1
|
Efron B, Ntelezos A, Katz Y, Lampl I. Detection and neural encoding of whisker-generated sounds in mice. Curr Biol 2025; 35:1211-1226.e8. [PMID: 39978346 DOI: 10.1016/j.cub.2025.01.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/22/2025]
Abstract
The vibrissa system of mice and other rodents enables active sensing via whisker movements and is traditionally considered a purely tactile system. Here, we ask whether whisking against objects produces audible sounds and whether mice are capable of perceiving these sounds. We found that whisking by head-fixed mice against objects produces audible sounds well within their hearing range. We recorded neural activity in the auditory cortex of mice in which we had abolished vibrissae tactile sensation and found that the firing rate of auditory neurons was strongly modulated by whisking against objects. Furthermore, the object's identity could be reliably decoded from the population's neuronal activity and closely matched the decoding patterns derived from sounds that were recorded simultaneously, suggesting that neuronal activity reflects acoustic information. Lastly, trained mice, in which vibrissae tactile sensation was abolished, were able to accurately identify objects solely based on the sounds produced during whisking. Our results suggest that, beyond its traditional role as a tactile sensory system, the vibrissa system of rodents engages both tactile and auditory modalities in a multimodal manner during active exploration.
Collapse
Affiliation(s)
- Ben Efron
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Athanasios Ntelezos
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonatan Katz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilan Lampl
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
2
|
Finkel EA, Chang YT, Dasgupta R, Lubin EE, Xu D, Minamisawa G, Chang AJ, Cohen JY, O'Connor DH. Tactile processing in mouse cortex depends on action context. Cell Rep 2024; 43:113991. [PMID: 38573855 PMCID: PMC11097894 DOI: 10.1016/j.celrep.2024.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/08/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.
Collapse
Affiliation(s)
- Eric A Finkel
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yi-Ting Chang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rajan Dasgupta
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily E Lubin
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Duo Xu
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Genki Minamisawa
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anna J Chang
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeremiah Y Cohen
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Krieger Mind/Brain Institute, Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
3
|
Weiler S, Rahmati V, Isstas M, Wutke J, Stark AW, Franke C, Graf J, Geis C, Witte OW, Hübener M, Bolz J, Margrie TW, Holthoff K, Teichert M. A primary sensory cortical interareal feedforward inhibitory circuit for tacto-visual integration. Nat Commun 2024; 15:3081. [PMID: 38594279 PMCID: PMC11003985 DOI: 10.1038/s41467-024-47459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.
Collapse
Affiliation(s)
- Simon Weiler
- Sainsbury Wellcome Centre for Neuronal Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Vahid Rahmati
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Marcel Isstas
- Friedrich Schiller University Jena, Institute of General Zoology and Animal Physiology, Erbertstraße 1, 07743, Jena, Germany
| | - Johann Wutke
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Andreas Walter Stark
- Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Fröbelstieg 1, 07743, Jena, Germany
| | - Christian Franke
- Friedrich Schiller University Jena, Institute of Applied Optics and Biophysics, Fröbelstieg 1, 07743, Jena, Germany
- Friedrich Schiller University Jena, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Straße 6, 07745, Jena, Germany
| | - Jürgen Graf
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Christian Geis
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Otto W Witte
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Mark Hübener
- Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Jürgen Bolz
- Friedrich Schiller University Jena, Institute of General Zoology and Animal Physiology, Erbertstraße 1, 07743, Jena, Germany
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neuronal Circuits and Behaviour, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Knut Holthoff
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany
| | - Manuel Teichert
- Jena University Hospital, Department of Neurology, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
4
|
Xiao D, Yan Y, Murphy TH. Mesotrode chronic simultaneous mesoscale cortical imaging and subcortical or peripheral nerve spiking activity recording in mice. eLife 2023; 12:RP87691. [PMID: 37962180 PMCID: PMC10645427 DOI: 10.7554/elife.87691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Brain function originates from hierarchical spatial-temporal neural dynamics distributed across cortical and subcortical networks. However, techniques available to assess large-scale brain network activity with single-neuron resolution in behaving animals remain limited. Here, we present Mesotrode that integrates chronic wide-field mesoscale cortical imaging and compact multi-site cortical/subcortical cellular electrophysiology in head-fixed mice that undergo self-initiated running or orofacial movements. Specifically, we harnessed the flexibility of chronic multi-site tetrode recordings to monitor single-neuron activity in multiple subcortical structures while simultaneously imaging the mesoscale activity of the entire dorsal cortex. A mesoscale spike-triggered averaging procedure allowed the identification of cortical activity motifs preferentially associated with single-neuron spiking. Using this approach, we were able to characterize chronic single-neuron-related functional connectivity maps for up to 60 days post-implantation. Neurons recorded from distinct subcortical structures display diverse but segregated cortical maps, suggesting that neurons of different origins participate in distinct cortico-subcortical pathways. We extended the capability of Mesotrode by implanting the micro-electrode at the facial motor nerve and found that facial nerve spiking is functionally associated with the PTA, RSP, and M2 network, and optogenetic inhibition of the PTA area significantly reduced the facial movement of the mice. These findings demonstrate that Mesotrode can be used to sample different combinations of cortico-subcortical networks over prolonged periods, generating multimodal and multi-scale network activity from a single implant, offering new insights into the neural mechanisms underlying specific behaviors.
Collapse
Affiliation(s)
- Dongsheng Xiao
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Yuhao Yan
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological ResearchVancouverCanada
- Djavad Mowafaghian Centre for Brain Health, University of British ColumbiaVancouverCanada
| |
Collapse
|
5
|
Li WR, Nakano T, Mizutani K, Matsubara T, Kawatani M, Mukai Y, Danjo T, Ito H, Aizawa H, Yamanaka A, Petersen CCH, Yoshimoto J, Yamashita T. Neural mechanisms underlying uninstructed orofacial movements during reward-based learning behaviors. Curr Biol 2023; 33:3436-3451.e7. [PMID: 37536343 DOI: 10.1016/j.cub.2023.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023]
Abstract
During reward-based learning tasks, animals make orofacial movements that globally influence brain activity at the timings of reward expectation and acquisition. These orofacial movements are not explicitly instructed and typically appear along with goal-directed behaviors. Here, we show that reinforcing optogenetic stimulation of dopamine neurons in the ventral tegmental area (oDAS) in mice is sufficient to induce orofacial movements in the whiskers and nose without accompanying goal-directed behaviors. Pavlovian conditioning with a sensory cue and oDAS elicited cue-locked and oDAS-aligned orofacial movements, which were distinguishable by a machine-learning model. Inhibition or knockout of dopamine D1 receptors in the nucleus accumbens inhibited oDAS-induced motion but spared cue-locked motion, suggesting differential regulation of these two types of orofacial motions. In contrast, inactivation of the whisker primary motor cortex (wM1) abolished both types of orofacial movements. We found specific neuronal populations in wM1 representing either oDAS-aligned or cue-locked whisker movements. Notably, optogenetic stimulation of wM1 neurons successfully replicated these two types of movements. Our results thus suggest that accumbal D1-receptor-dependent and -independent neuronal signals converge in the wM1 for facilitating distinct uninstructed orofacial movements during a reward-based learning task.
