1
|
Keogh E. Sex, gender, and pain: Evidence and knowledge gaps. Curr Opin Psychol 2025; 63:102006. [PMID: 40022842 DOI: 10.1016/j.copsyc.2025.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Sex and gender contribute to the variation in pain experience. A range of biological, psychological, and social factors are relevant, which point to potential pain mechanisms and the reasons for this sex/gender-based variation. This review provides a brief critical overview of the evidence for these patterns. It draws on both experimental and clinical studies and identifies some of the biological and psychosocial factors that are thought to impact on men and women's pain. There are limitations and gaps in understanding, and numerous challenges exist, ranging from difficulties with concepts through to methodology. There is a focus on gender as a dimensional set of psychosocial constructs, as this offers one approach to help enhance our understanding of men and women's pain.
Collapse
Affiliation(s)
- Edmund Keogh
- Bath Centre for Pain Research, University of Bath, United Kingdom; Department of Psychology, University of Bath, United Kingdom.
| |
Collapse
|
2
|
Sha S, Zhang M, Ge T, Song L, Wu Z, Zhang H. Behavioral outcomes in the bystander and demonstrator male mice following a socially-transferred allodynia paradigm. Physiol Behav 2025; 294:114880. [PMID: 40101843 DOI: 10.1016/j.physbeh.2025.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
The state of mechanical allodynia can be socially transferred from one individual to another during a brief empathetic contact. Our recent research has identified inter-individual differences in behavioral adaptations among bystander (BY) mice after a brief social contact with a demonstrator mouse experiencing complete Freund's Adjuvant (CFA)-induced inflammatory pain. However, the impact of the duration of social contact on the development of socially transferred allodynia is not yet clear. Additionally, it remains unknown whether social contact with different subgroups of BY mice differentially affects the pain behavior of CFA demonstrator mice. In the current study, we established a socially transferred allodynia paradigm with varying durations of social contact in male C57BL/6 J mice. We found that a 30-min or a longer social exposure to a CFA demonstrator mouse led to stable mechanical allodynia in naive BY mouse. As the duration of social contact increased, the persistence of the socially transferred allodynia also extended. Interestingly, the CFA demonstrator mice exhibited a partial reversal of mechanical allodynia when exposed to the BY mice for 24 h, but not for shorter durations. Surprisingly, this analgesic-like behavioral adaptation occurred only when the BY mice were susceptible to socially transferred allodynia. These findings demonstrate that behavioral adaptations in both BY and CFA demonstrator mice develop in a time-dependent manner. Additionally, the social contact-induced analgesic-like effect in CFA mice requires a specific cage mate that is susceptible to socially transferred allodynia.
Collapse
Affiliation(s)
- Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Moruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Ting Ge
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, PR China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, PR China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, PR China.
| |
Collapse
|
3
|
Hudhud L, Hauksson J, Haney M, Sparrman T, Eriksson J, Lindgren L. Choline levels in the pregenual anterior cingulate cortex associated with unpleasant pain experience and anxiety. Neuroimage 2025; 310:121153. [PMID: 40101868 DOI: 10.1016/j.neuroimage.2025.121153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025] Open
Abstract
In vivo proton magnetic resonance spectroscopy is a non-invasive technique used to measure biochemical molecules such as choline, glutamate, glutamine, and γ-Aminobutyric acid (GABA), many of which are relevant to anxiety and pain. However, the relationship between these neurotransmitters/metabolites and their implications for anxiety and subjective experience of pain is not yet fully understood. The objective of this cross-sectional study was to investigate the association between anxiety and pain ratings with levels of total choline, glutamate and GABA in brain regions known to be involved in anxiety and emotional experience of pain, specifically pregenual anterior cingulate cortex (pgACC) and dorsal anterior cingulate cortex (dACC). The levels of the neurotransmitters/metabolites were measured using GABA-edited Mescher-Garwood PRESS for GABA measurements, with the OFF-sequence measurements for total choline (tCho) and Glx (combined glutamate + glutamine). The total choline (tCho) signal in our analysis included glycerophosphocholine (GPC) and phosphocholine (PC), which is consistent with standard practices in MRS studies. This approach ensures a robust estimation of tCho concentrations across participants. The study collected data from 38 participants (17 males and 21 females). The analysis revealed a significant correlation between anxiety ratings before a standardized pain provocation and the rated pain unpleasantness during the pain provocation. tCho correlated negatively with these parameters in pgACC. A linear regression analysis indicated that tCho levels in pgACC have a significant negative association with anxiety and perceived pain when controlling for age, depressive symptoms, and alcohol and tobacco intake. We also found that sex significantly moderates the relationship between pgACC choline levels and pain unpleasantness. The study suggests that levels of choline, an essential precursor of acetylcholine, are associated with anxiety and perceived pain. These levels may influence how Glx and GABA contribute to affective pain experiences by modulating the balance between excitatory and inhibitory signals. However, future research is needed to identify the mechanisms involved. Furthermore, the study indicates that sex is a significant factor in this relationship, with lower choline levels being associated with higher pain ratings in females but not in males. This highlights the significance of addressing sex as a biological factor in pain research to better understand the different responses to treatments and to facilitate the development of more effective interventions in the future.
Collapse
Affiliation(s)
- Lina Hudhud
- Department of Nursing, Umeå University, 901 87, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, 901 87, Umeå, Sweden.
| | - Jón Hauksson
- Department of Diagnostics and Intervention, Umeå University, 901 87, Umeå, Sweden.
| | - Michael Haney
- Department of Anaesthesiology and Intensive Care Medicine, Diagnostics and Intervention, Umeå University, 901 87, Umeå, Sweden.
| | - Tobias Sparrman
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden.
| | - Johan Eriksson
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87, Umeå, Sweden; Department of Psychology, Umeå University, 901 87, Umeå, Sweden.
| | - Lenita Lindgren
- Department of Nursing, Umeå University, 901 87, Umeå, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, 901 87, Umeå, Sweden; Department of Anaesthesiology and Intensive Care Medicine, Diagnostics and Intervention, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
4
|
Zhao H, Guan D, Ma Z, Yang M, Dong N, Guo J. Artificially Sweetened Food Mediates the Perception of Chronic Pain in Individuals With Neuroticism Traits: A Mendelian Randomization Study. Brain Behav 2025; 15:e70476. [PMID: 40205859 PMCID: PMC11982623 DOI: 10.1002/brb3.70476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Previous studies have shown that neuroticism and artificially sweetened food all play essential roles in chronic pain to varying degrees. However, it is unclear precisely the causal relationship between neuroticism traits and chronic pain and whether an unhealthy sweetened food is a mediator in this process. METHODS This study employed rigorous research methods to ensure the validity of the findings. We utilized Mendelian randomization (MR) to examine the causal relationships between neuroticism traits, artificially sweetened food, and chronic pain. The data encompass four neuroticism traits (neuroticism, experiencing mood swings, depressed affect, and worry), consumption levels of nine artificially sweetened foods, and seven types of chronic pain. The primary statistical method employed was inverse variance weighting (IVW). Eventually, we explored whether artificially sweetened food serves as a mediator in the relationship between neuroticism traits and chronic pain. RESULTS We found that genetic predisposition to higher neuroticism traits and the consumption of artificial sweeteners is associated with an increased risk of chronic pain across multiple sites. Reverse MR analysis also confirms that chronic pain at multiple sites similarly increases the risk of neuroticism traits. Two-step MR suggests the mediating effects of five artificial sweeteners on sciatica: low back pain, thoracic pain, low back pain, joint pain, and muscular pain. These findings could inform interventions and treatments for chronic pain. CONCLUSION Neuroticism traits and chronic pain have causal relationships, with artificially sweetened food mediating the pathway from neuroticism traits to chronic pain.
Collapse
Affiliation(s)
- Huanghong Zhao
- Henan Provincial Hospital of Traditional Chinese MedicineZhengzhouChina
| | - Dongsheng Guan
- Henan Provincial Hospital of Traditional Chinese MedicineZhengzhouChina
| | - Zhen Ma
- Henan Provincial Hospital of Traditional Chinese MedicineZhengzhouChina
| | - Minghui Yang
- Henan Provincial Hospital of Traditional Chinese MedicineZhengzhouChina
| | - Ning Dong
- Henan Provincial Hospital of Traditional Chinese MedicineZhengzhouChina
| | - Jian Guo
- Henan Provincial Hospital of Traditional Chinese MedicineZhengzhouChina
| |
Collapse
|
5
|
Wilson M, Booker S, Saravanan A, Singh N, Pervis B, Mahalage G, Knisely MR. Disparities, Inequities, and Injustices in Populations With Pain: Nursing Recommendations Supporting ASPMN's 2024 Position Statement. Pain Manag Nurs 2025; 26:139-148. [PMID: 39603859 DOI: 10.1016/j.pmn.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024]
Abstract
The American Society for Pain Management Nursing (ASPMN) upholds the principle that all persons with pain have equal rights to evidence-based, high quality pain assessment, management, and treatment. This practice recommendation's goals are to 1) summarize known pain-related disparities, inequities, and injustices among commonly marginalized and at risk groups, 2) offer recommendations to ascertain that just and equitable pain care is provided to all people, and 3) outline a call to action for all nurses to embrace diversity, equity, inclusion, and a sense of belonging in order to mitigate pain-related disparities, inequities, and injustices within clinical environments and the nursing profession. This paper provides background and rationale for the 2024 ASPMN position statement on disparities, inequities and injustices in people with pain.
