1
|
Zhang J, Takacs CN, McCausland JW, Mueller EA, Buron J, Thappeta Y, Wachter J, Rosa PA, Jacobs-Wagner C. Borrelia burgdorferi loses essential genetic elements and cell proliferative potential during stationary phase in culture but not in the tick vector. J Bacteriol 2025; 207:e0045724. [PMID: 39950812 PMCID: PMC11925233 DOI: 10.1128/jb.00457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025] Open
Abstract
The Lyme disease agent Borrelia burgdorferi is a polyploid bacterium with a segmented genome in which both the chromosome and over 20 distinct plasmids are present in multiple copies per cell. This pathogen can survive for at least 9 months in its tick vector in an apparent dormant state between blood meals, without losing cell proliferative capability when re-exposed to nutrients. Cultivated B. burgdorferi cells grown to stationary phase or resuspended in nutrient-limited media are often used to study the effects of nutrient deprivation. However, a thorough assessment of the spirochete's ability to recover from nutrient depletion has been lacking. Our study shows that starved B. burgdorferi cultures rapidly lose cell proliferative ability. Loss of genetic elements essential for cell proliferation contributes to the observed proliferative defect in stationary phase. The gradual decline in copies of genetic elements is not perfectly synchronized between chromosomes and plasmids, generating cells that harbor one or more copies of the essential chromosome but lack all copies of one or more non-essential plasmids. This phenomenon likely contributes to the well-documented issue of plasmid loss during in vitro cultivation of B. burgdorferi. In contrast, B. burgdorferi cells from ticks starved for 14 months showed no evidence of reduced cell proliferative ability or plasmid loss. Beyond their practical implications for studying B. burgdorferi, these findings suggest that the midgut of the tick vector offers a unique environment that supports the maintenance of B. burgdorferi's segmented genome and cell proliferative potential during periods of tick fasting.IMPORTANCEBorrelia burgdorferi causes Lyme disease, a prevalent tick-borne illness. B. burgdorferi must survive long periods (months to a year) of apparent dormancy in the midgut of the tick vector between blood meals. Resilience to starvation is a common trait among bacteria. However, this study reveals that, in laboratory cultures, B. burgdorferi poorly endures starvation and rapidly loses viability. This decline is linked to a gradual loss of genetic elements required for cell proliferation. These results suggest that the persistence of B. burgdorferi in nature is likely shaped more by unique environmental conditions in the midgut of the tick vector than by an innate ability of this bacterium to endure nutrient deprivation.
Collapse
Affiliation(s)
- Jessica Zhang
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Constantin N. Takacs
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Joshua W. McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Elizabeth A. Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Jeline Buron
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Yashna Thappeta
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Jenny Wachter
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Patricia A. Rosa
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Lan X, Yang M, Wang J, Huang C, Wu A, Cui L, Guo Y, Zeng L, Guo X, Zhang Y, Xiang Y, Wang Q. Pore-Forming Protein LIN-24 Enhances Starvation Resilience in Caenorhabditis elegans by Modulating Lipid Metabolism and Mitochondrial Dynamics. Toxins (Basel) 2025; 17:72. [PMID: 39998089 PMCID: PMC11860826 DOI: 10.3390/toxins17020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
The ability to survive starvation is a critical evolutionary adaptation, yet the molecular mechanisms underlying this capability remain incompletely understood. Pore-forming proteins (PFPs) are typically associated with immune defense, where they disturb the membranes of target cells. However, the role of PFPs in non-immune functions, particularly in metabolic and structural adaptations to starvation, is less explored. Here, we investigate the aerolysin-like PFP LIN-24 in Caenorhabditis elegans and uncover its novel function in enhancing starvation resistance. We found that LIN-24 expression is upregulated during starvation, leading to increased expression of the lipase-encoding gene lipl-3. This upregulation accelerates the mobilization and degradation of lipid stores, thereby sustaining energy levels. Additionally, LIN-24 overexpression significantly preserves muscle integrity, as evidenced by the maintenance of muscle structure compared to wild-type worms. Furthermore, we demonstrate that LIN-24 induces the formation of donut-shaped mitochondria, a structural change likely aimed at reducing ATP production to conserve energy during prolonged nutrient deprivation. This mitochondrial remodeling depends on genes involved in mitochondrial dynamics, including mff-1, mff-2, drp-1, and clk-1. Collectively, these findings expand our understanding of PFPs, demonstrating their multifaceted role in stress resistance beyond immune defense. LIN-24's involvement in regulating metabolism, preserving muscle structure, and remodeling mitochondria highlights its crucial role in the adaptive response to starvation, offering novel insights into the evolution of stress resistance mechanisms and potential therapeutic targets for conditions related to muscle preservation and metabolic regulation.
