1
|
Dubey A, Muthu G, Seshasayee ASN. Evolution of Transcription Factor-containing Superfamilies in Eukaryotes. J Mol Biol 2025; 437:168959. [PMID: 39863161 DOI: 10.1016/j.jmb.2025.168959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Regulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs). Here we ask how TF DNA binding sequence families in eukaryotes have evolved in relation to their nTF relatives. TF numbers scale by power law with the total number of protein-coding genes differently in different clades, with fungi usually showing sub-linear powers whereas chordates show super-linear scaling. The LECA probably encoded a complex regulatory machinery with both TFs and nTFs, but with an excess of nTFs when compared to the relative distribution of TFs and nTFs in extant organisms. Losses drive the evolution of TFs and nTFs, with the possible exception of TFs in animals for some tree topologies. TFs are highly dynamic in evolution, showing higher gain and loss rates than nTFs in some TF-SFs though both are conserved to similar extents. Gains of TFs and nTFs are driven by the appearance of a large number of new sequence clusters in a small number of nodes, which determine the presence of as many as a third of extant TFs and nTFs as well as the relative presence of TFs and nTFs. Whereas nodes showing explosion of TF numbers belong to multicellular clades, those for nTFs lie among the fungi and the protists.
Collapse
Affiliation(s)
- Akshara Dubey
- National Centre for Biological Sciences Tata Institute of Fundamental Research Bengaluru India; Manipal Academy of Higher Education Manipal India.
| | - Ganesh Muthu
- Manipal Academy of Higher Education Manipal India; Institute for Stem Cell Science and Regenerative Medicine Bengaluru India
| | | |
Collapse
|
2
|
Kaur S, Sisodia R, Gupta B, Gaikwad K, Madhurantakam C, Singh A. Multiple combinatorial interactions among natural structural variants of Brassica SOC1 promoters and SVP: conservation of binding affinity despite diversity in bimolecular interactions. Mol Biol Rep 2025; 52:187. [PMID: 39899150 DOI: 10.1007/s11033-024-10182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/16/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Analysis of binding patterns of biomolecules underpin new paradigms for trait engineering. One way of designing early flowering crops is to manipulate genes controlling flowering time. SOC1, a central integrator of flowering, is downregulated by SVP. In amphidiploid Brassica juncea, flowering is plausibly mediated by combinatorial interactions involving natural variants of SOC1 promoter and SVP protein homologs. Although fluctuating temperatures influence energetics of molecular interactions and phenotypes, mechanistic insights on these remain unknown. Herein, we report diversity in 50 homologs of SVP proteins from 25 Brassicaceae species. MATERIALS AND METHODS AND RESULTS Sequence and phylogenetic analysis of 9 natural variants of B. juncea SVP revealed differences in MIKC domains and sub-genome of origin. Generation and refinement of 15 SVP protein models (natural and hypothetical) using I-TASSER and ALPHAFOLD, and 3 SOC1 promoter fragments using 3D-DART, revealed structural diversity. Notwithstanding, binding affinity of 48 docked complexes analysed using HADDOCK and PreDBA were similar. Analysis of 27 docked complexes for distribution of shared or unique binding patterns and type of molecular contacts (π-π stacking, hydrophobic interactions, Van-der-Waals forces, H-bonds) using PyMOL, CCP4i, DNAproDB, PremPDI and DIMPLOT revealed extensive variation implicating compensatory mutations in preserving binding affinity. Yeast one-hybrid assays validated binding potential predicted in docked complexes. Conserved amino-acid and nucleotide residues involved in non-covalent interactions were identified. Computational alanine substitution established cruciality of amino-acid hotspots conferring stability to docked complexes. CONCLUSIONS Our study is important as identification of crucial amino-acid hotspots is essential for rational protein design. Targeted mutagenesis resulting in modified binding spectrum of regulatory proteins suggests a way forward for trait engineering.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biotechnology, Brassica Developmental Biology Laboratory, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India
| | - Rinki Sisodia
- Department of Biotechnology, Structural and Molecular Biology Laboratory (SMBL), TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India
| | - Bharat Gupta
- Department of Biotechnology, Brassica Developmental Biology Laboratory, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India
- Division of Genetics, Lab No.22, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Kishor Gaikwad
- Principal Scientist, National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi, 110012, India
| | - Chaithanya Madhurantakam
- Department of Biotechnology, Structural and Molecular Biology Laboratory (SMBL), TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India.
| | - Anandita Singh
- Department of Biotechnology, Brassica Developmental Biology Laboratory, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, Delhi, 110070, India.
| |
Collapse
|
3
|
Ren YY, Liu Z. Characterization of Single-Cell Cis-regulatory Elements Informs Implications for Cell Differentiation. Genome Biol Evol 2024; 16:evae241. [PMID: 39506564 PMCID: PMC11580522 DOI: 10.1093/gbe/evae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
Cis-regulatory elements govern the specific patterns and dynamics of gene expression in cells during development, which are the fundamental mechanisms behind cell differentiation. However, the genomic characteristics of single-cell cis-regulatory elements closely linked to cell differentiation during development remain unclear. To explore this, we systematically analyzed ∼250,000 putative single-cell cis-regulatory elements obtained from snATAC-seq analysis of the developing mouse cerebellum. We found that over 80% of these single-cell cis-regulatory elements show pleiotropic effects, being active in 2 or more cell types. The pleiotropic degrees of proximal and distal single-cell cis-regulatory elements are positively correlated with the density and diversity of transcription factor binding motifs and GC content. There is a negative correlation between the pleiotropic degrees of single-cell cis-regulatory elements and their distances to the nearest transcription start sites, and proximal single-cell cis-regulatory elements display higher relevance strengths than distal ones. Furthermore, both proximal and distal single-cell cis-regulatory elements related to cell differentiation exhibit enhanced sequence-level evolutionary conservation, increased density and diversity of transcription factor binding motifs, elevated GC content, and greater distances from their nearest genes. Together, our findings reveal the general genomic characteristics of putative single-cell cis-regulatory elements and provide insights into the genomic and evolutionary mechanisms by which single-cell cis-regulatory elements regulate cell differentiation during development.
Collapse
Affiliation(s)
- Ying-Ying Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Beaven R, Koyama T, Naseem MT, Halberg KV, Denholm B. Something old, something new: the origins of an unusual renal cell underpinning a beetle water-conserving mechanism. Development 2024; 151:dev202994. [PMID: 39387206 DOI: 10.1242/dev.202994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Tenebrionid beetles have been highly successful in colonising environments where water is scarce, underpinned by their unique osmoregulatory adaptations. These include a cryptonephridial arrangement of their organs, in which part of their renal/Malpighian tubules are bound to the surface of the rectum. Within the cryptonephridial tubules, an unusual cell type, the leptophragmata, plays a key physiological role underpinning water conservation. Nothing was known about the developmental mechanisms or evolution of these unusual renal cells. Here, we investigate mechanisms underpinning leptophragmata development in Tribolium castaneum. We find that leptophragmata express and require the Tiptop transcription factor, similar to secondary renal cells in Drosophila melanogaster, which express Teashirt and Tiptop, despite Drosophila lacking a crypronephridial arrangement. An additional transcription factor, Dachshund, is required to establish leptophragmata identity and to distinguish them from the secondary cells in the non-cryptonephridial region of renal tubule of Tribolium. Dachshund is also expressed in a sub-population of secondary cells in Drosophila. Leptophragmata, which are unique to the beetle lineage, appear to have originated from a specific renal cell type present ancestrally and to be specified by a conserved repertoire of transcription factors.
Collapse
Affiliation(s)
- Robin Beaven
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Takashi Koyama
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Muhammad T Naseem
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Kenneth V Halberg
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Barry Denholm
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
5
|
McColgan Á, DiFrisco J. Understanding developmental system drift. Development 2024; 151:dev203054. [PMID: 39417684 PMCID: PMC11529278 DOI: 10.1242/dev.203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Developmental system drift (DSD) occurs when the genetic basis for homologous traits diverges over time despite conservation of the phenotype. In this Review, we examine the key ideas, evidence and open problems arising from studies of DSD. Recent work suggests that DSD may be pervasive, having been detected across a range of different organisms and developmental processes. Although developmental research remains heavily reliant on model organisms, extrapolation of findings to non-model organisms can be error-prone if the lineages have undergone DSD. We suggest how existing data and modelling approaches may be used to detect DSD and estimate its frequency. More direct study of DSD, we propose, can inform null hypotheses for how much genetic divergence to expect on the basis of phylogenetic distance, while also contributing to principles of gene regulatory evolution.
