1
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2025; 292:2433-2478. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Valenti O, Rekawek KA, Wieser S, Bulut H, Scholze P, Boehm S. Plasticity of ventral tegmental area disturbance during abstinence after repeated amphetamine exposure: restoration by selective activation of group II metabotropic glutamate receptors. Front Pharmacol 2025; 16:1534101. [PMID: 40337518 PMCID: PMC12055554 DOI: 10.3389/fphar.2025.1534101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025] Open
Abstract
Background and aims The psychostimulant actions of amphetamine (AMPH) have been correlated with its ability to orchestrate ventral tegmental area (VTA) dopamine (DA) neuron activity states and, thus, DA release in output regions: in rats, a single exposure is sufficient to reduce the fraction of spontaneously active DA neurons, i.e., DA neuron population activity, whereas AMPH abstinence after repeated exposure leads to an increase. Here, this switch in DA neuron activity was resolved in detail in mice, and its sensitivity towards activation of group II metabotropic glutamate receptor (mGluR2 and mGluR3) was investigated. Experimental procedure All experiments were conducted on C57BL/6J male mice. After repeated AMPH administration (2 mg/kg), the amine was withdrawn for up to 15 days and VTA DA neuron activity was assessed. The involvement VTA afferent regions with respect to AMPH actions was analyzed either by local instillation of drugs or through inactivation by tetrodotoxin. Selective agonists or allosteric modulators of mGluR2 and mGluR3 were used to explore whether group II mGluR might interfere with VTA disturbances caused by the amine. Results After repeated AMPH exposure, VTA DA neuron activity remained reduced for 4 days and then rose to a hyperdopaminergic state within 15 days. The initial hypodopaminergia was coordinated by an amygdala (AMG) - nucleus accumbens (NAc) -VTA pathway, whereas the hyperactivity relied on ventral hippocampus (vHPC). Hypodopaminergic VTA activity was recovered towards physiological levels by activation of mGluR2, but not mGluR3, and this remission was contingent on glutamatergic transmission within NAc and propagation via the ventral pallidum. Results of a light-dark transition task confirmed anxiolytic efficaciousness of mGluR2 activation. The hyperdopaminergic VTA activity, in contrast, was normalized by selective activation of mGluR3, but not mGluR2, within vHPC. AMPH re-exposure after abstinence turned VTA activity down, but this suppression involved alternative circuits and could no longer be rescued by mGluR activation. Conclusion Thus, abstinence from repeated AMPH intake drives VTA activity from hypo-into hyperdopaminergic states, and both can be readjusted towards physiological levels via different members of group II mGluRs.
Collapse
Affiliation(s)
- Ornella Valenti
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Anna Rekawek
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sophie Wieser
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Molecular Biotechnology, Fachhochschule (FH) Campus Wien, Vienna, Austria
| | - Hilal Bulut
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Petra Scholze
- Division of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stefan Boehm
- Division of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Oriol L, Chao M, Kollman GJ, Dowlat DS, Singhal SM, Steinkellner T, Hnasko TS. Ventral tegmental area interneurons revisited: GABA and glutamate projection neurons make local synapses. eLife 2025; 13:RP100085. [PMID: 40238649 PMCID: PMC12002793 DOI: 10.7554/elife.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study, we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or Mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction.
Collapse
Affiliation(s)
- Lucie Oriol
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Melody Chao
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Grace J Kollman
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Dina S Dowlat
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Sarthak M Singhal
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
- Research Service VA San Diego Healthcare SystemSan DiegoUnited States
| |
Collapse
|
4
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03013-0. [PMID: 40210977 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Amstutz D, Sousa M, Maradan-Gachet ME, Debove I, Lhommée E, Krack P. Psychiatric and cognitive symptoms of Parkinson's disease: A life's tale. Rev Neurol (Paris) 2025; 181:265-283. [PMID: 39710559 DOI: 10.1016/j.neurol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Neuropsychiatric symptoms are highly prevalent in Parkinson's disease (PD) and significantly affect the quality of life of patients and their significant others. The aim of this work is to describe typical neuropsychiatric symptoms and their treatment. METHODS This is a narrative opinion paper, illustrated by a fictional case report. The most common neuropsychiatric symptoms such as depressive symptoms, anxiety, apathy, psychotic symptoms, impulse control disorders, as well as cognitive impairment are discussed in the context of prodromal stage, early stage, fluctuations stage, post-surgical intervention, and late stage of PD. RESULTS Multiple factors such as pathophysiology, dopaminergic medication, deep brain stimulation, personality traits and individual life circumstances influence neuropsychiatric symptoms. Since the complexity and causes of neuropsychiatric symptoms can change, management strategies have to be adapted and individualised throughout the disease trajectory. DISCUSSION Recognising neuropsychiatric symptoms within the framework of the disease stage and identifying their potential causes is pivotal to provide adequate interventions.
Collapse
Affiliation(s)
- D Amstutz
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland.
| | - M Sousa
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - M E Maradan-Gachet
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland; Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - I Debove
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - E Lhommée
- Department of Neurorehabilitation, Centre Hospitalier Universitaire Grenoble Alpes, University of Grenoble, Grenoble, France
| | - P Krack
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Gyetvai BM, Vadasz C. Pleiotropic Effects of Grm7/ GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders. Biomolecules 2025; 15:392. [PMID: 40149928 PMCID: PMC11940234 DOI: 10.3390/biom15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
Natural gene variants of metabotropic glutamate receptor subtype 7 (Grm7), coding for mGluR7, affect individuals' alcohol-drinking preference. Psychopharmacological investigations have suggested that mGluR7 is also involved in responses to cocaine, morphine, and nicotine exposures. We review the pleiotropic effects of Grm7 and the principle of recombinant quantitative trait locus introgression (RQI), which led to the discovery of the first mammalian quantitative gene accounting for alcohol-drinking preference. Grm7/GRM7 can play important roles in mammalian ontogenesis, brain development, and predisposition to addiction. It is also involved in other behavioral phenotypes, including emotion, stress, motivated cognition, defensive behavior, and pain-related symptoms. This review identified pleiotropy and the modulation of neurobehavioral processes by variations in the gene Grm7/GRM7. Patterns of pleiotropic genes can form oligogenic architectures whosecombined additive and interaction effects can significantly predispose individuals to the expressions of disorders. Identifying and characterizing pleiotropic genes are necessary for understanding the expressions of complex traits. This requires tasks, such as discovering and identifying novel genetic elements of the genetic architecture, which are unsuitable for AI but require classical experimental genetics.
Collapse
Affiliation(s)
- Beatrix M. Gyetvai
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
| | - Csaba Vadasz
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Kalymma, Stony Point, New York, NY 10980, USA
| |
Collapse
|
7
|
Pérez-Garci E, Pysanenko K, Rizzi G, Studer F, Ulrich D, Fritzius T, Früh S, Porcu A, Besseyrias V, Melichar A, Gassmann M, Barkat TR, Tureček R, Tan KR, Bettler B. Binding of HCN channels to GABA B receptors in dopamine neurons of the VTA limits synaptic inhibition and prevents the development of anxiety. Neurobiol Dis 2025; 206:106831. [PMID: 39914775 DOI: 10.1016/j.nbd.2025.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
During GABAergic synaptic transmission, G protein-coupled GABAB receptors (GBRs) activate K+ channels that prolong the duration of inhibitory postsynaptic potentials (IPSPs). We now show that KCTD16, an auxiliary GBR subunit, anchors hyperpolarization-activated cyclic nucleotide-gated (HCN) channels containing HCN2/HCN3 subunits to GBRs. In dopamine neurons of the VTA (DAVTA neurons), this interaction facilitates activation of HCN channels via hyperpolarization during IPSPs, counteracting the GBR-mediated late phase of these IPSPs. Consequently, disruption of the GBR/HCN complex in KCTD16-/- mice leads to prolonged optogenetic inhibition of DAVTA neuron firing. KCTD16-/- mice exhibit increased anxiety-like behavior in response to stress - a behavior replicated by CRISPR/Cas9-mediated KCTD16 ablation in DAVTA neurons or by intra-VTA infusion of an HCN antagonist in wild-type mice. Our findings support that the retention of HCN channels at GABAergic synapses by GBRs in DAVTA neurons provides a negative feedback mechanism that restricts IPSP duration and mitigates the development of anxiety.
Collapse
Affiliation(s)
- Enrique Pérez-Garci
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, CAS, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Giorgio Rizzi
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Florian Studer
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Alessandra Porcu
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Valérie Besseyrias
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Adolf Melichar
- Department of Auditory Neuroscience, Institute of Experimental Medicine, CAS, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Tania Rinaldi Barkat
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Rostislav Tureček
- Department of Auditory Neuroscience, Institute of Experimental Medicine, CAS, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Kelly R Tan
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
8
|
Nestler EJ. The biology of addiction. Sci Signal 2025; 18:eadq0031. [PMID: 39903810 DOI: 10.1126/scisignal.adq0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025]
Abstract
The tools of modern genetics and neurobiology have propelled a renaissance of research that has advanced our understanding of the pathophysiology of drug addiction. We know that an individual's risk for addiction is determined by interactions between genetics and environment and that only a minute fraction of chemical agents share the ability to act on this vulnerability to induce a state of addiction. Repeated exposure to these drugs causes addiction through repeated activation of dopaminergic transmission (and many other actions) in the brain, inducing changes at the molecular, cellular, and synaptic levels that, over time, rewire the circuitry throughout the limbic system. In this Review, I discuss how we are gaining a clearer picture of this drug-induced plasticity-some of which is shared by all addictive drugs, whereas other aspects are specific to certain drug classes-and of the ways in which these adaptations mediate the range of behavioral abnormalities that define the addicted state. Despite the challenges, there is reason for optimism in translating this rich biological understanding of addiction into improved treatments for the many individuals burdened by this illness around the world.