Collapse
Affiliation(s)
- Marian Wilson
- Washington State University College of Nursing, Spokane, WA.
| | - Staja Booker
- University of Florida College of Nursing, Gainesville, FL
| | - Anitha Saravanan
- Northern Illinois University College of Health & Human Sciences, DeKalb, IL
| | - Navdeep Singh
- Wayne State University College of Nursing, Detroit, MI
| | - Brian Pervis
- Excelsior University College of Nursing & Health Sciences, Albany, NY
| | | | | |
Collapse
|
6
|
Ai L, Han Y, Ge T, Sha S, Zhai XJ, Ji R, Zhou Y, Chen DD, Xie A, Zhang WX, Wu Z, Zhang MR, Yang JX, Hu AK, Cao JL, Song LZ, Zhang HX. Dorsal raphe GABA-ergic neurons regulate the susceptibility to social transfer of pain in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01494-x. [PMID: 40011629 DOI: 10.1038/s41401-025-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Some individuals are more susceptible to developing or suffering from pain states than others. However, the brain mechanisms underlying the susceptibility to pain responses are unknown. In this study, we defined pain susceptibility by recapitulating inter-individual differences in pain responses in mice exposed to a paradigm of socially transferred allodynia (STA), and with a combination of chemogenetic, molecular, pharmacological and electrophysiological approaches, we identified GABA-ergic neurons in the dorsal raphe nucleus (DRN) as a cellular target for the development and maintenance of STA susceptibility. We showed that DRN GABA-ergic neurons were selectively activated in STA-susceptible mice when compared with the unsusceptible (resilient) or control mice. Chemogenetic activation of DRN GABA-ergic neurons promoted STA susceptibility; whereas inhibiting these neurons prevented the development of STA susceptibility and reversed established STA. In in vitro slice electrophysiological analysis, we demonstrated that melanocortin 4 receptor (MC4R) enriched in DRN GABA-ergic neurons was a molecular target for regulating pain susceptibility, possibly by affecting DRN GABA-ergic neuronal activity. These results establish the DRN GABA-ergic neurons as an essential target for controlling pain susceptibility, thus providing important information for developing conceptually innovative and more accurate analgesic strategies.
Collapse
Affiliation(s)
- Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ting Ge
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiao-Jing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dan-Dan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - An Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wen-Xin Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhou Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Mo-Ruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - An-Kang Hu
- Laboratory Animal Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Ling-Zhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Hong-Xing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
7
|
Dirupo G, Rossel JB, Fournier N, D'Andrea A, Vollenweider P, Decosterd I, Suter MR, Berna C. Correlates of chronic pain onset and recovery in the CoLaus cohort. Eur J Pain 2025; 29:e4712. [PMID: 39113471 PMCID: PMC11671331 DOI: 10.1002/ejp.4712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Only few previous cohort studies examined simultaneously predictors of chronic pain (CP) onset and recovery. Furthermore, these studies used various sociodemographic and pain-related characteristics, without standardized measures of sleep and depression. The present study aimed at expanding and strengthening these findings in a large Swiss population. METHODS We analysed data from a longitudinal cohort (n = 4602) collected at two time points separated by 5 years in Lausanne, Switzerland. We studied through two independent multivariable logistic regression models, the predictors of CP onset and recovery, including socio-demographic data as well as standardized measures of sleep and mood. RESULTS Chronic pain was reported by 43.1% and 44.4% of participants, with 11.6% at the second follow-up reporting moderate or intense pain. Neuropathic pain, regardless of intensity, had a more negative impact on quality of life. An inferential model (n = 1331) identified the male sex as predictive for recovering from CP. Older age, being overweight or obese (compared to normal weight), higher depression scores and pain medication intake were predictive for sustained pain at the second follow-up. A second model (n = 1886) identified being overweight or obese (compared to normal weight), low quality of sleep and being a former smoker (compared to a non-smoker) as predictive for developing CP, while the male sex was lowering the risk. CONCLUSIONS While sex and weight are associated with both recovery and new CP onset, separate variables also need to be considered in these processes, underlining specific factors to be addressed, depending on the context, whether preventive or therapeutic. SIGNIFICANCE STATEMENT Multivariable models in a Swiss cohort (N = 4602) associate male sex, not taking pain medication, normal weight, lower depression scores and younger age with recovery from chronic pain, while females, obese or overweight, having worse sleep and former smokers are associated with onset of new chronic pain. These common and separate factors need to be considered in treatment and prevention efforts.
Collapse
Affiliation(s)
- Giada Dirupo
- Center for Integrative and Complementary Medicine, Department of Anesthesiology, Lausanne University Hospital (CHUV), The Sense and University of Lausanne, Lausanne, Switzerland
- Department of Clinical Neurosciences, Laboratory for Research in Neuroimaging (LREN), Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jean-Benoît Rossel
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Nicolas Fournier
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Audrey D'Andrea
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine (FBM), University of Lausanne, Lausanne, Switzerland
| | - Marc René Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine (FBM), University of Lausanne, Lausanne, Switzerland
| | - Chantal Berna
- Center for Integrative and Complementary Medicine, Department of Anesthesiology, Lausanne University Hospital (CHUV), The Sense and University of Lausanne, Lausanne, Switzerland
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Raghuraman N, Akintola T, Rassu FS, O'Connor TD, Chen S, Gruber-Baldini A, Colloca L. The effects of socioeconomic position on endogenous pain modulation: A quasi-experimental approach. THE JOURNAL OF PAIN 2025:104778. [PMID: 39800249 DOI: 10.1016/j.jpain.2025.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Socioeconomic Position (SEP) is a multidimensional construct encompassing education, income, occupation, and neighborhood distress, influencing chronic pain severity, interference, and duration. However, its impact on placebo analgesia, where reduced pain perception occurs due to treatment belief, remains understudied. Using a quasi-experimental approach, we investigated SEP's influence on placebo analgesia in 401 participants with temporomandibular disorder (TMD) and 400 pain-free individuals. Using latent class analysis, we grouped participants into two SEP groups based on self-reported education, income, occupation, and neighborhood distress indices, including the area deprivation and distressed community indexes. Ancestry Informative Markers (AIMs) and self-reported race were included to account for genetic and demographic influences. Placebo analgesia was elicited using verbal suggestion and classical conditioning. Linear mixed models were employed to analyze SEP's impact, while multiple regression and ANCOVA assessed AIMs' and race's effects. Comparable placebo effects were observed between participants with TMD and pain-free individuals (F(1,4765.73) = 0.49, p = 0.48). A trend was noted in the main effect of SEP (F(1,4764.5) = 3.64, p = 0.056). Among TMD participants, those with distressed SEP exhibited lower placebo analgesia (F(1,4765.73) = 7.9, p = 0.005), while placebo response did not differ by SEP in pain-free participants (F(1,4765.73) = 0.27, p = 0.59). East Asian ancestry (β = 5.71, 95% CI [1.50, 9.92]) and self-reported Asian (mean = 24.20, sem = 1.52, p = 0.020) were associated with greater placebo analgesia. This study highlights the interplay of SEP, AIMs, and race in placebo analgesia and calls for tailored pain management interventions. PERSPECTIVE: SEP significantly contributes to pain disparities. This quasi-experimental study demonstrates analogous placebo analgesia between chronic pain and pain-free individuals but finds lower placebo analgesia only among individuals with chronic pain and distressed SEP. This highlights a link between chronic pain, SEP, and impaired placebo effects, suggesting new avenues for research.
Collapse
Affiliation(s)
- Nandini Raghuraman
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA; Graduate Program in Life Sciences, Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, Baltimore, USA; Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA
| | - Titilola Akintola
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA; Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA
| | - Fenan S Rassu
- Department of Physical Medicine and Rehabilitation, School of Medicine, The Johns Hopkins University, Baltimore, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, USA; Program in Health Equity and Population Health, School of Medicine, University of Baltimore, USA; Program in Personalized and Genomic Medicine, School of Medicine, University of Maryland, Baltimore, USA
| | - Shuo Chen
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Ann Gruber-Baldini
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, USA
| | - Luana Colloca
- Department of Pain and Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, USA; Department of Anesthesiology and Psychiatry, University of Maryland School of Medicine, Baltimore, USA; Placebo Beyond Opinions Center, University of Maryland School of Nursing, Baltimore, USA.
| |
Collapse
|
9
|
Martínez-Magaña CJ, Murbartián J. Estrogen receptor α regulates the IKKs/NF-kB activity involved in the development of mechanical allodynia induced by REM sleep deprivation in rats. Brain Res 2024; 1845:149269. [PMID: 39384127 DOI: 10.1016/j.brainres.2024.149269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Several signaling pathways that converge in NF-kB activation have been linked to developing and maintaining different types of pathological pain. In addition, some mechanisms implied in the establishment of chronic pain have been demonstrated to have a sex-dependent correlation. This study aimed to determine if the IKKs/NF-kB signaling pathway is involved in establishing REM sleep deprivation (REMSD) induced mechanical allodynia in rats and its possible regulation depending on estradiol and estrogen receptors. Intrathecal administration of BMS-345541 or minocycline, two drugs that reduce the IKKs/NF-kB activity, avoided the development of mechanical allodynia in female but not in male rats subjected to 48 h of REMSD. Ovariectomy in female rats abolished the effect of BMS-345541 and minocycline. Meanwhile, the 17-β-estradiol restitution restored it. Intrathecal administration of MPP, a selective ERα antagonist, but not PHTPP, a selective ERβ antagonist, avoided the effect of BMS-345541 in female rats without hormonal manipulation. In addition, the transient run-down of ERα in female rats abolished the effect of BMS-345541. All data suggest an important role of ERα as a regulator of the IKKs/NF-kB activity. REMSD increased the ERα protein expression in the dorsal root ganglia and the dorsal spinal cord in females but not in male rats. Interestingly, ERα activation or ERα overexpression allowed the effect of BMS-345541 in male rats. Data suggest an important regulatory role of ERα in the IKKs/NF-kB activity on establishing mechanical allodynia induced by REMSD in female rats.