Collapse
Affiliation(s)
- Áine McColgan
- Theoretical Biology Lab, The Francis Crick Institute, London NW1 1AT, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - James DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
6
|
Paquette A, Ahuna K, Hwang YM, Pearl J, Liao H, Shannon P, Kadam L, Lapehn S, Bucher M, Roper R, Funk C, MacDonald J, Bammler T, Baloni P, Brockway H, Mason WA, Bush N, Lewinn KZ, Karr CJ, Stamatoyannopoulos J, Muglia LJ, Jones H, Sadovsky Y, Myatt L, Sathyanarayana S, Price ND. A genome scale transcriptional regulatory model of the human placenta. SCIENCE ADVANCES 2024; 10:eadf3411. [PMID: 38941464 PMCID: PMC11212735 DOI: 10.1126/sciadv.adf3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions. In an independent dataset, the TRN model predicted target gene expression with an out-of-sample R2 greater than 0.25 for 73% of target genes. We performed siRNA knockdowns of four TFs and achieved concordance between the predicted gene targets in our TRN and differences in expression of knockdowns with an accuracy of >0.7 for three of the four TFs. Our final model contained 113,158 interactions across 391 TFs and 7712 target genes and is publicly available. We identified 29 TFs which were significantly enriched as regulators for genes previously associated with preterm birth, and eight of these TFs were decreased in preterm placentas.
Collapse
Affiliation(s)
- Alison Paquette
- University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kylia Ahuna
- Oregon Health and Sciences University, Portland, OR, USA
| | | | | | - Hanna Liao
- University of Washington, Seattle, WA, USA
| | | | - Leena Kadam
- Oregon Health and Sciences University, Portland, OR, USA
| | | | - Matthew Bucher
- Oregon Health and Sciences University, Portland, OR, USA
| | - Ryan Roper
- Institute for Systems Biology, Seattle, WA, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Heather Brockway
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - W. Alex Mason
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Nicole Bush
- University of California San Francisco, San Francisco, CA, USA
| | - Kaja Z. Lewinn
- University of California San Francisco, San Francisco, CA, USA
| | | | | | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, USA
- Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Yoel Sadovsky
- Magee Womens Research Institute, Pittsburgh, PA, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie Myatt
- Oregon Health and Sciences University, Portland, OR, USA
| | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York City, NY, USA
| |
Collapse
|
7
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin Heliocidaris erythrogramma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591752. [PMID: 38746376 PMCID: PMC11092583 DOI: 10.1101/2024.04.30.591752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of scRNA-seq developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states respectively) reveals numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events, and the primary signaling center are co-localized in the ancestral dGRN but remarkably, in H. erythrogramma they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27701 USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27701 USA
| |
Collapse
|
8
|
Méndez-González ID, Williams TM, Rebeiz M. Changes in locus wide repression underlie the evolution of Drosophila abdominal pigmentation. PLoS Genet 2023; 19:e1010722. [PMID: 37134121 PMCID: PMC10184908 DOI: 10.1371/journal.pgen.1010722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/15/2023] [Accepted: 03/28/2023] [Indexed: 05/04/2023] Open
Abstract
Changes in gene regulation represent an important path to generate developmental differences affecting anatomical traits. Interspecific divergence in gene expression often results from changes in transcription-stimulating enhancer elements. While gene repression is crucial for precise spatiotemporal expression patterns, the relative contribution of repressive transcriptional silencers to regulatory evolution remains to be addressed. Here, we show that the Drosophila pigmentation gene ebony has mainly evolved through changes in the spatial domains of silencers patterning its abdominal expression. By precisely editing the endogenous ebony locus of D. melanogaster, we demonstrate the requirement of two redundant abdominal enhancers and three silencers that repress the redundant enhancers in a patterned manner. We observe a role for changes in these silencers in every case of ebony evolution observed to date. Our findings suggest that negative regulation by silencers likely has an under-appreciated role in gene regulatory evolution.
Collapse
Affiliation(s)
- Iván D Méndez-González
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas M Williams
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Rice GR, David JR, Gompel N, Yassin A, Rebeiz M. Resolving between novelty and homology in the rapidly evolving phallus of Drosophila. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:182-196. [PMID: 34958528 PMCID: PMC10155935 DOI: 10.1002/jez.b.23113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/24/2021] [Accepted: 10/10/2021] [Indexed: 11/11/2022]
Abstract
The genitalia present some of the most rapidly evolving anatomical structures in the animal kingdom, possessing a variety of parts that can distinguish recently diverged species. In the Drosophila melanogaster group, the phallus is adorned with several processes, pointed outgrowths, that are similar in size and shape between species. However, the complex three-dimensional nature of the phallus can obscure the exact connection points of each process. Previous descriptions based upon adult morphology have primarily assigned phallic processes by their approximate positions in the phallus and have remained largely agnostic regarding their homology relationships. In the absence of clearly identified homology, it can be challenging to model when each structure first evolved. Here, we employ a comparative developmental analysis of these processes in eight members of the melanogaster species group to precisely identify the tissue from which each process forms. Our results indicate that adult phallic processes arise from three pupal primordia in all species. We found that in some cases the same primordia generate homologous structures whereas in other cases, different primordia produce phenotypically similar but remarkably non-homologous structures. This suggests that the same gene regulatory network may have been redeployed to different primordia to induce phenotypically similar traits. Our results highlight how traits diversify and can be redeployed, even at short evolutionary scales.
Collapse
Affiliation(s)
- Gavin R Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS,IRD, Univ.Paris-Sud, Université Paris-Saclay, Orsay, Cedex, France
| | - Nicolas Gompel
- Fakultät für Biologie, Biozentrum, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Amir Yassin
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS,IRD, Univ.Paris-Sud, Université Paris-Saclay, Orsay, Cedex, France.,Institut de Systématique, Evolution et Biodiversité, UMR7205, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Weinstein ML, Jaenke CM, Asma H, Spangler M, Kohnen KA, Konys CC, Williams ME, Williams AV, Rebeiz M, Halfon MS, Williams TM. A novel role for trithorax in the gene regulatory network for a rapidly evolving fruit fly pigmentation trait. PLoS Genet 2023; 19:e1010653. [PMID: 36795790 PMCID: PMC9977049 DOI: 10.1371/journal.pgen.1010653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Animal traits develop through the expression and action of numerous regulatory and realizator genes that comprise a gene regulatory network (GRN). For each GRN, its underlying patterns of gene expression are controlled by cis-regulatory elements (CREs) that bind activating and repressing transcription factors. These interactions drive cell-type and developmental stage-specific transcriptional activation or repression. Most GRNs remain incompletely mapped, and a major barrier to this daunting task is CRE identification. Here, we used an in silico method to identify predicted CREs (pCREs) that comprise the GRN which governs sex-specific pigmentation of Drosophila melanogaster. Through in vivo assays, we demonstrate that many pCREs activate expression in the correct cell-type and developmental stage. We employed genome editing to demonstrate that two CREs control the pupal abdomen expression of trithorax, whose function is required for the dimorphic phenotype. Surprisingly, trithorax had no detectable effect on this GRN's key trans-regulators, but shapes the sex-specific expression of two realizator genes. Comparison of sequences orthologous to these CREs supports an evolutionary scenario where these trithorax CREs predated the origin of the dimorphic trait. Collectively, this study demonstrates how in silico approaches can shed novel insights on the GRN basis for a trait's development and evolution.
