1
|
Qin T, Bronner ME. Multifaceted roles of sonic hedgehog signaling in mammalian inner ear development. Dev Biol 2025; 524:97-104. [PMID: 40349906 DOI: 10.1016/j.ydbio.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The inner ear is an intricate structure that houses six sensory organs responsible for both hearing and balance. The development of the inner ear begins with the formation of the otic placode, a transient ectodermal thickening that emerges early during embryonic development. The otic placode undergoes a series of morphological changes, from thickening to invagination and then pinching off from the ectoderm to form the otic vesicle, which further differentiates into the specialized structures of the inner ear. These developmental processes require a coordinated interplay between intrinsic transcription factors and extrinsic signaling molecules, which regulate the patterning, proliferation, and differentiation of the inner ear components. In this review, we focus on the role of Sonic hedgehog (Shh) signaling in the development of the mammalian inner ear. We explore how Shh signaling is involved at multiple stages of inner ear development, including the patterning of the otic vesicle and the differentiation of specific cell types within the cochlea. Additionally, we discuss the mechanisms by which Shh signaling integrates with other signaling pathways and transcription factors to ensure the proper development and function of the inner ear. Understanding the molecular basis of these processes provides valuable insights into inner ear development and its disorders.
Collapse
Affiliation(s)
- Tianli Qin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Aldahan Z, Kim J, Yoon CY, Seo YJ, Park KH. Preliminary Analysis of Drug-Induced Ototoxicity in South Korea: Trends From a National Sample Dataset. J Audiol Otol 2025; 29:110-116. [PMID: 40296472 PMCID: PMC12046197 DOI: 10.7874/jao.2024.00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Certain medications are associated with ototoxicity. This study assesses drug-induced ototoxicity in South Korea by analyzing the Korean national health data. SUBJECTS AND METHODS Hospital records of National Health Insurance members from 2009 to 2016 were reviewed. Data were compared between patients with and without hearing loss (HL). Individuals with HL were identified as having a primary diagnosis code for sensorineural HL or another type of HL in at least one outpatient or inpatient record according to the International Classification of Diseases-10. RESULTS The members in the HL group increased slightly from 0.8% to 1.0% relative to the total sample, compared with 99.2% to 99.0% among the controls. The proportion of males in the HL group ranged from 45.6% to 47.6%, compared with 48.4% to 48.8% among the controls. The proportion of those aged ≥65 years in the HL group increased from 34.1% to 41.4%, compared with 10.6% to 13.3% among the controls. Hypertension prevalence (24.7%-25.7%) in the HL group was higher than that in the control group (12%-12.6%). Diabetes prevalence in the HL group was 10.6%-12.3%, compared with 4.4%-5.9% among the controls. The use of proton pump inhibitor components increased, particularly esomeprazole magnesium trihydrate and rabeprazole sodium, whereas the usage of pantoprazole sodium sesquihydrate and revaprazan was high initially but declined subsequently. The usage of painkillers such as acetaminophen, loxoprofen sodium, and ibuprofen remained high, and antibiotics such as cephalosporins indicated the highest usage. However, the use of penicillin antibiotics such as amoxicillin decreased significantly. Anticancer agents showed relatively low usage compared with other drug categories, whereas antihistamines showed extremely high usage across all years, with a continual increase. CONCLUSIONS These correlations and the underlying mechanisms necessitate further investigation, as several medicines have been linked to an increased risk of HL.
Collapse
Affiliation(s)
- Zahra Aldahan
- Department of Otolaryngology-Head & Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiwon Kim
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Chul young Yoon
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyoung Ho Park
- Department of Otolaryngology-Head & Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Wang G, Gu Y, Liu Z. Deciphering the genetic interactions between Pou4f3, Gfi1, and Rbm24 in maintaining mouse cochlear hair cell survival. eLife 2024; 12:RP90025. [PMID: 38483314 PMCID: PMC10939501 DOI: 10.7554/elife.90025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Mammals harbor a limited number of sound-receptor hair cells (HCs) that cannot be regenerated after damage. Thus, investigating the underlying molecular mechanisms that maintain HC survival is crucial for preventing hearing impairment. Intriguingly, Pou4f3-/- or Gfi1-/- HCs form initially but then rapidly degenerate, whereas Rbm24-/- HCs degenerate considerably later. However, the transcriptional cascades involving Pou4f3, Gfi1, and Rbm24 remain undescribed. Here, we demonstrate that Rbm24 expression is completely repressed in Pou4f3-/- HCs but unaltered in Gfi1-/- HCs, and further that the expression of both POU4F3 and GFI1 is intact in Rbm24-/- HCs. Moreover, by using in vivo mouse transgenic reporter assays, we identify three Rbm24 enhancers to which POU4F3 binds. Lastly, through in vivo genetic testing of whether Rbm24 restoration alleviates the degeneration of Pou4f3-/- HCs, we show that ectopic Rbm24 alone cannot prevent Pou4f3-/- HCs from degenerating. Collectively, our findings provide new molecular and genetic insights into how HC survival is regulated.
Collapse
Affiliation(s)
- Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yunpeng Gu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| |
Collapse
|
4
|
Li X, Ren M, Gu Y, Zhu T, Zhang Y, Li J, Li C, Wang G, Song L, Bi Z, Liu Z. In situ regeneration of inner hair cells in the damaged cochlea by temporally regulated co-expression of Atoh1 and Tbx2. Development 2023; 150:dev201888. [PMID: 38078650 DOI: 10.1242/dev.201888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Cochlear inner hair cells (IHCs) are primary sound receptors, and are therefore a target for developing treatments for hearing impairment. IHC regeneration in vivo has been widely attempted, although not yet in the IHC-damaged cochlea. Moreover, the extent to which new IHCs resemble wild-type IHCs remains unclear, as is the ability of new IHCs to improve hearing. Here, we have developed an in vivo mouse model wherein wild-type IHCs were pre-damaged and nonsensory supporting cells were transformed into IHCs by ectopically expressing Atoh1 transiently and Tbx2 permanently. Notably, the new IHCs expressed the functional marker vGlut3 and presented similar transcriptomic and electrophysiological properties to wild-type IHCs. Furthermore, the formation efficiency and maturity of new IHCs were higher than those previously reported, although marked hearing improvement was not achieved, at least partly due to defective mechanoelectrical transduction (MET) in new IHCs. Thus, we have successfully regenerated new IHCs resembling wild-type IHCs in many respects in the damaged cochlea. Our findings suggest that the defective MET is a critical barrier that prevents the restoration of hearing capacity and should thus facilitate future IHC regeneration studies.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Minhui Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Gu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jie Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Zhenghong Bi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
5
|
Pan Y, Li S, He S, Wang G, Li C, Liu Z, Xiang M. Fgf8 P2A-3×GFP/+: A New Genetic Mouse Model for Specifically Labeling and Sorting Cochlear Inner Hair Cells. Neurosci Bull 2023; 39:1762-1774. [PMID: 37233921 PMCID: PMC10661496 DOI: 10.1007/s12264-023-01069-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/08/2023] [Indexed: 05/27/2023] Open
Abstract
The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
Collapse
Affiliation(s)
- Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Laureano A, Kim J, Martinez E, Kwan KY. Chromodomain helicase DNA binding protein 4 in cell fate decisions. Hear Res 2023; 436:108813. [PMID: 37329862 PMCID: PMC10463912 DOI: 10.1016/j.heares.2023.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Loss of spiral ganglion neurons (SGNs) in the cochlea causes hearing loss. Understanding the mechanisms of cell fate transition accelerates efforts that employ directed differentiation and lineage conversion to repopulate lost SGNs. Proposed strategies to regenerate SGNs rely on altering cell fate by activating transcriptional regulatory networks, but repressing networks for alternative cell lineages is also essential. Epigenomic changes during cell fate transitions suggest that CHD4 represses gene expression by altering the chromatin status. Despite limited direct investigations, human genetic studies implicate CHD4 function in the inner ear. The possibility of CHD4 in suppressing alternative cell fates to promote inner ear regeneration is discussed.
Collapse
Affiliation(s)
- Alejandra Laureano
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jihyun Kim
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Edward Martinez
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
7
|
Wang X, Llamas J, Trecek T, Shi T, Tao L, Makmura W, Crump JG, Segil N, Gnedeva K. SoxC transcription factors shape the epigenetic landscape to establish competence for sensory differentiation in the mammalian organ of Corti. Proc Natl Acad Sci U S A 2023; 120:e2301301120. [PMID: 37585469 PMCID: PMC10450657 DOI: 10.1073/pnas.2301301120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/28/2023] [Indexed: 08/18/2023] Open
Abstract
The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.