Collapse
Affiliation(s)
- Xinqiang Lan
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Mengqi Yang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Jiali Wang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Chunping Huang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Andong Wu
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Leilei Cui
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China; (Y.G.); (L.Z.)
| | - Lin Zeng
- Institutional Center for Shared Technologies and Facilities of the Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650204, China; (Y.G.); (L.Z.)
| | - Xiaolong Guo
- School of Physical Education, Yunnan Normal University, Kunming 650500, China;
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650204, China;
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| | - Qiquan Wang
- Metabolic Control and Aging, Human Aging Research Institute and School of Life Science, Nanchang University, Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China; (X.L.); (M.Y.); (J.W.); (C.H.); (A.W.); (L.C.)
| |
Collapse
|
3
|
Chatupale V, Pohnerkar J. Genetics of conditional extended mycelial cell viability of Streptomyces minutiscleroticus in deep starvation phase implicates the involvement of (p)ppGpp, clpX, and a histidine kinase sasA. Front Microbiol 2024; 15:1495007. [PMID: 39611085 PMCID: PMC11604128 DOI: 10.3389/fmicb.2024.1495007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/18/2024] [Indexed: 11/30/2024] Open
Abstract
Bacterial lifespan ranges from a few hours to geological timescales. The prolonged survival trait under extreme energy starvation is essential for the perpetuation of their existence. The theme for long-term survival [long-term stationary phase (LTSP)] in the non-growing state may be dependent on the diversity in the environmental niche and the lifestyle of the bacteria, exemplified by longevity studies, albeit few, with model organisms. In the present study, we characterized the LTSP of mycelial cells of Streptomyces Minutiscleroticus, which remain metabolically active, demonstrate ongoing protein synthesis-killed by protein synthesis inhibitors-and remarkably by the cell-wall synthesis inhibitors, vancomycin, and ampicillin, suggesting "growth." Their rapid turnover is also evident in ~10-fold loss of colony-forming unit (CFU) over a year, suggesting that for the death of one "old" cell, slightly less than one "new" cell is born. This longevity is consequent to (i) induction of the gene expression program effected by non-metabolizable, non-ionic osmolyte, sucrose, thus conditional, and (ii) possibly rendering this carbon utilizable by the production of a slow hydrolytic activity generating glucose, reinforcing the relevance of low-level energy resource for long term survival in the starvation phase. The viability parameters of LTSP cells measured through up to 90 days suggest that the stationary phase transitioning into LTSP following nutrient exhaustion is nearly quantitative. Expectedly, the viability in LTSP is (p)ppGpp/RelA dependent. Whereas mutation in chaperone clpX, negatively affects survival in stationary phase, overexpression of signal sensor-transducer histidine kinase, SasA8, enhances cell survivability. The relevance of longevity functions identified here requires further deduction of the genetic program.