Collapse
Affiliation(s)
- Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Oriol L, Chao M, Kollman GJ, Dowlat DS, Singhal SM, Steinkellner T, Hnasko TS. Ventral tegmental area interneurons revisited: GABA and glutamate projection neurons make local synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.07.597996. [PMID: 38895464 PMCID: PMC11185768 DOI: 10.1101/2024.06.07.597996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction.
Collapse
Affiliation(s)
- Lucie Oriol
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Melody Chao
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Grace J Kollman
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Dina S Dowlat
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Sarthak M Singhal
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
- Research Service VA San Diego Healthcare System, San Diego, United States
| |
Collapse
|
10
|
Lu G, Ma F, Wei P, Ma M, Tran VNH, Baldo BA, Li L. Cocaine-Induced Remodeling of the Rat Brain Peptidome: Quantitative Mass Spectrometry Reveals Anatomically Specific Patterns of Cocaine-Regulated Peptide Changes. ACS Chem Neurosci 2025; 16:128-140. [PMID: 39810605 PMCID: PMC11736046 DOI: 10.1021/acschemneuro.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Addiction to psychostimulants, including cocaine, causes widespread morbidity and mortality and is a major threat to global public health. Currently, no pharmacotherapies can successfully treat psychostimulant addiction. The neuroactive effects of cocaine and other psychostimulants have been studied extensively with respect to their modulation of monoamine systems (particularly dopamine); effects on neuropeptide systems have received less attention. Here, we employed mass spectrometry (MS) methods to characterize cocaine-induced peptidomic changes in the rat brain. Label-free peptidomic analysis using liquid chromatography coupled with tandem MS (LC-MS/MS) was used to describe the dynamic changes of endogenous peptides in five brain regions (nucleus accumbens, dorsal striatum, prefrontal cortex, amygdala, and hypothalamus) following an acute systemic cocaine challenge. The improved sensitivity and specificity of this method, coupled with quantitative assessment, enabled the identification of 1376 peptides derived from 89 protein precursors. Our data reveal marked, region-specific changes in peptide levels in the brain induced by acute cocaine exposure, with peptides in the cholecystokinin and melanin-concentrating hormone families being significantly affected. These findings offer new insights into the region-specific effects of cocaine and could pave the way for developing new therapies to treat substance use disorders and related psychiatric conditions.
Collapse
Affiliation(s)
- Gaoyuan Lu
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Pingli Wei
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Vu Ngoc Huong Tran
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Brian A Baldo
- Department of Psychiatry, University of Wisconsin─Madison, Madison, Wisconsin 53719, United States
- Neuroscience Training Program, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
11
|
Gunasekaran S, Moffat JJ, Epstein JD, Phamluong K, Ehinger Y, Ron D. BDNF in Ventrolateral Orbitofrontal Cortex to Dorsolateral Striatum Circuit Moderates Alcohol Consumption and Gates Alcohol Habit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632255. [PMID: 39868120 PMCID: PMC11761066 DOI: 10.1101/2025.01.09.632255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BDNF plays a crucial role in shaping the structure and function of neurons. BDNF signaling in the dorsolateral striatum (DLS) is part of an endogenous pathway that protects against the development of alcohol use disorder (AUD). Dysregulation of BDNF levels in the cortex or dysfunction of BDNF/TrkB signaling in the DLS results in the escalation of alcohol drinking and compulsive alcohol use. The major source of BDNF in the striatum is the prefrontal cortex. We identified a small ensemble of BDNF-positive neurons in the ventrolateral orbitofrontal cortex (vlOFC), a region involved in AUD, that extend axonal projections to the DLS. We speculated that BDNF in vlOFC-to-DLS circuit may play a role in limiting alcohol drinking and that heavy alcohol use disrupts this protective pathway. We found that BDNF expression is reduced in the vlOFC of male but not female mice after long-term cycles of binge alcohol drinking and withdrawal. We discovered that overexpression of BDNF in vlOFC-to-DLS but not in vlOFC-to-dorsomedial striatum (DMS) or M2 motor cortex-to-DLS circuit reduces alcohol but not sucrose intake and preference. The DLS plays a major role in habitual behaviors. We hypothesized that BDNF in vlOFC-to-DLS circuitry controls alcohol intake by gating habitual alcohol seeking. We found that BDNF over-expression in vlOFC-to-DLS circuit and systemic administration of BDNF receptor TrkB agonist, LM22A-4, biases habitually trained mice towards goal-directed alcohol seeking. Together, our data suggest that BDNF in a small ensemble of vlOFC-to-DLS neurons gates alcohol intake by attenuating habitual alcohol seeking.
Collapse
|
12
|
Rezai A, Thompson-Lake DGY, D'Haese PF, Meyer N, Ranjan M, Farmer D, Finomore V, Marton JL, Hodder S, Carpenter J, Bhagwat A, Berry J, Tirumalai P, Adams G, Arsiwala TA, Blanke O, Mahoney JJ. Focused Ultrasound Neuromodulation: Exploring a Novel Treatment for Severe Opioid Use Disorder. Biol Psychiatry 2025:S0006-3223(25)00023-X. [PMID: 39798597 DOI: 10.1016/j.biopsych.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Opioid use disorder remains a critical health care challenge because current therapeutic strategies have limitations that result in high recurrence and deaths. We evaluated the safety and feasibility of focused ultrasound (FUS) neuromodulation to reduce substance cravings and use in severe opioid and co-occurring substance use disorders. METHODS This prospective, open-label, single-arm study enrolled 8 participants with severe, primary opioid use disorder with co-occurring substance use. Participants received a 20-minute session of low-intensity FUS (220 kHz) neuromodulation targeting the bilateral nucleus accumbens (NAc) with follow-up for 90 days. Outcome measures included safety, tolerability, feasibility, and effects of FUS neuromodulation by assessment of adverse events, substance craving, substance use (self-report, urine toxicology), mood, neurological examinations, and anatomical and functional magnetic resonance imaging (fMRI) at 1, 7, 30, 60, and 90 days post-FUS. RESULTS No serious device-related adverse events or imaging abnormalities were observed. Following FUS, participants demonstrated immediate (p < .002) and sustained (p < .0001; mean 91%) reductions in cue-induced opioid craving, with median ratings on a scale from 0 to 10 as follows: 6.9 (pre-FUS) versus 0.6 (90-day post-FUS). Craving reductions were similar for other illicit substances (e.g., methamphetamine [p < .002], cocaine [p < .02]). Decreases in opioid and co-occurring substance use were confirmed by urine toxicology. Seven participants remained abstinent at 30 days; 5 participants remained abstinent throughout 90 days post-FUS. Resting-state fMRI demonstrated decreased connectivity from the NAc to reward and cognitive regions post-FUS. CONCLUSIONS NAc FUS neuromodulation is safe and a potential adjunctive treatment for reducing drug cravings and use in individuals with severe opioid and co-occurring substance use disorders. Larger, sham-controlled, randomized studies are warranted.
Collapse
Affiliation(s)
- Ali Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Daisy G Y Thompson-Lake
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Pierre-François D'Haese
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Nathalie Meyer
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Swiss Federal Institute of Technology, Geneva, Switzerland
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Daniel Farmer
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia; Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Victor Finomore
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Jennifer L Marton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Sally Hodder
- West Virginia Clinical & Translational Science Institute, West Virginia University, Morgantown, West Virginia
| | - Jeffrey Carpenter
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Aniruddha Bhagwat
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - James Berry
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia; Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Padma Tirumalai
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Geoffrey Adams
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Tasneem A Arsiwala
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute, Swiss Federal Institute of Technology, Geneva, Switzerland
| | - James J Mahoney
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia; Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
13
|
Domingues AV, Carvalho TTA, Martins GJ, Correia R, Coimbra B, Bastos-Gonçalves R, Wezik M, Gaspar R, Pinto L, Sousa N, Costa RM, Soares-Cunha C, Rodrigues AJ. Dynamic representation of appetitive and aversive stimuli in nucleus accumbens shell D1- and D2-medium spiny neurons. Nat Commun 2025; 16:59. [PMID: 39746997 PMCID: PMC11696804 DOI: 10.1038/s41467-024-55269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues. Notably, D1- and D2-MSNs were similarly co-recruited during appetitive and aversive conditioning, supporting a concurrent role in associative learning. Conversely, when contingencies changed, there was an asymmetric response in the NAc, with more pronounced changes in the activity of D2-MSNs. Optogenetic manipulation of D2-MSNs provided causal evidence of the necessity of this population in the extinction of aversive associations. Our results reveal how NAc shell neurons encode valence, Pavlovian associations and their extinction, and unveil mechanisms underlying motivated behaviors.
