1
|
Araki M, Kasuya Y, Yoshimoto K, Katada T, Kontani K. Quantifying small GTPase activation status using a novel fluorescence HPLC-based assay. J Biol Chem 2025:108545. [PMID: 40286847 DOI: 10.1016/j.jbc.2025.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Small GTPases play crucial roles in cellular signaling pathways, with their activation states tightly regulated between GDP-bound inactive and GTP-bound active forms. Dysregulation of these nucleotide-binding states, such as in oncogenic RAS, is implicated in diseases like cancer. Accurately quantifying these states in cells is thus crucial for deciphering their functional roles and regulatory mechanisms. However, current methods do not fully meet the necessary sensitivity and versatility, limiting their effectiveness in small GTPase analysis. Here, we present a highly sensitive HPLC-based assay with fluorescence detection (Fluor-HPLC), enabling precise quantification of guanine nucleotide-binding states in small GTPases. Applying this technique, we successfully quantified the guanine nucleotide-binding states of small GTPases at their endogenous expression levels. We demonstrated the utility of Fluor-HPLC by elucidating RHEB and HRAS activation in response to extracellular stimuli. Furthermore, integration of Fluor-HPLC with syngeneic mouse models provided insights into KRAS activation dynamics in tumor tissues and evaluated the effectiveness of targeted therapeutics. Overall, this versatile method paves the way for investigating activation states and regulatory mechanisms of various small GTPases, potentially accelerating our understanding of their roles in cellular processes and disease pathogenesis.
Collapse
Affiliation(s)
- Makoto Araki
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Yukika Kasuya
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Kaho Yoshimoto
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Toshiaki Katada
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| |
Collapse
|
2
|
Araki M, Kontani K. Analysis of the Guanine Nucleotide-Bound State of KRAS by Ion-Pair Reversed-Phase High-Performance Liquid Chromatography. Methods Mol Biol 2024; 2797:227-236. [PMID: 38570463 DOI: 10.1007/978-1-0716-3822-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Guanine nucleotides can be quantitatively analyzed by high-performance liquid chromatography (HPLC). Here we describe an ion-pair reversed-phase HPLC (IP-RP-HPLC)-based method, which enables analyzing GDP and GTP bound to small GTPases immunoprecipitated from cells. The activation status of FLAG-KRAS expressed in HEK293T cells can be investigated with the IP-RP-HPLC method. This method also can be adapted to determine the effects of compounds such as the KRAS/G12C inhibitor sotorasib on the activation status of FLAG-KRAS in the cells.
Collapse
Affiliation(s)
- Makoto Araki
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan.
| |
Collapse
|
3
|
Development of a versatile HPLC-based method to evaluate the activation status of small GTPases. J Biol Chem 2021; 297:101428. [PMID: 34801548 PMCID: PMC8668980 DOI: 10.1016/j.jbc.2021.101428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
Small GTPases cycle between an inactive GDP-bound and an active GTP-bound state to control various cellular events, such as cell proliferation, cytoskeleton organization, and membrane trafficking. Clarifying the guanine nucleotide-bound states of small GTPases is vital for understanding the regulation of small GTPase functions and the subsequent cellular responses. Although several methods have been developed to analyze small GTPase activities, our knowledge of the activities for many small GTPases is limited, partly because of the lack of versatile methods to estimate small GTPase activity without unique probes and specialized equipment. In the present study, we developed a versatile and straightforward HPLC-based assay to analyze the activation status of small GTPases by directly quantifying the amounts of guanine nucleotides bound to them. This assay was validated by analyzing the RAS-subfamily GTPases, including HRAS, which showed that the ratios of GTP-bound forms were comparable with those obtained in previous studies. Furthermore, we applied this assay to the investigation of psychiatric disorder-associated mutations of RHEB (RHEB/P37L and RHEB/S68P), revealing that both mutations cause an increase in the ratio of the GTP-bound form in cells. Mechanistically, loss of sensitivity to TSC2 (a GTPase-activating protein for RHEB) for RHEB/P37L, as well as both decreased sensitivity to TSC2 and accelerated guanine-nucleotide exchange for RHEB/S68P, is involved in the increase of their GTP-bound forms, respectively. In summary, the HPLC-based assay developed in this study provides a valuable tool for analyzing small GTPases for which the activities and regulatory mechanisms are less well understood.
Collapse
|
4
|
Goto Y, Kondo Y, Aoki K. Visualization and Manipulation of Intracellular Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:225-234. [PMID: 33398816 DOI: 10.1007/978-981-15-8763-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells respond to a wide range of extracellular stimuli, and process the input information through an intracellular signaling system comprised of biochemical and biophysical reactions, including enzymatic and protein-protein interactions. It is essential to understand the molecular mechanisms underlying intracellular signal transduction in order to clarify not only physiological cellular functions but also pathological processes such as tumorigenesis. Fluorescent proteins have revolutionized the field of life science, and brought the study of intracellular signaling to the single-cell and subcellular levels. Much effort has been devoted to developing genetically encoded fluorescent biosensors based on fluorescent proteins, which enable us to visualize the spatiotemporal dynamics of cell signaling. In addition, optogenetic techniques for controlling intracellular signal transduction systems have been developed and applied in recent years by regulating intracellular signaling in a light-dependent manner. Here, we outline the principles of biosensors for probing intracellular signaling and the optogenetic tools for manipulating them.