Collapse
Affiliation(s)
- Michael L. Weinstein
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Chad M. Jaenke
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Hasiba Asma
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Matthew Spangler
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Katherine A. Kohnen
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Claire C. Konys
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Melissa E. Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
| | - Ashley V. Williams
- West Carrollton High School, 5833 Student St., Dayton, Ohio, United States of America
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marc S. Halfon
- Program in Genetics, Genomics, and Bioinformatics, University at Buffalo-State University of New York, Buffalo, New York, United States of America
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America
| | - Thomas M. Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, 300 College Park, Dayton, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hjelmen CE, Yuan Y, Parrott JJ, McGuane AS, Srivastav SP, Purcell AC, Pimsler ML, Sze SH, Tarone AM. Identification and Characterization of Small RNA Markers of Age in the Blow Fly Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae). INSECTS 2022; 13:948. [PMID: 36292896 PMCID: PMC9603907 DOI: 10.3390/insects13100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Blow fly development is important in decomposition ecology, agriculture, and forensics. Much of the impact of these species is from immature samples, thus knowledge of their development is important to enhance or ameliorate their effects. One application of this information is the estimation of immature insect age to provide temporal information for death investigations. While traditional markers of age such as stage and size are generally accurate, they lack precision in later developmental stages. We used miRNA sequencing to measure miRNA expression, throughout development, of the secondary screwworm, Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae) and identified 217 miRNAs present across the samples. Ten were identified to be significantly differentially expressed in larval samples and seventeen were found to be significantly differentially expressed in intrapuparial samples. Twenty-eight miRNAs were identified to be differentially expressed between sexes. Expression patterns of two miRNAs, miR-92b and bantam, were qPCR-validated in intrapuparial samples; these and likely food-derived miRNAs appear to be stable markers of age in C. macellaria. Our results support the use of miRNAs for developmental markers of age and suggest further investigations across species and under a range of abiotic and biotic conditions.
Collapse
Affiliation(s)
- Carl E. Hjelmen
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Ye Yuan
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan J. Parrott
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | | | - Satyam P. Srivastav
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amanda C. Purcell
- Centre for Forensic Science, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Meaghan L. Pimsler
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Yawitz TA, Barts N, Kohl KD. Comparative digestive morphology and physiology of five species of Peromyscus under controlled environment and diet. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111265. [PMID: 35760269 DOI: 10.1016/j.cbpa.2022.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
Digestive morphology and physiology differ across animal species, with many comparative studies uncovering relationships between animal ecology or diet, and the morphology and physiology of the gastrointestinal tract. However, many of these studies compare wild-caught animals feeding on uncontrolled diets and compare broadly related taxa. Thus, few studies have disentangled the phenotypic consequences of genetics from those potentially caused by the environment, especially across closely related species that occupy similar ecological niches. Here, we examined differences in digestive morphology and physiology of five closely related species of Peromyscus mice that were captive bred under identical environmental conditions and identical diets for multiple generations. Using phylogenetic generalized least squares (PGLS) of species means to control for body size, we identified a phylogenetic signal in the mass of the foregut and length of the small intestine across species. As proportions of total gut mass, we identified phylogenetic signals in relative foregut and small intestine masses, indicating that the sizes of these structures are more similar among closely related species. Finally, we detected differences in activities of the protease aminopeptidase-N enzyme across species. Overall, we demonstrate fine-scale differences in digestive morphology and physiology among closely related species. Our results suggest that Peromyscus could provide a system for future studies to explore the interplay between natural history, morphology, and physiology (e.g. ecomorphology and ecophysiology), and to investigate the genetic architecture that underlies gut anatomy.
Collapse
Affiliation(s)
- Tate A Yawitz
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Nick Barts
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
13
|
Hintermann A, Guerreiro I, Lopez-Delisle L, Bolt CC, Gitto S, Duboule D, Beccari L. Developmental and evolutionary comparative analysis of a regulatory landscape in mouse and chicken. Development 2022; 149:275867. [PMID: 35770682 PMCID: PMC9307994 DOI: 10.1242/dev.200594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Modifications in gene regulation are driving forces in the evolution of organisms. Part of these changes involve cis-regulatory elements (CREs), which contact their target genes through higher-order chromatin structures. However, how such architectures and variations in CREs contribute to transcriptional evolvability remains elusive. We use Hoxd genes as a paradigm for the emergence of regulatory innovations, as many relevant enhancers are located in a regulatory landscape highly conserved in amniotes. Here, we analysed their regulation in murine vibrissae and chicken feather primordia, two skin appendages expressing different Hoxd gene subsets, and compared the regulation of these genes in these appendages with that in the elongation of the posterior trunk. In the two former structures, distinct subsets of Hoxd genes are contacted by different lineage-specific enhancers, probably as a result of using an ancestral chromatin topology as an evolutionary playground, whereas the gene regulation that occurs in the mouse and chicken embryonic trunk partially relies on conserved CREs. A high proportion of these non-coding sequences active in the trunk have functionally diverged between species, suggesting that transcriptional robustness is maintained, despite considerable divergence in enhancer sequences. Summary: Analyses of the relationships between chromatin architecture and regulatory activities at the HoxD locus show that ancestral transcription patterns can be maintained while new regulations evolve.
Collapse
Affiliation(s)
- Aurélie Hintermann
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Isabel Guerreiro
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Lucille Lopez-Delisle
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
| | - Christopher Chase Bolt
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
| | - Sandra Gitto
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| | - Denis Duboule
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
- Swiss Institute for Experimental Cancer Research (EPFL ISREC), School of Life Sciences, Federal School of Technology (EPFL) 2 , 1015 Lausanne , Switzerland
- Collège de France 3 , 11 Place Marcelin Berthelot, 75005 Paris , France
| | - Leonardo Beccari
- University of Geneva 1 Department of Genetics and Evolution , , 30 quai Ernest-Ansermet, 1211 Geneva , Switzerland
| |
Collapse
|
14
|
Perry BW, Gopalan SS, Pasquesi GIM, Schield DR, Westfall AK, Smith CF, Koludarov I, Chippindale PT, Pellegrino MW, Chuong EB, Mackessy SP, Castoe TA. Snake venom gene expression is coordinated by novel regulatory architecture and the integration of multiple co-opted vertebrate pathways. Genome Res 2022; 32:1058-1073. [PMID: 35649579 PMCID: PMC9248877 DOI: 10.1101/gr.276251.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
Abstract
Understanding how regulatory mechanisms evolve is critical for understanding the processes that give rise to novel phenotypes. Snake venom systems represent a valuable and tractable model for testing hypotheses related to the evolution of novel regulatory networks, yet the regulatory mechanisms underlying venom production remain poorly understood. Here, we use functional genomics approaches to investigate venom regulatory architecture in the prairie rattlesnake and identify cis-regulatory sequences (enhancers and promoters), trans-regulatory transcription factors, and integrated signaling cascades involved in the regulation of snake venom genes. We find evidence that two conserved vertebrate pathways, the extracellular signal-regulated kinase and unfolded protein response pathways, were co-opted to regulate snake venom. In one large venom gene family (snake venom serine proteases), this co-option was likely facilitated by the activity of transposable elements. Patterns of snake venom gene enhancer conservation, in some cases spanning 50 million yr of lineage divergence, highlight early origins and subsequent lineage-specific adaptations that have accompanied the evolution of venom regulatory architecture. We also identify features of chromatin structure involved in venom regulation, including topologically associated domains and CTCF loops that underscore the potential importance of novel chromatin structure to coevolve when duplicated genes evolve new regulatory control. Our findings provide a model for understanding how novel regulatory systems may evolve through a combination of genomic processes, including tandem duplication of genes and regulatory sequences, cis-regulatory sequence seeding by transposable elements, and diverse transcriptional regulatory proteins controlled by a co-opted regulatory cascade.
Collapse
Affiliation(s)
- Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA
| | - Siddharth S Gopalan
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Giulia I M Pasquesi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado 80639, USA
| | - Ivan Koludarov
- Animal Venomics Group, Justus Liebig University, Giessen, 35390, Germany
| | - Paul T Chippindale
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Mark W Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado 80639, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| |
Collapse
|
15
|
Perkins ML, Gandara L, Crocker J. A synthetic synthesis to explore animal evolution and development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200517. [PMID: 35634925 PMCID: PMC9149795 DOI: 10.1098/rstb.2020.0517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying the general principles by which genotypes are converted into phenotypes remains a challenge in the post-genomic era. We still lack a predictive understanding of how genes shape interactions among cells and tissues in response to signalling and environmental cues, and hence how regulatory networks generate the phenotypic variation required for adaptive evolution. Here, we discuss how techniques borrowed from synthetic biology may facilitate a systematic exploration of evolvability across biological scales. Synthetic approaches permit controlled manipulation of both endogenous and fully engineered systems, providing a flexible platform for investigating causal mechanisms in vivo. Combining synthetic approaches with multi-level phenotyping (phenomics) will supply a detailed, quantitative characterization of how internal and external stimuli shape the morphology and behaviour of living organisms. We advocate integrating high-throughput experimental data with mathematical and computational techniques from a variety of disciplines in order to pursue a comprehensive theory of evolution. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Mindy Liu Perkins
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lautaro Gandara
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
16
|
Minelli A, Valero-Gracia A. Spatially and Temporally Distributed Complexity-A Refreshed Framework for the Study of GRN Evolution. Cells 2022; 11:cells11111790. [PMID: 35681485 PMCID: PMC9179533 DOI: 10.3390/cells11111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Irrespective of the heuristic value of interpretations of developmental processes in terms of gene regulatory networks (GRNs), larger-angle views often suffer from: (i) an inadequate understanding of the relationship between genotype and phenotype; (ii) a predominantly zoocentric vision; and (iii) overconfidence in a putatively hierarchical organization of animal body plans. Here, we constructively criticize these assumptions. First, developmental biology is pervaded by adultocentrism, but development is not necessarily egg to adult. Second, during development, many unicells undergo transcriptomic profile transitions that are comparable to those recorded in pluricellular organisms; thus, their study should not be neglected from the GRN perspective. Third, the putatively hierarchical nature of the animal body is mirrored in the GRN logic, but in relating genotype to phenotype, independent assessments of the dynamics of the regulatory machinery and the animal’s architecture are required, better served by a combinatorial than by a hierarchical approach. The trade-offs between spatial and temporal aspects of regulation, as well as their evolutionary consequences, are also discussed. Multicellularity may derive from a unicell’s sequential phenotypes turned into different but coexisting, spatially arranged cell types. In turn, polyphenism may have been a crucial mechanism involved in the origin of complex life cycles.