Collapse
Affiliation(s)
- Xizi Wang
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Juan Llamas
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Talon Trecek
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Tuo Shi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Litao Tao
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Welly Makmura
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Neil Segil
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| | - Ksenia Gnedeva
- Caruso Department of Otolaryngology–Head and Neck Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA90033
| |
Collapse
|
8
|
Li S, He S, Lu Y, Jia S, Liu Z. Epistatic genetic interactions between Insm1 and Ikzf2 during cochlear outer hair cell development. Cell Rep 2023; 42:112504. [PMID: 37171961 DOI: 10.1016/j.celrep.2023.112504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 04/27/2023] [Indexed: 05/14/2023] Open
Abstract
The cochlea harbors two types of sound receptors, outer hair cells (OHCs) and inner hair cells (IHCs). OHCs transdifferentiate into IHCs in Insm1 mutants, and OHCs in Ikzf2-deficient mice are dysfunctional and maintain partial IHC gene expression. Insm1 potentially acts as a positive but indirect regulator of Ikzf2, considering that Insm1 is expressed earlier than Ikzf2 and primarily functions as a transcriptional repressor. However, direct evidence of this possibility is lacking. Here, we report the following results: first, Insm1 overexpression in IHCs leads to ectopic Ikzf2 expression. Second, Ikzf2 expression is repressed in Insm1-deficient OHCs, and forced expression of Ikzf2 mitigates the OHC abnormality in Insm1 mutants. Last, dual ablation of Insm1 and Ikzf2 generates a similar OHC phenotype as does Insm1 ablation alone. Collectively, our findings reveal the transcriptional cascade from Insm1 to Ikzf2, which should facilitate future investigation of the molecular mechanisms underlying OHC development and regeneration.
Collapse
Affiliation(s)
- Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiqi Jia
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
9
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
10
|
Mercurio S. SOX2-Sensing: Insights into the Role of SOX2 in the Generation of Sensory Cell Types in Vertebrates. Int J Mol Sci 2023; 24:ijms24087637. [PMID: 37108798 PMCID: PMC10141063 DOI: 10.3390/ijms24087637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The SOX2 transcription factor is a key regulator of nervous system development, and its mutation in humans leads to a rare disease characterized by severe eye defects, cognitive defects, hearing defects, abnormalities of the CNS and motor control problems. SOX2 has an essential role in neural stem cell maintenance in specific regions of the brain, and it is one of the master genes required for the generation of induced pluripotent stem cells. Sox2 is expressed in sensory organs, and this review will illustrate how it regulates the differentiation of sensory cell types required for hearing, touching, tasting and smelling in vertebrates and, in particular, in mice.
Collapse
Affiliation(s)
- Sara Mercurio
- Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
11
|
ftr82 is necessary for hair cell morphogenesis and auditory function during zebrafish development. J Genet Genomics 2023; 50:77-86. [PMID: 36464225 DOI: 10.1016/j.jgg.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, while the pathological mechanism remains not fully understood due to the many potential deafness genes unidentified. ftr82, a member of the largely TRIMs family in fish, has been found specifically expressed in the otic vesicle while its function is still unclear. Here, we investigate the roles of ftr82 in HC development and hearing function utilizing the zebrafish model. The results of in situ hybridization illustrate that ftr82 is always restricted to localize in otic vesicles at different stages. The defects of HCs are observed both in ftr82 morphants and mutants, including significantly decreased crista HCs, shortened cilia as well as remarkably reduced functional HCs in neuromasts, which could be successfully rescued by co-injection of exogenous ftr82 mRNA. The behavior assay of startle response indicates that larvae lacking of ftr82 exhibits lower sensitivity to external sound stimuli. Further research reveals that the loss of HCs is mainly caused by cell apoptosis mediated by caspase-3 activation. Our study demonstrates that ftr82 is a crucial hearing-related gene that regulates the HC morphogenesis and auditory function performing, which provides new insight into the rapid identification of the deafness gene.
Collapse
|
12
|
Cardeña-Núñez S, Callejas-Marín A, Villa-Carballar S, Rodríguez-Gallardo L, Sánchez-Guardado LÓ, Hidalgo-Sánchez M. CRABP-I Expression Patterns in the Developing Chick Inner Ear. BIOLOGY 2023; 12:biology12010104. [PMID: 36671796 PMCID: PMC9855850 DOI: 10.3390/biology12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions, regarded as an excellent system for analyzing events that occur during development, such as patterning, morphogenesis, and cell specification. Retinoic acid (RA) is involved in all these development processes. Cellular retinoic acid-binding proteins (CRABPs) bind RA with high affinity, buffering cellular free RA concentrations and consequently regulating the activation of precise specification programs mediated by particular regulatory genes. In the otic vesicle, strong CRABP-I expression was detected in the otic wall's dorsomedial aspect, where the endolymphatic apparatus develops, whereas this expression was lower in the ventrolateral aspect, where part of the auditory system forms. Thus, CRABP-I proteins may play a role in the specification of the dorsal-to-ventral and lateral-to-medial axe of the otic anlagen. Regarding the developing sensory patches, a process partly involving the subdivision of a ventromedial pro-sensory domain, the CRABP-I gene displayed different levels of expression in the presumptive territory of each sensory patch, which was maintained throughout development. CRABP-I was also relevant in the acoustic-vestibular ganglion and in the periotic mesenchyme. Therefore, CRABP-I could protect RA-sensitive cells in accordance with its dissimilar concentration in specific areas of the developing chick inner ear.
Collapse
|
13
|
Chen X, Wan H, Bai Y, Zhang Y, Hua Q. Advances in Understanding the Notch Signaling Pathway in the Cochlea. Curr Pharm Des 2023; 29:3266-3273. [PMID: 37990430 DOI: 10.2174/0113816128273532231103110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 11/23/2023]
Abstract
The cochlear structure is highly complex and specific, and its development is regulated by multiple signaling pathways. Abnormalities in cochlear development can lead to different degrees of loss of function. Hair cells (HCs), which are difficult to regenerate in the mature mammalian cochlea, are susceptible to damage from noise and ototoxic drugs, and damage to HCs can cause hearing loss to varying degrees. Notch, a classical developmental signaling molecule, has been shown to be closely associated with embryonic cochlear development and plays an important role in HC regeneration in mammals, suggesting that the Notch signaling pathway may be a potential therapeutic target for cochlear development and hearing impairment due to HC damage. In recent years, the important role of the Notch signaling pathway in the cochlea has received increasing attention. In this paper, we review the role of Notch signaling in cochlear development and HC regeneration, with the aim of providing new research ideas for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huanzhi Wan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yutong Bai
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
14
|
Sufu- and Spop-mediated regulation of Gli2 is essential for the control of mammalian cochlear hair cell differentiation. Proc Natl Acad Sci U S A 2022; 119:e2206571119. [PMID: 36252002 PMCID: PMC9618052 DOI: 10.1073/pnas.2206571119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of mammalian auditory epithelium, the organ of Corti, requires precise control of both cell cycle withdrawal and differentiation. Sensory progenitors (prosensory cells) in the cochlear apex exit the cell cycle first but differentiate last. Sonic hedgehog (Shh) signaling is required for the spatiotemporal regulation of prosensory cell differentiation, but the underlying mechanisms remain unclear. Here, we show that suppressor of fused (Sufu), a negative regulator of Shh signaling, is essential for controlling the timing and progression of hair cell (HC) differentiation. Removal of Sufu leads to abnormal Atoh1 expression and a severe delay of HC differentiation due to elevated Gli2 mRNA expression. Later in development, HC differentiation defects are restored in the Sufu mutant by the action of speckle-type PDZ protein (Spop), which promotes Gli2 protein degradation. Deletion of both Sufu and Spop results in robust Gli2 activation, exacerbating HC differentiation defects. We further demonstrate that Gli2 inhibits HC differentiation through maintaining the progenitor state of Sox2+ prosensory cells. Along the basal-apical axis of the developing cochlea, the Sox2 expression level is higher in the progenitor cells than in differentiating cells and is down-regulated from base to apex as differentiation proceeds. The dynamic spatiotemporal change of Sox2 expression levels is controlled by Shh signaling through Gli2. Together, our results reveal key functions of Gli2 in sustaining the progenitor state, thereby preventing HC differentiation and in turn governing the basal-apical progression of HC differentiation in the cochlea.
Collapse
|
15
|
Jimenez E, Slevin CC, Song W, Chen Z, Frederickson SC, Gildea D, Wu W, Elkahloun AG, Ovcharenko I, Burgess SM. A regulatory network of Sox and Six transcription factors initiate a cell fate transformation during hearing regeneration in adult zebrafish. CELL GENOMICS 2022; 2. [PMID: 36212030 PMCID: PMC9540346 DOI: 10.1016/j.xgen.2022.100170] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using adult zebrafish inner ears as a model for sensorineural regeneration, we ablated the mechanosensory receptors and characterized the single-cell epigenome and transcriptome at consecutive time points during hair cell regeneration. We utilized deep learning on the regeneration-induced open chromatin sequences and identified cell-specific transcription factor (TF) motif patterns. Enhancer activity correlated with gene expression and identified potential gene regulatory networks. A pattern of overlapping Sox- and Six-family TF gene expression and binding motifs was detected, suggesting a combinatorial program of TFs driving regeneration and cell identity. Pseudotime analysis of single-cell transcriptomic data suggested that support cells within the sensory epithelium changed cell identity to a “progenitor” cell population that could differentiate into hair cells. We identified a 2.6 kb DNA enhancer upstream of the sox2 promoter that, when deleted, showed a dominant phenotype that resulted in a hair-cell-regeneration-specific deficit in both the lateral line and adult inner ear. Jimenez et al. interrogate the epigenomic and transcriptomic landscape of regenerating adult zebrafish inner-ear sensory epithelia. They show that the support-cell population transitions to an intermediate “progenitor” cell state that becomes new hair cells, and they demonstrate that the cell fate decisions may be driven by the coordinate regulation and spatial co-binding of Sox and Six transcription factors. By functionally validating a predicted regeneration-responsive enhancer upstream of sox2, they show that precise timing of sox2 expression is critical for hearing regeneration in zebrafish.