Collapse
Affiliation(s)
- Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
5
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
6
|
Shu X. Imaging dynamic cell signaling in vivo with new classes of fluorescent reporters. Curr Opin Chem Biol 2019; 54:1-9. [PMID: 31678813 DOI: 10.1016/j.cbpa.2019.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022]
Abstract
Dynamical features of cell signaling are the essence of living organisms. To understand animal development, it is fundamental to investigate signaling dynamics in vivo. Robust reporters are required to visualize spatial and temporal dynamics of enzyme activities and protein-protein interactions involved in signaling pathways. In this review, we summarize recent development in the design of new classes of fluorescent reporters for imaging dynamic activities of proteases, kinases, and protein-protein interactions. These reporters operate on new physical and/or chemical principles; achieve large dynamic range, high brightness, and fast kinetics; and reveal spatiotemporal dynamics of signaling that is correlated with developmental events such as embryonic morphogenesis in live animals including Drosophila and zebrafish. Therefore, many of these reporters are great tools for biological discovery and mechanistic understanding of animal development and disease progression.
Collapse
Affiliation(s)
- Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA, United States; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA, United States.
| |
Collapse
|
7
|
In Vivo Quantification of Intramolecular FRET Using RacFRET Biosensors. Methods Mol Biol 2019. [PMID: 31432484 DOI: 10.1007/978-1-4939-9686-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Genetically encoded FRET biosensors are powerful tools to visualize protein activity and signaling events in vivo. Compared with a biochemical approach, FRET biosensors allow a noninvasive spatial-temporal detection of signaling processes in live cells and animal tissues. While the concept of this technique is relatively simple, the experimental procedure is complicated and consists of several steps: (1) biosensor optimization; (2) data acquisition; and (3) image processing with each step posing its own challenge. In this chapter, we discuss steps (2) and (3) with the emphasis on the intramolecular RacFRET biosensor. We describe the design principle of the biosensor, the experimental imaging setup for acquiring FRET data in zebrafish embryos expressing the RacFRET biosensor, and the step-by-step ratio image generation protocol using Fiji software. We discuss important considerations during FRET data acquisition and analysis. Finally, we provide a macro code for the automated ratio image generation.
Collapse
|
8
|
Intensiometric biosensors visualize the activity of multiple small GTPases in vivo. Nat Commun 2019; 10:211. [PMID: 30643148 PMCID: PMC6331645 DOI: 10.1038/s41467-018-08217-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/22/2018] [Indexed: 01/21/2023] Open
Abstract
Ras and Rho small GTPases are critical for numerous cellular processes including cell division, migration, and intercellular communication. Despite extensive efforts to visualize the spatiotemporal activity of these proteins, achieving the sensitivity and dynamic range necessary for in vivo application has been challenging. Here, we present highly sensitive intensiometric small GTPase biosensors visualizing the activity of multiple small GTPases in single cells in vivo. Red-shifted sensors combined with blue light-controllable optogenetic modules achieved simultaneous monitoring and manipulation of protein activities in a highly spatiotemporal manner. Our biosensors revealed spatial dynamics of Cdc42 and Ras activities upon structural plasticity of single dendritic spines, as well as a broad range of subcellular Ras activities in the brains of freely behaving mice. Thus, these intensiometric small GTPase sensors enable the spatiotemporal dissection of complex protein signaling networks in live animals. FRET sensors hardly achieve visualization of spatiotemporal dynamics of protein activity in vivo. Here the authors present intensiometric small GTPase biosensors based on dimerization-dependent fluorescent proteins that enable monitoring of activity of small GTPases in the brains of behaving mice at a single spine resolution.
Collapse
|
9
|
Chung CI, Zhang Q, Shu X. Dynamic Imaging of Small Molecule Induced Protein-Protein Interactions in Living Cells with a Fluorophore Phase Transition Based Approach. Anal Chem 2018; 90:14287-14293. [PMID: 30431263 PMCID: PMC6298840 DOI: 10.1021/acs.analchem.8b03476] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) mediate signal transduction in cells. Small molecules that regulate PPIs are important tools for biology and biomedicine. Dynamic imaging of small molecule induced PPIs characterizes and verifies these molecules in living cells. It is thus important to develop cellular assays for dynamic visualization of small molecule induced protein-protein association and dissociation in living cells. Here we have applied a fluorophore phase transition based principle and designed a PPI assay named SPPIER (separation of phases-based protein interaction reporter). SPPIER utilizes the green fluorescent protein (GFP) and is thus genetically encoded. Upon small molecule induced PPI, SPPIER rapidly forms highly fluorescent GFP droplets in living cells. SPPIER detects immunomodulatory drug (IMiD) induced PPI between cereblon and the transcription factor Ikaros. It also detects IMiD analogue (e.g., CC-885) induced PPI between cereblon and GSPT1. Furthermore, SPPIER can visualize bifunctional molecules (e.g. PROTAC)-induced PPI between an E3 ubiquitin ligase and a target protein. Lastly, SPPIER can be modified to image small molecule induced protein-protein dissociation, such as nutlin-induced dissociation between HDM2 and p53. The intense brightness and rapid kinetics of SPPIER enable robust and dynamic visualization of PPIs in living cells.
Collapse
Affiliation(s)
- Chan-I Chung
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| | - Qiang Zhang
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California – San Francisco, San Francisco, California, USA
- Cardiovascular Research Institute, University of California – San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Kim J, Heo WD. Synergistic Ensemble of Optogenetic Actuators and Dynamic Indicators in Cell Biology. Mol Cells 2018; 41:809-817. [PMID: 30157546 PMCID: PMC6182222 DOI: 10.14348/molcells.2018.0295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Discovery of the naturally evolved fluorescent proteins and their genetically engineered biosensors have enormously contributed to current bioimaging techniques. These reporters to trace dynamic changes of intracellular protein activities have continuously transformed according to the various demands in biological studies. Along with that, light-inducible optogenetic technologies have offered scientists to perturb, control and analyze the function of intracellular machineries in spatiotemporal manner. In this review, we present an overview of the molecular strategies that have been exploited for producing genetically encoded protein reporters and various optogenetic modules. Finally, in particular, we discuss the current efforts for combined use of these reporters and optogenetic modules as a powerful tactic for the control and imaging of signaling events in cells and tissues.