Collapse
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, Via U. Bassi 58B, 35132 Padova, Italy
- Correspondence:
| | - Alberto Valero-Gracia
- Natural History Museum, University of Oslo, Blindern, P.O. Box 1172, 0318 Oslo, Norway;
| |
Collapse
|
17
|
McDonald JMC, Reed RD. Patterns of selection across gene regulatory networks. Semin Cell Dev Biol 2022; 145:60-67. [PMID: 35474149 DOI: 10.1016/j.semcdb.2022.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Gene regulatory networks (GRNs) are the core engine of organismal development. If we would like to understand the origin and diversification of phenotypes, it is necessary to consider the structure of GRNs in order to reconstruct the links between genetic mutations and phenotypic change. Much of the progress in evolutionary developmental biology, however, has occurred without a nuanced consideration of the evolution of functional relationships between genes, especially in the context of their broader network interactions. Characterizing and comparing GRNs across traits and species in a more detailed way will allow us to determine how network position influences what genes drive adaptive evolution. In this perspective paper, we consider the architecture of developmental GRNs and how positive selection strength may vary across a GRN. We then propose several testable models for these patterns of selection and experimental approaches to test these models.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| | - Robert D Reed
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
18
|
Khor JM, Ettensohn CA. Architecture and evolution of the cis-regulatory system of the echinoderm kirrelL gene. eLife 2022; 11:72834. [PMID: 35212624 PMCID: PMC8903837 DOI: 10.7554/elife.72834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
The gene regulatory network (GRN) that underlies echinoderm skeletogenesis is a prominent model of GRN architecture and evolution. KirrelL is an essential downstream effector gene in this network and encodes an Ig-superfamily protein required for the fusion of skeletogenic cells and the formation of the skeleton. In this study, we dissected the transcriptional control region of the kirrelL gene of the purple sea urchin, Strongylocentrotus purpuratus. Using plasmid- and bacterial artificial chromosome-based transgenic reporter assays, we identified key cis-regulatory elements (CREs) and transcription factor inputs that regulate Sp-kirrelL, including direct, positive inputs from two key transcription factors in the skeletogenic GRN, Alx1 and Ets1. We next identified kirrelL cis-regulatory regions from seven other echinoderm species that together represent all classes within the phylum. By introducing these heterologous regulatory regions into developing sea urchin embryos we provide evidence of their remarkable conservation across ~500 million years of evolution. We dissected in detail the kirrelL regulatory region of the sea star, Patiria miniata, and demonstrated that it also receives direct inputs from Alx1 and Ets1. Our findings identify kirrelL as a component of the ancestral echinoderm skeletogenic GRN. They support the view that GRN subcircuits, including specific transcription factor–CRE interactions, can remain stable over vast periods of evolutionary history. Lastly, our analysis of kirrelL establishes direct linkages between a developmental GRN and an effector gene that controls a key morphogenetic cell behavior, cell–cell fusion, providing a paradigm for extending the explanatory power of GRNs.
Collapse
Affiliation(s)
- Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|
19
|
Common Themes and Future Challenges in Understanding Gene Regulatory Network Evolution. Cells 2022; 11:cells11030510. [PMID: 35159319 PMCID: PMC8834487 DOI: 10.3390/cells11030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
A major driving force behind the evolution of species-specific traits and novel structures is alterations in gene regulatory networks (GRNs). Comprehending evolution therefore requires an understanding of the nature of changes in GRN structure and the responsible mechanisms. Here, we review two insect pigmentation GRNs in order to examine common themes in GRN evolution and to reveal some of the challenges associated with investigating changes in GRNs across different evolutionary distances at the molecular level. The pigmentation GRN in Drosophila melanogaster and other drosophilids is a well-defined network for which studies from closely related species illuminate the different ways co-option of regulators can occur. The pigmentation GRN for butterflies of the Heliconius species group is less fully detailed but it is emerging as a useful model for exploring important questions about redundancy and modularity in cis-regulatory systems. Both GRNs serve to highlight the ways in which redeployment of trans-acting factors can lead to GRN rewiring and network co-option. To gain insight into GRN evolution, we discuss the importance of defining GRN architecture at multiple levels both within and between species and of utilizing a range of complementary approaches.
Collapse
|
20
|
Three topological features of regulatory networks control life-essential and specialized subsystems. Sci Rep 2021; 11:24209. [PMID: 34930908 PMCID: PMC8688434 DOI: 10.1038/s41598-021-03625-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022] Open
Abstract
Gene regulatory networks (GRNs) play key roles in development, phenotype plasticity, and evolution. Although graph theory has been used to explore GRNs, associations amongst topological features, transcription factors (TFs), and systems essentiality are poorly understood. Here we sought the relationship amongst the main GRN topological features that influence the control of essential and specific subsystems. We found that the Knn, page rank, and degree are the most relevant GRN features: the ones are conserved along the evolution and are also relevant in pluripotent cells. Interestingly, life-essential subsystems are governed mainly by TFs with intermediary Knn and high page rank or degree, whereas specialized subsystems are mainly regulated by TFs with low Knn. Hence, we suggest that the high probability of TFs be toured by a random signal, and the high probability of the signal propagation to target genes ensures the life-essential subsystems' robustness. Gene/genome duplication is the main evolutionary process to rise Knn as the most relevant feature. Herein, we shed light on unexplored topological GRN features to assess how they are related to subsystems and how the duplications shaped the regulatory systems along the evolution. The classification model generated can be found here: https://github.com/ivanrwolf/NoC/ .
Collapse
|
21
|
Livraghi L, Hanly JJ, Van Bellghem SM, Montejo-Kovacevich G, van der Heijden ESM, Loh LS, Ren A, Warren IA, Lewis JJ, Concha C, Hebberecht L, Wright CJ, Walker JM, Foley J, Goldberg ZH, Arenas-Castro H, Salazar C, Perry MW, Papa R, Martin A, McMillan WO, Jiggins CD. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife 2021; 10:e68549. [PMID: 34280087 PMCID: PMC8289415 DOI: 10.7554/elife.68549] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
In Heliconius butterflies, wing colour pattern diversity and scale types are controlled by a few genes of large effect that regulate colour pattern switches between morphs and species across a large mimetic radiation. One of these genes, cortex, has been repeatedly associated with colour pattern evolution in butterflies. Here we carried out CRISPR knockouts in multiple Heliconius species and show that cortex is a major determinant of scale cell identity. Chromatin accessibility profiling and introgression scans identified cis-regulatory regions associated with discrete phenotypic switches. CRISPR perturbation of these regions in black hindwing genotypes recreated a yellow bar, revealing their spatially limited activity. In the H. melpomene/timareta lineage, the candidate CRE from yellow-barred phenotype morphs is interrupted by a transposable element, suggesting that cis-regulatory structural variation underlies these mimetic adaptations. Our work shows that cortex functionally controls scale colour fate and that its cis-regulatory regions control a phenotypic switch in a modular and pattern-specific fashion.