Collapse
Affiliation(s)
| | - Janet Murbartián
- Pharmacobiology Department, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
10
|
Karshikoff B. Why PNI scientists need to engage in exploratory hypothesis-generating biomarker studies. Brain Behav Immun Health 2024; 42:100904. [PMID: 39634075 PMCID: PMC11614827 DOI: 10.1016/j.bbih.2024.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Multi-omics research is developing rapidly, offering extensive sample analysis options and advanced statistical solutions to identify and understand complex networks of biomarkers. This review encourages groups in the psychoneuroimmunology field with limited experience in omics research to embrace these advances. Cross-sectional studies can leverage existing sample collections to provide unique information that complements longitudinal studies, providing insights into which biological systems may warrant further investigation and building fundamental mechanistic knowledge of biological networks. The understanding of immune-brain interactions should inform ongoing developments in exploratory, hypothesis-generating research. Disregarding psychoneuroimmunological aspects may have led to challenges in some prior biomarker research. Moving forward, a more nuanced perspective on inflammation and psychological comorbidity is needed. The first steps in the conceptualization of an explorative cross-sectional omics study are discussed from a pragmatic perspective, highlighting who we choose to study and what we choose to measure.
Collapse
Affiliation(s)
- Bianka Karshikoff
- University of Stavanger, Dept. of Social Studies, Stavanger, Norway
- Karolinska Institutet, Dept. of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
11
|
Quidé Y, Jahanshad N, Andoh J, Antoniou G, Apkarian AV, Ashar YK, Badran BW, Baird CL, Baxter L, Bell TR, Blanco-Hinojo L, Borckardt J, Cheung CL, Ciampi de Andrade D, Couto BA, Cox SR, Cruz-Almeida Y, Dannlowski U, De Martino E, de Tommaso M, Deus J, Domin M, Egorova-Brumley N, Elliott J, Fanton S, Fauchon C, Flor H, Franz CE, Gatt JM, Gerdhem P, Gilman JM, Gollub RL, Govind V, Graven-Nielsen T, Håkansson G, Hales T, Haswell C, Heukamp NJ, Hu L, Huang L, Hussain A, Jensen K, Kircher T, Kremen WS, Leehr EJ, Lindquist M, Loggia ML, Lotze M, Martucci KT, Meeker TJ, Meinert S, Millard SK, Morey RA, Murillo C, Nees F, Nenadic I, Park HR, Peng X, Ploner M, Pujol J, Robayo LE, Salan T, Seminowicz DA, Serian A, Slater R, Stein F, Stevens J, Strauss S, Sun D, Vachon-Presseau E, Valdes-Hernandez PA, Vanneste S, Vernon M, Verriotis M, Wager TD, Widerstrom-Noga E, Woodbury A, Zeidan F, Bhatt RR, Ching CR, Haddad E, Thomopoulos SI, Thompson PM, Gustin SM. ENIGMA-Chronic Pain: a worldwide initiative to identify brain correlates of chronic pain. Pain 2024; 165:2662-2666. [PMID: 39058957 PMCID: PMC11562752 DOI: 10.1097/j.pain.0000000000003317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Yann Quidé
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jamila Andoh
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georgia Antoniou
- Division of Population Health and Genomics, Medical Research Institute, University of Dundee, Dundee, Scotland, United Kingdom
| | - Apkar Vania Apkarian
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yoni K. Ashar
- Department of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bashar W. Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - C. Lexi Baird
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Tyler R. Bell
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- IsGlobal, Barcelona, Spain
| | - Jeffrey Borckardt
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
- Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VAMC, Charleston, SC, United States
| | - Chloe L. Cheung
- Neuroscience Graduate Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Bruno A. Couto
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States
- Department of Community Dentistry and Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Udo Dannlowski
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Marina de Tommaso
- Neurophysiopathology Unit, DiBrain Department, Bari Aldo Moro University, Bari, Italy
| | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Martin Domin
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Natalia Egorova-Brumley
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - James Elliott
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Northern Sydney Local Health District, Sydney, NSW, Australia
- The Kolling Institute, St Leonards, NSW, Australia
| | - Silvia Fanton
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Camille Fauchon
- Neuro-Dol, Inserm, University Hospital of Clermont-Ferrand, University of Clermont-Auvergne, Clermont-Ferrand, France
- NEUROPAIN Team, CRNL, CNRS, Inserm, University of Saint-Etienne, Saint-Etienne, France
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Carol E. Franz
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Justine M. Gatt
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Wellbeing, Resilience and Recovery, Neuroscience Research Australia, Randwick, NSW, Australia
- Black Dog Institute, Randwick, NSW, Australia
| | - Paul Gerdhem
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Orthopaedics and Hand Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Jodi M. Gilman
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Randy L. Gollub
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Varan Govind
- Department of Radiology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gustaf Håkansson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Tim Hales
- Consortium Against Pain Inequality, University of Dundee, Dundee, Scotland, United Kingdom
| | - Courtney Haswell
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Nils Jannik Heukamp
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lejian Huang
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ahmed Hussain
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Karin Jensen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, CA, United States
- Center for Behavior Genetics of Aging, University of California, San Diego, CA, United States
| | - Elisabeth J. Leehr
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - Martin Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Anesthesia, Clinical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Martin Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Katherine T. Martucci
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Timothy J. Meeker
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Susanne Meinert
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Samantha K. Millard
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rajendra A. Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
| | - Carlos Murillo
- Department of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Haeme R.P. Park
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Wellbeing, Resilience and Recovery, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, United States
| | - Markus Ploner
- Department of Neurology, Center for Interdisciplinary Pain Medicine and TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Linda E. Robayo
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Teddy Salan
- Department of Radiology, University of Miami, Miller School of Medicine, Miami, FL, United States
| | - David A. Seminowicz
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Angela Serian
- Department of Neurology, University Hospital Greifswald, Greifswald, Germany
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Jennifer Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
| | - Sebastian Strauss
- Department of Neurology, University Hospital Greifswald, Greifswald, Germany
| | - Delin Sun
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
- VA Mid-Atlantic MIRECC, Durham VA Medical Center, Durham VA, Durham, NC, United States
- Department of Psychiatry, School of Medicine, Duke University, Durham, NC, United States
| | - Etienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, QC, Canada
| | - Pedro A. Valdes-Hernandez
- Department of Community Dentistry and Behavioral Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Sven Vanneste
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Mark Vernon
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
| | - Madeleine Verriotis
- Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Eva Widerstrom-Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anna Woodbury
- Atlanta Veterans Affairs Healthcare System, Atlanta, GA, United States
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Fadel Zeidan
- Center for Pain Medicine, Department of Anesthesiology, University of California San Diego, La Jolla, CA, United States
| | - Ravi R. Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Christopher R.K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Elizabeth Haddad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sylvia M. Gustin
- School of Psychology, The University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Randwick, NSW, Australia
| |
Collapse
|
12
|
Mingels S, Granitzer M, Luedtke K, Dankaerts W. What is the Status Quo of Patient-Centred Physiotherapy Management of People with Headache within a Biopsychosocial Model? - A Narrative Review. Curr Pain Headache Rep 2024; 28:1195-1207. [PMID: 39141253 DOI: 10.1007/s11916-024-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
PURPOSE OF REVIEW Patient-centred care (PCC) is deemed essential in the rehabilitation of musculoskeletal pain. Integrating such care within a biopsychosocial framework, enables to address all facets of the individual pain experience, and to manage the individual instead of the condition. This narrative review describes the status quo of PCC physiotherapy management of people with headache within a biopsychosocial model. PubMed, EMBASE, Web of Science, Scopus were searched (update 07.05.2024). The search-query comprised terminology relating to "headache", "patient-centred", "biopsychosocial", "physiotherapy". Additional eligibility criteria were reviews, trials, cohort, case report, case-control studies in English, Dutch, French. RECENT FINDINGS Gaps are exposed in patient-centred physiotherapy management of migraine, tension-type headache, and cervicogenic headache. While a biopsychosocial approach is advised to manage migraine and tension-type headache, its use in clinical practice is not reflected by the literature. A biopsychosocial approach is not advised in cervicogenic headache. Psychosocial-lifestyle interventions are mainly delivered by health-care providers other than physiotherapists. Additionally, psychologically-informed practice is barely introduced in physiotherapy headache management. Though, managing the social context within a biopsychosocial framework is advised, the implementation by physiotherapists is unclear. Comparable conclusions apply to PCC. PCC is recommended for the physiotherapy management of primary and secondary headache. Such recommendation remains however theoretical, not reaching clinical implementation. Yet, a shift from the traditional disease-centred model of care towards PCC is ongoing and should be continued in physiotherapy management. With this implementation, clinical and economical studies are needed to evaluate its effectiveness.