Collapse
Affiliation(s)
- Wan-Ru Li
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Functional Anatomy & Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Nakano
- Department of Computational Biology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Kohta Mizutani
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Takanori Matsubara
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Functional Anatomy & Neuroscience, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Teruko Danjo
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Hikaru Ito
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Research Facility Center for Science and Technology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Junichiro Yoshimoto
- Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.
| |
Collapse
|
6
|
Turner KL, Gheres KW, Drew PJ. Relating Pupil Diameter and Blinking to Cortical Activity and Hemodynamics across Arousal States. J Neurosci 2023; 43:949-964. [PMID: 36517240 PMCID: PMC9908322 DOI: 10.1523/jneurosci.1244-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Arousal state affects neural activity and vascular dynamics in the cortex, with sleep associated with large changes in the local field potential and increases in cortical blood flow. We investigated the relationship between pupil diameter and blink rate with neural activity and blood volume in the somatosensory cortex in male and female unanesthetized, head-fixed mice. We monitored these variables while the mice were awake, during periods of rapid eye movement (REM), and non-rapid eye movement (NREM) sleep. Pupil diameter was smaller during sleep than in the awake state. Changes in pupil diameter were coherent with both gamma-band power and blood volume in the somatosensory cortex, but the strength and sign of this relationship varied with arousal state. We observed a strong negative correlation between pupil diameter and both gamma-band power and blood volume during periods of awake rest and NREM sleep, although the correlations between pupil diameter and these signals became positive during periods of alertness, active whisking, and REM. Blinking was associated with increases in arousal and decreases in blood volume when the mouse was asleep. Bilateral coherence in gamma-band power and in blood volume dropped following awake blinking, indicating a reset of neural and vascular activity. Using only eye metrics (pupil diameter and eye motion), we could determine the arousal state of the mouse ('Awake,' 'NREM,' 'REM') with >90% accuracy with a 5 s resolution. There is a strong relationship between pupil diameter and hemodynamics signals in mice, reflecting the pronounced effects of arousal on cerebrovascular dynamics.SIGNIFICANCE STATEMENT Determining arousal state is a critical component of any neuroscience experiment. Pupil diameter and blinking are influenced by arousal state, as are hemodynamics signals in the cortex. We investigated the relationship between cortical hemodynamics and pupil diameter and found that pupil diameter was strongly related to the blood volume in the cortex. Mice were more likely to be awake after blinking than before, and blinking resets neural activity. Pupil diameter and eye motion can be used as a reliable, noninvasive indicator of arousal state. As mice transition from wake to sleep and back again over a timescale of seconds, monitoring pupil diameter and eye motion permits the noninvasive detection of sleep events during behavioral or resting-state experiments.
Collapse
Affiliation(s)
- Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kyle W Gheres
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
| | - Patrick J Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Neural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
- Departments of Engineering Science and Mechanics
- Biology and Neurosurgery, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
7
|
Zhang Q, Turner KL, Gheres KW, Hossain MS, Drew PJ. Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. NEUROPHOTONICS 2022; 9:021905. [PMID: 35639834 PMCID: PMC8802326 DOI: 10.1117/1.nph.9.2.021905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 06/15/2023]
Abstract
Significance: Functional brain imaging in awake animal models is a popular and powerful technique that allows the investigation of neurovascular coupling (NVC) under physiological conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spontaneous fluctuations in neural and hemodynamic signals. During periods without movement, animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state changes can be several times larger than sensory-evoked responses. Given the outsized influence of facial and body motions and arousal signals in neural and hemodynamic signals, it is imperative to detect and monitor these events in experiments with un-anesthetized animals. Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-anesthetized rodents, and describe how to incorporate detailed behavioral and physiological measurements in imaging experiments. Approach: We review the effects of movements and sleep-related signals (heart rate, respiration rate, electromyography, intracranial pressure, whisking, and other body movements) on brain hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup. We summarize the measurement methods currently used in animal models for detection of those behaviors and arousal changes. We then provide a guide on how to incorporate this measurements with functional brain imaging and electrophysiology measurements. Results: We provide a how-to guide on monitoring and interpreting a variety of physiological signals and their applications to NVC experiments in awake behaving mice. Conclusion: This guide facilitates the application of neuroimaging in awake animal models and provides neuroscientists with a standard approach for monitoring behavior and other associated physiological parameters in head-fixed animals.
Collapse
Affiliation(s)
- Qingguang Zhang
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
| | - Kevin L. Turner
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Kyle W. Gheres
- The Pennsylvania State University, Graduate Program in Molecular Cellular and Integrative Biosciences, University Park, Pennsylvania, United States
| | - Md Shakhawat Hossain
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Patrick J. Drew
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Neurosurgery, University Park, Pennsylvania, United States
| |
Collapse
|
8
|
Whilden CM, Chevée M, An SY, Brown SP. The synaptic inputs and thalamic projections of two classes of layer 6 corticothalamic neurons in primary somatosensory cortex of the mouse. J Comp Neurol 2021; 529:3751-3771. [PMID: 33908623 PMCID: PMC8551307 DOI: 10.1002/cne.25163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Although corticothalamic neurons (CThNs) represent the largest source of synaptic input to thalamic neurons, their role in regulating thalamocortical interactions remains incompletely understood. CThNs in sensory cortex have historically been divided into two types, those with cell bodies in Layer 6 (L6) that project back to primary sensory thalamic nuclei and those with cell bodies in Layer 5 (L5) that project to higher-order thalamic nuclei and subcortical structures. Recently, diversity among L6 CThNs has increasingly been appreciated. In the rodent somatosensory cortex, two major classes of L6 CThNs have been identified: one projecting to the ventral posterior medial nucleus (VPM-only L6 CThNs) and one projecting to both VPM and the posterior medial nucleus (VPM/POm L6 CThNs). Using rabies-based tracing methods in mice, we asked whether these L6 CThN populations integrate similar synaptic inputs. We found that both types of L6 CThNs received local input from somatosensory cortex and thalamic input from VPM and POm. However, VPM/POm L6 CThNs received significantly more input from a number of additional cortical areas, higher order thalamic nuclei, and subcortical structures. We also found that the two types of L6 CThNs target different functional regions within the thalamic reticular nucleus (TRN). Together, our results indicate that these two types of L6 CThNs represent distinct information streams in the somatosensory cortex and suggest that VPM-only L6 CThNs regulate, via their more restricted circuits, sensory responses related to a cortical column while VPM/POm L6 CThNs, which are integrated into more widespread POm-related circuits, relay contextual information.