Collapse
Affiliation(s)
- Luca Livraghi
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Steven M Van Bellghem
- Department of Biology, Centre for Applied Tropical Ecology and Conservation, University of Puerto RicoRio PiedrasPuerto Rico
| | | | - Eva SM van der Heijden
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Ling Sheng Loh
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Anna Ren
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Ian A Warren
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | - James J Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | | | - Laura Hebberecht
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Charlotte J Wright
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | - Jonah M Walker
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | | | - Zachary H Goldberg
- Cell & Developmental Biology, Division of Biological Sciences, UC San DiegoLa JollaUnited States
| | | | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del RosarioBogotáColombia
| | - Michael W Perry
- Cell & Developmental Biology, Division of Biological Sciences, UC San DiegoLa JollaUnited States
| | - Riccardo Papa
- Department of Biology, Centre for Applied Tropical Ecology and Conservation, University of Puerto RicoRio PiedrasPuerto Rico
| | - Arnaud Martin
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|
22
|
Westerman EL, Bowman SEJ, Davidson B, Davis MC, Larson ER, Sanford CPJ. Deploying Big Data to Crack the Genotype to Phenotype Code. Integr Comp Biol 2021; 60:385-396. [PMID: 32492136 DOI: 10.1093/icb/icaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanistically connecting genotypes to phenotypes is a longstanding and central mission of biology. Deciphering these connections will unite questions and datasets across all scales from molecules to ecosystems. Although high-throughput sequencing has provided a rich platform on which to launch this effort, tools for deciphering mechanisms further along the genome to phenome pipeline remain limited. Machine learning approaches and other emerging computational tools hold the promise of augmenting human efforts to overcome these obstacles. This vision paper is the result of a Reintegrating Biology Workshop, bringing together the perspectives of integrative and comparative biologists to survey challenges and opportunities in cracking the genotype to phenotype code and thereby generating predictive frameworks across biological scales. Key recommendations include promoting the development of minimum "best practices" for the experimental design and collection of data; fostering sustained and long-term data repositories; promoting programs that recruit, train, and retain a diversity of talent; and providing funding to effectively support these highly cross-disciplinary efforts. We follow this discussion by highlighting a few specific transformative research opportunities that will be advanced by these efforts.
Collapse
Affiliation(s)
- Erica L Westerman
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sarah E J Bowman
- High-Throughput Crystallization Screening Center, Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA.,Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences at the University at Buffalo, Buffalo, NY 14203, USA
| | - Bradley Davidson
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Marcus C Davis
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | - Eric R Larson
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Christopher P J Sanford
- Department of Ecology, Evolution and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| |
Collapse
|
23
|
On the specificity of gene regulatory networks: How does network co-option affect subsequent evolution? Curr Top Dev Biol 2020; 139:375-405. [PMID: 32450967 DOI: 10.1016/bs.ctdb.2020.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The process of multicellular organismal development hinges upon the specificity of developmental programs: for different parts of the organism to form unique features, processes must exist to specify each part. This specificity is thought to be hardwired into gene regulatory networks, which activate cohorts of genes in particular tissues at particular times during development. However, the evolution of gene regulatory networks sometimes occurs by mechanisms that sacrifice specificity. One such mechanism is network co-option, in which existing gene networks are redeployed in new developmental contexts. While network co-option may offer an efficient mechanism for generating novel phenotypes, losses of tissue specificity at redeployed network genes could restrict the ability of the affected traits to evolve independently. At present, there has not been a detailed discussion regarding how tissue specificity of network genes might be altered due to gene network co-option at its initiation, as well as how trait independence can be retained or restored after network co-option. A lack of clarity about network co-option makes it more difficult to speculate on the long-term evolutionary implications of this mechanism. In this review, we will discuss the possible initial outcomes of network co-option, outline the mechanisms by which networks may retain or subsequently regain specificity after network co-option, and comment on some of the possible evolutionary consequences of network co-option. We place special emphasis on the need to consider selectively-neutral outcomes of network co-option to improve our understanding of the role of this mechanism in trait evolution.
Collapse
|
24
|
Tarasov S. The Invariant Nature of a Morphological Character and Character State: Insights from Gene Regulatory Networks. Syst Biol 2020; 69:392-400. [PMID: 31372653 DOI: 10.1093/sysbio/syz050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
What constitutes a discrete morphological character versus character state has been long discussed in the systematics literature but the consensus on this issue is still missing. Different methods of classifying organismal features into characters and character states (CCSs) can dramatically affect the results of phylogenetic analyses. Here, I show that, in the framework of Markov models, the modular structure of the gene regulatory network (GRN) underlying trait development, and the hierarchical nature of GRN evolution, essentially remove the distinction between morphological CCS, thus endowing the CCS with an invariant property with respect to each other. This property allows the states of one character to be represented as several individual characters and vice versa. In practice, this means that a phenotype can be encoded using a set of characters or just one complex character with numerous states. The representation of a phenotype using one complex character can be implemented in Markov models of trait evolution by properly structuring transition rate matrix.
Collapse
Affiliation(s)
- Sergei Tarasov
- Finnish Museum of Natural History, Pohjoinen Rautatiekatu 13, FI-00014 Helsinki, Finland.,Department of Biological Sciences, Virginia Tech, 4076 Derring Hall, 926 West Campus Drive, Blacksburg, VA 24061, USA.,National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
25
|
Smith SJ, Davidson LA, Rebeiz M. Evolutionary expansion of apical extracellular matrix is required for the elongation of cells in a novel structure. eLife 2020; 9:55965. [PMID: 32338602 PMCID: PMC7266619 DOI: 10.7554/elife.55965] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
One of the fundamental gaps in our knowledge of how novel anatomical structures evolve is understanding the origins of the morphogenetic processes that form these features. Here, we traced the cellular development of a recently evolved morphological novelty, the posterior lobe of D. melanogaster. We found that this genital outgrowth forms through extreme increases in epithelial cell height. By examining the apical extracellular matrix (aECM), we also uncovered a vast matrix associated with the developing genitalia of lobed and non-lobed species. Expression of the aECM protein Dumpy is spatially expanded in lobe-forming species, connecting the posterior lobe to the ancestrally derived aECM network. Further analysis demonstrated that Dumpy attachments are necessary for cell height increases during posterior lobe development. We propose that the aECM presents a rich reservoir for generating morphological novelty and highlights a yet unseen role for aECM in regulating extreme cell height.
Collapse
Affiliation(s)
- Sarah Jacquelyn Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, United States
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
26
|
Hughes JT, Williams ME, Johnson R, Grover S, Rebeiz M, Williams TM. Gene Regulatory Network Homoplasy Underlies Recurrent Sexually Dimorphic Fruit Fly Pigmentation. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Rodriguez AM, Kang J. Regeneration enhancers: Starting a journey to unravel regulatory events in tissue regeneration. Semin Cell Dev Biol 2020; 97:47-54. [PMID: 30953740 PMCID: PMC6783330 DOI: 10.1016/j.semcdb.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
Regeneration, an ability to replace lost body parts, is widespread across animal species. While mammals poorly regenerate most tissues, teleost fish and urodele amphibians possess remarkable regenerative capacity. Earlier work demonstrated that genes driving regeneration are evolutionarily conserved, indicating that a key factor in diverse tissue regeneration is not the presence or absence of regeneration-driving genes but the mechanisms controlling activation of these genes after injury. Thus, understanding the regulatory events of tissue regeneration could provide the means for unlocking latent capacities for tissue regeneration. After injury, cells undergo extensive epigenetic changes to establish new transcriptional programs for tissue regeneration. Gene transcription in eukaryotes is a complicated process that requires specific interactions between trans-acting regulators and cis-regulatory DNA elements. Among cis-regulatory elements, enhancers are essential to control precise gene expression. Recently, multiple regeneration/injury-associated enhancers have been identified in several model organisms. In this review, we highlight recently discovered regeneration/injury enhancers and their specific characteristics. We also discuss how abnormal regulation of regeneration enhancers influences animal development and physiology. Investigation of regeneration enhancers potentially allows us to begin understanding the fundamental biology of tissue regeneration and inspires new solutions for manipulating regenerative ability.