Collapse
Affiliation(s)
- Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tawan T A Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gabriela J Martins
- Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Raquel Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marcelina Wezik
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Gaspar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, USA
- Allen Institute, Seattle, WA, USA
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
14
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA Receptor Co-Regulation of Protein Translation in Cultured Nucleus Accumbens Neurons. Neurochem Res 2024; 50:27. [PMID: 39567459 PMCID: PMC11888153 DOI: 10.1007/s11064-024-04283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Protein translation is essential for some forms of synaptic plasticity. Here we used fluorescent noncanonical amino acid tagging (FUNCAT) to examine whether dopamine modulates protein translation in cultured nucleus accumbens (NAc) medium spiny neurons (MSN). These neurons were co-cultured with cortical neurons to restore excitatory synapses. We measured translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 h). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers. Supporting this, immunocytochemistry and proximity ligation assays revealed D1R/NMDAR heteromers on NAc cells both in vitro and in vivo, confirming previous results. Furthermore, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390 + APV. These results suggest that: (1) excitatory transmission stimulates translation in NAc MSNs, (2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and (3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R Zimbelman
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: UCLA Center for Cannabis and Cannabinoids, Semel Institute for Neuroscience & Human Behavior, Los Angeles, CA, 90025, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Michael T Stefanik
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA.
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
15
|
Du Y, Zhang J, Cao D, Yang W, Li J, Li D, Song M, Yang Z, Zhang J, Jiang T, Liu J. Neuro-immune communication at the core of craving-associated brain structural network reconfiguration in methamphetamine users. Neuroimage 2024; 301:120883. [PMID: 39384079 DOI: 10.1016/j.neuroimage.2024.120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
Methamphetamine (MA) use disorder is a chronic neurotoxic brain disease characterized by a high risk of relapse driven by intense cravings. However, the neurobiological signatures of cravings remain unclear, limiting the effectiveness of various treatment methods. Diffusion MRI (dMRI) scans from 62 MA users and 57 healthy controls (HC) were used in this study. The MA users were longitudinally followed up during their period of long-term abstinence (duration of long-term abstinence: 347.52±99.25 days). We systematically quantified the control ability of each brain region for craving-associated state transitions using network control theory from a causal perspective. Craving-associated structural alterations (CSA) were investigated through multivariate group comparisons and biological relevance analysis. The neural mechanisms underlying CSA were elucidated using transcriptomic and neurochemical analyses. We observed that long-term abstinence-induced structural alterations significantly influenced the state transition energy involved in the cognitive control response to external information, which correlated with changes in craving scores (r ∼ 0.35, P <0.01). Our causal network analysis further supported the crucial role of the prefrontal cortex (PFC) in craving mechanisms. Notably, while the PFC is central to the craving, the CSAs were distributed widely across multiple brain regions (PFDR<0.05), with strong alterations in somatomotor regions (PFDR<0.05) and moderate alterations in high-level association networks (PFDR<0.05). Additionally, transcriptomic, chemical compounds, cell-type analyses, and molecular imaging collectively highlight the influence of neuro-immune communication on human craving modulation. Our results offer an integrative, multi-scale perspective on unraveling the neural underpinnings of craving and suggest that neuro-immune signaling may be a promising target for future human addiction therapeutics.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Jiaqi Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dan Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Jin Li
- School of Psychology, Capital Normal University, Beijing 100048, PR China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, Hunan 410138, PR China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, Hunan Province, PR China.
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Changsha, Hunan 410011, China.
| |
Collapse
|
16
|
Hu YB, Deng X, Liu L, Cao CC, Su YW, Gao ZJ, Cheng X, Kong D, Li Q, Shi YW, Wang XG, Ye X, Zhao H. Distinct roles of excitatory and inhibitory neurons in the medial prefrontal cortex in the expression and reconsolidation of methamphetamine-associated memory in male mice. Neuropsychopharmacology 2024; 49:1827-1838. [PMID: 38730034 PMCID: PMC11473735 DOI: 10.1038/s41386-024-01879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Methamphetamine, a commonly abused drug, is known for its high relapse rate. The persistence of addictive memories associated with methamphetamine poses a significant challenge in preventing relapse. Memory retrieval and subsequent reconsolidation provide an opportunity to disrupt addictive memories. However, the key node in the brain network involved in methamphetamine-associated memory retrieval has not been clearly defined. In this study, using the conditioned place preference in male mice, whole brain c-FOS mapping and functional connectivity analysis, together with chemogenetic manipulations of neural circuits, we identified the medial prefrontal cortex (mPFC) as a critical hub that integrates inputs from the retrosplenial cortex and the ventral tegmental area to support both the expression and reconsolidation of methamphetamine-associated memory during its retrieval. Surprisingly, with further cell-type specific analysis and manipulation, we also observed that methamphetamine-associated memory retrieval activated inhibitory neurons in the mPFC to facilitate memory reconsolidation, while suppressing excitatory neurons to aid memory expression. These findings provide novel insights into the neural circuits and cellular mechanisms involved in the retrieval process of addictive memories. They suggest that targeting the balance between excitation and inhibition in the mPFC during memory retrieval could be a promising treatment strategy to prevent relapse in methamphetamine addiction.
Collapse
Affiliation(s)
- Yu-Bo Hu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Deng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lu Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Can-Can Cao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ya-Wen Su
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhen-Jie Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Deshan Kong
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qi Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
17
|
Li KX, Fan L, Wang H, Tian Y, Zhang S, Hu Q, Liu F, Chen H, Hou H. A synonymous mutation of rs1137070 cause the mice Maoa gene transcription and translation to decrease. Front Mol Neurosci 2024; 17:1406708. [PMID: 39359688 PMCID: PMC11446106 DOI: 10.3389/fnmol.2024.1406708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 10/04/2024] Open
Abstract
The Monoamine Oxidase-A (MAOA) EcoRV polymorphism (rs1137070) is a unique synonymous mutation (c.1409 T > C) within the MAOA gene, which plays a crucial role in Maoa gene expression and function. This study aimed to explore the relationship between the mouse Maoa rs1137070 genotype and differences in MAOA gene expression. Mice carrying the CC genotype of rs1137070 exhibited a significantly lower Maoa expression level, with an odds ratio of 2.44 compared to the T carriers. Moreover, the wild-type TT genotype of MAOA demonstrated elevated mRNA expression and a longer half-life. We also delved into the significant expression and structural disparities among genotypes. Furthermore, it was evident that different aspartic acid synonymous codons within Maoa influenced both MAOA expression and enzyme activity, highlighting the association between rs1137070 and MAOA. To substantiate these findings, a dual-luciferase reporter assay confirmed that GAC was more efficient than GAT binding. Conversely, the synonymous mutation altered Maoa gene expression in individual mice. An RNA pull-down assay suggested that this alteration could impact the interaction with RNA-binding proteins. In summary, our results illustrate that synonymous mutations can indeed regulate the downregulation of gene expression, leading to changes in MAOA function and their potential association with neurological-related diseases.
Collapse
Affiliation(s)
- Kai Xin Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lei Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Yushan Tian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Sen Zhang
- Department of Bioengineering, School of Chemical Engineering, Northwest University, Xi’an, China
| | - Qingyuan Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Fanglin Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
| |
Collapse
|
18
|
Shi W, Li M, Zhang T, Yang C, Zhao D, Bai J. GABA system in the prefrontal cortex involved in psychostimulant addiction. Cereb Cortex 2024; 34:bhae319. [PMID: 39098820 DOI: 10.1093/cercor/bhae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Drug addiction is a chronic and relapse brain disorder. Psychostimulants such as cocaine and amphetamine are highly addictive drugs. Abuse drugs target various brain areas in the nervous system. Recent studies have shown that the prefrontal cortex (PFC) plays a key role in regulating addictive behaviors. The PFC is made up of excitatory glutamatergic cells and gamma-aminobutyric acid (GABAergic) interneurons. Recently, studies showed that GABA level was related with psychostimulant addiction. In this review, we will introduce the role and mechanism of GABA and γ-aminobutyric acid receptors (GABARs) of the PFC in regulating drug addiction, especially in psychostimulant addiction.
Collapse
Affiliation(s)
- Wenjing Shi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Minyu Li
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Ting Zhang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Chunlong Yang
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Dongdong Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, No. 727 Jingming South Road, Kunming 650500, Yunnan, China
| |
Collapse
|
19
|
Giannone F, Ebrahimi C, Endrass T, Hansson AC, Schlagenhauf F, Sommer WH. Bad habits-good goals? Meta-analysis and translation of the habit construct to alcoholism. Transl Psychiatry 2024; 14:298. [PMID: 39030169 PMCID: PMC11271507 DOI: 10.1038/s41398-024-02965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 07/21/2024] Open
Abstract
Excessive alcohol consumption remains a global public health crisis, with millions suffering from alcohol use disorder (AUD, or simply "alcoholism"), leading to significantly reduced life expectancy. This review examines the interplay between habitual and goal-directed behaviors and the associated neurobiological changes induced by chronic alcohol exposure. Contrary to a strict habit-goal dichotomy, our meta-analysis of the published animal experiments combined with a review of human studies reveals a nuanced transition between these behavioral control systems, emphasizing the need for refined terminology to capture the probabilistic nature of decision biases in individuals with a history of chronic alcohol exposure. Furthermore, we distinguish habitual responding from compulsivity, viewing them as separate entities with diverse roles throughout the stages of the addiction cycle. By addressing species-specific differences and translational challenges in habit research, we provide insights to enhance future investigations and inform strategies for combatting AUD.
