1
|
Neurath MF, Artis D, Becker C. The intestinal barrier: a pivotal role in health, inflammation, and cancer. Lancet Gastroenterol Hepatol 2025; 10:573-592. [PMID: 40086468 DOI: 10.1016/s2468-1253(24)00390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 03/16/2025]
Abstract
The intestinal barrier serves as a boundary between the mucosal immune system in the lamina propria and the external environment of the intestinal lumen, which contains a diverse array of microorganisms and ingested environmental factors, including pathogens, food antigens, toxins, and other foreign substances. This barrier has a central role in regulating the controlled interaction between luminal factors and the intestinal immune system. Disruptions of intestinal epithelial cells, which serve as a physical barrier, or the antimicrobial peptides and mucins they produce, which act as a chemical barrier, can lead to a leaky gut. In this state, the intestinal wall is unable to efficiently separate the intestinal flora and luminal contents from the intestinal immune system. The subsequent activation of the immune system has an important role in the pathogenesis of inflammatory bowel disease, as well as in metabolic dysfunction-associated steatohepatitis, primary sclerosing cholangitis, and colorectal cancer. Dysregulated intestinal barrier integrity has also been described in patients with chronic inflammatory diseases outside the gastrointestinal tract, including rheumatoid arthritis and neurodegenerative disorders. Mechanistic studies of barrier dysfunction have revealed that the subsequent local activation and systemic circulation of activated immune cells and the cytokines they secrete, as well as extracellular vesicles, promote proinflammatory processes within and outside the gastrointestinal tract. In this Review, we summarise these findings and highlight several new therapeutic concepts currently being developed that attempt to control inflammatory processes via direct or indirect modulation of intestinal barrier function.
Collapse
Affiliation(s)
- Markus F Neurath
- Medical Clinic 1, Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA; Joan and Sanford I Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christoph Becker
- Medical Clinic 1, Department of Gastroenterology, Ludwig Demling Endoscopy Center of Excellence, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Lindberg SK, Willsey GG, Mantis NJ. A Salmonella enterica serovar Typhimurium genome-wide CRISPRi screen reveals a role for type 1 fimbriae in evasion of antibody-mediated agglutination. Infect Immun 2025; 93:e0057424. [PMID: 40208041 PMCID: PMC12070745 DOI: 10.1128/iai.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
The O5-specific monoclonal IgA antibody, Sal4, mediates the conversion of Salmonella enterica serovar Typhimurium (STm) from virulent, free-swimming cells to non-motile, multicellular biofilm-like aggregates within a matter of hours. We hypothesize that the rapid transition from an invasive to a non-invasive state is an adaptation of STm to Sal4 IgA exposure. In this report, we performed a genome-wide CRISPR interference (CRISPRi) screen to identify STm genes that influence multicellular aggregate formation in response to Sal4 IgA treatment. From a customized library of >36,000 spacers, ~1% (373) were enriched at the top of the culture supernatant after two consecutive rounds of Sal4 IgA treatment. The enriched spacers mapped to a diversity of targets, including genes involved in O-antigen modification, cyclic-di-GMP metabolism, outer membrane biosynthesis/signaling, and invasion/virulence, with the most frequently targeted gene being fimW, which encodes a negative regulator of type 1 fimbriae (T1F) expression. Generation of a STm ΔfimW strain confirmed that the loss of FimW activity results in a hyperfimbriated phenotype and evasion of Sal4 IgA-mediated agglutination in solution. Closer examination of the fimW mutant revealed its propensity to form biofilms at the air-liquid interface in response to Sal4 exposure, suggesting that T1F "primes" STm to transition from a planktonic to a sessile state, possibly by facilitating bacterial attachment to abiotic surfaces. These findings shed light on the mechanism by which IgA antibodies influence STm virulence in the intestinal environment.
Collapse
Affiliation(s)
- Samantha K. Lindberg
- Department of Biomedical Sciences, University of Albany School of Public Health, Albany, New York, USA
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Graham G. Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Nicholas J. Mantis
- Department of Biomedical Sciences, University of Albany School of Public Health, Albany, New York, USA
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| |
Collapse
|
3
|
Vitari N, Roy S. Intestinal immunoglobulins under microbial dysbiosis: implications in opioid-induced microbial dysbiosis. Front Microbiol 2025; 16:1580661. [PMID: 40297286 PMCID: PMC12034684 DOI: 10.3389/fmicb.2025.1580661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Intestinal immunoglobulins (Igs) maintain homeostasis between the microbiome and host. IgA facilitates microbial balance through a variety of increasingly well-described mechanisms. However, IgM and IgG have less defined intestinal functions but have the potential to activate clearance mechanisms such as the complement system and receptor-mediated bacterial killing. Very little is known regarding the role of Igs under microbial dysbiosis. In this review, we explore how Igs sculpt the intestinal microbiome and respond to microbial dysbiosis. We discuss how IgM, IgA, IgG, and complement individually maintain harmony with the microbiome and consider how these mechanisms could work in synergy. Finally, we explore using an opioid-induced microbial dysbiosis as a model to elucidate immediate changes in Ig-bacterial interactions.