Collapse
Affiliation(s)
- Anjelica M Rodriguez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, 53705, USA.
| |
Collapse
|
28
|
|
29
|
Syme KL, Hagen EH. Mental health is biological health: Why tackling "diseases of the mind" is an imperative for biological anthropology in the 21st century. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171 Suppl 70:87-117. [PMID: 31762015 DOI: 10.1002/ajpa.23965] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022]
Abstract
The germ theory of disease and the attendant public health initiatives, including sanitation, vaccination, and antibiotic treatment, led to dramatic increases in global life expectancy. As the prevalence of infectious disease declines, mental disorders are emerging as major contributors to the global burden of disease. Scientists understand little about the etiology of mental disorders, however, and many of the most popular psychopharmacological treatments, such as antidepressants and antipsychotics, have only moderate-to-weak efficacy in treating symptoms and fail to target biological systems that correspond to discrete psychiatric syndromes. Consequently, despite dramatic increases in the treatment of some mental disorders, there has been no decrease in the prevalence of most mental disorders since accurate record keeping began. Many researchers and theorists are therefore endeavoring to rethink psychiatry from the ground-up. Anthropology, especially biological anthropology, can offer critical theoretical and empirical insights to combat mental illness globally. Biological anthropologists are unique in that we take a panhuman approach to human health and behavior and are trained to address each of Tinbergen's four levels of analysis as well as culture. The field is thus exceptionally well-situated to help resolve the mysteries of mental illness by integrating biological, evolutionary, and sociocultural perspectives.
Collapse
Affiliation(s)
- Kristen L Syme
- Department of Anthropology, Washington State University, Vancouver, Washington
| | - Edward H Hagen
- Department of Anthropology, Washington State University, Vancouver, Washington
| |
Collapse
|
30
|
Hajheidari M, Wang Y, Bhatia N, Vuolo F, Franco-Zorrilla JM, Karady M, Mentink RA, Wu A, Oluwatobi BR, Müller B, Dello Ioio R, Laurent S, Ljung K, Huijser P, Gan X, Tsiantis M. Autoregulation of RCO by Low-Affinity Binding Modulates Cytokinin Action and Shapes Leaf Diversity. Curr Biol 2019; 29:4183-4192.e6. [PMID: 31761704 DOI: 10.1016/j.cub.2019.10.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/28/2022]
Abstract
Mechanisms through which the evolution of gene regulation causes morphological diversity are largely unclear. The tremendous shape variation among plant leaves offers attractive opportunities to address this question. In cruciferous plants, the REDUCED COMPLEXITY (RCO) homeodomain protein evolved via gene duplication and acquired a novel expression domain that contributed to leaf shape diversity. However, the molecular pathways through which RCO regulates leaf growth are unknown. A key question is to identify genome-wide transcriptional targets of RCO and the DNA sequences to which RCO binds. We investigate this question using Cardamine hirsuta, which has complex leaves, and its relative Arabidopsis thaliana, which evolved simple leaves through loss of RCO. We demonstrate that RCO directly regulates genes controlling homeostasis of the hormone cytokinin to repress growth at the leaf base. Elevating cytokinin signaling in the RCO expression domain is sufficient to both transform A. thaliana simple leaves into complex ones and partially bypass the requirement for RCO in C. hirsuta complex leaf development. We also identify RCO as its own target gene. RCO directly represses its own transcription via an array of low-affinity binding sites, which evolved after RCO duplicated from its progenitor sequence. This autorepression is required to limit RCO expression. Thus, evolution of low-affinity binding sites created a negative autoregulatory loop that facilitated leaf shape evolution by defining RCO expression and fine-tuning cytokinin activity. In summary, we identify a transcriptional mechanism through which conflicts between novelty and pleiotropy are resolved during evolution and lead to morphological differences between species.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Yi Wang
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Neha Bhatia
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Francesco Vuolo
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - José Manuel Franco-Zorrilla
- Unidad de Genómica and Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Calle Darwin 3, 28049 Madrid, Spain
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Remco A Mentink
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Anhui Wu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bello Rilwan Oluwatobi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Bruno Müller
- Leibniz Institute of Plant Genetics and Crop Plant Research, Correnstr. 3, 06466 Seeland, Gatersleben, Germany
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnology, Laboratory of Functional Genomics and Proteomics of Model Systems, Sapienza University of Rome, Via dei Sardi 70, 00185 Rome, Italy
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
31
|
Tempos and modes of collectivity in the history of life. Theory Biosci 2019; 140:343-351. [PMID: 31529373 DOI: 10.1007/s12064-019-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
Collective integration and processing of information have increased through the history of life, through both the formation of aggregates in which the entities may have very different properties and which jointly coarse-grained environmental variables (ranging from widely varying metabolism in microbial consortia to the ecological diversity of species on reefs) and through collectives of similar entities (such as cells within an organism or social groups). Such increases have been implicated in significant transitions in the history of life, including aspects of the origin of life, the generation of pangenomes among microbes and microbial communities such as stromatolites, multicellularity and social insects. This contribution provides a preliminary overview of the dominant modes of collective information processing in the history of life, their phylogenetic distribution and extent of convergence, and the effects of new modes for integrating and acting upon information on the tempo of evolutionary change.
Collapse
|
32
|
Tarasov S. Integration of Anatomy Ontologies and Evo-Devo Using Structured Markov Models Suggests a New Framework for Modeling Discrete Phenotypic Traits. Syst Biol 2019; 68:698-716. [PMID: 30668800 PMCID: PMC6701457 DOI: 10.1093/sysbio/syz005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 11/12/2022] Open
Abstract
Modeling discrete phenotypic traits for either ancestral character state reconstruction or morphology-based phylogenetic inference suffers from ambiguities of character coding, homology assessment, dependencies, and selection of adequate models. These drawbacks occur because trait evolution is driven by two key processes-hierarchical and hidden-which are not accommodated simultaneously by the available phylogenetic methods. The hierarchical process refers to the dependencies between anatomical body parts, while the hidden process refers to the evolution of gene regulatory networks (GRNs) underlying trait development. Herein, I demonstrate that these processes can be efficiently modeled using structured Markov models (SMM) equipped with hidden states, which resolves the majority of the problems associated with discrete traits. Integration of SMM with anatomy ontologies can adequately incorporate the hierarchical dependencies, while the use of the hidden states accommodates hidden evolution of GRNs and substitution rate heterogeneity. I assess the new models using simulations and theoretical synthesis. The new approach solves the long-standing "tail color problem," in which the trait is scored for species with tails of different colors or no tails. It also presents a previously unknown issue called the "two-scientist paradox," in which the nature of coding the trait and the hidden processes driving the trait's evolution are confounded; failing to account for the hidden process may result in a bias, which can be avoided by using hidden state models. All this provides a clear guideline for coding traits into characters. This article gives practical examples of using the new framework for phylogenetic inference and comparative analysis.
Collapse
Affiliation(s)
- Sergei Tarasov
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA
- Department of Biological Sciences, Virginia Tech, 4076 Derring Hall, 926 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
33
|
McCarthy GD, Drewell RA, Dresch JM. Analyzing the stability of gene expression using a simple reaction-diffusion model in an early Drosophila embryo. Math Biosci 2019; 316:108239. [PMID: 31454629 DOI: 10.1016/j.mbs.2019.108239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/28/2022]
Abstract
In all complex organisms, the precise levels and timing of gene expression controls vital biological processes. In higher eukaryotes, including the fruit fly Drosophila melanogaster, the complex molecular control of transcription (the synthesis of RNA from DNA) and translation (the synthesis of proteins from RNA) events driving this gene expression are not fully understood. In particular, for Drosophila melanogaster, there is a plethora of experimental data, including quantitative measurements of both RNA and protein concentrations, but the precise mechanisms that control the dynamics of gene expression during early development and the processes which lead to steady-state levels of certain proteins remain elusive. This study analyzes a current mathematical modeling approach in an attempt to better understand the long-term behavior of gene regulation. The model is a modified reaction-diffusion equation which has been previously employed in predicting gene expression levels and studying the relative contributions of transcription and translation events to protein abundance [10,11,24]. Here, we use Matrix Algebra and Analysis techniques to study the stability of the gene expression system and analyze equilibria, using very general assumptions regarding the parameter values incorporated into the model. We prove that, given realistic biological parameter values, the system will result in a unique, stable equilibrium solution. Additionally, we give an example of this long-term behavior using the model alongside actual experimental data obtained from Drosophila embryos.
Collapse
Affiliation(s)
- Gregory D McCarthy
- School of Natural Science, Hampshire College, Amherst, MA 01002, United States.
| | - Robert A Drewell
- Biology Department, Clark University, Worcester, MA 01610, United States.
| | - Jacqueline M Dresch
- Department of Mathematics and Computer Science, Clark University, Worcester, MA 01610, United States.
| |
Collapse
|
34
|
Pigeon foot feathering reveals conserved limb identity networks. Dev Biol 2019; 454:128-144. [PMID: 31247188 DOI: 10.1016/j.ydbio.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.