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141,
Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
11
|
Maryu G, Miura H, Uda Y, Komatsubara AT, Matsuda M, Aoki K. Live-cell Imaging with Genetically Encoded Protein Kinase Activity Reporters. Cell Struct Funct 2018; 43:61-74. [DOI: 10.1247/csf.18003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gembu Maryu
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences
| | - Haruko Miura
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences
| | - Youichi Uda
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
| | - Akira T. Komatsubara
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University
| | - Kazuhiro Aoki
- Division of Quantitative Biology, Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies)
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University
| |
Collapse
|
12
|
Wong HL, Akamatsu A, Wang Q, Higuchi M, Matsuda T, Okuda J, Kosami KI, Inada N, Kawasaki T, Kaneko-Kawano T, Nagawa S, Tan L, Kawano Y, Shimamoto K. In vivo monitoring of plant small GTPase activation using a Förster resonance energy transfer biosensor. PLANT METHODS 2018; 14:56. [PMID: 30002723 PMCID: PMC6035793 DOI: 10.1186/s13007-018-0325-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 06/29/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Small GTPases act as molecular switches that regulate various plant responses such as disease resistance, pollen tube growth, root hair development, cell wall patterning and hormone responses. Thus, to monitor their activation status within plant cells is believed to be the key step in understanding their roles. RESULTS We have established a plant version of a Förster resonance energy transfer (FRET) probe called Ras and interacting protein chimeric unit (Raichu) that can successfully monitor activation of the rice small GTPase OsRac1 during various defence responses in cells. Here, we describe the protocol for visualizing spatiotemporal activity of plant Rac/ROP GTPase in living plant cells, transfection of rice protoplasts with Raichu-OsRac1 and acquisition of FRET images. CONCLUSIONS Our protocol should be adaptable for monitoring activation for other plant small GTPases and protein-protein interactions for other FRET sensors in various plant cells.
Collapse
Affiliation(s)
- Hann Ling Wong
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
- Present Address: Department of Biological Science, University Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Akira Akamatsu
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
- Present Address: Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, 669-1337 Japan
| | - Qiong Wang
- Present Address: Signal Transduction and Immunity Group, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Masayuki Higuchi
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
| | - Tomonori Matsuda
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
| | - Jun Okuda
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
| | - Ken-ichi Kosami
- Present Address: Signal Transduction and Immunity Group, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai, 201602 China
| | - Noriko Inada
- College of Life, Environment, and Advanced, Osaka Prefecture University Sciences, Sakai, Osaka 599-8531 Japan
| | - Tsutomu Kawasaki
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
- Present Address: Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | | | - Shingo Nagawa
- Core Facility of Cell Biology, Shanghai Center for Plant Stress Biology, No. 3888 Chenhua Road, Shanghai, 201602 China
- Present Address: FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Li Tan
- Core Facility of Cell Biology, Shanghai Center for Plant Stress Biology, No. 3888 Chenhua Road, Shanghai, 201602 China
| | - Yoji Kawano
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
- Present Address: Signal Transduction and Immunity Group, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, No. 3888 Chenhua Road, Shanghai, 201602 China
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813 Japan
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192 Japan
| |
Collapse
|
13
|
Sun T, Yang L, Kaur H, Pestel J, Looso M, Nolte H, Krasel C, Heil D, Krishnan RK, Santoni MJ, Borg JP, Bünemann M, Offermanns S, Swiercz JM, Worzfeld T. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib. J Cell Biol 2016; 216:199-215. [PMID: 28007914 PMCID: PMC5223600 DOI: 10.1083/jcb.201602002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/30/2016] [Accepted: 11/13/2016] [Indexed: 11/22/2022] Open
Abstract
Semaphorins comprise a large family of ligands that regulate key cellular functions through their receptors, plexins. In this study, we show that the transmembrane semaphorin 4A (Sema4A) can also function as a receptor, rather than a ligand, and transduce signals triggered by the binding of Plexin-B1 through reverse signaling. Functionally, reverse Sema4A signaling regulates the migration of various cancer cells as well as dendritic cells. By combining mass spectrometry analysis with small interfering RNA screening, we identify the polarity protein Scrib as a downstream effector of Sema4A. We further show that binding of Plexin-B1 to Sema4A promotes the interaction of Sema4A with Scrib, thereby removing Scrib from its complex with the Rac/Cdc42 exchange factor βPIX and decreasing the activity of the small guanosine triphosphatase Rac1 and Cdc42. Our data unravel a role for Plexin-B1 as a ligand and Sema4A as a receptor and characterize a reverse signaling pathway downstream of Sema4A, which controls cell migration.
Collapse
Affiliation(s)
- Tianliang Sun
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Lida Yang
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Harmandeep Kaur
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jenny Pestel
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hendrik Nolte
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Cornelius Krasel
- Institute of Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Daniel Heil
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Ramesh K Krishnan
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Marie-Josée Santoni
- Cell Polarity, Cell Signaling and Cancer, Equipe labellisée Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale, U1068, 13009 Marseille, France.,Institut Paoli-Calmettes, 13009 Marseille, France.,Aix-Marseille Université, 13284 Marseille, France.,Centre National de la Recherche Scientifique, UMR7258, 13273 Marseille, France
| | - Jean-Paul Borg
- Cell Polarity, Cell Signaling and Cancer, Equipe labellisée Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale, U1068, 13009 Marseille, France.,Institut Paoli-Calmettes, 13009 Marseille, France.,Aix-Marseille Université, 13284 Marseille, France.,Centre National de la Recherche Scientifique, UMR7258, 13273 Marseille, France
| | - Moritz Bünemann
- Institute of Pharmacology and Clinical Pharmacy, Biochemical-Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.,Medical Faculty, University of Frankfurt, 60590 Frankfurt am Main, Germany
| | - Jakub M Swiercz
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Worzfeld
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany .,Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
14
|
Bolbat A, Schultz C. Recent developments of genetically encoded optical sensors for cell biology. Biol Cell 2016; 109:1-23. [PMID: 27628952 DOI: 10.1111/boc.201600040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future.