Collapse
Affiliation(s)
- Nicolas Vitari
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Cappio Barazzone E, Diard M, Hug I, Larsson L, Slack E. Diagnosing and engineering gut microbiomes. EMBO Mol Med 2024; 16:2660-2677. [PMID: 39468301 PMCID: PMC11554810 DOI: 10.1038/s44321-024-00149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
The microbes, nutrients and toxins that we are exposed to can have a profound effect on the composition and function of the gut microbiome. Thousands of peer-reviewed publications link microbiome composition and function to health from the moment of birth, right through to centenarians, generating a tantalizing glimpse of what might be possible if we could intervene rationally. Nevertheless, there remain relatively few real-world examples where successful microbiome engineering leads to beneficial health effects. Here we aim to provide a framework for the progress needed to turn gut microbiome engineering from a trial-and-error approach to a rational medical intervention. The workflow starts with truly understanding and accurately diagnosing the problems that we are trying to fix, before moving on to developing technologies that can achieve the desired changes.
Collapse
Affiliation(s)
- Elisa Cappio Barazzone
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Médéric Diard
- Basel Research Centre for Child Health, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Isabelle Hug
- Basel Research Centre for Child Health, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Louise Larsson
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Emma Slack
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Slack E. Microbial hoolIgAn dismantles gut defenses. Science 2024; 385:1418-1420. [PMID: 39325916 DOI: 10.1126/science.ads2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Immunoglobulin degradation by a gut bacterium causes immunodeficiency in mice.
Collapse
Affiliation(s)
- Emma Slack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| |
Collapse
|
6
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
7
|
Kumar Bharathkar S, Stadtmueller BM. Structural and Biochemical Requirements for Secretory Component Interactions with Dimeric IgA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:226-234. [PMID: 38809110 PMCID: PMC11233122 DOI: 10.4049/jimmunol.2300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Secretory (S) IgA is the predominant mucosal Ab that protects host epithelial barriers and promotes microbial homeostasis. SIgA production occurs when plasma cells assemble two copies of monomeric IgA and one joining chain (JC) to form dimeric (d) IgA, which is bound by the polymeric Ig receptor (pIgR) on the basolateral surface of epithelial cells and transcytosed to the apical surface. There, pIgR is proteolytically cleaved, releasing SIgA, a complex of the dIgA and the pIgR ectodomain, called the secretory component (SC). The pIgR's five Ig-like domains (D1-D5) undergo a conformational change upon binding dIgA, ultimately contacting four IgA H chains and the JC in SIgA. In this study, we report structure-based mutational analysis combined with surface plasmon resonance binding assays that identify key residues in mouse SC D1 and D3 that mediate SC binding to dIgA. Residues in D1 CDR3 are likely to initiate binding, whereas residues that stabilize the D1-D3 interface are likely to promote the conformational change and stabilize the final SIgA structure. Additionally, we find that the JC's three C-terminal residues play a limited role in dIgA assembly but a significant role in pIgR/SC binding to dIgA. Together, these results inform models for the intricate mechanisms underlying IgA transport across epithelia and functions in the mucosa.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carl R. Woese Institute of Genomic Biology
| |
Collapse
|
8
|
Dishaw LJ, Litman GW, Liberti A. Tethering of soluble immune effectors to mucin and chitin reflects a convergent and dynamic role in gut immunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230078. [PMID: 38497268 PMCID: PMC10945408 DOI: 10.1098/rstb.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- L. J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - G. W. Litman
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - A. Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| |
Collapse
|
9
|
Kumar Bharathkar S, Stadtmueller BM. Structural and biochemical requirements for secretory component interactions with dimeric Immunoglobulin A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.09.566401. [PMID: 38014291 PMCID: PMC10680632 DOI: 10.1101/2023.11.09.566401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Secretory (S) Immunoglobulin (Ig) A is the predominant mucosal antibody that protects host epithelial barriers and promotes microbial homeostasis. SIgA production occurs when plasma cells assemble two copies of monomeric IgA and one joining-chain (JC) to form dimeric (d) IgA, which is bound by the polymeric Ig receptor (pIgR) on the basolateral surface of epithelial cells and transcytosed to the apical surface. There, pIgR is proteolytically cleaved, releasing SIgA, a complex of the dIgA and the pIgR ectodomain, called secretory component (SC). The pIgR's five Ig-like domains (D1-D5) undergo a conformational change upon binding dIgA, ultimately contacting four IgA heavy chains and the JC in SIgA. Here we report structure-based mutational analysis combined with surface plasmon resonance binding assays that identify key residues in mouse SC D1 and D3 that mediate SC binding to dIgA. Residues in D1 CDR3 are likely to initiate binding whereas residues that stabilize the D1-D3 interface are likely to promote the conformation change and stabilize the final SIgA structure. Additionally, we find that the JC's three C-terminal residues play a limited role in dIgA assembly but a significant role in pIgR/SC binding to dIgA. Together results inform new models for the intricate mechanisms underlying IgA transport across epithelia and functions in the mucosa.