Collapse
|
35
|
Sabarís G, Laiker I, Preger-Ben Noon E, Frankel N. Actors with Multiple Roles: Pleiotropic Enhancers and the Paradigm of Enhancer Modularity. Trends Genet 2019; 35:423-433. [DOI: 10.1016/j.tig.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
|
36
|
Fernandez-Valverde SL, Aguilera F, Ramos-Díaz RA. Inference of Developmental Gene Regulatory Networks Beyond Classical Model Systems: New Approaches in the Post-genomic Era. Integr Comp Biol 2019; 58:640-653. [PMID: 29917089 DOI: 10.1093/icb/icy061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The advent of high-throughput sequencing (HTS) technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules, and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyze cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in HTS technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.
Collapse
Affiliation(s)
- Selene L Fernandez-Valverde
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - René Alexander Ramos-Díaz
- CONACYT, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, Mexico
| |
Collapse
|
37
|
Gupta P, Singh SK. Gene Regulatory Networks: Current Updates and Applications in Plant Biology. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2019. [DOI: 10.1007/978-981-15-0690-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Yang K, Kang J. Tissue Regeneration Enhancer Elements: A Way to Unlock Endogenous Healing Power. Dev Dyn 2018; 248:34-42. [PMID: 30291668 DOI: 10.1002/dvdy.24676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023] Open
Abstract
Regenerative capacity is widespread throughout almost all animal phyla. However, the distribution pattern remains incompletely understood. Various examples show that very closely related species display different regenerative capacities. Why and how have diverse regenerative capacities evolved across species? One prevailing thought in the field of regeneration is that most regeneration-associated factors are evolutionarily conserved, suggesting the existence of an innate tissue regeneration ability in all species. However, its regulation is differentially controlled in distinct species, resulting in heterogeneous regenerative capabilities. In this review, we discuss regeneration-associated enhancers, the key cis-regulatory elements controlling gene expression, their underlying molecular mechanisms, and their influence on regenerative capacity. Understanding the regulatory mechanisms of regeneration enhancers can provide fundamental insights into tissue regeneration and further help us develop therapeutic strategies to unlock latent healing powers in humans. Developmental Dynamics 248:34-42, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- KaHoua Yang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Junsu Kang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
39
|
Koubkova-Yu TCT, Chao JC, Leu JY. Heterologous Hsp90 promotes phenotypic diversity through network evolution. PLoS Biol 2018; 16:e2006450. [PMID: 30439936 PMCID: PMC6264905 DOI: 10.1371/journal.pbio.2006450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/29/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Biological processes in living cells are often carried out by gene networks in which signals and reactions are integrated through network hubs. Despite their functional importance, it remains unclear to what extent network hubs are evolvable and how alterations impact long-term evolution. We investigated these issues using heat shock protein 90 (Hsp90), a central hub of proteostasis networks. When native Hsp90 in Saccharomyces cerevisiae cells was replaced by the ortholog from hypersaline-tolerant Yarrowia lipolytica that diverged from S. cerevisiae about 270 million years ago, the cells exhibited improved growth in hypersaline environments but compromised growth in others, indicating functional divergence in Hsp90 between the two yeasts. Laboratory evolution shows that evolved Y. lipolytica-HSP90–carrying S. cerevisiae cells exhibit a wider range of phenotypic variation than cells carrying native Hsp90. Identified beneficial mutations are involved in multiple pathways and are often pleiotropic. Our results show that cells adapt to a heterologous Hsp90 by modifying different subnetworks, facilitating the evolution of phenotypic diversity inaccessible to wild-type cells. Biological processes in living cells are often carried out by gene networks. Hubs are highly connected network components important for integrating signal inputs and generating responsive functional outputs. Heat shock protein 90 (Hsp90), a versatile hub in the protein homeostasis network, is a molecular chaperone essential for cell viability in all tested eukaryotic cells. In yeast, about a quarter of the expressed proteins are profoundly influenced when Hsp90 activity is reduced. Despite its pivotal role, we found that the function of Hsp90 has diverged between two yeast species, Yarrowia lipolytica and Saccharomyces cerevisiae, which split about 270 million years ago. To understand the impacts and adaptive strategies in cells with an altered network hub, we conducted laboratory evolution experiments using a S. cerevisiae strain in which native Hsp90 is replaced by its counterpart in Y. lipolytica. We observed different fitness gain or loss under various stress conditions in individual evolved clones, suggesting that cells adapted via different evolutionary paths. Genome sequencing and mutation reconstitution experiments show that beneficial mutations occurred in multiple Hsp90-related pathways that interact with each other. Our results show that a perturbed network allows cells to evolve a broader range of phenotypic diversity unavailable to wild-type cells.
Collapse
Affiliation(s)
- Tracy Chih-Ting Koubkova-Yu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Jung-Chi Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
40
|
Xu X, Stoyanova EI, Lemiesz AE, Xing J, Mash DC, Heintz N. Species and cell-type properties of classically defined human and rodent neurons and glia. eLife 2018; 7:e37551. [PMID: 30320555 PMCID: PMC6188473 DOI: 10.7554/elife.37551] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression and epigenetic events in specific cell types in a range of species, including postmortem human brain. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping and immunofluorescence localization. Studies of sixteen human postmortem brains revealed gender specific transcriptional differences, cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event evident in three donor samples. Our data establish a comprehensive approach for analysis of molecular events associated with specific circuits and cell types in a wide variety of human conditions.
Collapse
Affiliation(s)
- Xiao Xu
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elitsa I Stoyanova
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Agata E Lemiesz
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Jie Xing
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Deborah C Mash
- Miller School of MedicineUniversity of MiamiMiamiUnited States
| | - Nathaniel Heintz
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
41
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
42
|
Shashikant T, Khor JM, Ettensohn CA. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Genesis 2018; 56:e23253. [PMID: 30264451 PMCID: PMC6294693 DOI: 10.1002/dvg.23253] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023]
Abstract
The skeletogenic gene regulatory network (GRN) of sea urchins and other echinoderms is one of the most intensively studied transcriptional networks in any developing organism. As such, it serves as a preeminent model of GRN architecture and evolution. This review summarizes our current understanding of this developmental network. We describe in detail the most comprehensive model of the skeletogenic GRN, one developed for the euechinoid sea urchin Strongylocentrotus purpuratus, including its initial deployment by maternal inputs, its elaboration and stabilization through regulatory gene interactions, and its control of downstream effector genes that directly drive skeletal morphogenesis. We highlight recent comparative studies that have leveraged the euechinoid GRN model to examine the evolution of skeletogenic programs in diverse echinoderms, studies that have revealed both conserved and divergent features of skeletogenesis within the phylum. Last, we summarize the major insights that have emerged from analysis of the structure and evolution of the echinoderm skeletogenic GRN and identify key, unresolved questions as a guide for future work.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Grover S, Williams ME, Kaiser R, Hughes JT, Gresham L, Rebeiz M, Williams TM. Augmentation of a wound response element accompanies the origin of a Hox-regulated Drosophila abdominal pigmentation trait. Dev Biol 2018; 441:159-175. [PMID: 29981311 PMCID: PMC6075670 DOI: 10.1016/j.ydbio.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 11/16/2022]
Abstract
A challenge for evolutionary research is to uncover how new morphological traits evolve the coordinated spatial and temporal expression patterns of genes that govern their formation during development. Detailed studies are often limited to characterizing how one or a few genes contributed to a trait's emergence, and thus our knowledge of how entire GRNs evolve their coordinated expression of each gene remains unresolved. The melanic color patterns decorating the male abdominal tergites of Drosophila (D.) melanogaster evolved in part by novel expression patterns for genes acting at the terminus of a pigment metabolic pathway, driven by cis-regulatory elements (CREs) with distinct mechanisms of Hox regulation. Here, we examined the expression and evolutionary histories of two important enzymes in this pathway, encoded by the pale and Ddc genes. We found that while both genes exhibit dynamic patterns of expression, a robust pattern of Ddc expression specifically evolved in the lineage of fruit flies with pronounced melanic abdomens. Derived Ddc expression requires the activity of a CRE previously shown to activate expression in response to epidermal wounding. We show that a binding site for the Grainy head transcription factor that promotes the ancestral wound healing function of this CRE is also required for abdominal activity. Together with previous findings in this system, our work shows how the GRN for a novel trait emerged by assembling unique yet similarly functioning CREs from heterogeneous starting points.