Collapse
|
4
|
Zhang J, Takacs CN, McCausland JW, Mueller EA, Buron J, Thappeta Y, Wachter J, Rosa PA, Jacobs-Wagner C. Borrelia burgdorferi loses essential genetic elements and cell proliferative potential during stationary phase in culture but not in the tick vector. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620338. [PMID: 39554112 PMCID: PMC11565743 DOI: 10.1101/2024.10.28.620338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The Lyme disease agent Borrelia burgdorferi is a polyploid bacterium with a segmented genome in which both the chromosome and over 20 distinct plasmids are present in multiple copies per cell. This pathogen can survive at least nine months in its tick vector in an apparent dormant state between blood meals, without losing cell proliferative capability when re-exposed to nutrients. Cultivated B. burgdorferi cells grown to stationary phase or resuspended in nutrient-limited media are often used to study the effects of nutrient deprivation. However, a thorough assessment of the spirochete's ability to recover from nutrient depletion has been lacking. Our study shows that starved B. burgdorferi cultures rapidly lose cell proliferative. Loss of genetic elements essential for cell proliferation contributes to the observed proliferative defect in stationary phase. The gradual decline in copies of genetic elements is not perfectly synchronized between chromosomes and plasmids, generating cells that harbor one or more copies of the essential chromosome but lack all copies of one or more non-essential plasmids. This phenomenon likely contributes to the well-documented issue of plasmid loss during in vitro cultivation of B. burgdorferi. In contrast, B. burgdorferi cells from ticks starved for 14 months showed no evidence of reduced cell proliferative ability or plasmid loss. Beyond their practical implications for studying B. burgdorferi, these findings suggest that the midgut of the tick vector offers a unique environment that supports the maintenance of B. burgdorferi's segmented genome and cell proliferative potential during periods of tick fasting.
Collapse
Affiliation(s)
- Jessica Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Constantin N. Takacs
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Joshua W. McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth A. Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeline Buron
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yashna Thappeta
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Jenny Wachter
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Patricia A. Rosa
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Considine MJ, Foyer CH. Redox regulation of meristem quiescence: outside/in. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6037-6046. [PMID: 38676562 PMCID: PMC11480653 DOI: 10.1093/jxb/erae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/26/2024] [Indexed: 04/29/2024]
Abstract
Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimizing DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (O2·-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest that ROS are a critical component of the feedback loops that control stem cell identity and fate, and suggest that the ROS/hypoxia interface is an important 'outside/in' positional cue for plant cells, particularly in meristems.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, and the School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- The Department of Primary Industries and Regional Development, Perth, Western Australia 6000, Australia
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
6
|
Secchia S, Beilinson V, Chen X, Yang ZF, Wayman JA, Dhaliwal J, Jurickova I, Angerman E, Denson LA, Miraldi ER, Weirauch MT, Ikegami K. Nutrient starvation activates ECM remodeling gene enhancers associated with inflammatory bowel disease risk in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611754. [PMID: 39314475 PMCID: PMC11418948 DOI: 10.1101/2024.09.06.611754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Nutrient deprivation induces a reversible cell cycle arrest state termed quiescence, which often accompanies transcriptional silencing and chromatin compaction. Paradoxically, nutrient deprivation is associated with activated fibroblast states in pathological microenvironments in which fibroblasts drive extracellular matrix (ECM) remodeling to alter tissue environments. The relationship between nutrient deprivation and fibroblast activation remains unclear. Here, we report that serum deprivation extensively activates transcription of ECM remodeling genes in cultured fibroblasts, despite the induction of quiescence. Starvation-induced transcriptional activation accompanied large-scale histone acetylation of putative distal enhancers, but not promoters. The starvation-activated putative enhancers were enriched for non-coding genetic risk variants associated with inflammatory bowel disease (IBD), suggesting that the starvation-activated gene regulatory network may contribute to fibroblast activation in IBD. Indeed, the starvation-activated gene PLAU, encoding uPA serine protease for plasminogen and ECM, was upregulated in inflammatory fibroblasts in the intestines of IBD patients. Furthermore, the starvation-activated putative enhancer at PLAU, which harbors an IBD risk variant, gained chromatin accessibility in IBD patient fibroblasts. This study implicates nutrient deprivation in transcriptional activation of ECM remodeling genes in fibroblasts and suggests nutrient deprivation as a potential mechanism for pathological fibroblast activation in IBD.