Collapse
Affiliation(s)
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carle R. Woese Institute of Genomic Biology
| |
Collapse
|
10
|
Chang L, Zheng Z, Zhou Y, Liu K, Li Y, Zhong B, Zhao Z, Chen C, Qian C, Ni Q, Zou Q, Wu Y, Li J, Zou L. B cell receptor repertoire analysis in primary Sjogren's syndrome salivary glands identifies repertoire features associated with clinical activity. Arthritis Res Ther 2024; 26:62. [PMID: 38454506 PMCID: PMC10918881 DOI: 10.1186/s13075-024-03283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Primary Sjogren's syndrome (pSS) is a complex autoimmune disease featuring damage to salivary and lacrimal glands, with the possibility of manifestations across multiple organs. Antibody-producing B cells have long been appreciated to play a significant role in pSS pathogenesis, with a number of autoreactive antibody species having been identified to be elevated in pSS patients. While several studies have attempted to characterize the BCR repertoires of peripheral blood B cells in pSS patients, much remains unknown about the repertoire characteristics of gland-infiltrating B cells. METHODS Through paired scRNAseq and scBCRseq, we profiled the BCR repertoires of both infiltrating and circulating B cells in a small cohort of patients. We further utilize receptor reconstruction analyses to further investigate repertoire characteristics in a wider cohort of pSS patients previously profiled through RNAseq. RESULTS Via integrated BCR and transcriptome analysis of B cell clones, we generate a trajectory progression pattern for infiltrated memory B cells in pSS. We observe significant differences in BCR repertoires between the peripheral blood and labial gland B cells of pSS patients in terms of relative expansion, isotype usage, and BCR clustering. We further observe significant decreases in IgA2 isotype usage among pSS patient labial and parotid gland B cells these analyses relative to controls as well as a positive correlation between kappa/lambda light chain usage and clinical disease activity. CONCLUSIONS Through BCR repertoire analysis of pSS patient salivary glands, we identify a number of novel repertoire characteristics that may serve as useful indicators of clinical disease and disease activity. By collecting these BCR repertoires into an accessible database, we hope to also enable comparative analysis of patient repertoires in pSS and potentially other autoimmune disorders.
Collapse
Affiliation(s)
- Ling Chang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Department of Autoimmune Diseases, Chongqing International Institute for Immunology, Chongqing, China
| | - Yiwen Zhou
- Institute of Immunology PLA, Army Medical University, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, 400000, China
| | - Kun Liu
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yinong Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Bing Zhong
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zihua Zhao
- Institute of Immunology PLA, Army Medical University, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, 400000, China
| | - Chengshun Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Can Qian
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qingshan Ni
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology PLA, Army Medical University, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, 400000, China.
| | - Jingyi Li
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Liyun Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, Chongqing, China.
- Institute of Immunology PLA, Army Medical University, Army Medical University, 30 Gaotanyan Avenue, Shapingba District, Chongqing, 400000, China.
| |
Collapse
|
11
|
Bharathkar SK, Miller MJ, Stadtmueller BM. Engineered Secretory Immunoglobulin A provides insights on antibody-based effector mechanisms targeting Clostridiodes difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566291. [PMID: 37986930 PMCID: PMC10659285 DOI: 10.1101/2023.11.08.566291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Secretory (S) Immunoglobin (Ig) A is the predominant mucosal antibody, which mediates host interactions with commensal and pathogenic microbes, including Clostridioides difficile. SIgA adopts a polymeric IgA structure that is bound by secretory component (SC). Despite significance, how SIgA supports diverse effector mechanisms is poorly characterized and SIgA-based therapies nonexistent. We engineered chimeric (c) SIgAs, in which we replaced SC domain D2 with a single domain antibody or a monomeric fluorescent protein, allowing us to investigate and enhance SIgA effector mechanisms. cSIgAs exhibited increased neutralization potency against C. difficile toxins, promoted bacterial clumping and cell rupture, and decreased cytotoxicity. cSIgA also allowed us to visualize and/or quantify C. difficile morphological changes and clumping events. Results reveal mechanisms by which SIgA combats C. difficile infection, demonstrate that cSIgA design can modulate these mechanisms, and demonstrate cSIgA's adaptability to modifications that might target a broad range of antigens and effector mechanisms.
Collapse
Affiliation(s)
- Sonya Kumar Bharathkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Michael J. Miller
- Carle R. Woese Institute of Genomic Biology
- Department of food science and Human Nutrition, University of Illinois Urbana-Champaign, Illinois 61801 USA
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 USA
- Carle R. Woese Institute of Genomic Biology
| |
Collapse
|