Collapse
Affiliation(s)
- Erin Jimenez
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Claire C. Slevin
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Wei Song
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Stephen C. Frederickson
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Derek Gildea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Abdel G. Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
- Corresponding author
| |
Collapse
|
16
|
Abstract
Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
| | - Kathleen Gwilliam
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Bi Z, Li X, Ren M, Gu Y, Zhu T, Li S, Wang G, Sun S, Sun Y, Liu Z. Development and transdifferentiation into inner hair cells require Tbx2. Natl Sci Rev 2022; 9:nwac156. [PMID: 36687561 PMCID: PMC9844247 DOI: 10.1093/nsr/nwac156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 01/25/2023] Open
Abstract
Atoh1 is essential for the development of both outer hair cells (OHCs) and inner hair cells (IHCs) in the mammalian cochlea. Whereas Ikzf2 is necessary for OHC development, the key gene required for IHC development remains unknown. We found that deletion of Tbx2 in neonatal IHCs led to their transdifferentiation into OHCs by repressing 26.7% of IHC genes and inducing 56.3% of OHC genes, including Ikzf2. More importantly, persistent expression of Tbx2 coupled with transient Atoh1 expression effectively reprogrammed non-sensory supporting cells into new IHCs expressing the functional IHC marker vGlut3. The differentiation status of these new IHCs was considerably more advanced than that previously reported. Thus, Tbx2 is essential for IHC development and co-upregulation of Tbx2 with Atoh1 in supporting cells represents a new approach for treating deafness related to IHC degeneration.
Collapse
Affiliation(s)
| | | | | | - Yunpeng Gu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwei Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
18
|
Abstract
Cochlear hair cells (HCs) in the inner ear are responsible for sound detection. For HC fate specification, the master transcription factor Atoh1 is both necessary and sufficient. Atoh1 expression is dynamic and tightly regulated during development, but the cis-regulatory elements mediating this regulation remain unresolved. Unexpectedly, we found that deleting the only recognized Atoh1 enhancer, defined here as Eh1, failed to impair HC development. By using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we discovered two additional Atoh1 enhancers: Eh2 and Eh3. Notably, Eh2 deletion was sufficient for impairing HC development, and concurrent deletion of Eh1 and Eh2 or all three enhancers resulted in nearly complete absence of HCs. Lastly, we showed that Atoh1 binds to all three enhancers, consistent with its autoregulatory function. Our findings reveal that the cooperative action of three distinct enhancers underpins effective Atoh1 regulation during HC development, indicating potential therapeutic approaches for HC regeneration.
Collapse
|
19
|
Single-cell transcriptomic landscapes of the otic neuronal lineage at multiple early embryonic ages. Cell Rep 2022; 38:110542. [PMID: 35320729 DOI: 10.1016/j.celrep.2022.110542] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Inner ear vestibular and spiral ganglion neurons (VGNs and SGNs) are known to play pivotal roles in balance control and sound detection. However, the molecular mechanisms underlying otic neurogenesis at early embryonic ages have remained unclear. Here, we use single-cell RNA sequencing to reveal the transcriptomes of mouse otic tissues at three embryonic ages, embryonic day 9.5 (E9.5), E11.5, and E13.5, covering proliferating and undifferentiated otic neuroblasts and differentiating VGNs and SGNs. We validate the high quality of our studies by using multiple assays, including genetic fate mapping analysis, and we uncover several genes upregulated in neuroblasts or differentiating VGNs and SGNs, such as Shox2, Myt1, Casz1, and Sall3. Notably, our findings suggest a general cascaded differentiation trajectory during early otic neurogenesis. The comprehensive understanding of early otic neurogenesis provided by our study holds critical implications for both basic and translational research.
Collapse
|
20
|
Sun Y, Zhang Y, Zhang D, Wang G, Song L, Liu Z. In vivo CRISPR-Cas9-mediated DNA chop identifies a cochlear outer hair cell-specific enhancer. FASEB J 2022; 36:e22233. [PMID: 35225354 DOI: 10.1096/fj.202100421rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023]
Abstract
Cochlear outer hair cells (OHCs) are essential for hearing. A short, OHC-specific enhancer is necessary but not yet available for gene therapeutic applications in OHC damage. Such damage is a major cause of deafness. Prestin is a motor protein exclusively expressed in OHCs. We hypothesized that the cis-regulatory DNA fragment deletion of Slc26a5 would affect its expression. We tested this hypothesis by conducting CRISPR/Cas9-mediated large DNA fragment deletion of mouse Slc26a5 intron regions. First, starting from a ~13 kbp fragment, step-by-step, we narrowed down the sequence to a 1.4 kbp segment. By deleting either a 13 kbp or 1.4 kbp fragment, we observed delayed Prestin expression. Second, we showed that 1.4 kbp was an OHC-specific enhancer because enhanced green fluorescent protein (EGFP) was highly and specifically expressed in OHCs in a transgenic mouse where EGFP was driven by the 1.4 kbp segment. More importantly, specific EGFP was also driven by its homologous 398 bp fragment in human Slc26a5. This suggests that the enhancer is likely to be evolutionarily conserved across different species.
Collapse
Affiliation(s)
- Yuwei Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
21
|
Gómez-Dorado M, Daudet N, Gale JE, Dawson SJ. Differential regulation of mammalian and avian ATOH1 by E2F1 and its implication for hair cell regeneration in the inner ear. Sci Rep 2021; 11:19368. [PMID: 34588543 PMCID: PMC8481459 DOI: 10.1038/s41598-021-98816-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
The mammalian inner ear has a limited capacity to regenerate its mechanosensory hair cells. This lack of regenerative capacity underlies the high incidence of age-related hearing loss in humans. In contrast, non-mammalian vertebrates can form new hair cells when damage occurs, a mechanism that depends on re-activation of expression of the pro-hair cell transcription factor Atoh1. Here, we show that members of the E2F transcription factor family, known to play a key role in cell cycle progression, regulate the expression of Atoh1. E2F1 activates chicken Atoh1 by directly interacting with a cis-regulatory region distal to the avian Atoh1 gene. E2F does not activate mouse Atoh1 gene expression, since this regulatory element is absent in mammals. We also show that E2F1 expression changes dynamically in the chicken auditory epithelium during ototoxic damage and hair cell regeneration. Therefore, we propose a model in which the mitotic regeneration of non-mammalian hair cells is due to E2F1-mediated activation of Atoh1 expression, a mechanism which has been lost in mammals.
Collapse
Affiliation(s)
| | - Nicolas Daudet
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
22
|
Sun S, Li S, Luo Z, Ren M, He S, Wang G, Liu Z. Dual expression of Atoh1 and Ikzf2 promotes transformation of adult cochlear supporting cells into outer hair cells. eLife 2021; 10:66547. [PMID: 34477109 PMCID: PMC8439656 DOI: 10.7554/elife.66547] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
Mammalian cochlear outer hair cells (OHCs) are essential for hearing. Severe hearing impairment follows OHC degeneration. Previous attempts at regenerating new OHCs from cochlear supporting cells (SCs) have been unsuccessful, notably lacking expression of the key OHC motor protein, Prestin. Thus, regeneration of Prestin+ OHCs represents a barrier to restore auditory function in vivo. Here, we reported the successful in vivo conversion of adult mouse cochlear SCs into Prestin+ OHC-like cells through the concurrent induction of two key transcriptional factors known to be necessary for OHC development: Atoh1 and Ikzf2. Single-cell RNA sequencing revealed the upregulation of 729 OHC genes and downregulation of 331 SC genes in OHC-like cells. The resulting differentiation status of these OHC-like cells was much more advanced than previously achieved. This study thus established an efficient approach to induce the regeneration of Prestin+ OHCs, paving the way for in vivo cochlear repair via SC transdifferentiation.
Collapse
Affiliation(s)
- Suhong Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhengnan Luo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
23
|
Jimenez E, Slevin CC, Colón-Cruz L, Burgess SM. Vestibular and Auditory Hair Cell Regeneration Following Targeted Ablation of Hair Cells With Diphtheria Toxin in Zebrafish. Front Cell Neurosci 2021; 15:721950. [PMID: 34489643 PMCID: PMC8416761 DOI: 10.3389/fncel.2021.721950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However, in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 days post fertilization (dpf) zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.