Collapse
Affiliation(s)
- Courtney Michelle Whilden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Seong Yeol An
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Solange Pezon Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
O'Connor DH, Krubitzer L, Bensmaia S. Of mice and monkeys: Somatosensory processing in two prominent animal models. Prog Neurobiol 2021; 201:102008. [PMID: 33587956 PMCID: PMC8096687 DOI: 10.1016/j.pneurobio.2021.102008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/26/2020] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
Our understanding of the neural basis of somatosensation is based largely on studies of the whisker system of mice and rats and the hands of macaque monkeys. Results across these animal models are often interpreted as providing direct insight into human somatosensation. Work on these systems has proceeded in parallel, capitalizing on the strengths of each model, but has rarely been considered as a whole. This lack of integration promotes a piecemeal understanding of somatosensation. Here, we examine the functions and morphologies of whiskers of mice and rats, the hands of macaque monkeys, and the somatosensory neuraxes of these three species. We then discuss how somatosensory information is encoded in their respective nervous systems, highlighting similarities and differences. We reflect on the limitations of these models of human somatosensation and consider key gaps in our understanding of the neural basis of somatosensation.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, United States; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, United States
| | - Leah Krubitzer
- Department of Psychology and Center for Neuroscience, University of California at Davis, United States
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, United States; Committee on Computational Neuroscience, University of Chicago, United States; Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, United States.
| |
Collapse
|
10
|
Delineating the organization of projection neuron subsets in primary visual cortex with multiple fluorescent rabies virus tracing. Brain Struct Funct 2021; 226:951-961. [PMID: 33710409 DOI: 10.1007/s00429-021-02250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The impressive functions of the brain rely on an extensive connectivity matrix between specific neurons, the architecture of which is frequently characterized by one brain nucleus/region connecting to multiple targets, either via collaterals of the same projection neuron or several, differentially specified neurons. Delineating the fine architecture of projection neuron subsets in a specific brain region could greatly facilitate its circuit, computational, and functional resolution. Here, we developed multiple fluorescent rabies viruses (RV) to delineate the fine organization of corticothalamic projection neuron subsets in the primary visual cortex (V1). By simultaneously retrograde labeling multiple distinct subsets of corticothalamic projection neurons in V1 from their target nuclei in thalamus (dLGN, LP, LD), we observed that V1-dLGN corticothalamic projection neurons were densely concentrated in layer VI, except for several sparsely scattered neurons in layer V, while V1-LP and V1-LD corticothalamic projection neurons were localized to both layers V and VI. Meanwhile, we observed a fraction of V1 corticothalamic projection neurons targeting two thalamic nuclei, which was further confirmed by fMOST whole-brain imaging. The multiple fluorescent RV tracing tools can be extensively applied to resolve the architecture of projection neuron subsets in certain brain regions, with a strong potential to delineate the computational and functional organization of these brain regions.
Collapse
|
11
|
Ueta Y, Miyata M. Brainstem local microglia induce whisker map plasticity in the thalamus after peripheral nerve injury. Cell Rep 2021; 34:108823. [PMID: 33691115 DOI: 10.1016/j.celrep.2021.108823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/13/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
Whisker deafferentation in mice disrupts topographic connectivity from the brainstem to the thalamic ventral posteromedial nucleus (VPM), which represents whisker map, by recruiting "ectopic" axons carrying non-whisker information in VPM. However, mechanisms inducing this plasticity remain largely unknown. Here, we show the role of region-specific microglia in the brainstem principal trigeminal nucleus (Pr5), a whisker sensory-recipient region, in VPM whisker map plasticity. Systemic or local manipulation of microglial activity reveals that microglia in Pr5, but not in VPM, are necessary and sufficient for recruiting ectopic axons in VPM. Deafferentation causes membrane hyperexcitability of Pr5 neurons dependent on microglia. Inactivation of Pr5 neurons abolishes this somatotopic reorganization in VPM. Additionally, microglial depletion prevents deafferentation-induced ectopic mechanical hypersensitivity. Our results indicate that local microglia in the brainstem induce peripheral nerve injury-induced plasticity of map organization in the thalamus and suggest that microglia are potential therapeutic targets for peripheral nerve injury-induced mechanical hypersensitivity.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
12
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Karadimas SK, Satkunendrarajah K, Laliberte AM, Ringuette D, Weisspapir I, Li L, Gosgnach S, Fehlings MG. Sensory cortical control of movement. Nat Neurosci 2019; 23:75-84. [DOI: 10.1038/s41593-019-0536-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
|
15
|
Pauzin FP, Schwarz N, Krieger P. Activation of Corticothalamic Layer 6 Cells Decreases Angular Tuning in Mouse Barrel Cortex. Front Neural Circuits 2019; 13:67. [PMID: 31736714 PMCID: PMC6838007 DOI: 10.3389/fncir.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023] Open
Abstract
In the mouse whisker system, the contribution of L6 corticothalamic cells (L6 CT) to cortical and thalamic processing of the whisker deflection direction was investigated. A genetically defined population of L6 CT cells project to infragranular GABAergic interneurons that hyperpolarize neurons in somatosensory barrel cortex (BC). Optogenetic activation of these neurons switched BC to an adapted mode in which excitatory cells lost their angular tuning. In contrast, however, this was not the case with a general activation of inhibitory interneurons via optogenetic activation of Gad2-expressing cells. The decrease in angular tuning, when L6 CT cells were activated, was due to changes in cortical inhibition, and not inherited from changes in the thalamic output. Furthermore, L6 CT driven cortical inhibition, but not the general activation of GABAergic interneurons, abolished adaptation to whisker responses. In the present study, evidence is presented that a subpopulation of L6 CT activates a specific circuit of GABAergic interneurons that will predispose neocortex toward processing of tactile information requiring multiple whisker touches, such as in a texture discrimination task.
Collapse
Affiliation(s)
- François Philippe Pauzin
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Nadja Schwarz
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Patrik Krieger
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
16
|
Bolus MF, Willats AA, Whitmire CJ, Rozell CJ, Stanley GB. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo. J Neural Eng 2019; 15:026011. [PMID: 29300002 DOI: 10.1088/1741-2552/aaa506] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. APPROACH Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. MAIN RESULTS The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. SIGNIFICANCE Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes, and the employment of continuous feedback to adjust stimulation in real-time can improve the quality of data collected using optogenetic manipulation.