Collapse
Affiliation(s)
- F Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - C Ebrahimi
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - T Endrass
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - A C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Schlagenhauf
- Department of Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin & St. Hedwig Hospital, 10117, Berlin, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, 68159, Mannheim, Germany.
| |
Collapse
|
20
|
Sakai JT, Tanabe J, Battula S, Zipperly M, Mikulich-Gilbertson SK, Kern DS, Thompson JA, Raymond K, Gerecht PD, Foster K, Abosch A. Deep brain stimulation for the treatment of substance use disorders: a promising approach requiring caution. Front Psychiatry 2024; 15:1435109. [PMID: 39071229 PMCID: PMC11272460 DOI: 10.3389/fpsyt.2024.1435109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Substance use disorders are prevalent, causing extensive morbidity and mortality worldwide. Evidence-based treatments are of low to moderate effect size. Growth in the neurobiological understanding of addiction (e.g., craving) along with technological advancements in neuromodulation have enabled an evaluation of neurosurgical treatments for substance use disorders. Deep brain stimulation (DBS) involves surgical implantation of leads into brain targets and subcutaneous tunneling to connect the leads to a programmable implanted pulse generator (IPG) under the skin of the chest. DBS allows direct testing of neurobiologically-guided hypotheses regarding the etiology of substance use disorders in service of developing more effective treatments. Early studies, although with multiple limitations, have been promising. Still the authors express caution regarding implementation of DBS studies in this population and emphasize the importance of safeguards to ensure patient safety and meaningful study results. In this perspectives article, we review lessons learned through the years of planning an ongoing trial of DBS for methamphetamine use disorder.
Collapse
Affiliation(s)
- Joseph T. Sakai
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jody Tanabe
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Sharonya Battula
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - Morgan Zipperly
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Drew S. Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - John A. Thompson
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kristen Raymond
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - Pamela David Gerecht
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katrina Foster
- National Institute on Drug Abuse, Bethesda, MD, United States
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
21
|
Gooding SW, Lewis E, Chau C, Sandhu S, Glienke J, Whistler JL. Nucleus accumbens sub-regions experience distinct dopamine release responses following acute and chronic morphine exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601282. [PMID: 39005415 PMCID: PMC11244850 DOI: 10.1101/2024.06.28.601282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
It is well established that dopamine neurons of the ventral tegmental area (VTA) play a critical role in reward and aversion as well as pathologies including drug dependence and addiction. The distinct effects of acute and chronic opioid exposure have been previously characterized at VTA synapses. Recent work suggests that distinct VTA projections that target the medial and lateral shell of the nucleus accumbens (NAc), may play opposing roles in modulating behavior. It is possible that these two anatomically and functionally distinct pathways also have disparate roles in opioid reward, tolerance, and withdrawal in the brain. In this study we monitored dopamine release in the medial or lateral shell of the NAc of male mice during a week-long morphine treatment paradigm. We measured dopamine release in response to an intravenous morphine injection both acutely and following a week of repeated morphine. We also measured dopamine in response to a naloxone injection both prior to and following repeated morphine treatment. Morphine induced a transient increase in dopamine in the medial NAc shell that was much larger than the slower rise observed in the lateral shell. Surprisingly, chronic morphine treatment induced a sensitization of the medial dopamine response to morphine that opposed a diminished response observed in the saline-treated control group. This study expands on our current understanding of the medial NAc shell as hub of opioid-induced dopamine fluctuation. It also highlights the need for future opioid studies to appreciate the heterogeneity of dopamine neurons. Significance Statement The social and economic consequences of the opioid epidemic are tragic and far-reaching. Yet, opioids are indisputably necessary in clinical settings where they remain the most useful treatment for severe pain. To combat this crisis, we must improve our understanding of opioid function in the brain, particularly the neural mechanisms that underlie opioid dependence and addictive behaviors. This study uses fiber photometry to examine dopamine changes that occur in response to repeated morphine, and morphine withdrawal, at multiple stages of a longitudinal opioid-dependence paradigm. We reveal key differences in how dopamine levels respond to opioid administration in distinct sub-regions of the ventral striatum and lay a foundation for future opioid research that appreciates our contemporary understanding of the dopamine system.
Collapse
Affiliation(s)
| | - Elinor Lewis
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Christine Chau
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Suhail Sandhu
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Julianna Glienke
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
22
|
Chaudun F, Python L, Liu Y, Hiver A, Cand J, Kieffer BL, Valjent E, Lüscher C. Distinct µ-opioid ensembles trigger positive and negative fentanyl reinforcement. Nature 2024; 630:141-148. [PMID: 38778097 PMCID: PMC11153127 DOI: 10.1038/s41586-024-07440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.
Collapse
Affiliation(s)
- Fabrice Chaudun
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurena Python
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yu Liu
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Agnes Hiver
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jennifer Cand
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brigitte L Kieffer
- INSERM U1114, University of Strasbourg Institute for Advanced Study, Strasbourg, France
| | - Emmanuel Valjent
- IGF, Université de Montpellier CNRS, Inserm, Montpellier, France
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
23
|
Markovic T, Higginbotham J, Ruyle B, Massaly N, Yoon HJ, Kuo CC, Kim JR, Yi J, Garcia JJ, Sze E, Abt J, Teich RH, Dearman JJ, McCall JG, Morón JA. A locus coeruleus to dorsal hippocampus pathway mediates cue-induced reinstatement of opioid self-administration in male and female rats. Neuropsychopharmacology 2024; 49:915-923. [PMID: 38374364 PMCID: PMC11039689 DOI: 10.1038/s41386-024-01828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.
Collapse
Affiliation(s)
- Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jessica Higginbotham
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian Ruyle
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jiwon Yi
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeniffer J Garcia
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric Sze
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Julian Abt
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Rachel H Teich
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Joanna J Dearman
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Pain Center, Washington University in St Louis, St. Louis, MO, USA
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis, St. Louis, MO, USA
| | - Jose A Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA.
- Pain Center, Washington University in St Louis, St. Louis, MO, USA.
- School of Medicine, Washington University in St Louis, St. Louis, MO, USA.
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
24
|
Millan EZ, McNally GP. Reprioritizing motivations in addiction. Science 2024; 384:271. [PMID: 38669580 DOI: 10.1126/science.ado9989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Drugs of abuse alter neuronal signaling.
Collapse
Affiliation(s)
- E Zayra Millan
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Debove I, Paschen S, Amstutz D, Cardoso F, Corvol JC, Fung VSC, Lang AE, Martinez Martin P, Rodríguez-Oroz MC, Weintraub D, Krack P, Deuschl G. Management of Impulse Control and Related Disorders in Parkinson's Disease: An Expert Consensus. Mov Disord 2024; 39:235-248. [PMID: 38234035 DOI: 10.1002/mds.29700] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Impulse-control and related behavioral disorders (ICBDs) significantly impact the lives of Parkinson's disease (PD) patients and caregivers, with lasting consequences if undiagnosed and untreated. While ICBD pathophysiology and risk factors are well-studied, a standardized severity definition and treatment evidence remain elusive. OBJECTIVE This work aimed to establish international expert consensus on ICBD treatment strategies. To comprehensively address diverse treatment availabilities, experts from various continents were included. METHODS From 2021 to 2023, global movement disorders specialists engaged in a Delphi process. A core expert group initiated surveys, involving a larger panel in three iterations, leading to refined severity definitions and treatment pathways. RESULTS Experts achieved consensus on defining ICBD severity, emphasizing regular PD patient screenings for early detection. General treatment recommendations focused on continuous monitoring, collaboration with significant others, and seeking specialist advice for legal or financial challenges. For mild to severe ICBDs, gradual reduction in dopamine agonists was endorsed, followed by reductions in other PD medications. Second-line treatment strategies included diverse approaches like reversing the last medication change, cognitive behavior therapy, subthalamic nucleus deep brain stimulation, and specific medications like quetiapine, clozapine, and antidepressants. The panel reached consensus on distinct treatment pathways for punding and dopamine dysregulation syndrome, formulating therapy recommendations. Comprehensive discussions addressed management strategies for the exacerbation of either motor or non-motor symptoms following the proposed treatments. CONCLUSION The consensus offers in-depth insights into ICBD management, presenting clear severity criteria and expert consensus treatment recommendations. The study highlights the critical need for further research to enhance ICBD management. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ines Debove
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Steffen Paschen
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Deborah Amstutz
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Christophe Corvol
- Department of Neurology, Sorbonne Université, Paris Brain Institute (ICM), Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Pablo Martinez Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | | | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parkinson's Disease Research, Education and Clinical Center (PADRECC and MIRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Paul Krack
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
26
|
Clarke-Williams CJ, Lopes-Dos-Santos V, Lefèvre L, Brizee D, Causse AA, Rothaermel R, Hartwich K, Perestenko PV, Toth R, McNamara CG, Sharott A, Dupret D. Coordinating brain-distributed network activities in memory resistant to extinction. Cell 2024; 187:409-427.e19. [PMID: 38242086 PMCID: PMC7615560 DOI: 10.1016/j.cell.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/13/2023] [Accepted: 12/13/2023] [Indexed: 01/21/2024]
Abstract
Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15-25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression.