Collapse
Affiliation(s)
- Andrey Bolbat
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology & Biophysics Unit, Heidelberg, 69117, Germany
| |
Collapse
|
15
|
Okada T, Takahashi S, Ishida A, Ishigame H. In vivo multiphoton imaging of immune cell dynamics. Pflugers Arch 2016; 468:1793-1801. [PMID: 27659161 PMCID: PMC5138265 DOI: 10.1007/s00424-016-1882-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
Abstract
Multiphoton imaging has been utilized to analyze in vivo immune cell dynamics over the last 15 years. Particularly, it has deepened the understanding of how immune responses are organized by immune cell migration and interactions. In this review, we first describe the following technical advances in recent imaging studies that contributed to the new findings on the regulation of immune responses and inflammation. Improved multicolor imaging of immune cell behavior has revealed that their interactions are spatiotemporally coordinated to achieve efficient and long-term immunity. The use of photoactivatable and photoconvertible fluorescent proteins has increased duration and volume of cell tracking, even enabling the analysis of inter-organ migration of immune cells. In addition, visualization of immune cell activation using biosensors for intracellular calcium concentration and signaling molecule activities has started to give further mechanistic insights. Then, we also introduce recent imaging analyses of interactions between immune cells and non-immune cells including endothelial, fibroblastic, epithelial, and nerve cells. It is argued that future imaging studies that apply updated technical advances to analyze interactions between immune cells and non-immune cells will be important for thorough physiological understanding of the immune system.
Collapse
Affiliation(s)
- Takaharu Okada
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan.
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Sonoko Takahashi
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Azusa Ishida
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
16
|
A Guide to Fluorescent Protein FRET Pairs. SENSORS 2016; 16:s16091488. [PMID: 27649177 PMCID: PMC5038762 DOI: 10.3390/s16091488] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022]
Abstract
Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies.
Collapse
|
17
|
Hirata E, Kiyokawa E. Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy. Biophys J 2016; 111:1103-1111. [PMID: 27475975 DOI: 10.1016/j.bpj.2016.01.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/23/2015] [Accepted: 01/11/2016] [Indexed: 01/03/2023] Open
Abstract
Förster (or fluorescence) resonance energy transfer (FRET) is a nonradiative energy transfer process between two fluorophores located in close proximity to each other. To date, a variety of biosensors based on the principle of FRET have been developed to monitor the activity of kinases, proteases, GTPases or lipid concentration in living cells. In addition, generation of biosensors that can monitor physical stresses such as mechanical power, heat, or electric/magnetic fields is also expected based on recent discoveries on the effects of these stressors on cell behavior. These biosensors can now be stably expressed in cells and mice by transposon technologies. In addition, two-photon excitation microscopy can be used to detect the activities or concentrations of bioactive molecules in vivo. In the future, more sophisticated techniques for image acquisition and quantitative analysis will be needed to obtain more precise FRET signals in spatiotemporal dimensions. Improvement of tissue/organ position fixation methods for mouse imaging is the first step toward effective image acquisition. Progress in the development of fluorescent proteins that can be excited with longer wavelength should be applied to FRET biosensors to obtain deeper structures. The development of computational programs that can separately quantify signals from single cells embedded in complicated three-dimensional environments is also expected. Along with the progress in these methodologies, two-photon excitation intravital FRET microscopy will be a powerful and valuable tool for the comprehensive understanding of biomedical phenomena.
Collapse
Affiliation(s)
- Eishu Hirata
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa, Japan.
| | - Etsuko Kiyokawa
- Department of Oncologic Pathology, Kanazawa Medical University, Ishikawa, Japan.
| |
Collapse
|
18
|
Antoine-Bertrand J, Fu M, Lamarche-Vane N. Direct measurement of oscillatory RhoA activity in embryonic cortical neurons stimulated with the axon guidance cue netrin-1 using fluorescence resonance energy transfer. Biol Cell 2016; 108:115-26. [PMID: 26787017 DOI: 10.1111/boc.201500077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/15/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION Rho GTPases play an essential role during the development of the nervous system. They induce cytoskeletal rearrangements that are critical for the regulation of axon outgrowth and guidance. It is generally accepted that Rac1 and Cdc42 are positive regulators of axon outgrowth and guidance, whereas RhoA is a negative regulator. However, spatiotemporal control of their activity can modify the function of Rho GTPases during axonal morphogenesis. Signalling downstream of the axon guidance cue netrin-1 and its receptor deleted in colorectal cancer (DCC) triggers the activation of Rac1 and the inhibition of RhoA to promote axon outgrowth. However, our previous work also suggests that netrin-1/DCC signalling can activate RhoA in a time- and region-specific manner. RESULTS Here, we visualised RhoA activation in response to netrin-1 in live embryonic cortical neurons using fluorescence resonance energy transfer. RhoA activity oscillated in unstimulated neurons and netrin-1 increased the amplitude of the oscillations in growth cones after 5 min of stimulation. Within this period of time, netrin-1 transiently increased RhoA activity and modulated the pattern of RhoA oscillations. We found that the timing of netrin-1-induced RhoA activation was different in whole neurons, cell bodies and growth cones. CONCLUSIONS We conclude that netrin-1 modulates the spatiotemporal activation of RhoA in embryonic cortical neurons. SIGNIFICANCE This study demonstrates for the first time the short-term localised activation of RhoA in neuronal growth cones by the axon guidance cue netrin-1.