Collapse
Affiliation(s)
| | | | | | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Moeinvaziri F, Shojaei A, Haghparast N, Yakhkeshi S, Nemati S, Hassani SN, Baharvand H. Towards maturation of human otic hair cell-like cells in pluripotent stem cell-derived organoid transplants. Cell Tissue Res 2021; 386:321-333. [PMID: 34319434 DOI: 10.1007/s00441-021-03510-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Human otic organoids generated from pluripotent stem cells (PSCs) provide a promising platform for modeling, drug testing, and cell-based therapies of inner ear diseases. However, providing the appropriate niche that resembles inner ear development and its vasculature to generate otic organoids is less conspicuous. Here, we devised a strategy to enhance maturation of otic progenitor cells toward human hair cell-like cells (HCLCs) by assembling three-dimensional (3D) otic organoids that contain human PSC-derived otic cells, endothelial cells, and mesenchymal stem cells (MSCs). Heterotopic implantation of otic organoids, designated as grafted otic organoids (GOs), in ex ovo chick embryo chorioallantoic membrane (CAM) stimulated maturation of the HCLCs. Functional analysis revealed the presence of voltage-gated potassium currents without detectable sodium currents in these cells in the GOs. Our results demonstrated that implantation of 3D heterotypic cell mixtures of otic organoids improved maturation of human HCLCs. This GO-derived HCLCs could be an attractive source for drug discovery and other biomedical applications.
Collapse
Affiliation(s)
- Farideh Moeinvaziri
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Newsha Haghparast
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shadman Nemati
- Department of Otolaryngology and Head & Neck Surgery, School of Medicine, Otorhinolaryngology Research Center, Amir Al Momenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran. .,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
25
|
Yu HV, Tao L, Llamas J, Wang X, Nguyen JD, Trecek T, Segil N. POU4F3 pioneer activity enables ATOH1 to drive diverse mechanoreceptor differentiation through a feed-forward epigenetic mechanism. Proc Natl Acad Sci U S A 2021; 118:e2105137118. [PMID: 34266958 PMCID: PMC8307294 DOI: 10.1073/pnas.2105137118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During embryonic development, hierarchical cascades of transcription factors interact with lineage-specific chromatin structures to control the sequential steps in the differentiation of specialized cell types. While examples of transcription factor cascades have been well documented, the mechanisms underlying developmental changes in accessibility of cell type-specific enhancers remain poorly understood. Here, we show that the transcriptional "master regulator" ATOH1-which is necessary for the differentiation of two distinct mechanoreceptor cell types, hair cells in the inner ear and Merkel cells of the epidermis-is unable to access much of its target enhancer network in the progenitor populations of either cell type when it first appears, imposing a block to further differentiation. This block is overcome by a feed-forward mechanism in which ATOH1 first stimulates expression of POU4F3, which subsequently acts as a pioneer factor to provide access to closed ATOH1 enhancers, allowing hair cell and Merkel cell differentiation to proceed. Our analysis also indicates the presence of both shared and divergent ATOH1/POU4F3-dependent enhancer networks in hair cells and Merkel cells. These cells share a deep developmental lineage relationship, deriving from their common epidermal origin, and suggesting that this feed-forward mechanism preceded the evolutionary divergence of these very different mechanoreceptive cell types.
Collapse
Affiliation(s)
- Haoze V Yu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at University of Southern California, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at University of Southern California, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Juan Llamas
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at University of Southern California, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Xizi Wang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at University of Southern California, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - John D Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at University of Southern California, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Talon Trecek
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at University of Southern California, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at University of Southern California, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033;
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
26
|
Wang G, Li C, He S, Liu Z. Mosaic CRISPR-stop enables rapid phenotyping of nonsense mutations in essential genes. Development 2021; 148:dev196899. [PMID: 33558388 DOI: 10.1242/dev.196899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
CRISPR-stop converts protein-coding sequences into stop codons, which, in the appropriate location, results in a null allele. CRISPR-stop induction in one-cell-stage zygotes generates Founder 0 (F0) mice that are homozygous mutants; this avoids mouse breeding and serves as a rapid screening approach for nonlethal genes. However, loss of function of 25% of mammalian genes causes early lethality. Here, we induced CRISPR-stop in one of the two blastomeres of the zygote, a method we name mosaic CRISPR-stop, to produce mosaic Atoh1 and Sox10 F0 mice; these mice not only survived longer than regular Atoh1/Sox10 knockout mice but also displayed their recognized cochlear phenotypes. Moreover, by using mosaic CRISPR-stop, we uncovered a previously unknown role of another lethal gene, Rbm24, in the survival of cochlear outer hair cells (OHCs), and we further validated the importance of Rbm24 in OHCs by using our Rbm24 conditional knockout model. Together, our results demonstrated that mosaic CRISPR-stop is reliable and rapid, and we believe this method will facilitate rapid genetic screening of developmentally lethal genes in the mouse inner ear and also in other organs.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Blastomeres/cytology
- Blastomeres/metabolism
- CRISPR-Cas Systems/genetics
- Codon, Nonsense
- Codon, Terminator
- Genes, Essential/genetics
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/metabolism
- Mice
- Mice, Knockout
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- SOXE Transcription Factors/deficiency
- SOXE Transcription Factors/genetics
- Zygote/cytology
- Zygote/metabolism
Collapse
Affiliation(s)
- Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| |
Collapse
|
27
|
Zhang Y, Zhang S, Zhang Z, Dong Y, Ma X, Qiang R, Chen Y, Gao X, Zhao C, Chen F, He S, Chai R. Knockdown of Foxg1 in Sox9+ supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse utricle. Aging (Albany NY) 2020; 12:19834-19851. [PMID: 33099273 PMCID: PMC7655167 DOI: 10.18632/aging.104009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/15/2020] [Indexed: 05/30/2023]
Abstract
Foxg1 plays important roles in regeneration of hair cell (HC) in the cochlea of neonatal mouse. Here, we used Sox9-CreER to knock down Foxg1 in supporting cells (SCs) in the utricle in order to investigate the role of Foxg1 in HC regeneration in the utricle. We found Sox9 an ideal marker of utricle SCs and bred Sox9CreER/+Foxg1loxp/loxp mice to conditionally knock down Foxg1 in utricular SCs. Conditional knockdown (cKD) of Foxg1 in SCs at postnatal day one (P01) led to increased number of HCs at P08. These regenerated HCs had normal characteristics, and could survive to at least P30. Lineage tracing showed that a significant portion of newly regenerated HCs originated from SCs in Foxg1 cKD mice compared to the mice subjected to the same treatment, which suggested SCs trans-differentiate into HCs in the Foxg1 cKD mouse utricle. After neomycin treatment in vitro, more HCs were observed in Foxg1 cKD mice utricle compared to the control group. Together, these results suggest that Foxg1 cKD in utricular SCs may promote HC regeneration by inducing trans-differentiation of SCs. This research therefore provides theoretical basis for the effects of Foxg1 in trans-differentiation of SCs and regeneration of HCs in the mouse utricle.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Zhonghong Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ying Dong
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Chunjie Zhao
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Giffen KP, Liu H, Kramer KL, He DZ. Expression of Protein-Coding Gene Orthologs in Zebrafish and Mouse Inner Ear Non-sensory Supporting Cells. Front Neurosci 2019; 13:1117. [PMID: 31680844 PMCID: PMC6813431 DOI: 10.3389/fnins.2019.01117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 11/13/2022] Open
Abstract
Non-mammalian vertebrates, including zebrafish, retain the ability to regenerate hair cells (HCs) due to unknown molecular mechanisms that regulate proliferation and conversion of non-sensory supporting cells (nsSCs) to HCs. This regenerative capacity is not conserved in mammals. Identification of uniquely expressed orthologous genes in zebrafish nsSCs may reveal gene candidates involved in the proliferation and transdifferentiation of zebrafish nsSCs to HCs in the inner ear. A list of orthologous protein-coding genes was generated based on an Ensembl Biomart comparison of the zebrafish and mouse genomes. Our previously published RNA-seq-based transcriptome datasets of isolated inner ear zebrafish nsSCs and HCs, and mouse non-sensory supporting pillar and Deiters’ cells, and HCs, were merged to analyze gene expression patterns between the two species. Out of 17,498 total orthologs, 11,752 were expressed in zebrafish nsSCs and over 10,000 orthologs were expressed in mouse pillar and Deiters’ cells. Differentially expressed genes common among the zebrafish nsSCs and mouse pillar and Deiters’ cells, compared to species-specific HCs, included 306 downregulated and 314 upregulated genes; however, over 1,500 genes were uniquely upregulated in zebrafish nsSCs. Functional analysis of genes uniquely expressed in nsSCs identified several transcription factors associated with cell fate determination, cell differentiation and nervous system development, indicating inherent molecular properties of nsSCs that promote self-renewal and transdifferentiation into new HCs. Our study provides a means of characterizing these orthologous genes, involved in proliferation and transdifferentiation of nsSCs to HCs in zebrafish, which may lead to identification of potential targets for HC regeneration in mammals.