Collapse
Affiliation(s)
- Sarah Mingels
- Musculoskeletal Research Unit, Department of Rehabilitation Sciences, Faculty of Movement and Rehabilitation Sciences, Leuven University, Leuven, Belgium.
- Faculty of Rehabilitation Sciences and Physiotherapy, REVAL Rehabilitation Research Centre, Hasselt University, Hasselt, Belgium.
| | - Marita Granitzer
- Faculty of Rehabilitation Sciences and Physiotherapy, REVAL Rehabilitation Research Centre, Hasselt University, Hasselt, Belgium
| | - Kerstin Luedtke
- Department of Physiotherapy, Pain and Exercise Research, Institute of Health Sciences, Universität Zu Lübeck, Zu Lübeck, Germany
| | - Wim Dankaerts
- Musculoskeletal Research Unit, Department of Rehabilitation Sciences, Faculty of Movement and Rehabilitation Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
13
|
He Z, Li G, Chen Z, Hu Z, Wang Q, Huang G, Luo Q. Trajectories of pain and their associations with long-term cognitive decline in older adults: evidence from two longitudinal cohorts. Age Ageing 2024; 53:afae183. [PMID: 39148435 DOI: 10.1093/ageing/afae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Pain is a dynamic experience that varies over time, but it remains unknown whether trajectories of pain are associated with subsequent cognitive decline. The purpose of this study was to identify distinct trajectories of pain presence and activity-limiting pain and investigate their longitudinal associations with the rate of subsequent cognitive decline in older adults. METHODS A total of 5685 participants from the English Longitudinal Study of Ageing (ELSA) and 7619 participants from the Health and Retirement Study (HRS) were included. Pain presence trajectories were identified over eight years in the ELSA and 10 years in the HRS, while trajectories of activity-limiting pain were identified over 10 years in the HRS. We utilised linear mixed-effects models to investigate the long-term relationship between pain trajectories and the rate of cognitive decline across various domains, including memory, orientation, executive function and global cognition. RESULTS Three pain presence trajectories were identified. Moderate-increasing and high-stable groups exhibited steeper declines in global cognition than the low-stable group. Furthermore, individuals in the moderate-increasing group experienced a more rapid decline in executive function, while the high-stable group showed a faster decline in orientation function. Two trajectories of activity-limiting pain were identified, with the moderate-increasing group experiencing a faster decline in orientation function and global cognition. CONCLUSIONS The trajectories of both pain presence and activity-limiting pain are linked to the rate of subsequent cognitive decline among older people. Interventions for specific pain trajectories might help to delay the decline rate of cognition in specific domains.
Collapse
Affiliation(s)
- Zijun He
- Department of Rehabilitation Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
- Dongguan Experimental Centre for Sports Rehabilitation Research, Dongguan, China
| | - Gege Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Zhi Chen
- Department of Rehabilitation Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Zihang Hu
- Department of Rehabilitation Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Qingwei Wang
- Department of Rehabilitation Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Qinglu Luo
- Department of Rehabilitation Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
- Dongguan Experimental Centre for Sports Rehabilitation Research, Dongguan, China
- Rehabilitation Department, Dongguan Key Specialty of Traditional Chinese Medicine, Dongguan, China
| |
Collapse
|
14
|
Sydora BC, Whelan LJ, Abelseth B, Brar G, Idris S, Zhao R, Leonard AJ, Rosenbloom BN, Clarke H, Katz J, Beesoon S, Rasic N. Identification of Presurgical Risk Factors for the Development of Chronic Postsurgical Pain in Adults: A Comprehensive Umbrella Review. J Pain Res 2024; 17:2511-2530. [PMID: 39100136 PMCID: PMC11297490 DOI: 10.2147/jpr.s466731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Risk factors for the development of chronic postsurgical pain (CPSP) have been reported in primary studies and an increasing number of reviews. The objective of this umbrella review was to compile and understand the published presurgical risk factors associated with the development of CPSP for various surgery types. Methods Six databases were searched from January 2000 to June 2023 to identify meta-analyses, scoping studies, and systematic reviews investigating presurgical CPSP predictors in adult patients. Articles were screened by title/abstract and subsequently by full text by two independent reviewers. The selected papers were appraised for their scientific quality and validity. Data were extracted and descriptively analyzed. Results Of the 2344 retrieved articles, 36 reviews were selected for in-depth scrutiny. The number of primary studies in these reviews ranged from 4 to 317. The surgery types assessed were arthroplasty (n = 13), spine surgery (n = 8), breast surgery (n = 4), shoulder surgery (n = 2), thoracic surgery (n = 2), and carpal tunnel syndrome (n = 1). One review included a range of orthopedic surgeries; six reviews included a variety of surgeries. A total of 39 presurgical risk factors were identified, some of which shared the same defining tool. Risk factors were themed into six broad categories: psychological, pain-related, health-related, social/lifestyle-related, demographic, and genetic. The strength of evidence for risk factors was inconsistent across different reviews and, in some cases, conflicting. A consistently high level of evidence was found for preoperative pain, depression, anxiety, and pain catastrophizing. Conclusion This umbrella review identified a large number of presurgical risk factors which have been suggested to be associated with the development of CPSP after various surgeries. The identification of presurgical risk factors is crucial for the development of screening tools to predict CPSP. Our findings will aid in designing screening tools to better identify patients at risk of developing CPSP and inform strategies for prevention and treatment.
Collapse
Affiliation(s)
- Beate C Sydora
- Department of Surgery Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada
| | - Lindsay Jane Whelan
- Department of Surgery Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Benjamin Abelseth
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gurpreet Brar
- Health Systems Knowledge and Evaluation, Alberta Health Services, Edmonton, AB, Canada
| | - Sumera Idris
- Health Systems Knowledge and Evaluation, Alberta Health Services, Edmonton, AB, Canada
| | - Rachel Zhao
- Knowledge Resource Service, Alberta Health Services, Edmonton, AB, Canada
| | | | | | - Hance Clarke
- Department of Anesthesia and Pain Management, Toronto General Hospital, UHN, Toronto, ON, Canada
| | - Joel Katz
- Department of Anesthesia and Pain Management, Toronto General Hospital, UHN, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
| | - Sanjay Beesoon
- Department of Surgery Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada
| | - Nivez Rasic
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Anesthesiology, Perioperative & Pain Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Rodríguez-Palma EJ, Islas-Espinoza AM, Ramos-Rodríguez II, Pizaña-Encarnación JM, Gutiérrez-Agredano MÁ, Morales-Moreno C, Fernández-Guasti A, Granados-Soto V. Estradiol modulates the role of the spinal α 6-subunit containing GABA A receptors in female rats with neuropathic pain. Eur J Pharmacol 2024; 974:176616. [PMID: 38679122 DOI: 10.1016/j.ejphar.2024.176616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The purpose of this study was to investigate the mechanisms underlying sex differences in the role of spinal α6-subunit containing GABAA (α6GABAA) receptors in rats with neuropathic pain. Intrathecal 2,5-dihydro-7-methoxy-2-(4-methoxyphenyl)-3H-pyrazolo [4,3-c] quinoline-3-one (PZ-II-029, positive allosteric modulator of α6GABAA receptors) reduced tactile allodynia in female but not in male rats with neuropathic pain. PZ-II-029 was also more effective in females than males in inflammatory and nociplastic pain. Ovariectomy abated the antiallodynic effect of PZ-II-029 in neuropathic rats, whereas 17β-estradiol or 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), estradiol receptor-α agonist, restored the effect of PZ-II-029 in ovariectomized rats. Blockade of estradiol receptor-α, using MPP (1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride), prevented the effect of 17β-estradiol on PZ-II-029-induced antiallodynia in ovariectomized neuropathic females. Nerve injury reduced α6GABAA receptor protein expression at the dorsal root ganglia (DRG) and spinal cord of intact and ovariectomized female rats. In this last group, reconstitution with 17β-estradiol fully restored its expression in DRG and spinal cord. In male rats, nerve injury reduced α6GABAA receptor protein expression only at the spinal cord. Nerve injury enhanced estradiol receptor-α protein expression at the DRG in intact non-ovariectomized rats. However, ovariectomy decreased estradiol receptor-α protein expression at the DRG. In the spinal cord there were no changes in estradiol receptor-α protein expression. 17β-estradiol restored estradiol receptor-α protein expression at the DRG and increased it at the spinal cord of neuropathic rats. These data suggest that 17β-estradiol modulates the expression and function of the α6GABAA receptor through its interaction with estradiol receptor-α in female rats.
Collapse
Affiliation(s)
- Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Ana M Islas-Espinoza
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Itzel I Ramos-Rodríguez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | | | - Miguel Á Gutiérrez-Agredano
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | | | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico.
| |
Collapse
|
16
|
Waisman A, Katz J. The autobiographical memory system and chronic pain: A neurocognitive framework for the initiation and maintenance of chronic pain. Neurosci Biobehav Rev 2024; 162:105736. [PMID: 38796124 DOI: 10.1016/j.neubiorev.2024.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chronic pain affects approximately 20% of the world's population, exerting a substantial burden on the affected individual, their families, and healthcare systems globally. Deficits in autobiographical memory have been identified among individuals living with chronic pain, and even found to pose a risk for the transition to chronicity. Recent neuroimaging studies have simultaneously implicated common brain regions central to autobiographical memory processing in the maintenance of and susceptibility to chronic pain. The present review proposes a novel neurocognitive framework for chronic pain explained by mechanisms underlying the autobiographical memory system. Here, we 1) summarize the current literature on autobiographical memory in pain, 2) discuss the role of the hippocampus and cortical brain regions including the ventromedial prefrontal cortex, anterior temporal lobe, and amygdala in relation to autobiographical memory, memory schemas, emotional processing, and pain, 3) synthesize these findings in a neurocognitive framework that explains these relationships and their implications for patients' pain outcomes, and 4) propose translational directions for the prevention, management, and treatment of chronic pain.