Collapse
Affiliation(s)
- Judith Antoine-Bertrand
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Min Fu
- Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Nathalie Lamarche-Vane
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.,Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| |
Collapse
|
19
|
Rowland CE, Brown CW, Medintz IL, Delehanty JB. Intracellular FRET-based probes: a review. Methods Appl Fluoresc 2015; 3:042006. [PMID: 29148511 DOI: 10.1088/2050-6120/3/4/042006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probes that exploit Förster resonance energy transfer (FRET) in their feedback mechanism are touted for their sensitivity, robustness, and low background, and thanks to the exceptional distance dependence of the energy transfer process, they provide a means of probing lengthscales well below the resolution of light. These attributes make FRET-based probes superbly suited to an intracellular environment, and recent developments in biofunctionalization and expansion of imaging capabilities have put them at the forefront of intracellular studies. Here, we present an overview of the engineering and execution of a variety of recent intracellular FRET probes, highlighting the diversity of this class of materials and the breadth of application they have found in the intracellular environment.
Collapse
Affiliation(s)
- Clare E Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, Washington, DC 20375, USA. National Research Council, Washington, DC 20036, USA
| | | | | | | |
Collapse
|
20
|
Murakoshi H, Shibata ACE, Nakahata Y, Nabekura J. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer. Sci Rep 2015; 5:15334. [PMID: 26469148 PMCID: PMC4606784 DOI: 10.1038/srep15334] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/23/2015] [Indexed: 01/31/2023] Open
Abstract
Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.
Collapse
Affiliation(s)
- Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Akihiro C. E. Shibata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yoshihisa Nakahata
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Komatsubara AT, Matsuda M, Aoki K. Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer. Sci Rep 2015; 5:13283. [PMID: 26290434 PMCID: PMC4542544 DOI: 10.1038/srep13283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/22/2015] [Indexed: 11/25/2022] Open
Abstract
Biosensors based on the principle of Förster (or fluorescence) resonance energy transfer (FRET) have been developed to visualize spatio-temporal dynamics of signalling molecules in living cells. Many of them adopt a backbone of intramolecular FRET biosensor with a cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as donor and acceptor, respectively. However, there remains the difficulty of establishing cells stably expressing FRET biosensors with a YFP and CFP pair by lentiviral or retroviral gene transfer, due to the high incidence of recombination between YFP and CFP genes. To address this, we examined the effects of codon-diversification of YFP on the recombination of FRET biosensors introduced by lentivirus or retrovirus. The YFP gene that was fully codon-optimized to E.coli evaded the recombination in lentiviral or retroviral gene transfer, but the partially codon-diversified YFP did not. Further, the length of spacer between YFP and CFP genes clearly affected recombination efficiency, suggesting that the intramolecular template switching occurred in the reverse-transcription process. The simple mathematical model reproduced the experimental data sufficiently, yielding a recombination rate of 0.002–0.005 per base. Together, these results show that the codon-diversified YFP is a useful tool for expressing FRET biosensors by lentiviral or retroviral gene transfer.
Collapse
Affiliation(s)
- Akira T Komatsubara
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Aoki
- Imaging Platform for Spatio-Temporal Information, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
22
|
Kamioka Y, Sumiyama K, Mizuno R, Matsuda M. Live imaging of transgenic mice expressing FRET biosensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:125-8. [PMID: 24109640 DOI: 10.1109/embc.2013.6609453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, fluorescence imaging has received particular attention, due to increasing availabilities of fluorescent proteins and dyes, which had driven the development of novel biosensors. Genetically-encoded biosensors based on the principle of Förster resonance energy transfer (FRET) have been widely used in biology to visualize the spatiotemporal dynamics of signaling molecules. Despite the increasing multitude of these biosensors, their application has been mostly limited to cultured cells with transient biosensor expression, due to difficulties in stable expression of FRET biosensors. In this study, we report efficient generation of transgenic mouse lines expressing heritable and functional biosensors for ERK and PKA. These transgenic mice were generated by the cytoplasmic co-injection of Tol2 transposase mRNA and a circular plasmid harboring Tol2 recombination sites. Observation of these transgenic mice by two-photon excitation microscopy yielded real-time activity maps of ERK and PKA in various tissues, with greatly improved signal-to-background ratios. Our transgenic mice may be bred into diverse genetic backgrounds; moreover, the protocol we have developed paves the way for the generation of transgenic mice that express other FRET biosensors, with important applications in the characterization of physiological and pathological signal transduction events in addition to drug development and screening.
Collapse
|
23
|
Shibata ACE, Maebashi HK, Nakahata Y, Nabekura J, Murakoshi H. Development of a molecularly evolved, highly sensitive CaMKII FRET sensor with improved expression pattern. PLoS One 2015; 10:e0121109. [PMID: 25799407 PMCID: PMC4370617 DOI: 10.1371/journal.pone.0121109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/10/2015] [Indexed: 11/25/2022] Open
Abstract
Genetically encoded fluorescence resonance energy transfer (FRET) biosensors have been successfully used to visualize protein activity in living cells. The sensitivity and accuracy of FRET measurements directly depend on biosensor folding efficiency, expression pattern, sensitivity, and dynamic range. Here, to improve the folding efficiency of the Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) FRET biosensor, we amplified the association domain of the CaMKIIα gene using error-prone polymerase chain reaction (PCR) and fused it to the N-terminus of mCherry in a bacterial expression vector. We also created an Escherichia coli expression library based on a previously reported fluorescent protein folding reporter method, and found a bright red fluorescent colony that contained the association domain with four mutations (F394L, I419V, A430T, and I434T). In vitro assays using the purified mutant protein confirmed improved folding kinetics of the downstream fluorescent protein, but not of the association domain itself. Furthermore, we introduced these mutations into the previously reported CaMKIIα FRET sensor and monitored its Ca2+/calmodulin-dependent activation in HeLa cells using 2-photon fluorescence lifetime imaging microscopy (2pFLIM), and found that the expression pattern and signal reproducibility of the mutant sensor were greatly improved without affecting the autophosphorylation function and incorporation into oligomeric CaMKIIα. We believe that our improved CaMKIIα FRET sensor would be useful in various types of cells and tissues, providing data with high accuracy and reproducibility. In addition, the method described here may also be applicable for improving the performance of all currently available FRET sensors.