Collapse
Affiliation(s)
- Stefano Secchia
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
- Department of Biology, Lund University, Lund, 22362, Sweden
- Present address: Institute of Human Biology, Basel, Switzerland
| | - Vera Beilinson
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
- Present address: California Institute of Technology, Pasadena, California, USA
| | - Xiaoting Chen
- Division of Allergy and Immunology, CCHMC Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zi F Yang
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joseph A Wayman
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jasbir Dhaliwal
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ingrid Jurickova
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Elizabeth Angerman
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily R Miraldi
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Division of Allergy and Immunology, CCHMC Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Yang P, Xi B, Han Y, Li J, Luo L, Qu C, Li J, Liu S, Kang L, Bai B, Zhang B, Zhao S, Zhen P, Zhang L. Interactions of Saccharomyces cerevisiae and Lactiplantibacillus plantarum Isolated from Light-Flavor Jiupei at Various Fermentation Temperatures. Foods 2024; 13:2884. [PMID: 39335813 PMCID: PMC11431660 DOI: 10.3390/foods13182884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Chinese Baijiu is a famous fermented alcoholic beverage in China. Interactions between key microorganisms, i.e., Saccharomyces cerevisiae and Lactiplantibacillus plantarum, have recently been reported at specific temperatures. However, empirical evidence of their interactions at various temperatures during fermentation is lacking. The results of this study demonstrated that S. cerevisiae significantly suppressed the viability and lactic acid yield of L. plantarum when they were cocultured above 15 °C. On the other hand, L. plantarum had no pronounced effect on the growth and ethanol yield of S. cerevisiae in coculture systems. S. cerevisiae was the main reducing sugar consumer. Inhibition of lactic acid production was also observed when elevated cell density of L. plantarum was introduced into the coculture system. A proteomic analysis indicated that the enzymes involved in glycolysis, lactate dehydrogenase, and proteins related to phosphoribosyl diphosphate, ribosome, and aminoacyl-tRNA biosynthesis in L. plantarum were less abundant in the coculture system. Collectively, our data demonstrated the antagonistic effect of S. cerevisiae on L. plantarum and provided insights for effective process management in light-flavor Baijiu fermentation.
Collapse
Affiliation(s)
- Pu Yang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Bo Xi
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ying Han
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Jiayang Li
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Lujun Luo
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Chaofan Qu
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Junfang Li
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shuai Liu
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Le Kang
- Shanxi Province Science and Technology Resources and Large-Scale Instrument Open Sharing Center, Taiyuan 030000, China
| | - Baoqing Bai
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ben Zhang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shaojie Zhao
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Pan Zhen
- Shanxi Province Key Lab. of Plant Extraction and Health of Lujiu, Shanxi Xinghuacun Fenjiu Distillery Co., Ltd., Lvliang 032205, China
| | - Lizhen Zhang
- School of Xinghuacun, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
8
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
9
|
Kasu IR, Reyes-Matte O, Bonive-Boscan A, Derman AI, Lopez-Garrido J. Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis. mBio 2024; 15:e0056224. [PMID: 38564667 PMCID: PMC11077977 DOI: 10.1128/mbio.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium. IMPORTANCE Many bacterial species produce dormant cells called endospores, which are not killed by antibiotics or common disinfection practices. Endospores pose critical challenges in the food industry, where endospore contaminations cause food spoilage, and in hospitals, where infections by pathogenic endospore formers threaten the life of millions every year. Endospores lose their resistance properties and can be killed easily when they germinate and exit dormancy. We have discovered that the enzymes that break down the amino acids alanine and valine are critical for the production of stable endospores. If these enzymes are absent, endospores germinate as they are formed or shortly thereafter in response to alanine, which can initiate the germination of many different species' endospores, or to valine. By blocking the activity of alanine dehydrogenase, the enzyme that breaks down alanine and is not present in mammals, it may be possible to inactivate endospores by triggering premature and unproductive germination.