Collapse
Affiliation(s)
- Anna Waisman
- Department of Psychology, York University, Toronto, ON, Canada.
| | - Joel Katz
- Department of Psychology, York University, Toronto, ON, Canada; Department of Anesthesia and Pain Management, Toronto General Hospital, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Ahmed AI, Al-Nuaimi S, Mustafa A, Zeidan A, Agouni A, Djouhri L. K v7 Channel Activators Flupirtine and ML213 Alleviate Neuropathic Pain Behavior in the Streptozotocin Rat Model of Diabetic Neuropathy. J Pain Res 2024; 17:2267-2278. [PMID: 38947132 PMCID: PMC11214752 DOI: 10.2147/jpr.s467535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Background & Objective Chronic peripheral neuropathic pain (PNP) is a debilitating condition that is associated with many types of injury/diseases, including diabetes mellitus. Patients with longstanding diabetes develop diabetic PNP (DPNP), which is resilient to currently available drugs. The underlying molecular mechanisms of DPNP are still illusive, but Kv7 channels that have been implicated in the pathogenesis of various types of chronic pain are likely to be involved. Indeed, using the streptozotocin (STZ) rat model of DPNP, we have previously shown that Kv7 activation with their non-selective activator retigabine attenuated neuropathic pain behavior suggesting that these channels are implicated in DPNP pathogenesis. Here, we evaluated, in the same STZ model, whether the more potent and more selective Kv7 channel openers flupirtine and ML213 attenuate STZ-induced pain hypersensitivity. Methods Male Sprague Dawley rats (250-300 g) were used. The STZ model involved a single injection of STZ (60 mg/kg, i.p.). Behavioral testing for mechanical and heat pain sensitivity was performed using a dynamic plantar aesthesiometer and Hargreaves analgesiometer, respectively. Results STZ rats exhibited behavioral signs of mechanical and heat hypersensitivity as indicated by significant decreases in the mean paw withdrawal threshold (PWT) and mean paw withdrawal latency (PWL), respectively, at 35 days post-STZ treatment. Single injections of flupirtine (10 mg/kg, i.p.) and ML213 (5 mg/kg, i.p.) to STZ rats (35-days after STZ treatment) caused significant increases in the mean PWT, but not PWL, indicating attenuation of mechanical, but not heat hypersensitivity. Both flupirtine and ML213 were as effective as the positive control gabapentin (10/kg, i.p.), and their anti-allodynic effects were prevented by the Kv7 channel-specific blocker XE991 (3 mg/kg, i.p.). Conclusion The findings suggest that Kv7 channels are involved in the mechanisms of mechanical but not heat hypersensitivity associated with DPNP, and that their activation may prove to be effective in alleviating DPNP symptoms.
Collapse
Affiliation(s)
- Ashraf Ibrahim Ahmed
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Salma Al-Nuaimi
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ayman Mustafa
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, Doha, Qatar
| | - Laiche Djouhri
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
18
|
Han Y, Ai L, Song L, Zhou Y, Chen D, Sha S, Ji R, Li Q, Bu Q, Pan X, Zhai X, Cui M, Duan J, Yang J, Chaudhury D, Hu A, Liu H, Han MH, Cao JL, Zhang H. Midbrain glutamatergic circuit mechanism of resilience to socially transferred allodynia in male mice. Nat Commun 2024; 15:4947. [PMID: 38858350 PMCID: PMC11164890 DOI: 10.1038/s41467-024-49340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The potential brain mechanism underlying resilience to socially transferred allodynia remains unknown. Here, we utilize a well-established socially transferred allodynia paradigm to segregate male mice into pain-susceptible and pain-resilient subgroups. Brain screening results show that ventral tegmental area glutamatergic neurons are selectively activated in pain-resilient mice as compared to control and pain-susceptible mice. Chemogenetic manipulations demonstrate that activation and inhibition of ventral tegmental area glutamatergic neurons bi-directionally regulate resilience to socially transferred allodynia. Moreover, ventral tegmental area glutamatergic neurons that project specifically to the nucleus accumbens shell and lateral habenula regulate the development and maintenance of the pain-resilient phenotype, respectively. Together, we establish an approach to explore individual variations in pain response and identify ventral tegmental area glutamatergic neurons and related downstream circuits as critical targets for resilience to socially transferred allodynia and the development of conceptually innovative analgesics.
Collapse
Affiliation(s)
- Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Lin Ai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Lingzhen Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Dandan Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Sha Sha
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Ran Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Qize Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Qingyang Bu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiangyu Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jiawen Duan
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China
| | - Junxia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island, 129188, United Arab Emirates
| | - Ankang Hu
- The Animal Facility of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - He Liu
- Department of Anesthesiology, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, PR China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, PR China.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China.
| |
Collapse
|
19
|
Boerner KE, Keogh E, Inkster AM, Nahman-Averbuch H, Oberlander TF. A developmental framework for understanding the influence of sex and gender on health: Pediatric pain as an exemplar. Neurosci Biobehav Rev 2024; 158:105546. [PMID: 38272336 DOI: 10.1016/j.neubiorev.2024.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Sex differences are a robust finding in many areas of adult health, including cardiovascular disease, psychiatric disorders, and chronic pain. However, many sex differences are not consistently observed until after the onset of puberty. This has led to the hypothesis that hormones are primary contributors to sex differences in health outcomes, largely ignoring the relative contributions of early developmental influences, emerging psychosocial factors, gender, and the interaction between these variables. In this paper, we argue that a comprehensive understanding of sex and gender contributions to health outcomes should start as early as conception and take an iterative biopsychosocial-developmental perspective that considers intersecting social positions. We present a conceptual framework, informed by a review of the literature in basic, clinical, and social science that captures how critical developmental stages for both sex and gender can affect children's health and longer-term outcomes. The literature on pediatric chronic pain is used as a worked example of how the framework can be applied to understanding different chronic conditions.
Collapse
Affiliation(s)
- Katelynn E Boerner
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Edmund Keogh
- Department of Psychology & Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Amy M Inkster
- Department of Medical Genetics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim F Oberlander
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
20
|
Keogh E, Boerner KE. Challenges with embedding an integrated sex and gender perspective into pain research: Recommendations and opportunities. Brain Behav Immun 2024; 117:112-121. [PMID: 38145854 DOI: 10.1016/j.bbi.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
The focus of this article, within this BBI horizons special issue, is on sex, gender, and pain. We summarise what is currently known about sex- and gender-related variations in pain, exploring intersectional biological and psychosocial mechanisms, and highlight gaps in knowledge and understanding. Five key challenges with the exploration of sex and gender in pain research are presented, relating to: conceptual imprecision, research bias, limitations with binary descriptions, integrating sex and gender, and timely adoption/implementation of good research practice. Guidance on how to overcome such challenges is provided. Despite clear evidence for sex and gender differences in pain, there are conceptual and methodological barriers to overcome. Innovation in methods and approach can help develop more effective and tailored treatment approaches for men, women, boys, girls, and gender-diverse people.
Collapse
Affiliation(s)
- Edmund Keogh
- Bath Centre for Pain Research & Department of Psychology, University of Bath, UK.