Collapse
Affiliation(s)
- Akihiro C. E. Shibata
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Aichi, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki, Aichi, Japan
| | - Hiroshi K. Maebashi
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Aichi, Japan
| | - Yoshihisa Nakahata
- Division of Homeostatic Development, National Institute for Physiological Science, Okazaki, Aichi, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Science, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Science, Okazaki, Aichi, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
24
|
Mehta S, Zhang J. Dynamic visualization of calcium-dependent signaling in cellular microdomains. Cell Calcium 2015; 58:333-41. [PMID: 25703691 DOI: 10.1016/j.ceca.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
Cells rely on the coordinated action of diverse signaling molecules to sense, interpret, and respond to their highly dynamic external environment. To ensure the specific and robust flow of information, signaling molecules are often spatially organized to form distinct signaling compartments, and our understanding of the molecular mechanisms that guide intracellular signaling hinges on the ability to directly probe signaling events within these cellular microdomains. Ca(2+) signaling in particular owes much of its functional versatility to this type of exquisite spatial regulation. As discussed below, a number of methods have been developed to investigate the mechanistic and functional implications of microdomains of Ca(2+) signaling, ranging from the application of Ca(2+) buffers to the direct and targeted visualization of Ca(2+) signaling microdomains using genetically encoded fluorescent reporters.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Tomida T. Visualization of the spatial and temporal dynamics of MAPK signaling using fluorescence imaging techniques. J Physiol Sci 2015; 65:37-49. [PMID: 25145828 PMCID: PMC10716987 DOI: 10.1007/s12576-014-0332-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
Conserved mitogen-activated protein kinase (MAPK) signaling pathways are major mechanisms through which cells perceive and respond properly to their surrounding environment. Such homeostatic responses maintain the life of the organism. Since errors in MAPK signaling pathways can lead to cancers and to defects in immune responses, in the nervous system and metabolism, these pathways have been extensively studied as potential therapeutic targets. Although much has been studied about the roles of MAPKs in various cellular functions, less is known regarding regulation of MAPK in living organisms. This review will focus on the latest understanding of the dynamic regulation of MAPK signaling in intact cells that was revealed by using novel fluorescence imaging techniques and advanced systems-analytical methods. These techniques allowed quantitative analyses of signal transduction in situ with high spatio-temporal resolution and have revealed the nature of the molecular dynamics that determine cellular responses and fates.
Collapse
Affiliation(s)
- Taichiro Tomida
- Division of Molecular Cell Signaling, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan,
| |
Collapse
|
26
|
Sands B, Jenkins P, Peria WJ, Naivar M, Houston JP, Brent R. Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes. PLoS One 2014; 9:e109940. [PMID: 25302964 PMCID: PMC4193854 DOI: 10.1371/journal.pone.0109940] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/04/2014] [Indexed: 01/03/2023] Open
Abstract
Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼1.5 ns vs ∼3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a “pseudophasor” that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation.
Collapse
Affiliation(s)
- Bryan Sands
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Patrick Jenkins
- Department of Chemical Engineering, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - William J. Peria
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark Naivar
- Darkling X, LLC, Los Alamos, New Mexico, United States of America
| | - Jessica P. Houston
- Department of Chemical Engineering, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
27
|
Sample V, Mehta S, Zhang J. Genetically encoded molecular probes to visualize and perturb signaling dynamics in living biological systems. J Cell Sci 2014; 127:1151-60. [PMID: 24634506 PMCID: PMC3953811 DOI: 10.1242/jcs.099994] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023] Open
Abstract
In this Commentary, we discuss two sets of genetically encoded molecular tools that have significantly enhanced our ability to observe and manipulate complex biochemical processes in their native context and that have been essential in deepening our molecular understanding of how intracellular signaling networks function. In particular, genetically encoded biosensors are widely used to directly visualize signaling events in living cells, and we highlight several examples of basic biosensor designs that have enabled researchers to capture the spatial and temporal dynamics of numerous signaling molecules, including second messengers and signaling enzymes, with remarkable detail. Similarly, we discuss a number of genetically encoded biochemical perturbation techniques that are being used to manipulate the activity of various signaling molecules with far greater spatial and temporal selectivity than can be achieved using standard pharmacological or genetic techniques, focusing specifically on examples of chemically driven and light-inducible perturbation strategies. We then describe recent efforts to combine these diverse and powerful molecular tools into a unified platform that can be used to elucidate the molecular details of biological processes that may potentially extend well beyond the realm of signal transduction.
Collapse
Affiliation(s)
- Vedangi Sample
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Jaeger WC, Armstrong SP, Hill SJ, Pfleger KDG. Biophysical Detection of Diversity and Bias in GPCR Function. Front Endocrinol (Lausanne) 2014; 5:26. [PMID: 24634666 PMCID: PMC3943086 DOI: 10.3389/fendo.2014.00026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
Guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) function in complexes with a range of molecules and proteins including ligands, G proteins, arrestins, ubiquitin, and other receptors. Elements of these complexes may interact constitutively or dynamically, dependent upon factors such as ligand binding, phosphorylation, and dephosphorylation. They may also be allosterically modulated by other proteins in a manner that changes temporally and spatially within the cell. Elucidating how these complexes function has been greatly enhanced by biophysical technologies that are able to monitor proximity and/or binding, often in real time and in live cells. These include resonance energy transfer approaches such as bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). Furthermore, the use of fluorescent ligands has enabled novel insights into allosteric interactions between GPCRs. Consequently, biophysical approaches are helping to unlock the amazing diversity and bias in G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Werner C. Jaeger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen P. Armstrong
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Stephen J. Hill
- Cell Signalling Research Group, School of Life Sciences, Queen’s Medical Centre, University of Nottingham Medical School, Nottingham, UK
| | - Kevin D. G. Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Dimerix Bioscience Pty Ltd, Perth, WA, Australia
- *Correspondence: Kevin D. G. Pfleger, Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, QQ Block, 6 Verdun Street, Nedlands, Perth, WA 6009, Australia e-mail:
| |
Collapse
|
29
|
Ueda Y, Kwok S, Hayashi Y. Application of FRET probes in the analysis of neuronal plasticity. Front Neural Circuits 2013; 7:163. [PMID: 24133415 PMCID: PMC3794420 DOI: 10.3389/fncir.2013.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.