Collapse
Affiliation(s)
- Iqra R. Kasu
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
10
|
Thappeta Y, Cañas-Duarte SJ, Kallem T, Fragasso A, Xiang Y, Gray W, Lee C, Cegelski L, Jacobs-Wagner C. Glycogen phase separation drives macromolecular rearrangement and asymmetric division in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590186. [PMID: 38659787 PMCID: PMC11042326 DOI: 10.1101/2024.04.19.590186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bacteria often experience nutrient limitation in nature and the laboratory. While exponential and stationary growth phases are well characterized in the model bacterium Escherichia coli, little is known about what transpires inside individual cells during the transition between these two phases. Through quantitative cell imaging, we found that the position of nucleoids and cell division sites becomes increasingly asymmetric during transition phase. These asymmetries were coupled with spatial reorganization of proteins, ribosomes, and RNAs to nucleoid-centric localizations. Results from live-cell imaging experiments, complemented with genetic and 13C whole-cell nuclear magnetic resonance spectroscopy studies, show that preferential accumulation of the storage polymer glycogen at the old cell pole leads to the observed rearrangements and asymmetric divisions. In vitro experiments suggest that these phenotypes are likely due to the propensity of glycogen to phase separate in crowded environments, as glycogen condensates exclude fluorescent proteins under physiological crowding conditions. Glycogen-associated differences in cell sizes between strains and future daughter cells suggest that glycogen phase separation allows cells to store large glucose reserves without counting them as cytoplasmic space.
Collapse
Affiliation(s)
- Yashna Thappeta
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Silvia J. Cañas-Duarte
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| | - Till Kallem
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Alessio Fragasso
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yingjie Xiang
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - William Gray
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Cheyenne Lee
- Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | | | - Christine Jacobs-Wagner
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, USA
| |
Collapse
|
11
|
Sperfeld M, Narváez-Barragán DA, Malitsky S, Frydman V, Yuda L, Rocha J, Segev E. Reducing the Bacterial Lag Phase Through Methylated Compounds: Insights from Algal-Bacterial Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543872. [PMID: 38645154 PMCID: PMC11030247 DOI: 10.1101/2023.06.06.543872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The bacterial lag phase is a key period for resuming growth. Despite its significance, the lag phase remains underexplored, particularly in environmental bacteria. Here, we explore the lag phase of the model marine bacterium Phaeobacter inhibens when it transitions from starvation to growth with a microalgal partner. Utilizing transcriptomics and 13 C-labeled metabolomics, our study reveals that methylated compounds, which are abundantly produced by microalgae, shorten the bacterial lag phase. Our findings underscore the significance of methyl groups as a limiting factor during the lag phase and demonstrate that methyl groups can be harvested from algal compounds and assimilated through the methionine cycle. Furthermore, we show that methylated compounds, characteristic of photosynthetic organisms, induce variable reductions in lag times among bacteria associated with algae and plants. These findings highlight the adjustability of the bacterial lag phase and emphasize the importance of studying bacteria in an environmental context. One-Sentence Summary Bacteria use algal compounds as a metabolic shortcut to transition from starvation to growth.
Collapse
|
12
|
Smith EL, Panis G, Woldemeskel SA, Viollier PH, Chien P, Goley ED. Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in Caulobacter. PNAS NEXUS 2024; 3:pgae154. [PMID: 38650860 PMCID: PMC11034885 DOI: 10.1093/pnasnexus/pgae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate (collectively known as (p)ppGpp), which affect transcription by binding RNA polymerase (RNAP) to down-regulate anabolic genes. (p)ppGpp also impacts the expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important are unclear. In this study, we show that CdnL is down-regulated posttranslationally during starvation in a manner dependent on SpoT and the ClpXP protease. Artificial stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.