| | | |
Collapse
|
21
|
Antonioni A, Baroni A, Fregna G, Ahmed I, Straudi S. The effectiveness of home-based transcranial direct current stimulation on chronic pain: A systematic review and meta-analysis. Digit Health 2024; 10:20552076241292677. [PMID: 39600390 PMCID: PMC11590159 DOI: 10.1177/20552076241292677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024] Open
Abstract
Objective As highlighted by the COVID-19 pandemic, identifying strategies for home-based patient management is crucial. As pain is highly prevalent and imposes significant burdens, interest in its remote management is steadily increasing. Transcranial Direct Current Stimulation (tDCS) seems promising in this context. Methods This systematic review and meta-analysis aimed to determine the effectiveness of home-based tDCS in pain management (PROSPERO, CRD42023452899). The extracted data included clinical conditions, interventions, comparators, outcome measures, adverse effects, and risk of bias; the Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment was carried out. Results 12 records (9 randomized controlled trials [RCTs], 446 participants, 266 undergoing tDCS) were included in the systematic review. The meta-analysis showed that home-based tDCS might produce large and clinically relevant improvement in chronic pain intensity at the end of the intervention (standard mean difference [SMD] -0.95, 95% CI -1.34 to -0.56; p < 0.01; 404 participants, low certainty), as well as small clinically unimportant improvement at short-term follow-up (SMD -0.50, 95% CI -0.82 to -0.19; p < 0.01; 160 participants, moderate certainty). A subgroup analysis showed that it might clinically improve the chronic pain related to fibromyalgia and knee osteoarthritis. Moreover, home-based tDCS seems to modulate pressure pain threshold, heat pain threshold, and heat and cold tolerance at the end of the intervention. Notably, tDCS appeared to be generally safe, well-accepted and easily applied at home. Conclusions Low to moderate certainty evidence suggests that home-based self-administered tDCS is a safe and effective tool for managing various types of chronic pain. Further well-designed, large-scale RCTs are warranted.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, Italy
| | - Andrea Baroni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| | - Giulia Fregna
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara, Italy
| | - Ishtiaq Ahmed
- Pain in Motion International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Neuroscience, Ferrara University Hospital, Ferrara, Italy
| |
Collapse
|
22
|
Smith PA. The Known Biology of Neuropathic Pain and Its Relevance to Pain Management. Can J Neurol Sci 2024; 51:32-39. [PMID: 36799022 DOI: 10.1017/cjn.2023.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Patients with neuropathic pain are heterogeneous in pathophysiology, etiology, and clinical presentation. Signs and symptoms are determined by the nature of the injury and factors such as genetics, sex, prior injury, age, culture, and environment. Basic science has provided general information about pain etiology by studying the consequences of peripheral injury in rodent models. This is associated with the release of inflammatory cytokines, chemokines, and growth factors that sensitize sensory nerve endings, alter gene expression, promote post-translational modification of proteins, and alter ion channel function. This leads to spontaneous activity in primary afferent neurons that is crucial for the onset and persistence of pain and the release of secondary mediators such as colony-stimulating factor 1 from primary afferent terminals. These promote the release of tertiary mediators such as brain-derived neurotrophic factor and interleukin-1β from microglia and astrocytes. Tertiary mediators facilitate the transmission of nociceptive information at the spinal, thalamic, and cortical levels. For the most part, these findings have failed to identify new therapeutic approaches. More recent basic science has better mirrored the clinical situation by addressing the pathophysiology associated with specific types of injury, refinement of methodology, and attention to various contributory factors such as sex. Improved quantification of sensory profiles in each patient and their distribution into defined clusters may improve translation between basic science and clinical practice. If such quantification can be traced back to cellular and molecular aspects of pathophysiology, this may lead to personalized medicine approaches that dictate a rational therapeutic approach for each individual.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
Faux P, Ding L, Ramirez-Aristeguieta LM, Chacón-Duque JC, Comini M, Mendoza-Revilla J, Fuentes-Guajardo M, Jaramillo C, Arias W, Hurtado M, Villegas V, Granja V, Barquera R, Everardo-Martínez P, Quinto-Sánchez M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Poletti G, Gallo C, Rothhammer F, Rojas W, Schmid AB, Adhikari K, Bennett DL, Ruiz-Linares A. Neanderthal introgression in SCN9A impacts mechanical pain sensitivity. Commun Biol 2023; 6:958. [PMID: 37816865 PMCID: PMC10564861 DOI: 10.1038/s42003-023-05286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023] Open
Abstract
The Nav1.7 voltage-gated sodium channel plays a key role in nociception. Three functional variants in the SCN9A gene (encoding M932L, V991L, and D1908G in Nav1.7), have recently been identified as stemming from Neanderthal introgression and to associate with pain symptomatology in UK BioBank data. In 1000 genomes data, these variants are absent in Europeans but common in Latin Americans. Analysing high-density genotype data from 7594 Latin Americans, we characterized Neanderthal introgression in SCN9A. We find that tracts of introgression occur on a Native American genomic background, have an average length of ~123 kb and overlap the M932L, V991L, and D1908G coding positions. Furthermore, we measured experimentally six pain thresholds in 1623 healthy Colombians. We found that Neanderthal ancestry in SCN9A is significantly associated with a lower mechanical pain threshold after sensitization with mustard oil and evidence of additivity of effects across Nav1.7 variants. Our findings support the reported association of Neanderthal Nav1.7 variants with clinical pain, define a specific sensory modality affected by archaic introgression in SCN9A and are consistent with independent effects of the Neanderthal variants on Nav1.7 function.
Collapse
Affiliation(s)
- Pierre Faux
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, 200438, Shanghai, China
- UMR ADES, Aix-Marseille Université, CNRS, EFS, 13005, Marseille, France
- UMR GenPhySE, INRAE, INP, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | - Li Ding
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, 200438, Shanghai, China
| | | | - J Camilo Chacón-Duque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, SE-1069, Stockholm, Sweden
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Maddalena Comini
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
- Unit of Human Evolutionary Genetics, Institut Pasteur, 75015, Paris, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, 1000000, Arica, Chile
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, 5001000, Medellín, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, 5001000, Medellín, Colombia
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, 6600, Mexico, Mexico
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), 07745, Jena, Germany
| | - Paola Everardo-Martínez
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, 6600, Mexico, Mexico
| | - Mirsha Quinto-Sánchez
- Forensic Science, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México), 06320, Mexico City, Mexico
| | - Jorge Gómez-Valdés
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, 6600, Mexico, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, 4510, Mexico City, Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-090, São Paulo, SP, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, U9129ACD, Puerto Madryn, Argentina
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, U9129ACD, Puerto Madryn, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, 90040-060, Porto Alegre, Brasil
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, 6600, Mexico, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, 4510, Mexico City, Mexico
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 31, Lima, Perú
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Arica, Chile
| | - Winston Rojas
- GENMOL (Genética Molecular), Universidad de Antioquia, 5001000, Medellín, Colombia
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK
| | - Kaustubh Adhikari
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK.
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK.
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, OX3 9DU, UK.
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, 200438, Shanghai, China.
- UMR ADES, Aix-Marseille Université, CNRS, EFS, 13005, Marseille, France.
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
24
|
Benson S, Karshikoff B. How Can Experimental Endotoxemia Contribute to Our Understanding of Pain? A Narrative Review. Neuroimmunomodulation 2023; 30:250-267. [PMID: 37797598 PMCID: PMC10619593 DOI: 10.1159/000534467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
The immune system and the central nervous system exchange information continuously. This communication is a prerequisite for adaptive responses to physiological and psychological stressors. While the implicate relationship between inflammation and pain is increasingly recognized in clinical cohorts, the underlying mechanisms and the possibilities for pharmacological and psychological approaches aimed at neuro-immune communication in pain are not fully understood yet. This calls for preclinical models which build a bridge from clinical research to laboratory research. Experimental models of systemic inflammation (experimental endotoxemia) in humans have been increasingly recognized as an approach to study the direct and causal effects of inflammation on pain perception. This narrative review provides an overview of what experimental endotoxemia studies on pain have been able to clarify so far. We report that experimental endotoxemia results in a reproducible increase in pain sensitivity, particularly for pressure and visceral pain (deep pain), which is reflected in responses of brain areas involved in pain processing. Increased levels of blood inflammatory cytokines are required for this effect, but cytokine levels do not always predict pain intensity. We address sex-dependent differences in immunological responses to endotoxin and discuss why these differences do not necessarily translate to differences in behavioral measures. We summarize psychological and cognitive factors that may moderate pain sensitization driven by immune activation. Together, studying the immune-driven changes in pain during endotoxemia offers a deeper mechanistic understanding of the role of inflammation in chronic pain. Experimental endotoxemia models can specifically help to tease out inflammatory mechanisms underlying individual differences, vulnerabilities, and comorbid psychological problems in pain syndromes. The model offers the opportunity to test the efficacy of interventions, increasing their translational applicability for personalized medical approaches.
Collapse
Affiliation(s)
- Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bianka Karshikoff
- Department of Social Studies, University of Stavanger, Stavanger, Norway
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Horvath G, Nagy K, Tuboly G, Nagy E. Pain and Weather associations - Action Mechanisms; Personalized profiling. Brain Res Bull 2023; 200:110696. [PMID: 37391130 DOI: 10.1016/j.brainresbull.2023.110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
It is a well-known hypothesis that weather can influence human health, including pain sensation. The primary meteorological factors are atmospheric pressure, wind, humidity, precipitation, and temperature, which vary from the climate and seasons, but the parameters of space weather (e.g., geomagnetic and cosmic ray activities) also may affect our body condition. Despite a significant number of experimental studies, reviews, and meta-analyses concerning the potential role of weather in pain sensitivity, the findings are heterogeneous and lack consensus. Therefore, rather than attempting a comprehensive analysis of the entire literature on the effects of weather on different pain types, this study highlights the potential action mechanisms of the meteorological factors, and the possible causes of the controversial results. The few data available about the individual evaluations are discussed in detail to reveal the significance of the personalized analysis of the possible relationships between the most available weather parameters and the pain scores. The use of special algorithms may enable the individual integration of different data for a precise outcome concerning the link between pain sensitivity and weather parameters. It is presumed that despite the high level of interindividual differences in response to meteorological parameters, the patients can be clustered in different groups based on their sensitivity to the weather parameters with a possible disparate treatment design. This information may help patients to control their daily activities and aid physicians to plan more valuable management for patients with pain states when the weather conditions change.