Collapse
Affiliation(s)
- Kimberlee P Giffen
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, United States
| |
Collapse
|
29
|
β-Catenin is required for radial cell patterning and identity in the developing mouse cochlea. Proc Natl Acad Sci U S A 2019; 116:21054-21060. [PMID: 31570588 DOI: 10.1073/pnas.1910223116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Development of multicellular organs requires the coordination of cell differentiation and patterning. Critical for sound detection, the mammalian organ of Corti contains functional units arranged tonotopically along the cochlear turns. Each unit consists of sensory hair cells intercalated by nonsensory supporting cells, both specified and radially patterned with exquisite precision during embryonic development. However, how cell identity and radial patterning are jointly controlled is poorly understood. Here we show that β-catenin is required for specification of hair cell and supporting cell subtypes and radial patterning of the cochlea in vivo. In 2 mouse models of conditional β-catenin deletion, early specification of Myosin7-expressing hair cells and Prox1-positive supporting cells was preserved. While β-catenin-deficient cochleae expressed FGF8 and FGFR3, both of which are essential for pillar cell specification, the radial patterning of organ of Corti was disrupted, revealed by aberrant expression of cadherins and the pillar cell markers P75 and Lgr6. Moreover, β-catenin ablation caused duplication of FGF8-positive inner hair cells and reduction of outer hair cells without affecting the overall hair cell density. In contrast, in another transgenic model with suppressed transcriptional activity of β-catenin but preserved cell adhesion function, both specification and radial patterning of the organ of Corti were intact. Our study reveals specific functions of β-catenin in governing cell identity and patterning mediated through cell adhesion in the developing cochlea.
Collapse
|
30
|
Li C, Wang Y, Wang G, Lu Y, He S, Sun Y, Liu Z. Fate-mapping analysis using Rorb-IRES-Cre reveals apical-to-basal gradient of Rorb expression in mouse cochlea. Dev Dyn 2019; 249:173-186. [PMID: 31487081 DOI: 10.1002/dvdy.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Conditional loss-of-function studies are widely conducted using the Cre/Loxp system because this helps circumvent embryonic or neonatal lethality problems. However, Cre strains specific to the inner ear are lacking, and thus lethality frequently occurs even in conditional knockout studies. RESULTS Here, we report a Rorb-IRES-Cre knockin mouse strain in which the Cre recapitulates the expression pattern of endogenous Rorb (RAR-related orphan receptor beta). Analysis of Rorb-IRES-Cre/+; Rosa26-CAG-LSL-tdTomato/+ cochlear samples revealed that tdTomato was expressed at the apical turn only by E12.5. TdTomato was observed in the apical and middle turns but was minimally expressed in the basal turn at E15.5, E18.5, and P5. However, most of the auditory hair cells (HCs) and supporting cells (SCs) in all three turns were tdTomato+ at P15 and P30. Intriguingly, no tdTomato+ vestibular cells were detected until P5 and a few cells were present at P15 and P30. Finally, we also confirmed Rorb mRNA and protein expression in cochlear HCs and SCs at P30. CONCLUSIONS We reveal that Rorb expression exhibits an apical-to-basal gradient in cochleae. The cochlear-specific and apical-to-basal-gradient Rorb Cre activity should enable discrimination of gene functions in cochlear vs vestibular regions as well as low-frequency vs high-frequency regions in the cochlea.
Collapse
Affiliation(s)
- Chao Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Guangqin Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shunji He
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuwei Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Origin of acoustic-vestibular ganglionic neuroblasts in chick embryos and their sensory connections. Brain Struct Funct 2019; 224:2757-2774. [PMID: 31396696 DOI: 10.1007/s00429-019-01934-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/31/2019] [Indexed: 01/03/2023]
Abstract
The inner ear is a complex three-dimensional sensory structure with auditory and vestibular functions. It originates from the otic placode, which generates the sensory elements of the membranous labyrinth and all the ganglionic neuronal precursors. Neuroblast specification is the first cell differentiation event. In the chick, it takes place over a long embryonic period from the early otic cup stage to at least stage HH25. The differentiating ganglionic neurons attain a precise innervation pattern with sensory patches, a process presumably governed by a network of dendritic guidance cues which vary with the local micro-environment. To study the otic neurogenesis and topographically-ordered innervation pattern in birds, a quail-chick chimaeric graft technique was used in accordance with a previously determined fate-map of the otic placode. Each type of graft containing the presumptive domain of topologically-arranged placodal sensory areas was shown to generate neuroblasts. The differentiated grafted neuroblasts established dendritic contacts with a variety of sensory patches. These results strongly suggest that, rather than reverse-pathfinding, the relevant role in otic dendritic process guidance is played by long-range diffusing molecules.
Collapse
Affiliation(s)
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, E30100, Murcia, Spain.,Instituto Murciano de Investigaciones Biosanitarias (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, E06071, Badajoz, Spain.
| |
Collapse
|
32
|
Mi XX, Yan J, Li Y, Shi JP. Wnt/β-catenin signaling was activated in supporting cells during exposure of the zebrafish lateral line to cisplatin. Ann Anat 2019; 226:48-56. [PMID: 31330310 DOI: 10.1016/j.aanat.2019.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/05/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
Zebrafish lateral line neuromasts are composed of central hair cells surrounded by supporting cells. Cisplatin is a common anticancer drug, with hair cell disruption being a frequent side effect of this drug. In our study, we observed complete functional hair cell loss after six hours of cisplatin insult in neuromasts, as demonstrated by anti-parvalbumin 3 immunofluorescence staining or YO-PRO1 vital dye staining. Time course analysis of neuromast hair cell regeneration showed that regenerated hair cells first appeared between 12 and 24h after damage, and the abundance of these cells increased stepwise with recovery time. After 72h, 90% of the hair cells were regenerated, and after 84h, the number of regenerated hair cells was comparable to the number of neuromast hair cells before treatment. The expression pattern of slc17a8 also showed that hair cells were regenerated after cisplatin exposure. Meanwhile, peripheral supporting cells moved toward the center of the neuromasts, as shown by the in situ expression pattern of sox21a. Increased hair cell progenitor formation was also observed, as demonstrated by the in situ expression pattern of atoh1a. Furthermore, we detected increased expression of wnt2, wnt3a, and ctnnb1 in sorted supporting cells from the sqet10 transgenic line, which labels neuromast supporting cells specifically. In situ hybridization analysis also showed decreased expression of dkk1a and dkk2. Regenerated hair cells were inhibited by early inhibition of Wnt/β-catenin signaling. Taken together, the results presented here showed that Wnt/β-catenin signaling was activated in supporting cells during cisplatin exposure earlier than expected. Our results also indicated that supporting cells enabled hair cell regeneration via Wnt/β-catenin signaling during cisplatin exposure.
Collapse
Affiliation(s)
- Xiao-Xiao Mi
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Jian Yan
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Yuan Li
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Jun-Ping Shi
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Transcriptomic analysis of mouse cochleae suffering from gentamicin damage reveals the signalling pathways involved in hair cell regeneration. Sci Rep 2019; 9:10494. [PMID: 31324869 PMCID: PMC6642124 DOI: 10.1038/s41598-019-47051-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/05/2019] [Indexed: 01/13/2023] Open
Abstract
There is a strong capacity for hair cell regeneration after damage in the inner ear of non-mammals. However, mammalian hair cells are substantially unable to regenerate. To obtain insights into the mechanism of this difference, we analyzed the transcriptomic changes in the mouse cochleae suffered from gentamicin damage and compared them with those in the chick cochleae suffered from the same damage. The results indicated that 2,230 genes had significantly differential expression between the gentamicin- and saline-treated mouse cochleae. Some of the differentially expressed genes were grouped into 265 signaling pathways, including the Notch, Wnt (Wingless and INT-1), Bmp (bone morphogenetic protein), FGF (fibroblast growth factor) and Shh (sonic hedgehog) pathways. Using pharmacological inhibitors or agonists of these pathways, the effects of these pathways on hair cell regeneration were further studied. The results indicated that Bmp alone and its coregulation with the Notch or Wnt signaling pathways increased the numbers of generated cells from transdifferentiation or proliferation in the mouse cochlea after damage, in addition to the reported coregulation of Notch and Wnt. Thus, this work indicates a new signaling pathway (Bmp) and its synergetic coregulation in mammalian hair cell regeneration, providing potential therapeutic targets to increase mammalian hair cell regeneration.