Collapse
Affiliation(s)
- Charlie J Clarke-Williams
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| | - Vítor Lopes-Dos-Santos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Laura Lefèvre
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Demi Brizee
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Adrien A Causse
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Roman Rothaermel
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Katja Hartwich
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Pavel V Perestenko
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Robert Toth
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK.
| |
Collapse
|
27
|
Ahmed R, Zyla S, Hammond N, Blum K, Thanos PK. The Role of Estrogen Signaling and Exercise in Drug Abuse: A Review. Clin Pract 2024; 14:148-163. [PMID: 38248436 PMCID: PMC10801537 DOI: 10.3390/clinpract14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Discovering how sex differences impact the efficacy of exercise regimens used for treating drug addiction is becoming increasingly important. Estrogen is a hormone believed to explain a large portion of sex differences observed during drug addiction, and why certain exercise regimens are not equally effective between sexes in treatment. Addiction is currently a global hindrance to millions, many of whom are suffering under the influence of their brain's intrinsic reward system coupled with external environmental factors. Substance abuse disorders in the U.S. alone cost billions of dollars annually. REVIEW SUMMARY Studies involving the manipulation of estrogen levels in female rodents, primarily via ovariectomy, highlight its impact regarding drug addiction. More specifically, female rodents with higher estrogen levels during the estrus phase increase cocaine consumption, whereas those in the non-estrus phase (low estrogen levels) decrease cocaine consumption. If estrogen is reintroduced, self-administration increases once again. Exercise has been proven to decrease relapse tendency, but its effect on estrogen levels is not fully understood. CONCLUSIONS Such findings and results discussed in this review suggest that estrogen influences the susceptibility of females to relapse. Therefore, to improve drug-abuse-related treatment, exercise regimens for females should be generated based on key sex differences with respect to males.
Collapse
Affiliation(s)
- Rania Ahmed
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA;
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA; (S.Z.); (N.H.)
| | - Samuel Zyla
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA; (S.Z.); (N.H.)
| | - Nikki Hammond
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA; (S.Z.); (N.H.)
| | - Kenneth Blum
- Division of Addiction Research Education, Center for Sports, Exercise and Mental Health, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Panayotis K. Thanos
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA;
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA; (S.Z.); (N.H.)
| |
Collapse
|
28
|
Acree L. Endogenous and Exogenous Opioids: Role in Substance Use Disorders. ADVANCES IN NEUROBIOLOGY 2024; 35:267-285. [PMID: 38874728 DOI: 10.1007/978-3-031-45493-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Opioid use disorders have become an epidemic in recent years with rates nearly quadrupling since 1999 according to the US Centers for Disease Control and Prevention (Centers for Disease Control, Wide-ranging online data for epidemiologic research (WONDER). CDC, National Center for Health Statistics, Atlanta. Retrieved December 19, 2017, from http://wonder.cdc.gov, 2016). To understand substance use disorder (SUD) as a disease, many aspects must be studied including the circuitry in the brain, adaptations to neuronal circuitry and neurotransmitters, genetic variations increasing the risk for SUD, and treatments available for SUD. The mechanism in which an exogenous opioid may cause SUD is nearly identical to the mechanism of an endogenous opioid. This chapter reviews the clinical and epidemiological aspects of opioid use disorder, as well as the interactions between endogenous and exogenous opioids. Additionally, this chapter discusses current scientific data regarding genetic variations and mechanisms within brain circuitry and the role of endogenous opioids in substance use disorders generally (and opioid use disorder specifically). Future applications of these data to treatment of substance use disorders are also discussed.
Collapse
Affiliation(s)
- Lindsay Acree
- Department of Pharmacy Practice, University of Charleston School of Pharmacy, Charleston, WV, USA.
| |
Collapse
|
29
|
Widge AS. Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity. Neuropsychopharmacology 2024; 49:138-149. [PMID: 37415081 PMCID: PMC10700701 DOI: 10.1038/s41386-023-01643-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Deep brain stimulation (DBS) is an invasive approach to precise modulation of psychiatrically relevant circuits. Although it has impressive results in open-label psychiatric trials, DBS has also struggled to scale to and pass through multi-center randomized trials. This contrasts with Parkinson disease, where DBS is an established therapy treating thousands of patients annually. The core difference between these clinical applications is the difficulty of proving target engagement, and of leveraging the wide range of possible settings (parameters) that can be programmed in a given patient's DBS. In Parkinson's, patients' symptoms change rapidly and visibly when the stimulator is tuned to the correct parameters. In psychiatry, those same changes take days to weeks, limiting a clinician's ability to explore parameter space and identify patient-specific optimal settings. I review new approaches to psychiatric target engagement, with an emphasis on major depressive disorder (MDD). Specifically, I argue that better engagement may come by focusing on the root causes of psychiatric illness: dysfunction in specific, measurable cognitive functions and in the connectivity and synchrony of distributed brain circuits. I overview recent progress in both those domains, and how it may relate to other technologies discussed in companion articles in this issue.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
30
|
Kerr PL, Gregg JM. The Roles of Endogenous Opioids in Placebo and Nocebo Effects: From Pain to Performance to Prozac. ADVANCES IN NEUROBIOLOGY 2024; 35:183-220. [PMID: 38874724 DOI: 10.1007/978-3-031-45493-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Placebo and nocebo effects have been well documented for nearly two centuries. However, research has only relatively recently begun to explicate the neurobiological underpinnings of these phenomena. Similarly, research on the broader social implications of placebo/nocebo effects, especially within healthcare delivery settings, is in a nascent stage. Biological and psychosocial outcomes of placebo/nocebo effects are of equal relevance. A common pathway for such outcomes is the endogenous opioid system. This chapter describes the history of placebo/nocebo in medicine; delineates the current state of the literature related to placebo/nocebo in relation to pain modulation; summarizes research findings related to human performance in sports and exercise; discusses the implications of placebo/nocebo effects among diverse patient populations; and describes placebo/nocebo influences in research related to psychopharmacology, including the relevance of endogenous opioids to new lines of research on antidepressant pharmacotherapies.
Collapse
Affiliation(s)
- Patrick L Kerr
- West Virginia University School of Medicine-Charleston, Charleston, WV, USA.
| | - John M Gregg
- Department of Surgery, VTCSOM, Blacksburg, VA, USA
| |
Collapse
|
31
|
Recław R, Lachowicz M, Chmielowiec K, Chmielowiec J, Strońska-Pluta A, Kowalski MT, Kudliński B, Grzywacz A. Analysis of the Methylation Level of the DAT1 Dopamine Transporter Gene in Patients Addicted to Stimulants, Taking into Account an Analysis of Personality Traits. Int J Mol Sci 2023; 25:532. [PMID: 38203701 PMCID: PMC10779366 DOI: 10.3390/ijms25010532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Drug addiction is a chronic biochemical drug use disorder that affects the human brain and behavior and leads to the uncontrolled use of legal or illicit drugs. It has been shown that three factors are involved in the development of addiction: genetic factors, a diverse environment, and the effect of medication on gene expression. The comprehensive approach and holistic analysis of the problem are due to the multigenic and multifactorial nature of addiction. Dopamine, one of the major neurotransmitters in the brain, is believed to be the "culprit" that leads to a drug abuse-induced "high". That is why, in our research, we focused mainly on the genes related to dopaminergic reuptake. In the present study, we chose methylation of the DAT1 dopamine transporter gene based on molecular reasons related to the dopaminergic theory of addiction. This study included two groups: 226 stimulant-dependent and 290 non-stimulant-dependent subjects. The analysis consisted of a case-control comparison of people addicted to psychostimulants compared to a control group of healthy and non-addicted people. There were differences in the levels of statistical significance between the groups. Our research shows lower methylation of islands 1, 9, and 14 in addicted people and greater methylation of islands 32 and 33. The difference in individual CpG methylation islands of the gene under study provides valuable information about the DNA methylation process in patients addicted to psychostimulants. Pearson's linear correlation analysis in stimulant dependence showed a negative correlation between total methylation island levels and the NEO-FFI Neuroticism scale. In subjects with neuroticism, the methylation level was statistically significantly lower. Pearson's linear correlation analysis of stimulant-dependent subjects showed a positive correlation between total methylation island levels and the NEO-FFI Openness scale and the NEO-FFI Conscientiousness scale.
Collapse
Affiliation(s)
- Remigiusz Recław
- Foundation Strong in the Spirit, 60 Sienkiewicza St., 90-058 Łodz, Poland;
| | - Milena Lachowicz
- Department of Psychology, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1 St., 80-336 Gdansk, Poland;
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Gora, Poland; (K.C.); (J.C.)
| | - Aleksandra Strońska-Pluta
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Michał Tomasz Kowalski
- Clinical Department of Cardiology, Nowa Sól Multidisciplinary Hospital, 67-100 Nowa Sol, Poland;
| | - Bartosz Kudliński
- Department of Emergency Medicine, Anesthesiology and Intensive Care in K. Marcinkowski University Hospital, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Gora, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| |
Collapse
|
32
|
Martín-González E, Prados-Pardo Á, Sawiak SJ, Dalley JW, Padro D, Ramos-Cabrer P, Mora S, Moreno-Montoya M. Mapping the neuroanatomical abnormalities in a phenotype of male compulsive rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:19. [PMID: 37932782 PMCID: PMC10626819 DOI: 10.1186/s12993-023-00221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Compulsivity is considered a transdiagnostic dimension in obsessive-compulsive and related disorders, characterized by heterogeneous cognitive and behavioral phenotypes associated with abnormalities in cortico-striatal-thalamic-cortical circuitry. The present study investigated the structural morphology of white and gray matter in rats selected for low- (LD) and high- (HD) compulsive drinking behavior on a schedule-induced polydipsia (SIP) task. Regional brain morphology was assessed using ex-vivo high-resolution magnetic resonance imaging (MRI). Voxel-based morphometry of segmented MRI images revealed larger white matter volumes in anterior commissure and corpus callosum of HD rats compared with LD rats. HD rats also showed significantly larger regional volumes of dorsolateral orbitofrontal cortex, striatum, amygdala, hippocampus, midbrain, sub-thalamic nucleus, and cerebellum. By contrast, the medial prefrontal cortex was significantly smaller in HD rats compared with LD rats with no significant group differences in whole brain, ventricular, or cerebrospinal fluid volumes. These findings show that limbic cortico-basal ganglia structures implicated in impulse control disorders are distinct in rats that are vulnerable to develop compulsive behavior. Such abnormalities may be relevant to the etiology of compulsive disorders in humans.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Ángeles Prados-Pardo
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Stephen J Sawiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Daniel Padro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Santiago Mora
- Department of Neuroscience, University of Copenhagen Panum Institute, Copenhagen, Denmark
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Carretera de Sacramento s/n, 04120, Almería, Spain.
