanobacterium Microcystis aeruginosa frequently forms toxic massive blooms and exists in an arms race with its infectious phages in aquatic natural environments, and as a result, has evolved extremely diverse and elaborate antiviral defense systems, including the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated genes (Cas) system. Here, to assess Microcystis population dynamics associated with exogenous mobile genetic elements such as phages and plasmids, we examined the temporal variation in CRISPR genotypes (CTs) by analyzing spacer sequences detected in a natural pond between June and October 2013 when a cyanobacterial bloom occurred. A total of 463,954 high-quality leader-end CRISPR sequences were obtained and the sequences containing spacers were classified into 31 previously reported CTs and 68 new CTs based on the shared order of the leader-end spacers. CT19 was the most dominant genotype (32%) among the 16 most common CTs, followed by CT52 (14%) and CT58 (9%). Spacer repertoires of CT19 showed mainly two different types; CT19origin, which was identical to the CT19 spacer repertoire of previously isolated strains, and CT19new+, which contained a new spacer at the leader-end of the CRISPR region of CT19origin, which were present in almost equal abundance, accounting for up to 99.94% of CT19 sequences. Surprisingly, we observed the spacer repertoires of the second to tenth spacers of CT19origin at the most leader-end of proto-genotype sequences of CT19origin. These were observed during the sampling in this study and our previous study at the same ecosystem in 2010 and 2011, suggesting these CTs persisted from 2011 to 2013 in spite of phage pressure. The leader-end variants were observed in other CT genotypes. These findings indicated an incomplete selective sweep of Microcystis populations. We explained the phenomenon as follow; the abundance of Microcystis varied seasonally and drastically, resulting that Microcystis populations experience a bottleneck once a year, and thereby founder effects following a bottleneck mean that older CTs have an equal chance of increasing in prevalence as the CTs generated following acquisition of newer spacers.
Collapse
Affiliation(s)
- Shigeko Kimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,School of Environmental Science, The University of Shiga Prefecture, Hikone, Japan
| | - Mika Uehara
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Momoko Yamanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Abstract
If biology laboratories were smartphones, CRISPR-Cas would be the leading app. Nowadays, technology users rely on apps to communicate, get directions, entertain, and more. Likewise, many life scientists now rely on CRISPR-Cas systems to study the interactions between microbes and their viruses, to track strains as well as to modify and modulate genomes. Considering their high level of polymorphism, CRISPR arrays can increase the resolution of a microbial typing scheme. As dynamic systems, they allow the identification and the tracking of specific sequences, which is highly valuable for epidemiological studies. As a defense mechanism, they offer an opportunity to generate virus-resistant strains or even to construct strains refractory to the acquisition of specific genes. And last but not least, as customizable and transferable tools, CRISPR-Cas systems are particularly promising to fight multi-drug resistant bacteria through the engineering of phages.
Collapse
Affiliation(s)
- Marie-Laurence Lemay
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Philippe Horvath
- DuPont Nutrition and Health, BP10, 86220 Dangé-Saint-Romain, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec City, QC G1V 0A6, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses and Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
47
|
A decade of discovery: CRISPR functions and applications. Nat Microbiol 2017; 2:17092. [PMID: 28581505 DOI: 10.1038/nmicrobiol.2017.92] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
This year marks the tenth anniversary of the identification of the biological function of CRISPR-Cas as adaptive immune systems in bacteria. In just a decade, the characterization of CRISPR-Cas systems has established a novel means of adaptive immunity in bacteria and archaea and deepened our understanding of the interplay between prokaryotes and their environment, and CRISPR-based molecular machines have been repurposed to enable a genome editing revolution. Here, we look back on the historical milestones that have paved the way for the discovery of CRISPR and its function, and discuss the related technological applications that have emerged, with a focus on microbiology. Lastly, we provide a perspective on the impacts the field has had on science and beyond.
Collapse
|
48
|
Hidalgo-Cantabrana C, O’Flaherty S, Barrangou R. CRISPR-based engineering of next-generation lactic acid bacteria. Curr Opin Microbiol 2017. [DOI: 10.1016/j.mib.2017.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Stout E, Klaenhammer T, Barrangou R. CRISPR-Cas Technologies and Applications in Food Bacteria. Annu Rev Food Sci Technol 2017; 8:413-437. [DOI: 10.1146/annurev-food-072816-024723] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form adaptive immune systems that occur in many bacteria and most archaea. In addition to protecting bacteria from phages and other invasive mobile genetic elements, CRISPR-Cas molecular machines can be repurposed as tool kits for applications relevant to the food industry. A primary concern of the food industry has long been the proper management of food-related bacteria, with a focus on both enhancing the outcomes of beneficial microorganisms such as starter cultures and probiotics and limiting the presence of detrimental organisms such as pathogens and spoilage microorganisms. This review introduces CRISPR-Cas as a novel set of technologies to manage food bacteria and offers insights into CRISPR-Cas biology. It primarily focuses on the applications of CRISPR-Cas systems and tools in starter cultures and probiotics, encompassing strain-typing, phage resistance, plasmid vaccination, genome editing, and antimicrobial activity.
Collapse
Affiliation(s)
- Emily Stout
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Todd Klaenhammer
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
50
|
Chen S, Sun H, Miao K, Deng CX. CRISPR-Cas9: from Genome Editing to Cancer Research. Int J Biol Sci 2016; 12:1427-1436. [PMID: 27994508 PMCID: PMC5166485 DOI: 10.7150/ijbs.17421] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer development is a multistep process triggered by innate and acquired mutations, which cause the functional abnormality and determine the initiation and progression of tumorigenesis. Gene editing is a widely used engineering tool for generating mutations that enhance tumorigenesis. The recent developed clustered regularly interspaced short palindromic repeats-CRISPR-associated 9 (CRISPR-Cas9) system renews the genome editing approach into a more convenient and efficient way. By rapidly introducing genetic modifications in cell lines, organs and animals, CRISPR-Cas9 system extends the gene editing into whole genome screening, both in loss-of-function and gain-of-function manners. Meanwhile, the system accelerates the establishment of animal cancer models, promoting in vivo studies for cancer research. Furthermore, CRISPR-Cas9 system is modified into diverse innovative tools for observing the dynamic bioprocesses in cancer studies, such as image tracing for targeted DNA, regulation of transcription activation or repression. Here, we view recent technical advances in the application of CRISPR-Cas9 system in cancer genetics, large-scale cancer driver gene hunting, animal cancer modeling and functional studies.
Collapse
Affiliation(s)
- Si Chen
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Kai Miao
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|