Collapse
|
34
|
Varela-Nieto I, Palmero I, Magariños M. Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hear Res 2019; 376:86-96. [PMID: 30711386 DOI: 10.1016/j.heares.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
Abstract
The development of the inner ear complex cytoarchitecture and functional geometry requires the exquisite coordination of a variety of cellular processes in a temporal manner. At early stages of inner ear development several rounds of cell proliferation in the otocyst promote the growth of the structure. The apoptotic program is initiated in exceeding cells to adjust cell type numbers. Apoptotic cells are cleared by phagocytic cells that recognize the phosphatidylserine residues exposed in the cell membrane thanks to the energy supplied by autophagy. Specific molecular programs determine hair and supporting cell fate, these populations are responsible for the functions of the adult sensory organ: detection of sound, position and acceleration. The neurons that transmit auditory and balance information to the brain are also born at the otocyst by neurogenesis facilitated by autophagy. Cellular senescence participates in tissue repair, cancer and aging, situations in which cells enter a permanent cell cycle arrest and acquire a highly secretory phenotype that modulates their microenvironment. More recently, senescence has also been proposed to take place during vertebrate development in a limited number of transitory structures and organs; among the later, the endolymphatic duct in the inner ear. Here, we review these cellular processes during the early development of the inner ear, focusing on how the most recently described cellular senescence participates and cooperates with proliferation, apoptosis and autophagy to achieve otic morphogenesis and differentiation.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ignacio Palmero
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Marta Magariños
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Biology Department, Faculty of Sciences, Autonomous University of Madrid (UAM), Madrid, Spain.
| |
Collapse
|
35
|
Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. Nature 2018; 563:691-695. [PMID: 30305733 PMCID: PMC6279423 DOI: 10.1038/s41586-018-0570-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/14/2018] [Indexed: 01/09/2023]
Abstract
The mammalian cochlea contains two types of mechanosensory hair cells (HCs) that play different and critical roles in hearing. Inner hair cells (IHCs), with an elaborate presynaptic apparatus, signal to cochlear neurons and communicate sound information to the brain. Outer hair cells (OHCs) mechanically amplify sound-induced vibrations, enabling enhanced sensitivity to sound and sharp tuning. Cochlear HCs are solely generated during development and their death, most often of OHCs, is the main cause of deafness. OHCs and IHCs, together with supporting cells, originate embryonically from the prosensory region of the otocyst, but how HCs differentiate into two different types is unknown1–3. Here we show that Insm1, which encodes a zinc finger protein transiently expressed in nascent OHCs, consolidates their fate by preventing trans-differentiation into IHCs. In the absence of INSM1 many HCs born embryonically as OHCs switch fates to become mature IHCs. In order to identify the genetic mechanisms by which Insm1 operates, we compared transcriptomes of immature IHCs vs OHCs, as well as OHCs with and without INSM1. OHCs lacking INSM1 upregulate a set of genes, most of which are normally preferentially expressed by IHCs. The homeotic cell transformation of OHCs without INSM1 into IHCs reveals for the first time a mechanism by which these neighboring mechanosensory cells begin to differ: INSM1 represses a core set of early IHC-enriched genes in embryonic OHCs and makes them unresponsive to an IHC-inducing gradient, so that they proceed to mature as OHCs. Without INSM1, some of the OHCs upregulating these few IHC-enriched transcripts trans-differentiate into IHCs, revealing the first candidate genes for IHC-specific differentiation.
Collapse
|
36
|
Darville LNF, Sokolowski BHA. Label-free quantitative mass spectrometry analysis of differential protein expression in the developing cochlear sensory epithelium. Proteome Sci 2018; 16:15. [PMID: 30127667 PMCID: PMC6091194 DOI: 10.1186/s12953-018-0144-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/26/2018] [Indexed: 12/27/2022] Open
Abstract
Background The sensory epithelium of the inner ear converts the mechanical energy of sound to electro-chemical energy recognized by the central nervous system. This process is mediated by receptor cells known as hair cells that express proteins in a timely fashion with the onset of hearing. Methods The proteomes of 3, 14, and 30 day-old mice cochlear sensory epithelia were revealed, using label-free quantitative mass spectrometry (LTQ-Orbitrap). Statistical analysis using a one-way ANOVA followed by Bonferroni’s post-hoc test was used to show significant differences in protein expression. Ingenuity Pathway Analysis was used to observe networks of differentially expressed proteins, their biological processes, and associated diseases, while Cytoscape software was used to determine putative interactions with select biomarker proteins. These candidate biomarkers were further verified using Western blotting, while coimmunoprecipitation was used to verify putative partners determined using bioinformatics. Results We show that a comparison across all three proteomes shows that there are 447 differentially expressed proteins, with 387 differentially expressed between postnatal day 3 and 30. Ingenuity Pathway Analysis revealed ~ 62% of postnatal day 3 downregulated proteins are involved in neurological diseases. Several proteins are expressed exclusively on P3, including Parvin α, Drebrin1 (Drb1), Secreted protein acidic and cysteine rich (SPARC), Transmembrane emp24 domain-containing protein 10 (Tmed10). Coimmunoprecipitations showed that Parvin and SPARC interact with integrin-linked protein kinase and the large conductance calcium-activated potassium channel, respectively. Conclusions Quantitative mass spectrometry revealed the identification of numerous differentially regulated proteins over three days of postnatal development. These data provide insights into functional pathways regulating normal sensory and supporting cell development in the cochlea that include potential biomarkers. Interacting partners of two of these markers suggest the importance of these complexes in regulating cellular structure and synapse development. Electronic supplementary material The online version of this article (10.1186/s12953-018-0144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lancia N F Darville
- Morsani College of Medicine, Department of Otolaryngology-HNS, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| | - Bernd H A Sokolowski
- Morsani College of Medicine, Department of Otolaryngology-HNS, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612 USA
| |
Collapse
|
37
|
Jahan I, Elliott KL, Fritzsch B. Understanding Molecular Evolution and Development of the Organ of Corti Can Provide Clues for Hearing Restoration. Integr Comp Biol 2018; 58:351-365. [PMID: 29718413 PMCID: PMC6104702 DOI: 10.1093/icb/icy019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian hearing organ is a stereotyped cellular assembly with orderly innervation: two types of spiral ganglion neurons (SGNs) innervate two types of differentially distributed hair cells (HCs). HCs and SGNs evolved from single neurosensory cells through gene multiplication and diversification. Independent regulation of HCs and neuronal differentiation through expression of basic helix-loop-helix transcription factors (bHLH TFs: Atoh1, Neurog1, Neurod1) led to the evolution of vestibular HC assembly and their unique type of innervation. In ancestral mammals, a vestibular organ was transformed into the organ of Corti (OC) containing a single row of inner HC (IHC), three rows of outer HCs (OHCs), several unique supporting cell types, and a peculiar innervation distribution. Restoring the OC following long-term hearing loss is complicated by the fact that the entire organ is replaced by a flat epithelium and requires reconstructing the organ from uniform undifferentiated cell types, recapitulating both evolution and development. Finding the right sequence of gene activation during development that is useful for regeneration could benefit from an understanding of the OC evolution. Toward this end, we report on Foxg1 and Lmx1a mutants that radically alter the OC cell assembly and its innervation when mutated and may have driven the evolutionary reorganization of the basilar papilla into an OC in ancestral Therapsids. Furthermore, genetically manipulating the level of bHLH TFs changes HC type and distribution and allows inference how transformation of HCs might have happened evolutionarily. We report on how bHLH TFs regulate OHC/IHC and how misexpression (Atoh1-Cre; Atoh1f/kiNeurog1) alters HC fate and supporting cell development. Using mice with altered HC types and distribution, we demonstrate innervation changes driven by HC patterning. Using these insights, we speculate on necessary steps needed to convert a random mixture of post-mitotic precursors into the orderly OC through spatially and temporally regulated critical bHLH genes in the context of other TFs to restore normal innervation patterns.
Collapse
Affiliation(s)
- Israt Jahan
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| | - Karen L Elliott
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, 129 East Jefferson, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Booth KT, Azaiez H, Jahan I, Smith RJH, Fritzsch B. Intracellular Regulome Variability Along the Organ of Corti: Evidence, Approaches, Challenges, and Perspective. Front Genet 2018; 9:156. [PMID: 29868110 PMCID: PMC5951964 DOI: 10.3389/fgene.2018.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 12/13/2022] Open
Abstract
The mammalian hearing organ is a regular array of two types of hair cells (HCs) surrounded by six types of supporting cells. Along the tonotopic axis, this conserved radial array of cell types shows longitudinal variations to enhance the tuning properties of basilar membrane. We present the current evidence supporting the hypothesis that quantitative local variations in gene expression profiles are responsible for local cell responses to global gene manipulations. With the advent of next generation sequencing and the unprecedented array of technologies offering high throughput analyses at the single cell level, transcriptomics will become a common tool to enhance our understanding of the inner ear. We provide an overview of the approaches and landmark studies undertaken to date to analyze single cell variations in the organ of Corti and discuss the current limitations. We next provide an overview of the complexity of known regulatory mechanisms in the inner ear. These mechanisms are tightly regulated temporally and spatially at the transcription, RNA-splicing, mRNA-regulation, and translation levels. Understanding the intricacies of regulatory mechanisms at play in the inner ear will require the use of complementary approaches, and most probably, a combinatorial strategy coupling transcriptomics, proteomics, and epigenomics technologies. We highlight how these data, in conjunction with recent insights into molecular cell transformation, can advance attempts to restore lost hair cells.