| |
Collapse
|
33
|
Deng L, Wu L, Gao R, Xu X, Chen C, Liu J. Non-Opioid Anesthetics Addiction: A Review of Current Situation and Mechanism. Brain Sci 2023; 13:1259. [PMID: 37759860 PMCID: PMC10526861 DOI: 10.3390/brainsci13091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Drug addiction is one of the major worldwide health problems, which will have serious adverse consequences on human health and significantly burden the social economy and public health. Drug abuse is more common in anesthesiologists than in the general population because of their easier access to controlled substances. Although opioids have been generally considered the most commonly abused drugs among anesthesiologists and nurse anesthetists, the abuse of non-opioid anesthetics has been increasingly severe in recent years. The purpose of this review is to provide an overview of the clinical situation and potential molecular mechanisms of non-opioid anesthetics addiction. This review incorporates the clinical and biomolecular evidence supporting the abuse potential of non-opioid anesthetics and the foreseeable mechanism causing the non-opioid anesthetics addiction phenotypes, promoting a better understanding of its pathogenesis and helping to find effective preventive and curative strategies.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Zanella D, Smith NK, Hardaway JA, Buchanan AM, Mullins CH, Galli A, Carter AM. Bile acids modulate reinstatement of cocaine conditioned place preference and accumbal dopamine dynamics without compromising appetitive learning. Sci Rep 2023; 13:13359. [PMID: 37591972 PMCID: PMC10435481 DOI: 10.1038/s41598-023-40456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
Psychostimulants target the dopamine transporter (DAT) to elicit their psychomotor actions. Bile acids (BAs) can also bind to DAT and reduce behavioral responses to cocaine, suggesting a potential therapeutic application of BAs in psychostimulant use disorder. Here, we investigate the potential of BAs to decrease drug-primed reinstatement when administered during an abstinence phase. To do this, after successful development of cocaine-associated contextual place preference (cocaine CPP), cocaine administration was terminated, and animals treated with vehicle or obeticholic acid (OCA). When preference for the cocaine-associated context was extinguished, mice were challenged with a single priming dose of cocaine, and reinstatement of cocaine-associated contextual preference was measured. Animals treated with OCA demonstrate a significantly lower reinstatement for cocaine CPP. OCA also impairs the ability of cocaine to reduce the clearance rate of electrically stimulated dopamine release and diminishes the area under the curve (AUC) observed with amperometry. Furthermore, the AUC of the amperometric signal positively correlates with the reinstatement index. Using operant feeding devices, we demonstrate that OCA has no effect on contextual learning or motivation for natural rewards. These data highlight OCA as a potential therapeutic for cocaine use disorder.
Collapse
Affiliation(s)
- Daniele Zanella
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Nicholas K Smith
- Department of Biology, University of Pennsylvania, Philadelphia, USA
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Anna Marie Buchanan
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Clarence H Mullins
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Aurelio Galli
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Center for Inter-Systemic Networks and Enteric Medical Advances (UAB CINEMA), Birmingham, USA
| | - Angela M Carter
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, USA.
- Center for Inter-Systemic Networks and Enteric Medical Advances (UAB CINEMA), Birmingham, USA.
| |
Collapse
|
35
|
Singhal SM, Zell V, Faget L, Slosky LM, Barak LS, Caron MG, Pinkerton AB, Hnasko TS. Neurotensin receptor 1-biased ligand attenuates neurotensin-mediated excitation of ventral tegmental area dopamine neurons and dopamine release in the nucleus accumbens. Neuropharmacology 2023; 234:109544. [PMID: 37055008 PMCID: PMC10192038 DOI: 10.1016/j.neuropharm.2023.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 β-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.
Collapse
Affiliation(s)
- Sarthak M Singhal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Marc G Caron
- Departments of Cell Biology, Neurobiology and Medicine, Duke University, Durham, NC, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
36
|
Engeli EJE, Russo AG, Ponticorvo S, Zoelch N, Hock A, Hulka LM, Kirschner M, Preller KH, Seifritz E, Quednow BB, Esposito F, Herdener M. Accumbal-thalamic connectivity and associated glutamate alterations in human cocaine craving: A state-dependent rs-fMRI and 1H-MRS study. Neuroimage Clin 2023; 39:103490. [PMID: 37639901 PMCID: PMC10474092 DOI: 10.1016/j.nicl.2023.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
Craving is a core symptom of cocaine use disorder and a major factor for relapse risk. To date, there is no pharmacological therapy to treat this disease or at least to alleviate cocaine craving as a core symptom. In animal models, impaired prefrontal-striatal signalling leading to altered glutamate release in the nucleus accumbens appear to be the prerequisite for cocaine-seeking. Thus, those network and metabolic changes may constitute the underlying mechanisms for cocaine craving and provide a potential treatment target. In humans, there is recent evidence for corresponding glutamatergic alterations in the nucleus accumbens, however, the underlying network disturbances that lead to this glutamate imbalance remain unknown. In this state-dependent randomized, placebo-controlled, double-blinded, cross-over multimodal study, resting state functional magnetic resonance imaging in combination with small-voxel proton magnetic resonance spectroscopy (voxel size: 9.4 × 18.8 × 8.4 mm3) was applied to assess network-level and associated neurometabolic changes during a non-craving and a craving state, induced by a custom-made cocaine-cue film, in 18 individuals with cocaine use disorder and 23 healthy individuals. Additionally, we assessed the potential impact of a short-term challenge of N-acetylcysteine, known to normalize disturbed glutamate homeostasis and to thereby reduce cocaine-seeking in animal models of addiction, compared to a placebo. We found increased functional connectivity between the nucleus accumbens and the dorsolateral prefrontal cortex during the cue-induced craving state. However, those changes were not linked to alterations in accumbal glutamate levels. Whereas we additionally found increased functional connectivity between the nucleus accumbens and a midline part of the thalamus during the cue-induced craving state. Furthermore, obsessive thinking about cocaine and the actual intensity of cocaine use were predictive of cue-induced functional connectivity changes between the nucleus accumbens and the thalamus. Finally, the increase in accumbal-thalamic connectivity was also coupled with craving-related glutamate rise in the nucleus accumbens. Yet, N-acetylcysteine had no impact on craving-related changes in functional connectivity. Together, these results suggest that connectivity changes within the fronto-accumbal-thalamic loop, in conjunction with impaired glutamatergic transmission, underlie cocaine craving and related clinical symptoms, pinpointing the thalamus as a crucial hub for cocaine craving in humans.
Collapse
Affiliation(s)
- Etna J E Engeli
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| | - Andrea G Russo
- Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Ponticorvo
- Center for Magnetic Resonance Research, University of Minnesota, Minnesota, United States
| | - Niklaus Zoelch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Institute of Forensic Medicine, Department of Forensic Medicine and Imaging, University of Zurich, Zurich, Switzerland
| | - Andreas Hock
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Transdiagnostic and Multimodal Neuroimaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Katrin H Preller
- Pharmaco-Neuroimaging and Cognitive-Emotional Processing, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, School of Medicine and Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcus Herdener
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Philip VM, He H, Saul MC, Dickson PE, Bubier JA, Chesler EJ. Gene expression genetics of the striatum of Diversity Outbred mice. Sci Data 2023; 10:522. [PMID: 37543624 PMCID: PMC10404230 DOI: 10.1038/s41597-023-02426-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023] Open
Abstract
Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.
Collapse
Affiliation(s)
- Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Hao He
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Michael C Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Price E Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, Huntington, WV, 25703, USA
| | - Jason A Bubier
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, 04605, USA.
| |
Collapse
|
38
|
Gangal H, Xie X, Huang Z, Cheng Y, Wang X, Lu J, Zhuang X, Essoh A, Huang Y, Chen R, Smith LN, Smith RJ, Wang J. Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nat Commun 2023; 14:3886. [PMID: 37391566 PMCID: PMC10313783 DOI: 10.1038/s41467-023-39623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
39
|
Luján MÁ, Oliver BL, Young-Morrison R, Engi SA, Zhang LY, Wenzel JM, Li Y, Zlebnik NE, Cheer JF. A multivariate regressor of patterned dopamine release predicts relapse to cocaine. Cell Rep 2023; 42:112553. [PMID: 37224011 DOI: 10.1016/j.celrep.2023.112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Understanding mesolimbic dopamine adaptations underlying vulnerability to drug relapse is essential to inform prognostic tools for effective treatment strategies. However, technical limitations have hindered the direct measurement of sub-second dopamine release in vivo for prolonged periods of time, making it difficult to gauge the weight that these dopamine abnormalities have in determining future relapse incidence. Here, we use the fluorescent sensor GrabDA to record, with millisecond resolution, every single cocaine-evoked dopamine transient in the nucleus accumbens (NAc) of freely moving mice during self-administration. We reveal low-dimensional features of patterned dopamine release that are strong predictors of cue-induced reinstatement of cocaine seeking. Additionally, we report sex-specific differences in cocaine-related dopamine responses related to a greater resistance to extinction in males compared with females. These findings provide important insights into the sufficiency of NAc dopamine signaling dynamics-in interaction with sex-for recapitulating persistent cocaine seeking and future relapse vulnerability.