Collapse
Affiliation(s)
- Sumant Grover
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Melissa E Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Rebecca Kaiser
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Jesse T Hughes
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Lauren Gresham
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469, USA; The Integrative Science and Engineering Center, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
44
|
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in? Theory Biosci 2018; 137:169-184. [PMID: 30132255 DOI: 10.1007/s12064-018-0269-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/26/2018] [Indexed: 12/23/2022]
Abstract
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to 'extend' the Modern Synthesis-derived 'standard evolutionary theory' (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES-published by Laland and collaborators in 2015-in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework.
Collapse
|
45
|
Abstract
Biologists would be mistaken if they relegated living fossils to paleontological inquiry or assumed that the concept is dead. It is now used to describe entities ranging from viruses to higher taxa, despite recent warnings of misleading inferences. Current work on character evolution illustrates how analyzing living fossils and stasis in terms of parts (characters) and wholes (e.g., organisms and lineages) advances our understanding of prolonged stasis at many hierarchical levels. Instead of viewing the concept's task as categorizing living fossils, we show how its primary role is to mark out what is in need of explanation, accounting for the persistence of both molecular and morphological traits. Rethinking different conceptions of living fossils as specific hypotheses reveals novel avenues for research that integrate phylogenetics, ecological and evolutionary modeling, and evo-devo to produce a more unified theoretical outlook.
Collapse
Affiliation(s)
- Scott Lidgard
- Integrative Research Center, Field Museum, Chicago, Illinois
| | - Alan C Love
- Department of Philosophy and the Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis
| |
Collapse
|
46
|
Wester JVWC, Lima CAC, Machado MCR, Zampar PV, Tavares SS, Monesi N. Characterization of a novel Drosophila melanogaster cis-regulatory module that drives gene expression to the larval tracheal system and adult thoracic musculature. Genesis 2018; 56:e23222. [PMID: 30096221 DOI: 10.1002/dvg.23222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 11/05/2022]
Abstract
In a previous bioinformatics analysis we identified 10 conserved Drosophila melanogaster sequences that reside upstream from protein coding genes (CGs). Here we characterize one of these genomic regions, which constitutes a Drosophila melanogaster cis-regulatory module (CRM) that we denominate TT-CRM. The TT-CRM is 646 bp long and is located in one of the introns of CG32239 and resides about 3,500 bp upstream of CG13711 and about 620 bp upstream of CG12493. Analysis of 646 bp-lacZ lines revealed that TT-CRM drives gene expression not only to the larval, prepupal, and pupal tracheal system but also to the adult dorsal longitudinal muscles. The patterns of mRNA expression of the transgene and of the CGs that lie in the vicinity of TT-CRM were investigated both in dissected trachea and in adult thoraces. Through RT-qPCR we observed that in the tracheal system the pattern of expression of 646 bp-lacZ is similar to the pattern of expression of CG32239 and CG13711, whereas in the thoracic muscles 646 bp-lacZ expression accompanies the expression of CG12493. Together, these results suggest new functions for two previously characterized D. melanogaster genes and also contribute to the initial characterization of a novel CRM that drives a dynamic pattern of expression throughout development.
Collapse
Affiliation(s)
- Jorge Victor Wilfredo Cachay Wester
- Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Antonio Couto Lima
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maiaro Cabral Rosa Machado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Vieira Zampar
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Simone Sakagute Tavares
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Abstract
A gene regulatory network (GRN) describes the hierarchical relationship between transcription factors, associated proteins, and their target genes. Studying GRNs allows us to understand how a plant's genotype and environment are integrated to regulate downstream physiological responses. Current efforts in plants have focused on defining the GRNs that regulate functions such as development and stress response and have been performed primarily in genetically tractable model plant species such as Arabidopsis thaliana. Future studies will likely focus on how GRNs function in non-model plants and change over evolutionary time to allow for adaptation to extreme environments. This broader understanding will inform efforts to engineer GRNs to create tailored crop traits.
Collapse
Affiliation(s)
- Ying Sun
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA. .,Department of Plant Biology, Carnegie Institution for Science, 260 Panama St, Stanford, CA, 94305, USA.
| |
Collapse
|
48
|
Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc Natl Acad Sci U S A 2017; 114:10701-10706. [PMID: 28923954 DOI: 10.1073/pnas.1708149114] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Butterfly wing patterns provide a rich comparative framework to study how morphological complexity develops and evolves. Here we used CRISPR/Cas9 somatic mutagenesis to test a patterning role for WntA, a signaling ligand gene previously identified as a hotspot of shape-tuning alleles involved in wing mimicry. We show that WntA loss-of-function causes multiple modifications of pattern elements in seven nymphalid butterfly species. In three butterflies with a conserved wing-pattern arrangement, WntA is necessary for the induction of stripe-like patterns known as symmetry systems and acquired a novel eyespot activator role specific to Vanessa forewings. In two Heliconius species, WntA specifies the boundaries between melanic fields and the light-color patterns that they contour. In the passionvine butterfly Agraulis, WntA removal shows opposite effects on adjacent pattern elements, revealing a dual role across the wing field. Finally, WntA acquired a divergent role in the patterning of interveinous patterns in the monarch, a basal nymphalid butterfly that lacks stripe-like symmetry systems. These results identify WntA as an instructive signal for the prepatterning of a biological system of exuberant diversity and illustrate how shifts in the deployment and effects of a single developmental gene underlie morphological change.
Collapse
|
49
|
Jablonski D. Approaches to Macroevolution: 1. General Concepts and Origin of Variation. Evol Biol 2017; 44:427-450. [PMID: 29142333 PMCID: PMC5661017 DOI: 10.1007/s11692-017-9420-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Approaches to macroevolution require integration of its two fundamental components, i.e. the origin and the sorting of variation, in a hierarchical framework. Macroevolution occurs in multiple currencies that are only loosely correlated, notably taxonomic diversity, morphological disparity, and functional variety. The origin of variation within this conceptual framework is increasingly understood in developmental terms, with the semi-hierarchical structure of gene regulatory networks (GRNs, used here in a broad sense incorporating not just the genetic circuitry per se but the factors controlling the timing and location of gene expression and repression), the non-linear relation between magnitude of genetic change and the phenotypic results, the evolutionary potential of co-opting existing GRNs, and developmental responsiveness to nongenetic signals (i.e. epigenetics and plasticity), all requiring modification of standard microevolutionary models, and rendering difficult any simple definition of evolutionary novelty. The developmental factors underlying macroevolution create anisotropic probabilities-i.e., an uneven density distribution-of evolutionary change around any given phenotypic starting point, and the potential for coordinated changes among traits that can accommodate change via epigenetic mechanisms. From this standpoint, "punctuated equilibrium" and "phyletic gradualism" simply represent two cells in a matrix of evolutionary models of phenotypic change, and the origin of trends and evolutionary novelty are not simply functions of ecological opportunity. Over long timescales, contingency becomes especially important, and can be viewed in terms of macroevolutionary lags (the temporal separation between the origin of a trait or clade and subsequent diversification); such lags can arise by several mechanisms: as geological or phylogenetic artifacts, or when diversifications require synergistic interactions among traits, or between traits and external events. The temporal and spatial patterns of the origins of evolutionary novelties are a challenge to macroevolutionary theory; individual events can be described retrospectively, but a general model relating development, genetics, and ecology is needed. An accompanying paper (Jablonski in Evol Biol 2017) reviews diversity dynamics and the sorting of variation, with some general conclusions.
Collapse
Affiliation(s)
- David Jablonski
- Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 USA
| |
Collapse
|
50
|
Perspectives on Gene Regulatory Network Evolution. Trends Genet 2017; 33:436-447. [PMID: 28528721 DOI: 10.1016/j.tig.2017.04.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022]
Abstract
Animal development proceeds through the activity of genes and their cis-regulatory modules (CRMs) working together in sets of gene regulatory networks (GRNs). The emergence of species-specific traits and novel structures results from evolutionary changes in GRNs. Recent work in a wide variety of animal models, and particularly in insects, has started to reveal the modes and mechanisms of GRN evolution. I discuss here various aspects of GRN evolution and argue that developmental system drift (DSD), in which conserved phenotype is nevertheless a result of changed genetic interactions, should regularly be viewed from the perspective of GRN evolution. Advances in methods to discover related CRMs in diverse insect species, a critical requirement for detailed GRN characterization, are also described.
Collapse
|