Collapse
Affiliation(s)
- M F Bolus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States of America
| | | | | | | | | |
Collapse
|
17
|
Jung WB, Shim HJ, Kim SG. Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei. Neuroimage 2019; 195:203-214. [DOI: 10.1016/j.neuroimage.2019.03.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
|
18
|
Layer-specific integration of locomotion and sensory information in mouse barrel cortex. Nat Commun 2019; 10:2585. [PMID: 31197148 PMCID: PMC6565743 DOI: 10.1038/s41467-019-10564-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/17/2019] [Indexed: 11/23/2022] Open
Abstract
During navigation, rodents continually sample the environment with their whiskers. How locomotion modulates neuronal activity in somatosensory cortex, and how it is integrated with whisker-touch remains unclear. Here, we compared neuronal activity in layer 2/3 (L2/3) and L5 of barrel cortex using calcium imaging in mice running in a tactile virtual reality. Both layers increase their activity during running and concomitant whisking, in the absence of touch. Fewer neurons are modulated by whisking alone. Whereas L5 neurons respond transiently to wall-touch during running, L2/3 neurons show sustained activity. Consistently, neurons encoding running-with-touch are more abundant in L2/3 and they encode the run-speed better during touch. Few neurons across layers were also sensitive to abrupt perturbations of tactile flow during running. In summary, locomotion significantly enhances barrel cortex activity across layers with L5 neurons mainly reporting changes in touch conditions and L2/3 neurons continually integrating tactile stimuli with running. The influence of locomotion on somatosensory processing in barrel cortex is not well understood. Here the authors report distinct layer-specific responses, with L5 primarily reporting changes in touch condition while L2/3 neurons integrating touch and locomotion continuously.
Collapse
|
19
|
Lee CR, Yonk AJ, Wiskerke J, Paradiso KG, Tepper JM, Margolis DJ. Opposing Influence of Sensory and Motor Cortical Input on Striatal Circuitry and Choice Behavior. Curr Biol 2019; 29:1313-1323.e5. [PMID: 30982651 DOI: 10.1016/j.cub.2019.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/04/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
The striatum is the main input nucleus of the basal ganglia and is a key site of sensorimotor integration. While the striatum receives extensive excitatory afferents from the cerebral cortex, the influence of different cortical areas on striatal circuitry and behavior is unknown. Here, we find that corticostriatal inputs from whisker-related primary somatosensory (S1) and motor (M1) cortex differentially innervate projection neurons and interneurons in the dorsal striatum and exert opposing effects on sensory-guided behavior. Optogenetic stimulation of S1-corticostriatal afferents in ex vivo recordings produced larger postsynaptic potentials in striatal parvalbumin (PV)-expressing interneurons than D1- or D2-expressing spiny projection neurons (SPNs), an effect not observed for M1-corticostriatal afferents. Critically, in vivo optogenetic stimulation of S1-corticostriatal afferents produced task-specific behavioral inhibition, which was bidirectionally modulated by striatal PV interneurons. Optogenetic stimulation of M1 afferents produced the opposite behavioral effect. Thus, our results suggest opposing roles for sensory and motor cortex in behavioral choice via distinct influences on striatal circuitry.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Alex J Yonk
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Joost Wiskerke
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Kenneth G Paradiso
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
Kong C, Shin J, Koh CS, Lee J, Yoon MS, Cho Y, Kim S, Jun S, Jung H, Chang J. Optimization of Medial Forebrain Bundle Stimulation Parameters for Operant Conditioning of Rats. Stereotact Funct Neurosurg 2019; 97:1-9. [DOI: 10.1159/000497151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
|
21
|
Projection Patterns of Corticofugal Neurons Associated with Vibrissa Movement. eNeuro 2018; 5:eN-NWR-0190-18. [PMID: 30406196 PMCID: PMC6220590 DOI: 10.1523/eneuro.0190-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/01/2018] [Accepted: 08/11/2018] [Indexed: 12/21/2022] Open
Abstract
Rodents actively whisk their vibrissae, which, when they come in contact with surrounding objects, enables rodents to gather spatial information about the environment. Cortical motor command of whisking is crucial for the control of vibrissa movement. Using awake and head-fixed rats, we investigated the correlations between axonal projection patterns and firing properties in identified layer 5 neurons in the motor cortex, which are associated with vibrissa movement. We found that cortical neurons that sent axons to the brainstem fired preferentially during large-amplitude vibrissa movements and that corticocallosal neurons exhibited a high firing rate during small vibrissa movements or during a quiet state. The differences between these two corticofugal circuits may be related to the mechanisms of motor-associated information processing.
Collapse
|
22
|
Cortical modulation of sensory flow during active touch in the rat whisker system. Nat Commun 2018; 9:3907. [PMID: 30254195 PMCID: PMC6156333 DOI: 10.1038/s41467-018-06200-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/22/2018] [Indexed: 02/01/2023] Open
Abstract
Sensory gating, where responses to stimuli during sensor motion are reduced in amplitude, is a hallmark of active sensing systems. In the rodent whisker system, sensory gating has been described only at the thalamic and cortical stages of sensory processing. However, does sensory gating originate at an even earlier synaptic level? Most importantly, is sensory gating under top-down or bottom-up control? To address these questions, we used an active touch task in behaving rodents while recording from the trigeminal sensory nuclei. First, we show that sensory gating occurs in the brainstem at the first synaptic level. Second, we demonstrate that sensory gating is pathway-specific, present in the lemniscal but not in the extralemniscal stream. Third, using cortical lesions resulting in the complete abolition of sensory gating, we demonstrate its cortical dependence. Fourth, we show accompanying decreases in whisking-related activity, which could be the putative gating signal. During active touch, sensory responses to object touch are gated at the level of thalamus and cortex. Here, the authors report gating at the level of the brainstem and show that an intact somatosensory cortex is essential for this response modulation.
Collapse
|
23
|
[Neurogenesis and gliogenesis modulation in cerebral ischemia by CDK5 RNAi-based therapy]. BIOMEDICA 2018; 38:388-397. [PMID: 30335244 DOI: 10.7705/biomedica.v38i4.3800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/15/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Cerebral ischemia is the third cause of death risk in Colombia and the first cause of physical disability worldwide. Different studies on the silencing of the cyclin-dependent kinase 5 (CDK5) have shown that reducing its activity is beneficial in ischemic contexts. However, its effect on neural cell production after cerebral ischemia has not been well studied yet. OBJECTIVE To evaluate CDK5 silencing on the production of neurons and astrocytes after a focal cerebral ischemia in rats. MATERIALS AND METHODS We used 40 eight-week-old male Wistar rats. Both sham and ischemia groups were transduced at CA1 hippocampal region with an adeno-associated viral vector using a noninterfering (shSCRmiR) and an interfering sequence for CDK5 (shCDK5miR). We injected 50 mg/kg of bromodeoxyuridine intraperitoneally from hour 24 to day 7 post-ischemia. We assessed the neurological abilities during the next 15 days and we measured the immunoreactivity of bromodeoxyuridine (BrdU), doublecortin (DCX), NeuN, and glial fibrillary acid protein (GFAP) from day 15 to day 30 post-ischemia. RESULTS Our findings showed that CDK5miR-treated ischemic animals improved their neurological score and presented increased BrdU+ cells 15 days after ischemia, which correlated with higher DCX and lower GFAP fluorescence intensities, and, although mature neurons populations did not change, GFAP immunoreactivity was still significantly reduced at 30 days post-ischemia in comparison with untreated ischemic groups. CONCLUSION CDK5miR therapy generated the neurological recovery of ischemic rats associated with the induction of immature neurons proliferation and the reduction of GFAP reactivity at short and longterm post-ischemia.