Collapse
Affiliation(s)
- Gyöngyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged.
| | - Kamilla Nagy
- Department of Pediatrics and Pediatric Health Centre, Albert Szent-Györgyi Health Centre, University of Szeged.
| | - Gabor Tuboly
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged.
| | - Edit Nagy
- Department of Physiotherapy, Faculty of Health Sciences and Social Studies, University of Szeged.
| |
Collapse
|
27
|
Bailey NGN, Knott R, Grenier G, Craig KD, Kramer JLK. Physical pain among Indigenous Peoples in Canada: a scoping review. Can J Anaesth 2023; 70:1047-1063. [PMID: 37341897 DOI: 10.1007/s12630-023-02461-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 06/22/2023] Open
Abstract
PURPOSE Pain is a multifaceted experience shaped by various factors including context of pain, previous life events, and ongoing ethnocultural circumstances. Moreover, the definition of pain is inconsistent across cultures. Western medicine views physical pain (e.g., associated with a bone fracture) and nonphysical mental pain (e.g., depression) as two distinct conditions. Indigenous perspectives are often more wholistic, encompassing mental, spiritual, emotional, and physical hurt. The subjective nature of pain invites ample opportunity for discrimination in both its assessment and management. As such, it is important to consider Indigenous perspectives of pain in research and clinical practice. To investigate which aspects of Indigenous pain knowledge are currently considered by Western research, we conducted a scoping review of the literature on pain in Indigenous Peoples of Canada. SOURCE In June 2021, we searched nine databases and downloaded 8,220 papers after removal of duplicates. Two independent reviewers screened abstracts and full-text articles. PRINCIPLE FINDINGS Seventy-seven papers were included in the analysis. Using grounded theory, five themes emerged: pain measures/scales (n = 7), interventions (n = 13), pharmaceuticals (n = 17), pain expression/experiences (n = 45), and pain conditions (n = 70). CONCLUSION This scoping review shows that there is a paucity of research on pain measurement in Indigenous Peoples of Canada. This finding is concerning in light of numerous studies reporting that Indigenous Peoples experience their pain as ignored, minimized, or disbelieved. Furthermore, a clear disconnect emerged between pain expression in Indigenous Peoples and assessment in medical professionals. We hope that this scoping review will serve to translate current knowledge to other non-Indigenous academics and to initiate meaningful collaboration with Indigenous partners. Future research led by Indigenous academics and community partners is critically needed to better address pain needs in Canada.
Collapse
Affiliation(s)
- Nicole G N Bailey
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada.
- Department of Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.
| | - Robbie Knott
- Indigenous Research Support Initiative, The University of British Columbia, Vancouver, BC, Canada
| | - Georgia Grenier
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada
| | - Kenneth D Craig
- Department of Psychology, Faculty of Arts, The University of British Columbia, Vancouver, BC, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Ślęczkowska M, Almomani R, Marchi M, Salvi E, de Greef BTA, Sopacua M, Hoeijmakers JGJ, Lindsey P, Waxman SG, Lauria G, Faber CG, Smeets HJM, Gerrits MM. Peripheral Ion Channel Genes Screening in Painful Small Fiber Neuropathy. Int J Mol Sci 2022; 23:ijms232214095. [PMID: 36430572 PMCID: PMC9696564 DOI: 10.3390/ijms232214095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Neuropathic pain is a characteristic feature of small fiber neuropathy (SFN), which in 18% of the cases is caused by genetic variants in voltage-gated sodium ion channels. In this study, we assessed the role of fifteen other ion channels in neuropathic pain. Patients with SFN (n = 414) were analyzed for ANO1, ANO3, HCN1, KCNA2, KCNA4, KCNK18, KCNN1, KCNQ3, KCNQ5, KCNS1, TRPA1, TRPM8, TRPV1, TRPV3 and TRPV4 variants by single-molecule molecular inversion probes-next-generation sequencing. These patients did not have genetic variants in SCN3A, SCN7A-SCN11A and SCN1B-SCN4B. In twenty patients (20/414, 4.8%), a potentially pathogenic heterozygous variant was identified in an ion-channel gene (ICG). Variants were present in seven genes, for two patients (0.5%) in ANO3, one (0.2%) in KCNK18, two (0.5%) in KCNQ3, seven (1.7%) in TRPA1, three (0.7%) in TRPM8, three (0.7%) in TRPV1 and two (0.5%) in TRPV3. Variants in the TRP genes were the most frequent (n = 15, 3.6%), partly in patients with high mean maximal pain scores VAS = 9.65 ± 0.7 (n = 4). Patients with ICG variants reported more severe pain compared to patients without such variants (VAS = 9.36 ± 0.72 vs. VAS = 7.47 ± 2.37). This cohort study identified ICG variants in neuropathic pain in SFN, complementing previous findings of ICG variants in diabetic neuropathy. These data show that ICG variants are central in neuropathic pain of different etiologies and provides promising gene candidates for future research.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Rowida Almomani
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Margherita Marchi
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, 20133 Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, 20133 Milan, Italy
| | - Bianca T A de Greef
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Maurice Sopacua
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Patrick Lindsey
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Giuseppe Lauria
- Neuroalgology Unit, IRCCS Foundation “Carlo Besta” Neurological Institute, 20133 Milan, Italy
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
- Correspondence:
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Monique M Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
29
|
Chowdhury NS, Chang WJ, Millard SK, Skippen P, Bilska K, Seminowicz DA, Schabrun SM. The Effect of Acute and Sustained Pain on Corticomotor Excitability: A Systematic Review and Meta-Analysis of Group and Individual Level Data. THE JOURNAL OF PAIN 2022; 23:1680-1696. [PMID: 35605763 DOI: 10.1016/j.jpain.2022.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Pain alters motor function. This is supported by studies showing reduced corticomotor excitability in response to experimental pain lasting <90 minutes. Whether similar reductions in corticomotor excitability are present with pain of longer durations or whether alterations in corticomotor excitability are associated with pain severity is unknown. Here we evaluated the evidence for altered corticomotor excitability in response to experimental pain of differing durations in healthy individuals. Databases were systematically searched for eligible studies. Measures of corticomotor excitability and pain were extracted. Meta-analyses were performed to examine: (1) group-level effect of pain on corticomotor excitability, and (2) individual-level associations between corticomotor excitability and pain severity. 49 studies were included. Corticomotor excitability was reduced when pain lasted milliseconds-seconds (hedges g's = -1.26 to -1.55) and minutes-hours (g's = -0.55 to -0.9). When pain lasted minutes-hours, a greater reduction in corticomotor excitability was associated with lower pain severity (g = -0.24). For pain lasting days-weeks, there were no group level effects (g = -0.18 to 0.27). However, a greater reduction in corticomotor excitability was associated with higher pain severity (g = 0.229). In otherwise healthy individuals, suppression of corticomotor excitability may be a beneficial short-term strategy with long-term consequences. PERSPECTIVE: This systematic review synthesised the evidence for altered corticomotor excitability in response to experimentally induced pain. Reduced corticomotor excitability was associated with lower acute pain severity but higher sustained pain severity, suggesting suppression of corticomotor excitability may be a beneficial short-term adaptation with long-term consequences.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Katarzyna Bilska
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, Maryland; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, Maryland
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia.
| |
Collapse
|
30
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
31
|
Association between the Use of Quantitative Sensory Testing and Conditioned Pain Modulation and the Prescription of Medication and Interventional Procedures in Children with Chronic Pain Conditions. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9081157. [PMID: 36010048 PMCID: PMC9406785 DOI: 10.3390/children9081157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
Abstract
The evidence supporting the use of pharmacological treatments in pediatric chronic pain is limited. Quantitative sensory testing (QST) and conditioned pain modulation evaluation (CPM) provide information on pain phenotype, which may help clinicians to tailor the treatment. This retrospective study aimed to evaluate the association between the use of QST/CPM phenotyping on the selection of the treatment for children with chronic pain conditions. We retrospectively analyzed the medical records of 208 female patients (mean age 15 ± 2 years) enrolled in an outpatient interdisciplinary pediatric complex pain center. Pain phenotype information (QST/CPM) of 106 patients was available to the prescribing physician. The records of 102 age- and sex-matched patients without QST/CPM were used as controls. The primary endpoint was the proportion of medications and interventions prescribed. The secondary endpoint was the duration of treatment. The QST/CPM group received less opioids (7% vs. 28%, respectively, p < 0.001), less anticonvulsants (6% vs. 25%, p < 0.001), and less interventional treatments (29% vs. 44%, p = 0.03) than controls. Patients with an optimal CPM result tended to be prescribed fewer antidepressants (2% vs. 18%, p = 0.01), and patients with signs of allodynia and/or temporal summation tended to be prescribed fewer NSAIDs (57% vs. 78%, p = 0.04). There was no difference in the duration of the treatments between the groups. QST/CPM testing appears to provide more targeted therapeutic options resulting in the overall drop in polypharmacy and reduced use of interventional treatments while remaining at least as effective as the standard of care.
Collapse
|
32
|
Sex and gender differences in pain: past, present, and future. Pain 2022; 163:S108-S116. [PMID: 36099334 DOI: 10.1097/j.pain.0000000000002738] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
|
33
|
CaV3.2 calcium channels contribute to trigeminal neuralgia. Pain 2022; 163:2315-2325. [PMID: 35467587 DOI: 10.1097/j.pain.0000000000002651] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Trigeminal neuralgia (TN) is a rare but debilitating disorder characterized by excruciating facial pain, with a higher incidence in women. Recent studies demonstrated that TN patients present mutations in the gene encoding the CaV3.2 T-type calcium channel, an important player in peripheral pain pathways. Here we characterize the role of CaV3.2 channels in TN at two levels. First, we examined the biophysical properties of CACNA1H variants found in TN patients. Second, we investigated the role of CaV3.2 in an animal model of trigeminal neuropathic pain. Whole cell patch clamp recordings from four different mutants expressed in tsA-201 cells (E286K in the pore loop of domain I, H526Y, G563R and P566T in the domain I-II linker) identified a loss-of-function in activation in the E286K mutation and gain-of-function in the G563R and P566T mutations. Moreover, a loss-of-function in inactivation was observed with the E286K and H526Y mutations. Cell surface biotinylation revealed no difference in channel trafficking among the variants. The G563R mutant also caused a gain-of-function in the firing properties of transfected trigeminal ganglion neurons. In female and male mice, constriction of the infraorbital nerve (CION) induced facial thermal heat hyperalgesia. Block of T-type channels with Z944 resulted in antihyperalgesia. The effect of Z944 was absent in CaV3.2-/- mice, indicating that CaV3.2 is the molecular target of the antihyperalgesic Z944 effect. Finally, ELISA analysis revealed increased CaV3.2 channel expression in the spinal trigeminal subnucleus caudalis. Altogether, the present study demonstrates an important role of CaV3.2 channels in trigeminal pain.