Collapse
Affiliation(s)
- Erika L Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Dirkx L, Van Acker SI, Nicolaes Y, Cunha JLR, Ahmad R, Hendrickx R, Caljon B, Imamura H, Ebo DG, Jeffares DC, Sterckx YGJ, Maes L, Hendrickx S, Caljon G. Long-term hematopoietic stem cells trigger quiescence in Leishmania parasites. PLoS Pathog 2024; 20:e1012181. [PMID: 38656959 PMCID: PMC11073788 DOI: 10.1371/journal.ppat.1012181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/06/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.
Collapse
Affiliation(s)
- Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara I. Van Acker
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Yasmine Nicolaes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - João Luís Reis Cunha
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Rokaya Ahmad
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Ben Caljon
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore) platform, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Hideo Imamura
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore) platform, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Didier G. Ebo
- Department of Immunology–Allergology–Rheumatology, Faculty of Medicine and Health Science, Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Daniel C. Jeffares
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
McDonald MD, Owusu-Ansah C, Ellenbogen JB, Malone ZD, Ricketts MP, Frolking SE, Ernakovich JG, Ibba M, Bagby SC, Weissman JL. What is microbial dormancy? Trends Microbiol 2024; 32:142-150. [PMID: 37689487 DOI: 10.1016/j.tim.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Life can be stressful. One way to deal with stress is to simply wait it out. Microbes do this by entering a state of reduced activity and increased resistance commonly called 'dormancy'. But what is dormancy? Different scientific disciplines emphasize distinct traits and phenotypic ranges in defining dormancy for their microbial species and system-specific questions of interest. Here, we propose a unified definition of microbial dormancy, using a broad framework to place earlier discipline-specific definitions in a new context. We then discuss how this new definition and framework may improve our ability to investigate dormancy using multi-omics tools. Finally, we leverage our framework to discuss the diversity of genomic mechanisms for dormancy in an extreme environment that challenges easy definitions - the permafrost.
Collapse
Affiliation(s)
- Mark D McDonald
- Argonne National Laboratory, Environmental Sciences Division, Lemont, IL 60439, USA
| | | | - Jared B Ellenbogen
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Colorado State University, Department of Soil and Crop Sciences, Fort Collins, CO 80523, USA
| | - Zachary D Malone
- University of California, Merced Environmental Systems Graduate Group, Merced, CA 95343, USA
| | - Michael P Ricketts
- Argonne National Laboratory, Environmental Sciences Division, Lemont, IL 60439, USA
| | - Steve E Frolking
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; University of New Hampshire, Institute for the Study of Earth, Oceans, and Space, Durham, NH 03824, USA
| | - Jessica Gilman Ernakovich
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; University of New Hampshire, Natural Resources and the Environment, Durham, NH 03824, USA
| | - Michael Ibba
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Chapman University, Schmid College of Science and Technology, Orange, CA 92866, USA
| | - Sarah C Bagby
- EMergent Ecosystem Response to ChanGE (EMERGE) Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA; Case Western Reserve University, Department of Biology, Cleveland, OH 44106, USA
| | - J L Weissman
- Chapman University, Schmid College of Science and Technology, Orange, CA 92866, USA; University of Southern California, Department of Biological Sciences, Los Angeles, CA 90007, USA.