Collapse
|
24
|
Kubo R, Aiba A, Hashimoto K. The anatomical pathway from the mesodiencephalic junction to the inferior olive relays perioral sensory signals to the cerebellum in the mouse. J Physiol 2018; 596:3775-3791. [PMID: 29874406 PMCID: PMC6092293 DOI: 10.1113/jp275836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/14/2018] [Indexed: 01/28/2023] Open
Abstract
Key points Perioral tactile signals are transmitted via the infraorbital nerve (ION) to trigeminal nuclei. Each cerebellar Purkinje cell (PC) receives this signal as complex spikes (CSs) via a climbing fibre (CF) emerging from the inferior olive (IO). The anatomical pathway from trigeminal nuclei to the IO is not clearly identified. In the present study, we examined candidate anatomical pathways for perioral sensory signalling by analysing CSs recorded from PCs in male mice by single unit recording. CS generation by ION stimulation was inhibited by injection of a GABAA receptor agonist, muscimol, into the contralateral mesodiencephalic junction, which is referred to as the area parafascicularis prerubralis (PfPr). The number of CSs evoked by mechanical whisker stimulation was also decreased by contralateral PfPr inhibition. These results suggest the existence of a sensory signalling pathway to the IO via the PfPr in mice.
Abstract Perioral tactile signals are transmitted via the infraorbital nerve (ION) to trigeminal nuclei. Each cerebellar Purkinje cell receives this signal as complex spikes (CSs) via a climbing fibre emerging from the inferior olive (IO). However, the anatomical pathway from the trigeminal nuclei to the IO is not clearly identified. In the present study, we recorded CSs from Purkinje cells in male mice by single unit recording, and examined the signal transduction pathway. CSs were evoked by electrical stimulation of the ipsilateral or contralateral ION with a latency of 20–70 ms. CS generation by ipsilateral ION stimulation was inhibited by injection of a GABAA receptor agonist, muscimol, into the contralateral mesodiencephalic junction, ranging from around the fasciculus retroflexus to the interstitial nucleus of Cajal, which is referred to as the area parafascicularis prerubralis (PfPr). CSs evoked by contralateral ION stimulation were also suppressed by muscimol injection into the PfPr, although the effective area was more restricted. Furthermore, CSs evoked by mechanical stimulation around the whisker region were suppressed by PfPr inhibition. We also found that the primary motor cortex plays a role to suppress this signalling pathway. These results indicate the existence of an anatomical pathway for conducting perioral sensory signals to the IO via the PfPr. Perioral tactile signals are transmitted via the infraorbital nerve (ION) to trigeminal nuclei. Each cerebellar Purkinje cell (PC) receives this signal as complex spikes (CSs) via a climbing fibre (CF) emerging from the inferior olive (IO). The anatomical pathway from trigeminal nuclei to the IO is not clearly identified. In the present study, we examined candidate anatomical pathways for perioral sensory signalling by analysing CSs recorded from PCs in male mice by single unit recording. CS generation by ION stimulation was inhibited by injection of a GABAA receptor agonist, muscimol, into the contralateral mesodiencephalic junction, which is referred to as the area parafascicularis prerubralis (PfPr). The number of CSs evoked by mechanical whisker stimulation was also decreased by contralateral PfPr inhibition. These results suggest the existence of a sensory signalling pathway to the IO via the PfPr in mice.
Collapse
Affiliation(s)
- Reika Kubo
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
25
|
Lowet E, Gips B, Roberts MJ, De Weerd P, Jensen O, van der Eerden J. Microsaccade-rhythmic modulation of neural synchronization and coding within and across cortical areas V1 and V2. PLoS Biol 2018; 16:e2004132. [PMID: 29851960 PMCID: PMC5997357 DOI: 10.1371/journal.pbio.2004132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 06/12/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Primates sample their visual environment actively through saccades and microsaccades (MSs). Saccadic eye movements not only modulate neural spike rates but might also affect temporal correlations (synchrony) among neurons. Neural synchrony plays a role in neural coding and modulates information transfer between cortical areas. The question arises of how eye movements shape neural synchrony within and across cortical areas and how it affects visual processing. Through local field recordings in macaque early visual cortex while monitoring eye position and through neural network simulations, we find 2 distinct synchrony regimes in early visual cortex that are embedded in a 3- to 4-Hz MS-related rhythm during visual fixation. In the period shortly after an MS (“transient period”), synchrony was high within and between cortical areas. In the subsequent period (“sustained period”), overall synchrony dropped and became selective to stimulus properties. Only mutually connected neurons with similar stimulus responses exhibited sustained narrow-band gamma synchrony (25–80 Hz), both within and across cortical areas. Recordings in macaque V1 and V2 matched the model predictions. Furthermore, our modeling provides predictions on how (micro)saccade-modulated gamma synchrony in V1 shapes V2 receptive fields (RFs). We suggest that the rhythmic alternation between synchronization regimes represents a basic repeating sampling strategy of the visual system. During visual exploration, we continuously move our eyes in a quick, coordinated manner several times a second to scan our environment. These movements are called saccades. Even while we fixate on a visual object, we unconsciously execute small saccades that are termed microsaccades (MSs). Despite MSs being relatively small, they are suggested to be critical to maintain and support accurate perception during visual fixation. Here, we studied in macaques the influence of MSs on the synchronization of neural rhythms—which are important to regulate information flow in the brain—in areas of the cerebral cortex that are important for early processing of visual information, and we complemented the analysis with computational modeling. We found that synchronization properties shortly after an MS were distinct from synchronization in the later phase. Specifically, we found an early and spectrally broadband synchronization within and between visual cortices that was broadly tuned over the cortical space and stimulus properties. This was followed by narrow-band synchronization in the gamma range (25–80 Hz) that was spatially and stimulus specific. This suggests that the manner in which information is transmitted and integrated between early visual cortices depends on the timing relative to MSs. We illustrate this in a computational model showing that the receptive field (RF) of neurons in the secondary visual cortex are expected to be different depending on MS timing. Our results highlight the significance of MS timing for understanding cortical dynamics and suggest that the regulation of synchronization might be one mechanism by which MSs support visual perception.