Collapse
|
34
|
Kharasch ED, Clark JD, Adams JM. Opioids and Public Health: The Prescription Opioid Ecosystem and Need for Improved Management. Anesthesiology 2022; 136:10-30. [PMID: 34874401 PMCID: PMC10715730 DOI: 10.1097/aln.0000000000004065] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While U.S. opioid prescribing has decreased 38% in the past decade, opioid deaths have increased 300%. This opioid paradox is poorly recognized. Current approaches to opioid management are not working, and new approaches are needed. This article reviews the outcomes and shortcomings of recent U.S. opioid policies and strategies that focus primarily or exclusively on reducing or eliminating opioid prescribing. It introduces concepts of a prescription opioid ecosystem and opioid pool, and it discusses how the pool can be influenced by supply-side, demand-side, and opioid returns factors. It illuminates pressing policy needs for an opioid ecosystem that enables proper opioid stewardship, identifies associated responsibilities, and emphasizes the necessity of making opioid returns as easy and common as opioid prescribing, in order to minimize the size of the opioid pool available for potential diversion, misuse, overdose, and death. Approaches are applicable to opioid prescribing in general, and to opioid prescribing after surgery.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - J David Clark
- the Anesthesiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | | |
Collapse
|
35
|
Population attributable fraction of indicators for musculoskeletal diseases: a cross-sectional study of fishers in Korea. Ann Occup Environ Med 2022; 34:e23. [PMID: 36267357 PMCID: PMC9560895 DOI: 10.35371/aoem.2022.34.e23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background The musculoskeletal disease (MSD) burden is an important health problem among Korean fishers. We aimed to investigate the indicators of the prevalence of MSD and contributions of significant indicators to MSD in Korean fishers. Methods This cross-section study included 927 fishers (male, 371; female, 556) aged 40 to 79 years who were enrolled from 3 fishery safety and health centers. The outcome variable was one-year prevalence of MSD in 5 body parts (the neck, shoulder, hand, back, and knee). Independent variables were sex, age, educational attainment, household income, job classification, employment xlink:type, hazardous working environment (cold, heat, and noise), ergonomic risk by the 5 body parts, anxiety disorder, depression, hypertension, diabetes, and hyperlipidemia. The adjusted odds ratio of MSDs by the 5 body parts were calculated using multiple logistic regression analysis. We computed the population attributable fraction (PAF) for each indicators of MSDs using binary regression models. Results The one-year prevalence of MSD in the neck, shoulder, hand, back, and knee was 7.8%, 17.8%, 7.8%, 27.2%, and 16.2% in males vs. 16.4%, 28.1%, 23.0%, 38.7%, and 30.0% in females, respectively. The ergonomic risk PAF according to the body parts ranged from 22.8%–59.6% in males and 22.8%–50.3% in female. Mental diseases showed a significant PAF for all body parts only among female (PAF 9.1%–21.4%). Cold exposure showed a significant PAF for the neck, shoulder, and hand MSD only among female (25.6%–26.8%). Age was not a significant indicator except for the knee MSD among female. Conclusions Ergonomic risk contributed majorly as indicators of MSDs in both sexes of fishers. Mental disease and cold exposure were indicators of MSDs only among female fishers. This information may be important for determining priority risk groups for the prevention of work-related MSD among Korean fishers.
Collapse
|
36
|
Farrell SF, Campos AI, Kho PF, de Zoete RMJ, Sterling M, Rentería ME, Ngo TT, Cuéllar-Partida G. Genetic basis to structural grey matter associations with chronic pain. Brain 2021; 144:3611-3622. [PMID: 34907416 DOI: 10.1093/brain/awab334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 01/26/2023] Open
Abstract
Structural neuroimaging studies of individuals with chronic pain conditions have often observed decreased regional grey matter at a phenotypic level. However, it is not known if this association can be attributed to genetic factors. Here we employed a novel integrative data-driven and hypothesis-testing approach to determine whether there is a genetic basis to grey matter morphology differences in chronic pain. Using publicly available genome-wide association study summary statistics for regional chronic pain conditions (n = 196 963) and structural neuroimaging measures (n = 19 629-34 000), we applied bivariate linkage disequilibrium-score regression and latent causal variable analyses to determine the genetic correlations (rG) and genetic causal proportion (GCP) between these complex traits, respectively. Five a priori brain regions (i.e. prefrontal cortex, cingulate cortex, insula, thalamus and superior temporal gyrus) were selected based on systematic reviews of grey matter morphology studies in chronic pain. Across this evidence-based selection of five brain regions, 10 significant negative genetic correlations (out of 369) were found (false discovery rate < 5%), suggesting a shared genetic basis to both reduced regional grey matter morphology and the presence of chronic pain. Specifically, negative genetic correlations were observed between reduced insula grey matter morphology and chronic pain in the abdomen (mean insula cortical thickness), hips (left insula volume) and neck/shoulders (left and right insula volume). Similarly, a shared genetic basis was found for reduced posterior cingulate cortex volume in chronic pain of the hip (left and right posterior cingulate), neck/shoulder (left posterior cingulate) and chronic pain at any site (left posterior cingulate); and for reduced pars triangularis volume in chronic neck/shoulder (left pars triangularis) and widespread pain (right pars triangularis). Across these negative genetic correlations, a significant genetic causal proportion was only found between mean insula thickness and chronic abdominal pain [rG (standard error, SE) = -0.25 (0.08), P = 1.06 × 10-3; GCP (SE) = -0.69 (0.20), P = 4.96 × 10-4]. This finding suggests that the genes underlying reduced cortical thickness of the insula causally contribute to an increased risk of chronic abdominal pain. Altogether, these results provide independent corroborating evidence for observational reports of decreased grey matter of particular brain regions in chronic pain. Further, we show for the first time that this association is mediated (in part) by genetic factors. These novel findings warrant further investigation into the neurogenetic pathways that underlie the development and prolongation of chronic pain conditions.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, The University of Queensland, Herston, QLD, Australia.,NHMRC Centre for Research Excellence in Road Traffic Injury Recovery, The University of Queensland, Herston, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Adrián I Campos
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,Genetic Epidemiology Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Pik-Fang Kho
- Molecular Cancer Epidemiology Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rutger M J de Zoete
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA, Australia
| | - Michele Sterling
- RECOVER Injury Research Centre, The University of Queensland, Herston, QLD, Australia.,NHMRC Centre for Research Excellence in Road Traffic Injury Recovery, The University of Queensland, Herston, QLD, Australia
| | - Miguel E Rentería
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,Genetic Epidemiology Laboratory, Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Trung Thanh Ngo
- Diamantina Institute, The University of Queensland and Translational Research Institute, Woolloongabba, QLD, Australia
| | - Gabriel Cuéllar-Partida
- Diamantina Institute, The University of Queensland and Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
37
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
The role of negative emotions in sex differences in pain sensitivity. Neuroimage 2021; 245:118685. [PMID: 34740794 DOI: 10.1016/j.neuroimage.2021.118685] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Pain perception varies widely among individuals due to the varying degrees of biological, psychological, and social factors. Notably, sex differences in pain sensitivity have been consistently observed in various experimental and clinical investigations. However, the neuropsychological mechanism underlying sex differences in pain sensitivity remains unclear. To address this issue, we quantified pain sensitivity (i.e., pain threshold and tolerance) using the cold pressure test and negative emotions (i.e., pain-related fear, pain-related anxiety, trait anxiety, and depression) using well-established questionnaires and collected magnetic resonance imaging (MRI) data (i.e., high-resolution T1 structural images and resting-state functional images) from 450 healthy subjects. We observed that, as compared to males, females exhibited lower pain threshold and tolerance. Notably, sex differences in pain sensitivity were mediated by pain-related fear and anxiety. Specifically, pain-related fear and anxiety were the complementary mediators of the relationship between sex and pain threshold, and they were the indirect-only mediators of the relationship between sex and pain tolerance. Besides, structural MRI data revealed that the amygdala subnuclei (i.e., the lateral and basal nuclei in the left hemisphere) volumes were the complementary mediators of the relationship between sex and pain-related fear, which further influenced pain sensitivity. Altogether, our results provided a comprehensive picture of how negative emotions (especially pain-related negative emotions) and related brain structures (especially the amygdala) contribute to sex differences in pain sensitivity. These results deepen our understanding of the neuropsychological underpinnings of sex differences in pain sensitivity, which is important to tailor a personalized method for treating pain according to sex and the level of pain-related negative emotions for patients with painful conditions.
Collapse
|