| |
Collapse
|
15
|
Smith EL, Panis G, Woldemeskel SA, Viollier PH, Chien P, Goley ED. Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in Caulobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572625. [PMID: 38187569 PMCID: PMC10769358 DOI: 10.1101/2023.12.20.572625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers (p)ppGpp, which affect transcription by binding RNA polymerase to downregulate anabolic genes. (p)ppGpp also impacts expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important is unclear. Here, we show that CdnL is downregulated post-translationally during starvation in a manner dependent on SpoT and the ClpXP protease. Inappropriate stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Gaäl Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland, 1211
| | - Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- BlueRock Therapeutics, Cambridge, Massachusetts, 02142 (current)
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland, 1211
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, Massachusetts, 01003
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| |
Collapse
|
16
|
Boutonnet C, Ginies C, Alpha-Bazin B, Armengaud J, Château A, Duport C. S-layer is a key element in metabolic response and entry into the stationary phase in Bacillus cereus AH187. J Proteomics 2023; 289:105007. [PMID: 37730087 DOI: 10.1016/j.jprot.2023.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/21/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Bacillus cereus is a food-borne Gram-positive pathogen. The emetic reference strain B. cereus AH187 is surrounded by a proteinaceous surface layer (S-layer) that contributes to its physico-chemical surface properties, and promotes its adhesion in response to starvation conditions. The S-layer produced by B. cereus AH187 is composed of two proteins, SL2 and EA1, which are incorporated at different growth stages. Here, we showed that deletion of the genes encoding SL2 and EA1 produced viable cells, but decreased the glucose uptake rate at the start of growth, and induced extensive reorganization of the cellular and exoproteomes upon entry into the stationary phase. As a consequence, stationary cells were less resistant to abiotic stress. Taken together, our data indicate that the S-layer is crucial but comes at a metabolic cost that modulates the stationary phase response. SIGNIFICANCE: The emetic strains of Bacillus cereus are known to cause severe food poisoning, making it crucial to understand the factors contributing to their selective enrichment in foods. Most emetic strains are surrounded by a crystalline S-layer, which is a costly protein structure to produce. In this study, we used high-throughput proteomics to investigate how S-layer synthesis affects the allocation of cellular resources in the emetic B. cereus strain AH187. Our results demonstrate that the synthesis of the S-layer plays a crucial role in the pathogen's ability to thrive under stationary growth phase conditions by modulating the stress response, thereby promoting its lifestyle as an emetic pathogen. We conclude that the synthesis of the S-layer is a critical adaptation for emetic B. cereus to successfully colonize specific niches.
Collapse
Affiliation(s)
| | | | - Béatrice Alpha-Bazin
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Alice Château
- Avignon Université, INRAE, UMR SQPOV, F-84914 Avignon, France
| | | |
Collapse
|
17
|
Sisa A, Sotomayor C, Buitrón L, Gómez-Estaca J, Martínez-Alvarez O, Mosquera M. Evaluation of by-products from agricultural, livestock and fishing industries as nutrient source for the production of proteolytic enzymes. Heliyon 2023; 9:e20735. [PMID: 37867804 PMCID: PMC10585220 DOI: 10.1016/j.heliyon.2023.e20735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
This study presents an approach that utilizes low-value agro-industrial by-products as culture media for producing high-value proteolytic enzymes. The objective was to assess the impact of six agro-industrial by-products as culture media on the production of proteolytic enzymes. Bacillus subtilis strains, confirmed through comprehensive biochemical, morphological, and molecular analyses, were isolated and identified. Enzymatic activity was evaluated using azocasein and casein substrates, and the molecular sizes of the purified extract components were determined. The results demonstrated that the isolated bacteria exhibited higher metabolic and enzymatic activity when cultured in media containing 1 % soybean oil cake or feather meal. Furthermore, higher concentrations of the culture media were found to hinder the production of protease. Optimal protease synthesis on soybean oil cake and feather meal media was achieved after 4 days, using both the azocasein and casein methods. Semi-purification of the enzymatic extract obtained from Bacillus subtilis in feather meal and soybean oil cake resulted in a significant increase in azocaseinolytic and caseinolytic activities. Gel electrophoresis analysis revealed multiple bands in the fractions with the highest enzymatic activity in soybean oil cake, indicating the presence of various enzymes with varying molecular sizes. These findings highlight the potential of utilizing low-value agro-industrial by-products as efficient culture media for the sustainable and economically viable production of proteolytic enzymes with promising applications in various industries.