Collapse
Affiliation(s)
- Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Israt Jahan
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology, University of Iowa, Iowa City, IA, United States.,Department of Biology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
39
|
Tracing Actin Filament Bundles in Three-Dimensional Electron Tomography Density Maps of Hair Cell Stereocilia. Molecules 2018; 23:molecules23040882. [PMID: 29641472 PMCID: PMC6017643 DOI: 10.3390/molecules23040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022] Open
Abstract
Cryo-electron tomography (cryo-ET) is a powerful method of visualizing the three-dimensional organization of supramolecular complexes, such as the cytoskeleton, in their native cell and tissue contexts. Due to its minimal electron dose and reconstruction artifacts arising from the missing wedge during data collection, cryo-ET typically results in noisy density maps that display anisotropic XY versus Z resolution. Molecular crowding further exacerbates the challenge of automatically detecting supramolecular complexes, such as the actin bundle in hair cell stereocilia. Stereocilia are pivotal to the mechanoelectrical transduction process in inner ear sensory epithelial hair cells. Given the complexity and dense arrangement of actin bundles, traditional approaches to filament detection and tracing have failed in these cases. In this study, we introduce BundleTrac, an effective method to trace hundreds of filaments in a bundle. A comparison between BundleTrac and manually tracing the actin filaments in a stereocilium showed that BundleTrac accurately built 326 of 330 filaments (98.8%), with an overall cross-distance of 1.3 voxels for the 330 filaments. BundleTrac is an effective semi-automatic modeling approach in which a seed point is provided for each filament and the rest of the filament is computationally identified. We also demonstrate the potential of a denoising method that uses a polynomial regression to address the resolution and high-noise anisotropic environment of the density map.
Collapse
|
40
|
Jiang L, Xu J, Jin R, Bai H, Zhang M, Yang S, Zhang X, Zhang X, Han Z, Zeng S. Transcriptomic analysis of chicken cochleae after gentamicin damage and the involvement of four signaling pathways (Notch, FGF, Wnt and BMP) in hair cell regeneration. Hear Res 2018; 361:66-79. [DOI: 10.1016/j.heares.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
|
41
|
The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex. PLoS One 2018; 13:e0191689. [PMID: 29370269 PMCID: PMC5784988 DOI: 10.1371/journal.pone.0191689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023] Open
Abstract
The histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal progenitor cell line (VOT-N33). VOT-N33 cells expressing a Pax2-response element reporter were GFP-negative when untreated, but became GFP positive after forced differentiation or treatment with a potent LSD inhibitor. Pharmacological inhibition of LSD1 activity resulted in the enrichment of mono- and di-methylation of H3K4, upregulation of sensory neuronal genes and an increase in the number of sensory neurons in mouse inner ear organoids. Together, these results identify the LSD1/NuRD complex as a previously unrecognized modulator for Pax2-mediated neuronal differentiation in the inner ear.
Collapse
|
42
|
Gálvez H, Tena JJ, Giraldez F, Abelló G. The Repression of Atoh1 by Neurogenin1 during Inner Ear Development. Front Mol Neurosci 2017; 10:321. [PMID: 29104531 PMCID: PMC5655970 DOI: 10.3389/fnmol.2017.00321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023] Open
Abstract
Atonal homolog 1 (Atoh1) and Neurogenin1 (Neurog1) are basic Helix-Loop-Helix (bHLH) transcription factors crucial for the generation of hair cells (HCs) and neurons in the inner ear. Both genes are induced early in development, but the expression of Atoh1 is counteracted by Neurog1. As a result, HC development is prevented during neurogenesis. This work aimed at understanding the molecular basis of this interaction. Atoh1 regulation depends on a 3'Atoh1-enhancer that is the site for Atoh1 autoregulation. Reporter assays on chick embryos and P19 cells show that Neurog1 hampers the autoactivation of Atoh1, the effect being cell autonomous and independent on Notch activity. Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-Seq) analysis shows that the region B of the 3'Atoh1-enhancer is accessible during development and sufficient for both activation and repression. Neurog1 requires the regions flanking the class A E-box to show its repressor effect, however, it does not require binding to DNA for Atoh1 repression. This depends on the dimerization domains Helix-1 and Helix-2 and the reduction of Atoh1 protein levels. The results point towards the acceleration of Atoh1 mRNA degradation as the potential mechanism for the reduction of Atoh1 levels. Such a mechanism dissociates the prevention of Atoh1 expression in neurosensory progenitors from the unfolding of the neurogenic program.
Collapse
Affiliation(s)
- Héctor Gálvez
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Fernando Giraldez
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Gina Abelló
- DCEXS, Universitat Pompeu Fabra (UPF) - Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
| |
Collapse
|
43
|
Weber LJ, Marcy HK, Shen YC, Tomkovich SE, Brooks KM, Hilk KE, Barald KF. The role of jab1, a putative downstream effector of the neurotrophic cytokine macrophage migration inhibitory factor (MIF) in zebrafish inner ear hair cell development. Exp Neurol 2017; 301:100-109. [PMID: 28928022 DOI: 10.1016/j.expneurol.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a neurotrophic cytokine essential for inner ear hair cell (HC) development and statoacoustic ganglion (SAG) neurite outgrowth, and SAG survival in mouse, chick and zebrafish. Another neurotrophic cytokine, Monocyte chemoattractant protein 1 (MCP1) is known to synergize with MIF; but MCP1 alone is insufficient to support mouse/chick SAG neurite outgrowth or neuronal survival. Because of the relatively short time over which the zebrafish inner ear develops (~30hpf), the living zebrafish embryo is an ideal system to examine mif and mcp1 cytokine pathways and interactions. We used a novel technique: direct delivery of antisense oligonucleotide morpholinos (MOs) into the embryonic zebrafish otocyst to discover downstream effectors of mif as well as to clarify the relationship between mif and mcp1 in inner ear development. MOs for mif, mcp1 and the presumptive mif and mcp1 effector, c-Jun activation domain-binding protein-1 (jab1), were injected and then electroporated into the zebrafish otocyst 25-48hours post fertilization (hpf). We found that although mif is important at early stages (before 30hpf) for auditory macular HC development, jab1 is more critical for vestibular macular HC development before 30hpf. After 30hpf, mcp1 becomes important for HC development in both maculae.
Collapse
Affiliation(s)
- Loren J Weber
- Department of Cell and Developmental Biology, University of Michigan Medical School, 3728 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| | - Hannah K Marcy
- Department of Cell and Developmental Biology, University of Michigan Medical School, 3728 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Undergraduate Research Opportunity Program, 1190 Undergraduate Science Building, 204 Washtenaw Avenue, Ann Arbor, MI 48109-2215, USA.
| | - Yu-Chi Shen
- Department of Cell and Developmental Biology, University of Michigan Medical School, 3728 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| | - Sarah E Tomkovich
- Department of Cell and Developmental Biology, University of Michigan Medical School, 3728 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Undergraduate Research Opportunity Program, 1190 Undergraduate Science Building, 204 Washtenaw Avenue, Ann Arbor, MI 48109-2215, USA.
| | - Kristina M Brooks
- Department of Cell and Developmental Biology, University of Michigan Medical School, 3728 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| | - Kelly E Hilk
- Department of Cell and Developmental Biology, University of Michigan Medical School, 3728 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Undergraduate Research Opportunity Program, 1190 Undergraduate Science Building, 204 Washtenaw Avenue, Ann Arbor, MI 48109-2215, USA.
| | - Kate F Barald
- Department of Cell and Developmental Biology, University of Michigan Medical School, 3728 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109-0619, USA; Department of Biomedical Engineering, College of Engineering, 2200 Bonisteel Boulevard, University of Michigan, Ann Arbor, MI 48109-2099, USA.
| |
Collapse
|
44
|
Van den Ackerveken P, Mounier A, Huyghe A, Sacheli R, Vanlerberghe PB, Volvert ML, Delacroix L, Nguyen L, Malgrange B. The miR-183/ItgA3 axis is a key regulator of prosensory area during early inner ear development. Cell Death Differ 2017; 24:2054-2065. [PMID: 28777373 DOI: 10.1038/cdd.2017.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs are important regulators of gene expression and are involved in cellular processes such as proliferation or differentiation, particularly during development of numerous organs including the inner ear. However, it remains unknown if miRNAs are required during the earliest stages of otocyst and cochlear duct development. Here, we report that a conditional loss of Dicer expression in the otocyst impairs the early development of the inner ear as a result of the accumulation of DNA damage that trigger p53-mediated apoptosis. Moreover, cochlear progenitors in the prosensory domain do not exit the cell cycle. Our unbiased approach identified ItgA3 as a target of miR-183, which are both enriched in the otic vesicle. We observed that the repression of integrin alpha 3 by miR-183 controls cell proliferation in the developing cochlea. Collectively, our results reveal that Dicer and miRNAs play essential roles in the regulation of early inner ear development.