Collapse
Affiliation(s)
- Miguel Á Luján
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brandon L Oliver
- Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA, USA
| | - Reana Young-Morrison
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lan-Yuan Zhang
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Natalie E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, CA, USA.
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Gupta SC, Taugher-Hebl RJ, Hardie JB, Fan R, LaLumiere RT, Wemmie JA. Effects of acid-sensing ion channel-1A (ASIC1A) on cocaine-induced synaptic adaptations. Front Physiol 2023; 14:1191275. [PMID: 37389125 PMCID: PMC10300415 DOI: 10.3389/fphys.2023.1191275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Chronic drug abuse is thought to induce synaptic changes in nucleus accumbens medium spiny neurons (MSNs) that promote subsequent craving and drug-seeking behavior. Accumulating data suggest acid-sensing ion channels (ASICs) may play a critical role. In drug naïve mice, disrupting the ASIC1A subunit produced a variety of synaptic changes reminiscent of wild-type mice following cocaine withdrawal, including increased AMPAR/NMDAR ratio, increased AMPAR rectification, and increased dendrite spine density. Importantly, these changes in Asic1a -/- mice were normalized by a single dose of cocaine. Here we sought to understand the temporal effects of cocaine exposure in Asic1a -/- mice and the cellular site of ASIC1A action. Six hours after cocaine exposure, there was no effect. However, 15 h, 24 h and 4 days after cocaine exposure there was a significant reduction in AMPAR/NMDAR ratio in Asic1a -/- mice. Within 7 days the AMPAR/NMDAR ratio had returned to baseline levels. Cocaine-evoked changes in AMPAR rectification and dendritic spine density followed a similar time course with significant reductions in rectification and dendritic spines 24 h after cocaine exposure in Asic1a -/- mice. To test the cellular site of ASIC1A action on these responses, we disrupted ASIC1A specifically in a subpopulation of MSNs. We found that effects of ASIC1A disruption were cell autonomous and restricted to neurons in which the channels are disrupted. We further tested whether ASIC1A disruption differentially affects MSNs subtypes and found AMPAR/NMDAR ratio was elevated in dopamine receptor 1-expressing MSNs, suggesting a preferential effect for these cells. Finally, we tested if protein synthesis was involved in synaptic adaptations that occurred after ASIC1A disruption, and found the protein synthesis inhibitor anisomycin normalized AMPAR-rectification and AMPAR/NMDAR ratio in drug-naïve Asic1a -/- mice to control levels, observed in wild-type mice. Together, these results provide valuable mechanistic insight into the effects of ASICs on synaptic plasticity and drug-induced effects and raise the possibility that ASIC1A might be therapeutically manipulated to oppose drug-induced synaptic changes and behavior.
Collapse
Affiliation(s)
- Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Jason B. Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Department of Veterans Affairs Medical Center, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
41
|
Emerson SD, Chevée M, Mews P, Calipari ES. The transcriptional response to acute cocaine is inverted in male mice with a history of cocaine self-administration and withdrawal throughout the mesocorticolimbic system. Mol Cell Neurosci 2023; 125:103823. [PMID: 36868542 PMCID: PMC10247534 DOI: 10.1016/j.mcn.2023.103823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
A large body of work has demonstrated that cocaine-induced changes in transcriptional regulation play a central role in the onset and maintenance of cocaine use disorder. An underappreciated aspect of this area of research, however, is that the pharmacodynamic properties of cocaine can change depending on an organism's previous drug-exposure history. In this study, we utilized RNA sequencing to characterize how the transcriptome-wide effects of acute cocaine exposure were altered by a history of cocaine self-administration and long-term withdrawal (30 days) in the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC) in male mice. First, we found that the gene expression patterns induced by a single cocaine injection (10 mg/kg) were discordant between cocaine-naïve mice and mice in withdrawal from cocaine self-administration. Specifically, the same genes that were upregulated by acute cocaine in cocaine-naïve mice were downregulated by the same dose of cocaine in mice undergoing long-term withdrawal; the same pattern of opposite regulation was observed for the genes downregulated by initial acute cocaine exposure. When we analyzed this dataset further, we found that the gene expression patterns that were induced by long-term withdrawal from cocaine self-administration showed a high degree of overlap with the gene expression patterns of acute cocaine exposure - even though animals had not consumed cocaine in 30 days. Interestingly, cocaine re-exposure at this withdrawal time point reversed this expression pattern. Finally, we found that this pattern was similar across the VTA, PFC, NAc, and within each brain region the same genes were induced by acute cocaine, re-induced during long-term withdrawal, and reversed by cocaine re-exposure. Together, we identified a longitudinal pattern of gene regulation that is conserved across the VTA, PFC, and NAc, and characterized the genes constituting this pattern in each brain region.
Collapse
Affiliation(s)
- Soren D Emerson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Maxime Chevée
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Philipp Mews
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
42
|
Ren X, Bok I, Vareberg A, Hai A. Stimulation-mediated reverse engineering of silent neural networks. J Neurophysiol 2023; 129:1505-1514. [PMID: 37222450 PMCID: PMC10311990 DOI: 10.1152/jn.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023] Open
Abstract
Reconstructing connectivity of neuronal networks from single-cell activity is essential to understanding brain function, but the challenge of deciphering connections from populations of silent neurons has been largely unmet. We demonstrate a protocol for deriving connectivity of simulated silent neuronal networks using stimulation combined with a supervised learning algorithm, which enables inferring connection weights with high fidelity and predicting spike trains at the single-spike and single-cell levels with high accuracy. We apply our method on rat cortical recordings fed through a circuit of heterogeneously connected leaky integrate-and-fire neurons firing at typical lognormal distributions and demonstrate improved performance during stimulation for multiple subpopulations. These testable predictions about the number and protocol of the required stimulations are expected to enhance future efforts for deriving neuronal connectivity and drive new experiments to better understand brain function.NEW & NOTEWORTHY We introduce a new concept for reverse engineering silent neuronal networks using a supervised learning algorithm combined with stimulation. We quantify the performance of the algorithm and the precision of deriving synaptic weights in inhibitory and excitatory subpopulations. We then show that stimulation enables deciphering connectivity of heterogeneous circuits fed with real electrode array recordings, which could extend in the future to deciphering connectivity in broad biological and artificial neural networks.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, Wisconsin, United States
| |
Collapse
|
43
|
Philip VM, He H, Saul MC, Dickson PE, Bubier JA, Chesler EJ. Gene expression genetics of the striatum of Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540390. [PMID: 37214980 PMCID: PMC10197688 DOI: 10.1101/2023.05.11.540390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq. All mice were characterized using a behavioral battery of widely-used exploratory and risk-taking assays prior to transcriptional profiling. We performed eQTL mapping, incorporated the results into a browser-based eQTL viewer, and deposited co-expression network members in GeneWeaver. The eQTL viewer allows researchers to query specific genes to obtain allelic effect plots, analyze SNP associations, assess gene expression correlations, and apply mediation analysis to evaluate whether the regulatory variant is acting through the expression of another gene. GeneWeaver allows multi-species comparison of gene sets using statistical and combinatorial tools. This data resource allows users to find genetic variants that regulate differentially expressed transcripts and place them in the context of other studies of striatal gene expression and function in addiction-related behavior.
Collapse
Affiliation(s)
- Vivek M. Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | - Hao He
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032
| | - Michael C. Saul
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | - Price E. Dickson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine Marshall University, 1700 3rd Ave. Huntington, WV 25703
| | - Jason A. Bubier
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME 04605
| | | |
Collapse
|
44
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA receptor co-regulation of protein translation in cultured nucleus accumbens neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535293. [PMID: 37034633 PMCID: PMC10081306 DOI: 10.1101/2023.04.02.535293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Protein translation is essential for some forms of synaptic plasticity. We used nucleus accumbens (NAc) medium spiny neurons (MSN), co-cultured with cortical neurons to restore excitatory synapses, to examine whether dopamine modulates protein translation in NAc MSN. FUNCAT was used to measure translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 hr). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers, which have been described in other cell types. Supporting this, immunocytochemistry and proximity ligation assays revealed D1/NMDAR heteromers on NAc cells both in vitro and in vivo. Further, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390+APV. These results suggest that: 1) excitatory synaptic transmission stimulates translation in NAc MSNs, 2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and 3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R. Zimbelman
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
| | - Conor H. Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- Present address: Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | - Marina E. Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- These authors contributed equally
- Present address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Michael T. Stefanik
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- These authors contributed equally
| |
Collapse
|
45
|
Symptoms, Mechanisms, and Treatments of Video Game Addiction. Cureus 2023; 15:e36957. [PMID: 37009362 PMCID: PMC10065366 DOI: 10.7759/cureus.36957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Video game addiction is defined as the steady and repetitive use of the Internet to play games frequently with different gamers, potentially leading to negative consequences in many aspects of life. As recent technological development has given easy access to gaming on many devices, video game addiction has become a serious public health issue with increased prevalence. Many studies have shown that video game addiction leads to changes in the brain that are similar to those that occur in substance addiction and gambling. Evidence has also shown that there is an association between video game addiction and depression, as well as other psychological and social problems. In light of these issues, our review article aims to increase awareness of video game addiction in society. The main objectives of this review are as follows: to describe the mechanism of addiction, to consider whether video game addiction is a real addiction, and to highlight the signs and symptoms of addiction. In addition, we identify the consequences of video game addiction and possible treatments for addicts. The information was extracted from high-quality research papers and reliable websites like PubMed and ScienceDirect.