Collapse
Affiliation(s)
- Eric Lowet
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- * E-mail:
| | - Bart Gips
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Mark J. Roberts
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter De Weerd
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Jan van der Eerden
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
26
|
Barrel Cortex: What is it Good for? Neuroscience 2018; 368:3-16. [DOI: 10.1016/j.neuroscience.2017.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
|
27
|
Auffret M, Ravano VL, Rossi GMC, Hankov N, Petersen MFA, Petersen CCH. Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice. Neuroscience 2018; 368:199-213. [PMID: 28412497 PMCID: PMC5798595 DOI: 10.1016/j.neuroscience.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
Abstract
Whisker movements are used by rodents to touch objects in order to extract spatial and textural tactile information about their immediate surroundings. To understand the mechanisms of such active sensorimotor processing it is important to investigate whisker motor control. The activity of neurons in the neocortex affects whisker movements, but many aspects of the organization of cortical whisker motor control remain unknown. Here, we filmed whisker movements evoked by sequential optogenetic stimulation of different locations across the left dorsal sensorimotor cortex of awake head-restrained mice. Whisker movements were evoked by optogenetic stimulation of many regions in the dorsal sensorimotor cortex. Optogenetic stimulation of whisker sensory barrel cortex evoked retraction of the contralateral whisker after a short latency, and a delayed rhythmic protraction of the ipsilateral whisker. Optogenetic stimulation of frontal cortex evoked rhythmic bilateral whisker protraction with a longer latency compared to stimulation of sensory cortex. Compared to frontal cortex stimulation, larger amplitude bilateral rhythmic whisking in a less protracted position was evoked at a similar latency by stimulating a cortical region posterior to Bregma and close to the midline. These data suggest that whisker motor control might be broadly distributed across the dorsal mouse sensorimotor cortex. Future experiments must investigate the complex neuronal circuits connecting specific cell-types in various cortical regions with the whisker motor neurons located in the facial nucleus.
Collapse
Affiliation(s)
- Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Veronica L Ravano
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Giulia M C Rossi
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Nicolas Hankov
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Merissa F A Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|
28
|
Abstract
In this issue of Neuron, Deschênes et al. (2016) propose that rhythmic inhibition of whisker motor neurons is a key pattern generator underlying exploratory whisking. The inhibitory premotor neurons located in the brainstem reticular formation are synchronized by breathing-related oscillators.
Collapse
Affiliation(s)
- Varun Sreenivasan
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
| |
Collapse
|
29
|
Dubbioso R, Raffin E, Karabanov A, Thielscher A, Siebner HR. Centre-surround organization of fast sensorimotor integration in human motor hand area. Neuroimage 2017; 158:37-47. [DOI: 10.1016/j.neuroimage.2017.06.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 11/26/2022] Open
|
30
|
Kyriakatos A, Sadashivaiah V, Zhang Y, Motta A, Auffret M, Petersen CCH. Voltage-sensitive dye imaging of mouse neocortex during a whisker detection task. NEUROPHOTONICS 2017; 4:031204. [PMID: 27921068 PMCID: PMC5120151 DOI: 10.1117/1.nph.4.3.031204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Sensorimotor processing occurs in a highly distributed manner in the mammalian neocortex. The spatiotemporal dynamics of electrical activity in the dorsal mouse neocortex can be imaged using voltage-sensitive dyes (VSDs) with near-millisecond temporal resolution and [Formula: see text] spatial resolution. Here, we trained mice to lick a water reward spout after a 1-ms deflection of the C2 whisker, and we imaged cortical dynamics during task execution with VSD RH1691. Responses to whisker deflection were highly dynamic and spatially highly distributed, exhibiting high variability from trial to trial in amplitude and spatiotemporal dynamics. We differentiated trials based on licking and whisking behavior. Hit trials, in which the mouse licked after the whisker stimulus, were accompanied by overall greater depolarization compared to miss trials, with the strongest hit versus miss differences being found in frontal cortex. Prestimulus whisking decreased behavioral performance by increasing the fraction of miss trials, and these miss trials had attenuated cortical sensorimotor responses. Our data suggest that the spatiotemporal dynamics of depolarization in mouse sensorimotor cortex evoked by a single brief whisker deflection are subject to important behavioral modulation during the execution of a simple, learned, goal-directed sensorimotor transformation.
Collapse
|
31
|
Sreenivasan V, Kyriakatos A, Mateo C, Jaeger D, Petersen CC. Parallel pathways from whisker and visual sensory cortices to distinct frontal regions of mouse neocortex. NEUROPHOTONICS 2017; 4:031203. [PMID: 27921067 PMCID: PMC5120210 DOI: 10.1117/1.nph.4.3.031203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs.
Collapse
Affiliation(s)
- Varun Sreenivasan
- École Polytechnique Fédérale de Lausanne (EPFL), Faculty of Life Sciences, Brain Mind Institute, Laboratory of Sensory Processing, CH-1015 Lausanne, Switzerland
| | - Alexandros Kyriakatos
- École Polytechnique Fédérale de Lausanne (EPFL), Faculty of Life Sciences, Brain Mind Institute, Laboratory of Sensory Processing, CH-1015 Lausanne, Switzerland
| | - Celine Mateo
- École Polytechnique Fédérale de Lausanne (EPFL), Faculty of Life Sciences, Brain Mind Institute, Laboratory of Sensory Processing, CH-1015 Lausanne, Switzerland
| | - Dieter Jaeger
- Emory University, Department of Biology, Atlanta, Georgia 30322, United States
| | - Carl C.H. Petersen
- École Polytechnique Fédérale de Lausanne (EPFL), Faculty of Life Sciences, Brain Mind Institute, Laboratory of Sensory Processing, CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Luhmann HJ. Review of imaging network activities in developing rodent cerebral cortex in vivo. NEUROPHOTONICS 2017; 4:031202. [PMID: 27921066 PMCID: PMC5120148 DOI: 10.1117/1.nph.4.3.031202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
The combination of voltage-sensitive dye imaging (VSDI) with multielectrode array (MEA) recordings in the rodent cerebral cortex in vivo allows the simultaneous analysis of large-scale network interactions and electrophysiological single-unit recordings. Using this approach, distinct patterns of spontaneous and sensory-evoked activity can be recorded in the primary somatosensory (S1) and motor cortex (M1) of newborn rats. Already at the day of birth, gamma oscillations and spindle bursts in the barrel cortex synchronize the activity of a local columnar ensemble, thereby generating an early topographic representation of the sensory periphery. During the first postnatal week, both cortical activity patterns undergo developmental changes in their spatiotemporal properties and spread into neighboring cortical columns. Simultaneous VSDI and MEA recordings in S1 and M1 demonstrate that the immature motor cortex receives information from the somatosensory system and that M1 may trigger movements of the periphery, which subsequently evoke gamma oscillations and spindle bursts in S1. These early activity patterns not only play an important role in the development of the cortical columnar architecture, they also control the ratio of surviving versus dying neurons in an activity-dependent manner, making these processes most vulnerable to pathophysiological disturbances during early developmental stages.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
33
|
Khateb M, Schiller J, Schiller Y. Feedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons. eLife 2017; 6. [PMID: 28059699 PMCID: PMC5271607 DOI: 10.7554/elife.21843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 01/05/2017] [Indexed: 12/18/2022] Open
Abstract
The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals. DOI:http://dx.doi.org/10.7554/eLife.21843.001
Collapse
Affiliation(s)
- Mohamed Khateb
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
34
|
Tang Q, Lin J, Tsytsarev V, Erzurumlu RS, Liu Y, Chen Y. Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities. NEUROPHOTONICS 2017; 4:011009. [PMID: 27990452 PMCID: PMC5108095 DOI: 10.1117/1.nph.4.1.011009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/19/2016] [Indexed: 05/18/2023]
Abstract
Understanding the functional wiring of neural circuits and their patterns of activation following sensory stimulations is a fundamental task in the field of neuroscience. Furthermore, charting the activity patterns is undoubtedly important to elucidate how neural networks operate in the living brain. However, optical imaging must overcome the effects of light scattering in the tissue, which limit the light penetration depth and affect both the imaging quantitation and sensitivity. Laminar optical tomography (LOT) is a three-dimensional (3-D) in-vivo optical imaging technique that can be used for functional imaging. LOT can achieve both a resolution of 100 to [Formula: see text] and a penetration depth of 2 to 3 mm based either on absorption or fluorescence contrast, as well as large field-of-view and high acquisition speed. These advantages make LOT suitable for 3-D depth-resolved functional imaging of the neural functions in the brain and spinal cords. We review the basic principles and instrumentations of representative LOT systems, followed by recent applications of LOT on 3-D imaging of neural activities in the rat forepaw stimulation model and mouse whisker-barrel system.