Collapse
|
30
|
Lin YC, Nihongaki Y, Liu TY, Razavi S, Sato M, Inoue T. Rapidly reversible manipulation of molecular activity with dual chemical dimerizers. Angew Chem Int Ed Engl 2013; 52:6450-4. [PMID: 23649661 DOI: 10.1002/anie.201301219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Yu-Chun Lin
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Lin YC, Nihongaki Y, Liu TY, Razavi S, Sato M, Inoue T. Rapidly Reversible Manipulation of Molecular Activity with Dual Chemical Dimerizers. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Abstract
Small GTPases regulate a wide range of homeostatic processes such as cytoskeletal dynamics, organelle homeostasis, cell migration and vesicle trafficking, as well as in pathologic conditions such as carcinogenesis and metastatic spreading. Therefore, it is important to understand the regulation of small GTPase signaling, but this is complicated by the fact that crosstalk exists between different GTPase families and that we have to understand how they signal in time and space. The Golgi apparatus represents a hub for several signaling molecules and its importance in this field is constantly increasing. In this review we will discuss small GTPases signaling at the Golgi apparatus. Then, we will highlight recent work that contributed to a better understanding of crosstalk between different small GTPase families, with a special emphasis on their crosstalk at the Golgi apparatus. Finally, we will give a brief overview of available methods and tools to investigate spatio-temporal small GTPase crosstalk.
Collapse
Affiliation(s)
- Francesco Baschieri
- Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | |
Collapse
|
33
|
Nakanishi Y, Iida S, Ueoka-Nakanishi H, Niimi T, Tomioka R, Maeshima M. Exploring dynamics of molybdate in living animal cells by a genetically encoded FRET nanosensor. PLoS One 2013; 8:e58175. [PMID: 23472155 PMCID: PMC3589368 DOI: 10.1371/journal.pone.0058175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/30/2013] [Indexed: 12/17/2022] Open
Abstract
Molybdenum (Mo) is an essential trace element for almost all living organisms including animals. Mo is used as a catalytic center of molybdo-enzymes for oxidation/reduction reactions of carbon, nitrogen, and sulfur metabolism. Whilst living cells are known to import inorganic molybdate oxyanion from the surrounding environment, the in vivo dynamics of cytosolic molybdate remain poorly understood as no appropriate indicator is available for this trace anion. We here describe a genetically encoded Förester-resonance-energy-transfer (FRET)-based nanosensor composed of CFP, YFP and the bacterial molybdate-sensor protein ModE. The nanosensor MolyProbe containing an optimized peptide-linker responded to nanomolar-range molybdate selectively, and increased YFP:CFP fluorescence intensity ratio by up to 109%. By introduction of the nanosensor, we have been able to successfully demonstrate the real-time dynamics of molybdate in living animal cells. Furthermore, time course analyses of the dynamics suggest that novel oxalate-sensitive- and sulfate-resistant- transporter(s) uptake molybdate in a model culture cell.
Collapse
Affiliation(s)
- Yoichi Nakanishi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Aoki K, Kamioka Y, Matsuda M. Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: basis of biosensor construction, live imaging, and image processing. Dev Growth Differ 2013; 55:515-22. [PMID: 23387795 DOI: 10.1111/dgd.12039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
The progress in imaging technology with fluorescent proteins has uncovered a wide range of biological processes in developmental biology. In particular, genetically-encoded biosensors based on the principle of fluorescence resonance energy transfer (FRET) have been used to visualize spatial and temporal dynamics of intracellular signaling in living cells. However, development of sensitive FRET biosensors and their application to developmental biology remain challenging tasks, which has prevented their widespread use in developmental biology. In this review, we first overview general procedures and tips of imaging with FRET biosensors. We then describe recent advances in FRET imaging - namely, the use of optimized backbones for intramolecular FRET biosensors and transposon-mediated gene transfer to generate stable cell lines and transgenic mice expressing FRET biosensors. Finally, we discuss future perspectives of FRET imaging in developmental biology.
Collapse
Affiliation(s)
- Kazuhiro Aoki
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | | | | |
Collapse
|
35
|
Erard M, Fredj A, Pasquier H, Beltolngar DB, Bousmah Y, Derrien V, Vincent P, Merola F. Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1039/c2mb25303h] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Chimaerin suppresses Rac1 activation at the apical membrane to maintain the cyst structure. PLoS One 2012; 7:e52258. [PMID: 23284959 PMCID: PMC3527519 DOI: 10.1371/journal.pone.0052258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial organs are made of a well-polarized monolayer of epithelial cells, and their morphology is maintained strictly for their proper functions. Previously, we showed that Rac1 activation is suppressed at the apical membrane in the mature organoid, and that such spatially biased Rac1 activity is required for the polarity maintenance. Here we identify Chimaerin, a GTPase activating protein for Rac1, as a suppressor of Rac1 activity at the apical membrane. Depletion of Chimaerin causes over-activation of Rac1 at the apical membrane in the presence of hepatocyte growth factor (HGF), followed by luminal cell accumulation. Importantly, Chimaerin depletion did not inhibit extension formation at the basal membrane. These observations suggest that Chimaerin functions as the apical-specific Rac1 GAP to maintain epithelial morphology.
Collapse
|
37
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
38
|
DeRose R, Pohlmeyer C, Umeda N, Ueno T, Nagano T, Kuo S, Inoue T. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells. J Vis Exp 2012:3794. [PMID: 22433289 DOI: 10.3791/3794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).