Collapse
|
46
|
Wang L, Gao M, Wang Q, Sun L, Younus M, Ma S, Liu C, Shi L, Lu Y, Zhou B, Sun S, Chen G, Li J, Zhang Q, Zhu F, Wang C, Zhou Z. Cocaine induces locomotor sensitization through a dopamine-dependent VTA-mPFC-FrA cortico-cortical pathway in male mice. Nat Commun 2023; 14:1568. [PMID: 36944634 PMCID: PMC10030897 DOI: 10.1038/s41467-023-37045-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
As a central part of the mammalian brain, the prefrontal cortex (PFC) has been implicated in regulating cocaine-induced behaviors including compulsive seeking and reinstatement. Although dysfunction of the PFC has been reported in animal and human users with chronic cocaine abuse, less is known about how the PFC is involved in cocaine-induced behaviors. By using two-photon Ca2+ imaging to simultaneously record tens of intact individual networking neurons in the frontal association cortex (FrA) in awake male mice, here we report that a systematic acute cocaine exposure decreased the FrA neural activity in mice, while the chemogenetic intervention blocked the cocaine-induced locomotor sensitization. The hypoactivity of FrA neurons was critically dependent on both dopamine transporters and dopamine transmission in the ventromedial PFC (vmPFC). Both dopamine D1R and D2R neurons in the vmPFC projected to and innervated FrA neurons, the manipulation of which changed the cocaine-induced hypoactivity of the FrA and locomotor sensitization. Together, this work demonstrates acute cocaine-induced hypoactivity of FrA neurons in awake mice, which defines a cortico-cortical projection bridging dopamine transmission and cocaine sensitization.
Collapse
Affiliation(s)
- Lun Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Min Gao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Qinglong Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Liyuan Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Sixing Ma
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Can Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Li Shi
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Yang Lu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Bo Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Suhua Sun
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Guoqing Chen
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Jie Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Quanfeng Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Neurology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
47
|
Bimpisidis Z, Serra GP, König N, Wallén-Mackenzie Å. Increased sucrose consumption in mice gene-targeted for Vmat2 selectively in NeuroD6-positive neurons of the ventral tegmental area. Front Mol Neurosci 2023; 16:1069834. [PMID: 36825278 PMCID: PMC9941196 DOI: 10.3389/fnmol.2023.1069834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Ventral tegmental area (VTA) dopamine (DA) neurons are implicated in reward processing, motivation, reward prediction error, and in substance use disorder. Recent studies have identified distinct neuronal subpopulations within the VTA that can be clustered based on their molecular identity, neurotransmitter profile, physiology, projections and behavioral role. One such subpopulation is characterized by expression of the NeuroD6 gene, and projects primarily to the nucleus accumbens medial shell. We recently showed that optogenetic stimulation of these neurons induces real-time place preference while their targeted deletion of the Vmat2 gene caused altered response to rewarding substances, including ethanol and psychostimulants. Based on these recent findings, we wanted to further investigate the involvement of the NeuroD6-positive VTA subpopulation in reward processing. Using the same NeuroD6Cre+/wt ;Vmat2flox/flox mice as in our prior study, we now addressed the ability of the mice to process sucrose reward. In order to assess appetitive behavior and motivation to obtain sucrose reward, we tested conditional knockout (cKO) and control littermate mice in an operant sucrose self-administration paradigm. We observed that cKO mice demonstrate higher response rates to the operant task and consume more sucrose rewards than control mice. However, their motivation to obtain sucrose is identical to that of control mice. Our results highlight previous observations that appetitive behavior and motivation to obtain rewards can be served by distinct neuronal circuits, and demonstrate that the NeuroD6 VTA subpopulation is involved in mediating the former, but not the latter. Together with previous studies on the NeuroD6 subpopulation, our findings pinpoint the importance of unraveling the molecular and functional role of VTA subpopulations in order to better understand normal behavior and psychiatric disease.
Collapse
Affiliation(s)
| | - Gian Pietro Serra
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Niclas König
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Åsa Wallén-Mackenzie
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Bijoch Ł, Klos J, Pawłowska M, Wiśniewska J, Legutko D, Szachowicz U, Kaczmarek L, Beroun A. Whole-brain tracking of cocaine and sugar rewards processing. Transl Psychiatry 2023; 13:20. [PMID: 36683039 PMCID: PMC9868126 DOI: 10.1038/s41398-023-02318-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Natural rewards, such as food, and sex are appetitive stimuli available for animals in their natural environment. Similarly, addictive rewards such as drugs of abuse possess strong, positive valence, but their action relies on their pharmacological properties. Nevertheless, it is believed that both of these kinds of rewards activate similar brain circuitry. The present study aimed to discover which parts of the brain process the experience of natural and addictive rewards. To holistically address this question, we used a single-cell whole-brain imaging approach to find patterns of activation for acute and prolonged sucrose and cocaine exposure. We analyzed almost 400 brain structures and created a brain-wide map of specific, c-Fos-positive neurons engaged by these rewards. Acute but not prolonged sucrose exposure triggered a massive c-Fos expression throughout the brain. Cocaine exposure on the other hand potentiated c-Fos expression with prolonged use, engaging more structures than sucrose treatment. The functional connectivity analysis unraveled an increase in brain modularity after the initial exposure to both types of rewards. This modularity was increased after repeated cocaine, but not sucrose, intake. To check whether discrepancies between the processing of both types of rewards can be found on a cellular level, we further studied the nucleus accumbens, one of the most strongly activated brain structures by both sucrose and cocaine experience. We found a high overlap between natural and addictive rewards on the level of c-Fos expression. Electrophysiological measurements of cellular correlates of synaptic plasticity revealed that natural and addictive rewards alike induce the accumulation of silent synapses. These results strengthen the hypothesis that in the nucleus accumbens drugs of abuse cause maladaptive neuronal plasticity in the circuitry that typically processes natural rewards.
Collapse
Affiliation(s)
- Łukasz Bijoch
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Klos
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Monika Pawłowska
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland ,grid.12847.380000 0004 1937 1290Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Justyna Wiśniewska
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Diana Legutko
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Szachowicz
- grid.419305.a0000 0001 1943 2944Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- grid.419305.a0000 0001 1943 2944Laboratory of Neurobiology, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
49
|
Persistent increase of accumbens cocaine ensemble excitability induced by IRK downregulation after withdrawal mediates the incubation of cocaine craving. Mol Psychiatry 2023; 28:448-462. [PMID: 36481931 PMCID: PMC9812793 DOI: 10.1038/s41380-022-01884-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
The incubation phenomenon, cue-induced drug craving progressively increasing over prolonged withdrawal, accounts for persistent relapse, leading to a dilemma in the treatment of cocaine addiction. The role of neuronal ensembles activated by initial cocaine experience in the incubation phenomenon was unclear. In this study, with cocaine self-administration (SA) models, we found that neuronal ensembles in the nucleus accumbens shell (NAcSh) showed increasing activation induced by cue-induced drug-seeking after 30-day withdrawal. Inhibition or activation of NAcSh cocaine-ensembles suppressed or promoted craving for cocaine, demonstrating a critical role of NAcSh cocaine-ensembles in incubation for cocaine craving. NAcSh cocaine-ensembles showed a specific increase of membrane excitability and a decrease of inward rectifying channels Kir2.1 currents after 30-day withdrawal. Overexpression of Kir2.1 in NAcSh cocaine-ensembles restored neuronal membrane excitability and suppressed cue-induced drug-seeking after 30-day withdrawal. Expression of dominant-negative Kir2.1 in NAcSh cocaine-ensembles enhanced neuronal membrane excitability and accelerated incubation of cocaine craving. Our results provide a cellular mechanism that the downregulation of Kir2.1 functions in NAcSh cocaine-ensembles induced by prolonged withdrawal mediates the enhancement of ensemble membrane excitability, leading to incubation of cocaine craving.
Collapse
|
50
|
Gupta SC, Ghobbeh A, Taugher-Hebl RJ, Fan R, Hardie JB, LaLumiere RT, Wemmie JA. Carbonic anhydrase 4 disruption decreases synaptic and behavioral adaptations induced by cocaine withdrawal. SCIENCE ADVANCES 2022; 8:eabq5058. [PMID: 36383659 PMCID: PMC9668291 DOI: 10.1126/sciadv.abq5058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Cocaine use followed by withdrawal induces synaptic changes in nucleus accumbens (NAc), which are thought to underlie subsequent drug-seeking behaviors and relapse. Previous studies suggest that cocaine-induced synaptic changes depend on acid-sensing ion channels (ASICs). Here, we investigated potential involvement of carbonic anhydrase 4 (CA4), an extracellular pH-buffering enzyme. We examined effects of CA4 in mice on ASIC-mediated synaptic transmission in medium spiny neurons (MSNs) in NAc, as well as on cocaine-induced synaptic changes and behavior. We found that CA4 is expressed in the NAc and present in synaptosomes. Disrupting CA4 either globally, or locally, increased ASIC-mediated synaptic currents in NAc MSNs and protected against cocaine withdrawal-induced changes in synapses and cocaine-seeking behavior. These findings raise the possibility that CA4 might be a previously unidentified therapeutic target for addiction and relapse.
Collapse
Affiliation(s)
- Subhash C. Gupta
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Ali Ghobbeh
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rebecca J. Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Jason B. Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| |
Collapse
|