Collapse
Affiliation(s)
- Qinggong Tang
- University of Maryland, Fischell Department of Bioengineering, 2334 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Jonathan Lin
- University of Maryland, Fischell Department of Bioengineering, 2334 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Vassiliy Tsytsarev
- University of Maryland School of Medicine, Department of Anatomy and Neurobiology, 20 Penn Street, HSFII S251, Baltimore, Maryland 21201, United States
| | - Reha S. Erzurumlu
- University of Maryland School of Medicine, Department of Anatomy and Neurobiology, 20 Penn Street, HSFII S251, Baltimore, Maryland 21201, United States
| | - Yi Liu
- University of Maryland, Fischell Department of Bioengineering, 2334 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
| | - Yu Chen
- University of Maryland, Fischell Department of Bioengineering, 2334 Jeong H. Kim Engineering Building, College Park, Maryland 20742, United States
- Address all correspondence to: Yu Chen, E-mail:
| |
Collapse
|
35
|
Sreenivasan V, Esmaeili V, Kiritani T, Galan K, Crochet S, Petersen CCH. Movement Initiation Signals in Mouse Whisker Motor Cortex. Neuron 2016; 92:1368-1382. [PMID: 28009277 PMCID: PMC5196025 DOI: 10.1016/j.neuron.2016.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/24/2022]
Abstract
Frontal cortex plays a central role in the control of voluntary movements, which are typically guided by sensory input. Here, we investigate the function of mouse whisker primary motor cortex (wM1), a frontal region defined by dense innervation from whisker primary somatosensory cortex (wS1). Optogenetic stimulation of wM1 evokes rhythmic whisker protraction (whisking), whereas optogenetic inactivation of wM1 suppresses initiation of whisking. Whole-cell membrane potential recordings and silicon probe recordings of action potentials reveal layer-specific neuronal activity in wM1 at movement initiation, and encoding of fast and slow parameters of movements during whisking. Interestingly, optogenetic inactivation of wS1 caused hyperpolarization and reduced firing in wM1, together with reduced whisking. Optogenetic stimulation of wS1 drove activity in wM1 with complex dynamics, as well as evoking long-latency, wM1-dependent whisking. Our results advance understanding of a well-defined frontal region and point to an important role for sensory input in controlling motor cortex.
Collapse
Affiliation(s)
- Varun Sreenivasan
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Vahid Esmaeili
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Taro Kiritani
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Katia Galan
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
36
|
Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 2016; 19:1733-1742. [PMID: 27749828 PMCID: PMC5127741 DOI: 10.1038/nn.4417] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
Long-range projections from the frontal cortex are known to modulate sensory processing in multiple modalities. Although the mouse has become an increasingly important animal model for studying the circuit basis of behavior, the functional organization of its frontal cortical long-range connectivity remains poorly characterized. Here we used virus-assisted circuit mapping to identify the brain networks for top-down modulation of visual, somatosensory and auditory processing. The visual cortex is reciprocally connected to the anterior cingulate area, whereas the somatosensory and auditory cortices are connected to the primary and secondary motor cortices. Anterograde and retrograde tracing identified the cortical and subcortical structures belonging to each network. Furthermore, using new viral techniques to target subpopulations of frontal neurons projecting to the visual cortex versus the superior colliculus, we identified two distinct subnetworks within the visual network. These findings provide an anatomical foundation for understanding the brain mechanisms underlying top-down control of behavior.
Collapse
|
37
|
Soumiya H, Godai A, Araiso H, Mori S, Furukawa S, Fukumitsu H. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice. PLoS One 2016; 11:e0158583. [PMID: 27362655 PMCID: PMC4928826 DOI: 10.1371/journal.pone.0158583] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/17/2016] [Indexed: 12/30/2022] Open
Abstract
Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD). While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice) and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation.
Collapse
Affiliation(s)
- Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi, Gifu, Japan
| | - Ayumi Godai
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi, Gifu, Japan
| | - Hiromi Araiso
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi, Gifu, Japan
| | - Shingo Mori
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi, Gifu, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi, Gifu, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Daigakunishi, Gifu, Japan
- * E-mail:
| |
Collapse
|
38
|
Luhmann HJ, Sinning A, Yang JW, Reyes-Puerta V, Stüttgen MC, Kirischuk S, Kilb W. Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Front Neural Circuits 2016; 10:40. [PMID: 27252626 PMCID: PMC4877528 DOI: 10.3389/fncir.2016.00040] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Neuronal activity has been shown to be essential for the proper formation of neuronal circuits, affecting developmental processes like neurogenesis, migration, programmed cell death, cellular differentiation, formation of local and long-range axonal connections, synaptic plasticity or myelination. Accordingly, neocortical areas reveal distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, when immature neurons start to develop voltage-dependent channels, spontaneous activity is highly synchronized within small neuronal networks and governed by electrical synaptic transmission. Subsequently, spontaneous activity patterns become more complex, involve larger networks and propagate over several neocortical areas. The developmental shift from local to large-scale network activity is accompanied by a gradual shift from electrical to chemical synaptic transmission with an initial excitatory action of chloride-gated channels activated by GABA, glycine and taurine. Transient neuronal populations in the subplate (SP) support temporary circuits that play an important role in tuning early neocortical activity and the formation of mature neuronal networks. Thus, early spontaneous activity patterns control the formation of developing networks in sensory cortices, and disturbances of these activity patterns may lead to long-lasting neuronal deficits.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Vicente Reyes-Puerta
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Maik C Stüttgen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz Mainz, Germany
| |
Collapse
|
39
|
Spindle Bursts in Neonatal Rat Cerebral Cortex. Neural Plast 2016; 2016:3467832. [PMID: 27034844 PMCID: PMC4806652 DOI: 10.1155/2016/3467832] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023] Open
Abstract
Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.