Collapse
Affiliation(s)
- Robert DeRose
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, MD, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Murakoshi H, Yasuda R. Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 2012; 35:135-43. [PMID: 22222350 DOI: 10.1016/j.tins.2011.12.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/25/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Dendritic spines, small bulbous postsynaptic compartments emanating from neuronal dendrites, have been thought to serve as basic units of memory storage. Despite their small size (~0.1 femtoliter), thousands of species of proteins exist in the spine, including receptors, channels, scaffolding proteins and signaling enzymes. Biochemical signaling mediated by these molecules leads to morphological and functional plasticity of dendritic spines, and ultimately learning and memory in the brain. Here, we review new insights into the mechanisms underlying spine plasticity brought about by recent advances in imaging techniques to monitor molecular events in single dendritic spines. The activity of each protein displays a specific spatiotemporal pattern, coordinating downstream events at different microdomains to change the function and morphology of dendritic spines.
Collapse
Affiliation(s)
- Hideji Murakoshi
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
40
|
Maliwal BP, Raut S, Fudala R, D’Auria S, Marzullo VM, Luini A, Gryczynski I, Gryczynski Z. Extending Förster resonance energy transfer measurements beyond 100 Å using common organic fluorophores: enhanced transfer in the presence of multiple acceptors. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:011006. [PMID: 22352640 PMCID: PMC3379572 DOI: 10.1117/1.jbo.17.1.011006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 05/22/2023]
Abstract
Using commercially available organic fluorophores, the current applications of Förster (fluorescence) resonance energy transfer (FRET) are limited to about 80 Å. However, many essential activities in cells are spatially and/or temporally dependent on the assembly/disassembly of transient complexes consisting of large-size macromolecules that are frequently separated by distances greater than 100 Å. Expanding the accessible range for FRET to 150 Å would open up many cellular interactions to fluorescence and fluorescence-lifetime imaging. Here, we demonstrate that the use of multiple randomly distributed acceptors on proteins/antibodies, rather than the use of a single localized acceptor, makes it possible to significantly enhance FRET and detect interactions between the donor fluorophore and the acceptor-labeled protein at distances greater than 100 Å. A simple theoretical model for spherical bodies that have been randomly labeled with acceptors has been developed. To test the theoretical predictions of this system, we carried out FRET studies using a 30-mer oligonucleotide-avidin system that was labeled with the acceptors DyLight649 or Dylight750. The opposite 5'-end of the oligonucleotide was labeled with the Alexa568 donor. We observed significantly enhanced energy transfer due to presence of multiple acceptors on the avidin protein. The results and simulation indicate that use of a nanosized body that has been randomly labeled with multiple acceptors allows FRET measurements to be extended to over 150 Å when using commercially available probes and established protein-labeling protocols.
Collapse
Affiliation(s)
- Badri P. Maliwal
- University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76106
| | - Sangram Raut
- University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76106
| | - Rafal Fudala
- University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76106
| | - Sabato D’Auria
- Laboratory for Molecular Sensing, IBP-CNR, Via Pietro Castellino, 111 80131 Naples, Italy
| | - Vincenzo M. Marzullo
- Laboratory for Molecular Sensing, IBP-CNR, Via Pietro Castellino, 111 80131 Naples, Italy
- Telethon - Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Alberto Luini
- Telethon - Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76106
- University of North Texas Health Science Center, Department of Cell Biology and Genetics, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76106
| | - Zygmunt Gryczynski
- University of North Texas Health Science Center, Department of Cell Biology and Genetics, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76106
- Texas Christian University, Department of Physics and Astronomy, TCU Box 298840, Fort Worth, Texas 76129
- Address all correspondence to: Zygmunt Gryczynski, Texas Christian University, Department of Physics and Astronomy, TCU Box 298840, Fort Worth, Texas 76129. Tel: 817 257 4209; E-mail:
| |
Collapse
|
41
|
Systematic control of protein interaction using a modular ER/K α-helix linker. Proc Natl Acad Sci U S A 2011; 108:20467-72. [PMID: 22123984 DOI: 10.1073/pnas.1116066108] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cellular functions of proteins are strongly influenced by their interactions with other proteins. The frequency of protein interactions is a function of the local concentration of two proteins and their affinity for one another. When two proteins are tethered together, the link between them influences their effective concentrations and therefore the frequency of their interaction. Currently no methods exist to systematically vary the effective concentration within this intramolecular interaction. Here we outline a modular, genetically encoded linker, namely, an ER/K [genetically encoded polypeptide motif based on alternating sequence of approximately four glutamic acid (E) followed by approximately four arginine (R) or lysine (K) residues] single α-helix that can be used to regulate the frequency of interaction between two proteins, or between a protein and a peptide, one at each end. We exploit the wide range of interaction affinities between calmodulin and its binding peptides, combined with FRET to determine the effect of the ER/K α-helix in regulating protein interactions. We find that increasing the length of the ER/K α-helix reduces the on rate of the intramolecular interaction without significantly affecting the off rate, regardless of the affinity of the bimolecular interaction. We outline a genetically encoded approach to determine the dissociation constant for both moderate (micromolar K(d)) and strong (nanomolar K(d)) protein interactions. Our studies demonstrate the use of the ER/K α-helix to systematically engineer FRET biosensors that detect changes in concentration or affinity of interacting proteins, and modulate enzyme autoinhibition. Our findings are consistent with the ER/K α-helix as a worm-like chain with rare, stochastic breaks in the helix backbone that may account for the behavior of myosin VI stepping along actin.
Collapse
|
42
|
Kardash E, Bandemer J, Raz E. Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nat Protoc 2011; 6:1835-46. [DOI: 10.1038/nprot.2011.395] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
A genetically encoded Förster resonance energy transfer biosensor for two-photon excitation microscopy. Anal Biochem 2011; 413:192-9. [DOI: 10.1016/j.ab.2011.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 12/16/2022]
|