Collapse
Affiliation(s)
- Alisson Sisa
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Cristina Sotomayor
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Lucía Buitrón
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| | - Joaquín Gómez-Estaca
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6 José Antonio Novais St., 28040, Madrid, Spain
| | - Oscar Martínez-Alvarez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 6 José Antonio Novais St., 28040, Madrid, Spain
| | - Mauricio Mosquera
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito, P.O. Box 17-01-2759, Ecuador
| |
Collapse
|
18
|
Abstract
As rapidly growing bacteria begin to exhaust essential nutrients, they enter a state of reduced growth, ultimately leading to stasis or quiescence. Investigation of the response to nutrient limitation has focused largely on the consequences of amino acid starvation, known as the "stringent response." Here, an uncharged tRNA in the A-site of the ribosome stimulates the ribosome-associated protein RelA to synthesize the hyperphosphorylated guanosine nucleotides (p)ppGpp that mediate a global slowdown of growth and biosynthesis. Investigations of the stringent response typically employ experimental methodologies that rapidly stimulate (p)ppGpp synthesis by abruptly increasing the fraction of uncharged tRNAs, either by explicit amino starvation or by inhibition of tRNA charging. Consequently, these methodologies inhibit protein translation, thereby interfering with the cellular pathways that respond to nutrient limitation. Thus, complete and/or rapid starvation is a problematic experimental paradigm for investigating bacterial responses to physiologically relevant nutrient-limited states.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
19
|
Abstract
The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.
Collapse
|
20
|
ATP Is a Major Determinant of Phototrophic Bacterial Longevity in Growth Arrest. mBio 2023; 14:e0360922. [PMID: 36786592 PMCID: PMC10128053 DOI: 10.1128/mbio.03609-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
How bacteria transition into growth arrest as part of stationary phase has been well-studied, but our knowledge of features that help cells to stay alive in the following days and weeks is incomplete. Most studies have used heterotrophic bacteria that are growth-arrested by depletion of substrates used for both biosynthesis and energy generation, making is difficult to disentangle the effects of the two. In contrast, when grown anaerobically in light, the phototrophic bacterium Rhodopseudomonas palustris generates ATP from light via cyclic photophosphorylation, and builds biomolecules from organic substrates, such as acetate. As such, energy generation and carbon utilization are independent from one another. Here, we compared the physiological and molecular responses of R. palustris to growth arrest caused by carbon source depletion in light (energy-replete) and dark (energy-depleted) conditions. Both sets of cells remained viable for 6 to 10 days, at which point dark-incubated cells lost viability, whereas light-incubated cells remained fully viable for 60 days. Dark-incubated cells were depleted in intracellular ATP prior to losing viability, suggesting that ATP depletion is a cause of cell death. Dark-incubated cells also shut down measurable protein synthesis, whereas light-incubated cells continued to synthesize proteins at low levels. Cells incubated in both conditions continued to transcribe genes. We suggest that R. palustris may completely shut down protein synthesis in dark, energy-depleted, conditions as a strategy to survive the nighttime hours of day/night cycles it experiences in nature, where there is a predictable source of energy in the form of sunlight only during the day. IMPORTANCE The molecular and physiological basis of bacterial longevity in growth arrest is important to investigate for several reasons. Such investigations could improve treatment of chronic infections, advance use of non-growing bacteria as biocatalysts to make high yields of value-added products, and improve estimates of microbial activities in natural habitats, where cells are often growing slowly or not at all. Here, we compared survival of the phototrophic bacterium Rhodopseudomonas palustris under conditions where it generates ATP (incubation in light), and where it does not generate ATP (incubation in dark) to directly assess effects of energy depletion on long-term viability. We found that ATP is important for long-term survival over weeks. However, R. palustris survives 12 h periods of ATP depletion without loss of viability, apparently in anticipation of sunrise and restoration of its ability to generate ATP. Our work suggests that cells respond to ATP depletion by shutting down protein synthesis.
Collapse
|
21
|
Williamson KS, Dlakić M, Akiyama T, Franklin MJ. The Pseudomonas aeruginosa RpoH (σ 32) Regulon and Its Role in Essential Cellular Functions, Starvation Survival, and Antibiotic Tolerance. Int J Mol Sci 2023; 24:1513. [PMID: 36675051 PMCID: PMC9866376 DOI: 10.3390/ijms24021513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.
Collapse
Affiliation(s)
- Kerry S. Williamson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tatsuya Akiyama
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|