Collapse
Affiliation(s)
- Priscilla Van den Ackerveken
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Anaïs Mounier
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Aurelia Huyghe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Rosalie Sacheli
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Pierre-Bernard Vanlerberghe
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Marie-Laure Volvert
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Laurence Delacroix
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège B-4000, Belgium
| |
Collapse
|
45
|
An Atoh1-S193A Phospho-Mutant Allele Causes Hearing Deficits and Motor Impairment. J Neurosci 2017; 37:8583-8594. [PMID: 28729444 DOI: 10.1523/jneurosci.0295-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Atonal homolog 1 (Atoh1) is a basic helix-loop-helix (bHLH) transcription factor that is essential for the genesis, survival, and maturation of a variety of neuronal and non-neuronal cell populations, including those involved in proprioception, interoception, balance, respiration, and hearing. Such diverse functions require fine regulation at the transcriptional and protein levels. Here, we show that serine 193 (S193) is phosphorylated in Atoh1's bHLH domain in vivo Knock-in mice of both sexes bearing a GFP-tagged phospho-dead S193A allele on a null background (Atoh1S193A/lacZ) exhibit mild cerebellar foliation defects, motor impairments, partial pontine nucleus migration defects, cochlear hair cell degeneration, and profound hearing loss. We also found that Atoh1 heterozygous mice of both sexes (Atoh1lacZ/+) have adult-onset deafness. These data indicate that different cell types have different degrees of vulnerability to loss of Atoh1 function and that hypomorphic Atoh1 alleles should be considered in human hearing loss.SIGNIFICANCE STATEMENT The discovery that Atonal homolog 1 (Atoh1) governs the development of the sensory hair cells in the inner ear led to therapeutic efforts to restore these cells in cases of human deafness. Because prior studies of Atoh1-heterozygous mice did not examine or report on hearing loss in mature animals, it has not been clinical practice to sequence ATOH1 in people with deafness. Here, in seeking to understand how phosphorylation of Atoh1 modulates its effects in vivo, we discovered that inner ear hair cells are much more vulnerable to loss of Atoh1 function than other Atoh1-positive cell types and that heterozygous mice actually develop hearing loss late in life. This opens up the possibility that missense mutations in ATOH1 could increase human vulnerability to loss of hair cells because of aging or trauma.
Collapse
|
46
|
Gálvez H, Abelló G, Giraldez F. Signaling and Transcription Factors during Inner Ear Development: The Generation of Hair Cells and Otic Neurons. Front Cell Dev Biol 2017; 5:21. [PMID: 28393066 PMCID: PMC5364141 DOI: 10.3389/fcell.2017.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
Integration between cell signals and bHLH transcription factors plays a prominent role during the development of hair cells of the inner ear. Hair cells are the sensory receptors of the inner ear, responsible for the mechano-transduction of sound waves into electrical signals. They derive from multipotent progenitors that reside in the otic placode. Progenitor commitment is the result of cell signaling from the surrounding tissues that result in the restricted expression of SoxB1 transcription factors, Sox2 and Sox3. In turn, they induce the expression of Neurog1 and Atoh1, two bHLH factors that specify neuronal and hair cell fates, respectively. Neuronal and hair cell development, however, do not occur simultaneously. Hair cell development is prevented during neurogenesis and prosensory stages, resulting in the delay of hair cell development with respect to neuron production. Negative interactions between Neurog1 and Atoh1, and of Atoh1 with other bHLH factors driven by Notch signaling, like Hey1 and Hes5, account for this delay. In summary, the regulation of Atoh1 and hair cell development relies on interactions between cell signaling and bHLH transcription factors that dictate cell fate and timing decisions during development. Interestingly, these mechanisms operate as well during hair cell regeneration after damage and during stem cell directed differentiation, making developmental studies instrumental for improving therapies for hearing impairment.
Collapse
Affiliation(s)
- Héctor Gálvez
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| | - Gina Abelló
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| | - Fernando Giraldez
- Developmental Biology, CEXS, Parc de Recerca Biomèdica de Barcelona, Universitat Pompeu Fabra Barcelona, Spain
| |
Collapse
|
47
|
McLean WJ, McLean DT, Eatock RA, Edge ASB. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs. Development 2016; 143:4381-4393. [PMID: 27789624 DOI: 10.1242/dev.139840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
Abstract
Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear - the vestibular and cochlear sensory epithelia and the spiral ganglion - by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin.
Collapse
Affiliation(s)
- Will J McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard & MIT, Cambridge, MA 02139, USA
| | - Dalton T McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA .,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard & MIT, Cambridge, MA 02139, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
48
|
Zhang KD, Coate TM. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin Cell Dev Biol 2016; 65:80-87. [PMID: 27760385 DOI: 10.1016/j.semcdb.2016.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/12/2016] [Accepted: 09/25/2016] [Indexed: 01/17/2023]
Abstract
In hearing, mechanically sensitive hair cells (HCs) in the cochlea release glutamate onto spiral ganglion neurons (SGNs) to relay auditory information to the central nervous system (CNS). There are two main SGN subtypes, which differ in morphology, number, synaptic targets, innervation patterns and firing properties. About 90-95% of SGNs are the type I SGNs, which make a single bouton connection with inner hair cells (IHCs) and have been well described in the canonical auditory pathway for sound detection. However, less attention has been given to the type II SGNs, which exclusively innervate outer hair cells (OHCs). In this review, we emphasize recent advances in the molecular mechanisms that control how type II SGNs develop and form connections with OHCs, and exciting new insights into the function of type II SGNs.
Collapse
Affiliation(s)
- Kaidi D Zhang
- Department of Biology, Georgetown University, Washington, DC, USA.
| | - Thomas M Coate
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
49
|
Mulvaney JF, Thompkins C, Noda T, Nishimura K, Sun WW, Lin SY, Coffin A, Dabdoub A. Kremen1 regulates mechanosensory hair cell development in the mammalian cochlea and the zebrafish lateral line. Sci Rep 2016; 6:31668. [PMID: 27550540 PMCID: PMC4994024 DOI: 10.1038/srep31668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Here we present spatio-temporal localization of Kremen1, a transmembrane receptor, in the mammalian cochlea, and investigate its role in the formation of sensory organs in mammal and fish model organisms. We show that Kremen1 is expressed in prosensory cells during cochlear development and in supporting cells of the adult mouse cochlea. Based on this expression pattern, we investigated whether Kremen1 functions to modulate cell fate decisions in the prosensory domain of the developing cochlea. We used gain and loss-of-function experiments to show that Kremen1 is sufficient to bias cells towards supporting cell fate, and is implicated in suppression of hair cell formation. In addition to our findings in the mouse cochlea, we examined the effects of over expression and loss of Kremen1 in the zebrafish lateral line. In agreement with our mouse data, we show that over expression of Kremen1 has a negative effect on the number of mechanosensory cells that form in the zebrafish neuromasts, and that fish lacking Kremen1 protein develop more hair cells per neuromast compared to wild type fish. Collectively, these data support an inhibitory role for Kremen1 in hair cell fate specification.
Collapse
Affiliation(s)
- Joanna F Mulvaney
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Cathrine Thompkins
- College of Arts and Sciences and Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Koji Nishimura
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Willy W Sun
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Shuh-Yow Lin
- Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Allison Coffin
- College of Arts and Sciences and Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Otolaryngology - Head and Neck Surgery, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
50
|
Roux I, Wu JS, McIntosh JM, Glowatzki E. Assessment of the expression and role of the α1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea. J Neurophysiol 2016; 116:479-92. [PMID: 27098031 DOI: 10.1152/jn.01038.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
Hair cell (HC) activity in the mammalian cochlea is modulated by cholinergic efferent inputs from the brainstem. These inhibitory inputs are mediated by calcium-permeable nicotinic acetylcholine receptors (nAChRs) containing α9- and α10-subunits and by subsequent activation of calcium-dependent potassium channels. Intriguingly, mRNAs of α1- and γ-nAChRs, subunits of the "muscle-type" nAChR have also been found in developing HCs (Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. J Neurosci 35: 5870-5883, 2015; Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. J Neurochem 103: 2651-2664, 2007; Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F, Sinkkonen W, Cheng AG, Oshima K, Heller S. Sci Rep 1: 26, 2011) prompting proposals that another type of nAChR is present and may be critical during early synaptic development. Mouse genetics, histochemistry, pharmacology, and whole cell recording approaches were combined to test the role of α1-nAChR subunit in HC efferent synapse formation and cholinergic function. The onset of α1-mRNA expression in mouse HCs was found to coincide with the onset of the ACh response and efferent synaptic function. However, in mouse inner hair cells (IHCs) no response to the muscle-type nAChR agonists (±)-anatoxin A, (±)-epibatidine, (-)-nicotine, or 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was detected, arguing against the presence of an independent functional α1-containing muscle-type nAChR in IHCs. In α1-deficient mice, no obvious change of IHC efferent innervation was detected at embryonic day 18, contrary to the hyperinnervation observed at the neuromuscular junction. Additionally, ACh response and efferent synaptic activity were detectable in α1-deficient IHCs, suggesting that α1 is not necessary for assembly and membrane targeting of nAChRs or for efferent synapse formation in IHCs.
Collapse
Affiliation(s)
- Isabelle Roux
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;
| | - Jingjing Sherry Wu
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah; and Department of Biology, Department of Psychiatry, University of Utah, Salt Lake City, Utah
| | - Elisabeth Glowatzki
- Department of Otolaryngology - Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|