Collapse
|
40
|
Ziebell JM, Rowe RK, Harrison JL, Eakin KC, Colburn T, Willyerd FA, Lifshitz J. Experimental diffuse brain injury results in regional alteration of gross vascular morphology independent of neuropathology. Brain Inj 2015; 30:217-24. [PMID: 26646974 DOI: 10.3109/02699052.2015.1090012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PRIMARY OBJECTIVE A dynamic relationship exists between diffuse traumatic brain injury and changes to the neurovascular unit. The purpose of this study was to evaluate vascular changes during the first week following diffuse TBI. It was hypothesized that pathology is associated with modification of the vasculature. METHODS Male Sprague-Dawley rats underwent either midline fluid percussion injury or sham-injury. Brain tissue was collected 1, 2 or 7 days post-injury or sham-injury (n = 3/time point). Tissue was collected and stained by de Olmos amino-cupric silver technique to visualize neuropathology or animals were perfused with AltaBlue casting resin before high-resolution vascular imaging. The average volume, surface area, radius, branching and tortuosity of the vessels were evaluated across three regions of interest. RESULTS In M2, average vessel volume (p < 0.01) and surface area (p < 0.05) were significantly larger at 1 day relative to 2 days, 7 days and sham. In S1BF and VPM, no significant differences in the average vessel volume or surface area at any of the post-injury time points were observed. No significant changes in average radius, branching or tortuosity were observed. CONCLUSIONS Preliminary findings suggest gross morphological changes within the vascular network likely represent an acute response to mechanical forces of injury, rather than delayed or chronic pathological processes.
Collapse
Affiliation(s)
- Jenna M Ziebell
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Rachel K Rowe
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA
| | - Jordan L Harrison
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Katharine C Eakin
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA
| | - Taylor Colburn
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA
| | - F Anthony Willyerd
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA.,d Critical Care, Phoenix Children's Hospital , Phoenix , AZ , USA
| | - Jonathan Lifshitz
- a BARROW Neurological Institute at Phoenix Children's Hospital , Phoenix , AZ , USA.,b Department of Child Health , University of Arizona College of Medicine - Phoenix , Phoenix , AZ , USA.,c Phoenix VA Healthcare System , Phoenix , AZ , USA.,e Psychology , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
41
|
Abstract
UNLABELLED Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input-output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic modulation differentially regulates two parallel circuits that process chemosensory information, the accessory and main olfactory bulb (AOB and MOB, respectively). These circuits consist of remarkably similar synaptic arrangement and neuronal types, yet cholinergic regulation produced strikingly opposing effects in output and intrinsic neurons. Despite these differences, the chemogenetic reduction of cholinergic activity in freely behaving animals disrupted odor discrimination of simple odors, and the investigation of social odors associated with behaviors signaled by the Vomeronasal system.
Collapse
|
42
|
Abstract
Much like visually impaired humans use a white-cane, nocturnal insects and mammals use antennae or whiskers for near-range orientation. Stick insects, for example, rely heavily on antennal tactile cues to find footholds and detect obstacles. Antennal contacts can even induce aimed reaching movements. Because tactile sensors are essentially one-dimensional, they must be moved to probe the surrounding space. Sensor movement is thus an essential cue for tactile sensing, which needs to be integrated by thoracic networks for generating appropriate adaptive leg movements. Based on single and double recordings, we describe a descending neural pathway comprising three identified ON- and OFF-type neurons that convey complementary, unambiguous, and short-latency information about antennal movement to thoracic networks in the stick insect. The neurons are sensitive to the velocity of antennal movements across the entire range covered by natural movements, regardless of movement direction and joint angle. Intriguingly, none of them originates from the brain. Instead, they descend from the gnathal ganglion and receive input from antennal mechanoreceptors in this lower region of the CNS. From there, they convey information about antennal movement to the thorax. One of the descending neurons, which is additionally sensitive to substrate vibration, feeds this information back to the brain via an ascending branch. We conclude that descending interneurons with complementary tuning characteristics, gains, input and output regions convey detailed information about antennal movement to thoracic networks. This pathway bypasses higher processing centers in the brain and thus constitutes a shortcut between tactile sensors on the head and the thorax.
Collapse
|
43
|
Girard F, Venail J, Schwaller B, Celio M. The EF-hand Ca2+-binding protein super-family: A genome-wide analysis of gene expression patterns in the adult mouse brain. Neuroscience 2015; 294:116-55. [DOI: 10.1016/j.neuroscience.2015.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 01/13/2023]
|
44
|
Sreenivasan V, Karmakar K, Rijli FM, Petersen CCH. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice. Eur J Neurosci 2014; 41:354-67. [PMID: 25476605 PMCID: PMC4359021 DOI: 10.1111/ejn.12800] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022]
Abstract
Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons.
Collapse
Affiliation(s)
- Varun Sreenivasan
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | | | | |
Collapse
|
45
|
Eldawlatly S, Oweiss KG. Temporal precision in population-but not individual neuron-dynamics reveals rapid experience-dependent plasticity in the rat barrel cortex. Front Comput Neurosci 2014; 8:155. [PMID: 25505407 PMCID: PMC4243556 DOI: 10.3389/fncom.2014.00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/07/2014] [Indexed: 11/13/2022] Open
Abstract
Cortical reorganization following sensory deprivation is characterized by alterations in the connectivity between neurons encoding spared and deprived cortical inputs. The extent to which this alteration depends on Spike Timing Dependent Plasticity (STDP), however, is largely unknown. We quantified changes in the functional connectivity between layer V neurons in the vibrissal primary somatosensory cortex (vSI) (barrel cortex) of rats following sensory deprivation. One week after chronic implantation of a microelectrode array in vSI, sensory-evoked activity resulting from mechanical deflections of individual whiskers was recorded (control data) after which two whiskers on the contralateral side were paired by sparing them while trimming all other whiskers on the rat's mystacial pad. The rats' environment was then enriched by placing novel objects in the cages to encourage exploratory behavior with the spared whiskers. Sensory-evoked activity in response to individual stimulation of spared whiskers and adjacent re-grown whiskers was then recorded under anesthesia 1–2 days and 6–7 days post-trimming (plasticity data). We analyzed spike trains within 100 ms of stimulus onset and confirmed previously published reports documenting changes in receptive field sizes in the spared whisker barrels. We analyzed the same data using Dynamic Bayesian Networks (DBNs) to infer the functional connectivity between the recorded neurons. We found that DBNs inferred from population responses to stimulation of each of the spared whiskers exhibited graded increase in similarity that was proportional to the pairing duration. A significant early increase in network similarity in the spared-whisker barrels was detected 1–2 days post pairing, but not when single neuron responses were examined during the same period. These results suggest that rapid reorganization of cortical neurons following sensory deprivation may be mediated by an STDP mechanism.
Collapse
Affiliation(s)
- Seif Eldawlatly
- Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University Cairo, Egypt
| | - Karim G Oweiss
- Department of Electrical and Computer Engineering, University of Florida Gainesville, FL, USA ; Department of Biomedical Engineering, University of Florida Gainesville, FL, USA ; Department of Neuroscience, University of Florida Gainesville, FL, USA ; Department of Electrical and Computer Engineering, Michigan State University East Lansing, MI, USA
| |
Collapse
|